WO2022124165A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2022124165A1
WO2022124165A1 PCT/JP2021/044153 JP2021044153W WO2022124165A1 WO 2022124165 A1 WO2022124165 A1 WO 2022124165A1 JP 2021044153 W JP2021044153 W JP 2021044153W WO 2022124165 A1 WO2022124165 A1 WO 2022124165A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
display device
signal
light emitting
Prior art date
Application number
PCT/JP2021/044153
Other languages
French (fr)
Japanese (ja)
Inventor
尚司 豊田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2022568219A priority Critical patent/JPWO2022124165A1/ja
Publication of WO2022124165A1 publication Critical patent/WO2022124165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the embodiment according to the present disclosure relates to a display device.
  • the voltage of the main power supply is being lowered for the purpose of lowering power consumption.
  • the amplitude of the signal voltage Vsig cannot be sufficiently increased, and the maximum brightness of the light emitting unit may be limited.
  • a display device capable of improving the brightness is provided.
  • the pixel array section where the pixel circuit is arranged and A drive circuit for driving the pixel array unit is provided.
  • the pixel circuit is A light emitting element that emits light with brightness according to the current flowing from the anode to the cathode, A drive transistor that drives the light emitting element based on the written signal voltage, A sampling transistor that samples the signal voltage written to the drive transistor, It has an anode voltage control unit that makes the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during the signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor.
  • a display device is provided.
  • the anode voltage control unit has a first switching transistor that is turned on within the signal voltage writing period to set the anode voltage of the light emitting element to a reference voltage.
  • the reference voltage may transition from the first voltage to a second voltage higher than the cathode voltage in accordance with the timing at which the sampling transistor is turned on.
  • the drive circuit may have a reference voltage control unit that controls the voltage value of the reference voltage so that the voltage value of the reference voltage becomes higher than the cathode voltage at least during the signal voltage writing period.
  • the reference voltage control unit may generate a pulse voltage whose voltage level is higher than the cathode voltage during the signal voltage writing period and output it to the reference voltage.
  • the reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then from the second voltage at the timing when the sampling transistor is turned off. It may transition to the first voltage.
  • the reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then the second voltage at the timing when the light emitting of the light emitting element is stopped. May transition to the first voltage.
  • the drive transistor, the sampling transistor, and the first switching transistor may be P-channel type transistors.
  • the drive transistor, the sampling transistor, and the first switching transistor may be N-channel type transistors.
  • the anode voltage control unit may make the anode voltage substantially the same as the cathode voltage during a predetermined period before the signal voltage writing period is started.
  • the pixel circuit may further include a second switching transistor for diode-connecting the drive transistor in a predetermined period before the signal voltage writing period is started.
  • the predetermined period may be a period in which the gate-source voltage of the drive transistor is set to a voltage corresponding to the threshold voltage of the drive transistor.
  • the light emitting element may emit light with a brightness corresponding to the current flowing through the drive transistor based on the signal voltage.
  • the display device of the present disclosure is a flat panel type display device in which a sampling transistor and a pixel circuit having a holding capacity are arranged in addition to a drive transistor for driving a light emitting unit.
  • the flat display device include an organic EL display device, a liquid crystal display device, and a plasma display device.
  • the organic EL display device uses electroluminescence of an organic material and uses an organic EL element that emits light when an electric field is applied to an organic thin film as a pixel light emitting element (electro-optical element). ing.
  • An organic EL display device that uses an organic EL element as the light emitting part of a pixel has the following features. Since the organic EL element is a self-luminous element, the organic EL display device has higher image visibility than the liquid crystal display device, which is the same flat display device, and is a lighting member such as a backlight. It is easy to reduce the weight and thickness because it does not require. Further, since the response speed of the organic EL element is as high as several microseconds, the organic EL display device does not generate an afterimage when displaying a moving image.
  • the organic EL element is a self-luminous element and a current-driven electro-optical element.
  • Examples of the current-driven electro-optical element include an inorganic EL element, an LED element, a semiconductor laser element, and the like, in addition to the organic EL element.
  • a flat display device such as an organic EL display device can be used as a display unit (display device) in various electronic devices provided with a display unit.
  • Various electronic devices include television systems, head-mounted displays, digital cameras, video cameras, game machines, notebook personal computers, mobile information devices such as electronic books, PDA (Personal Digital Assistant), mobile phones, etc.
  • a mobile communication device or the like can be exemplified.
  • the drive unit may be configured so that the gate node of the drive transistor is in a floating state and then the source node is in a floating state. Further, the drive unit may be configured to write the signal voltage by the sampling transistor while keeping the source node of the drive transistor in the floating state.
  • the initialization voltage may be supplied to the signal line at a timing different from the signal voltage, and may be written from the signal line to the gate node of the drive transistor by sampling by the sampling transistor.
  • the pixel circuit can be configured to be formed on a semiconductor such as silicon.
  • the drive transistor may be configured to consist of a P-channel type transistor. The reason why the P-channel type transistor is used as the drive transistor instead of the N-channel type transistor is as follows.
  • the transistor When a transistor is formed on a semiconductor such as silicon rather than on an insulator such as a glass substrate, the transistor is not a source / gate / drain terminal but a source / gate / drain / backgate (base). It has 4 terminals.
  • the back gate (board) voltage becomes 0 V, which adversely affects the operation of correcting the variation of the threshold voltage of the drive transistor for each pixel.
  • the variation in the characteristics of the transistor is smaller in the P-channel type transistor having no LDD region than in the N-channel type transistor having the LDD (Lightly Doped Drain) region, and the pixel miniaturization and eventually the display device. It is advantageous for achieving high definition. For this reason, when it is assumed that the transistor is formed on a semiconductor such as silicon, it is preferable to use a P-channel transistor instead of an N-channel transistor as the drive transistor.
  • the sampling transistor may also be configured to include a P-channel type transistor.
  • the pixel circuit may be configured to have a light emission control transistor for controlling light emission / non-light emission of the light emitting unit.
  • the light emission control transistor may also be configured to consist of a P-channel type transistor.
  • the holding capacity may be configured to be connected between the gate node and the source node of the drive transistor.
  • the pixel circuit can be configured to have an auxiliary capacitance connected between the source node of the drive transistor and the node of the fixed potential.
  • the pixel circuit may have a configuration having a switching transistor connected between the drain node of the drive transistor and the anode node of the light emitting unit.
  • the switching transistor may also be configured to consist of a P-channel type transistor.
  • the drive unit may be configured to have the switching transistor in a conductive state during the non-light emission period of the light emitting unit.
  • the drive unit activates the signal for driving the switching transistor before the sampling timing of the initialization voltage by the sampling transistor. Then, the signal for driving the light emission control transistor can be activated and then inactive. At this time, the drive unit may be configured to complete the sampling of the initialization voltage by the sampling transistor before the signal for driving the light emission control transistor is inactive.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the display device 100 according to the first embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of the display device 100 according to the first embodiment of the present disclosure.
  • an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
  • the pixel unit 110 has a configuration in which pixels provided with organic EL elements and other self-luminous elements are arranged in a matrix.
  • the pixel unit 110 is provided with scanning lines in the horizontal direction in line units with respect to the pixels arranged in a matrix, and signal lines SL are provided for each row so as to be orthogonal to the scanning lines.
  • the horizontal selector 120 sequentially transfers a predetermined sampling pulse, and sequentially latches the image data with this sampling pulse, thereby distributing the image data to each signal line SL. Further, the horizontal selector 120 performs analog digital conversion processing on the image data distributed to each signal line SL, thereby generating a drive signal indicating the emission luminance of each pixel connected to each signal line SL by time division. The horizontal selector 120 outputs this drive signal to the corresponding signal line SL.
  • the vertical scanner 130 responds to the driving of the signal line SL by the horizontal selector 120, generates a driving signal for each pixel, and outputs the driving signal to the scanning line SCN.
  • the display device 100 sequentially drives each pixel arranged in the pixel unit 110 by the vertical scanner 130, causes each pixel to emit light at the signal level of each signal line SL set by the horizontal selector 120, and produces a desired image. It is displayed by the pixel unit 110.
  • FIG. 2 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure.
  • an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
  • a pixel 111R displaying red, a pixel 111G displaying green, and a pixel 111B displaying blue are arranged in a matrix.
  • the vertical scanner 130 includes an auto-zero scanner 131, a drive scanner 132, and a write scanner 133. By supplying a signal from each scanner to the pixels arranged in a matrix in the pixel unit 110, the TFTs provided in the respective pixels are turned on and off.
  • the vertical scanner 130 further has a VSS2 scanner (reference voltage control unit) 134.
  • the VSS2 scanner 134 generates, for example, a control voltage signal and supplies the control voltage signal to the pixels arranged in a matrix in the pixel unit 110. More specifically, the VSS2 scanner 134 supplies the control voltage signal to the feeder line of the reference voltage. That is, the VSS2 scanner 134 outputs a control voltage signal in the same manner as the signal outputs of the auto zero scanner 131, the drive scanner 132, and the write scanner 133.
  • the anode potential (anode voltage) of the organic EL element is controlled when the signal voltage Vsig is written, as will be described later. Can be done. As a result, the emission brightness of the organic EL element EL can be improved.
  • FIG. 3 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure.
  • FIG. 3 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure.
  • an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 3 illustrates a pixel circuit for one pixel arranged in a matrix in the pixel unit 110.
  • the pixel circuit includes transistors T1 to T3, an anode potential control unit (anode voltage control unit) 112, capacitors C1 and C2, and an organic EL element EL.
  • the anode potential control unit 112 includes, for example, the transistor T4.
  • FIG. 4 is an explanatory diagram showing the pixel circuit shown in FIG. 3 extracted.
  • Transistor T1 is a light emission control transistor that controls light emission of the organic EL element EL.
  • the transistor T1 is connected between the power supply node of the power supply voltage VCCP and the source node (source electrode) of the transistor T2, and is driven by a light emission control signal (signal DS) output from the drive scanner 132, and is an organic EL. Controls the light emission / non-light emission of the element EL.
  • the transistor T2 is a drive transistor that drives the organic EL element EL by passing a drive current corresponding to the holding voltage of the capacitor C2 through the organic EL element EL.
  • the transistor T2 is connected between the anode of the organic EL element EL and the power supply node of the power supply voltage VCCP, and controls the current flowing through the organic EL element EL based on the signal voltage Vsig. Further, the organic EL element EL emits light with brightness corresponding to the current flowing from the anode to the cathode. More specifically, the organic EL element EL emits light with a brightness corresponding to the current flowing through the transistor T2 based on the signal voltage Vsig. As shown in FIG. 4, the transistor T2 has a parasitic capacitance Cp between the gate and the drain.
  • the transistor T3 is a sampling transistor that writes the signal voltage Vsig to the gate node (gate electrode) of the transistor T2 by sampling the signal voltage Vsig under the drive by the drive signal (signal WS) supplied from the write scanner 133. be.
  • the transistor T3 is connected between the gate of the transistor T2 and the signal line SL.
  • the transistor T4 is a first switching transistor connected between the drain node (drain electrode) of the transistor T2 and the current discharge destination node (for example, the power supply VSS2).
  • the transistor T4 is controlled so that the organic EL element EL does not emit light during the non-emission period of the organic EL element EL under the drive by the drive signal (signal AZ) from the auto-zero scanner 131.
  • the control voltage generated by the VSS2 scanner 134 is supplied to the feeder line of the power supply VSS2.
  • the transistors T1 to T4 can all be configured to be composed of P-channel type transistors.
  • the capacitor C2 is connected between the gate node and the source node of the transistor T2, and holds the signal voltage Vsig written by sampling by the transistor T3.
  • the capacitor C1 is connected between the source node of the transistor T2 and the node of a fixed potential (for example, the power supply node of the power supply voltage VCCP).
  • the capacitor C1 suppresses the fluctuation of the source voltage of the transistor T2 when the signal voltage Vsig is written, and also acts to change the gate-source voltage Vgs of the transistor T2 to the threshold voltage Vth of the transistor T2.
  • a pixel portion 110, a horizontal selector 120, a vertical scanner 130, and the like are collectively formed on a transparent insulating substrate made of a glass substrate or the like using a polysilicon TFT.
  • Polysilicon TFTs cannot avoid variations in threshold voltage or mobility, and in display devices using organic EL elements, there is a problem that image quality deteriorates due to these variations.
  • the anode potential control unit 112 having the transistor T4 makes the anode potential Band of the organic EL element EL substantially the same as the cathode potential Vcat in a predetermined period before the signal voltage writing period is started.
  • the predetermined period is a period for correcting variations in the threshold voltage and mobility of the drive transistor.
  • the anode potential control unit 112 sets the anode potential Vand of the organic EL element EL higher than the cathode potential Vcat of the organic EL element EL during the signal voltage writing period in which the transistor T3 is turned on and the signal voltage Vsig is written to the transistor T2. do.
  • the transistor T4 is turned on, for example, within the signal voltage writing period, and the anode potential Band of the organic EL element EL is set to the power supply VSS2.
  • the VSS2 scanner 134 controls the voltage value of the power supply VSS2 so that the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat at least during the signal voltage writing period. As a result, as described with reference to FIG. 5, the emission brightness of the organic EL element EL can be improved.
  • the correction of the characteristic variation of the driving transistor and the operation of writing the signal voltage Vsig will be described.
  • the operation of changing the voltage value of the power supply VSS2 by the VSS2 scanner 134 will also be described.
  • FIG. 5 is an explanatory diagram showing an example of a driving method of the display device 100 according to the first embodiment of the present disclosure.
  • FIG. 5 shows the temporal transition of the source potential Vs, the gate potential Vg and the drain potential Vd of the transistor T2, and the anode potential Vand and the cathode potential (cathode voltage) Vcat of the organic EL element EL.
  • the anode potential Vand is substantially the same as the drain potential Vd.
  • FIG. 5 also shows the temporal transition of the control signal voltage supplied from the VSS2 scanner 134 to the power supply VSS2, the signal DS from the drive scanner 132, the signal WS from the write scanner 133, and the signal AZ from the auto-zero scanner 131. Has been done.
  • time t1 is, for example, the timing at which the quenching period ends and the writing period of one horizontal line (1H) begins.
  • the signal AZ is low and the transistor T4 is on. This is to prevent the organic EL element EL from emitting light due to a current flowing into the organic EL element EL during the Vth correction period described later.
  • the transistors T1 and T3 are turned on by changing the signals WS and DS from high to low.
  • the preparation period for correcting the threshold voltage Vth of the transistor T2 is entered.
  • the gate potential Vg of the transistor T2 drops to the offset voltage Vofs.
  • the transistor T3 is turned off when the signal WS changes from low to high.
  • the transistor T1 is turned off when the signal DS changes from low to high.
  • the Vth correction period is entered.
  • the gate-source voltage Vgs of the transistor T2 is set to the threshold voltage Vth.
  • the transistor T3 is turned on by changing the signal WS from high to low.
  • the writing period of the signal voltage Vsig to the transistor T2 is set.
  • the gate potential Vg of the transistor T2 becomes Vsig.
  • the voltage value of the power supply VSS2 becomes large. More specifically, the voltage value of the power supply VSS2 before the time t5 is substantially the same as, for example, the cathode potential Vcat. Therefore, it is possible to suppress the flow of unnecessary current during the Vth correction period or the like.
  • the voltage value of the power supply VSS2 becomes larger than, for example, the cathode potential Vcat. As a result, the drain potential Vd increases via the transistor T4 in the on state.
  • the VSS2 scanner 134 generates, for example, a pulse voltage whose voltage level increases during the period from time t5 to time t7 as a control voltage signal, and outputs the pulse voltage to the power supply VSS2 for each horizontal line (1H).
  • the voltage value of the power supply VSS2 transitions from the first voltage to the second voltage higher than the cathode potential Vcat at the timing when the transistor T3 is turned on.
  • the transistor T3 is turned off when the signal WS changes from low to high.
  • the writing period of the signal voltage Vsig to the transistor T2 ends.
  • the transistor T4 is turned off when the signal AZ changes from low to high between the time t6 and the time t7.
  • the transistor T1 is turned on by changing the signal DS from high to low.
  • the organic EL element EL emits light.
  • the source potential Vs of the transistor T2 becomes the power supply voltage VCCP.
  • the voltage value of the power supply VSS2 becomes smaller.
  • the voltage value of the power supply VSS2 at time t7 is a voltage value before time t5, and is substantially the same as, for example, the cathode potential Vcat. That is, the voltage value of the power supply VSS2 transitions from the second voltage to the first voltage at time t7.
  • the period from time t8 to time t9 is a light emission transition period.
  • a current flows through the organic EL element EL, and the potential difference Vold between the anode potential Vand and the cathode potential Vcat gradually widens due to the IV characteristics of the organic EL element EL. Since the cathode potential Vcat is fixed, the anode potential Vand and the drain potential Vd substantially the same as the anode potential Vd gradually increase. After that, at time t9, the drain potential Vd stabilizes.
  • the gate potential Vg also increases as the drain potential Vd increases from time t8 to time t9.
  • the source potential Vs is fixed to the power supply voltage VCCP. Therefore, from time t8 to time t9, the gate-source voltage Vgs is gradually compressed.
  • the gate potential Vg is set to the signal voltage Vsig. Therefore, even if the drain potential Vd rises due to the increase in the voltage value of the power supply VSS2, the influence on the gate potential Vg via the parasitic capacitance Cp is small.
  • the drain potential Vd can be increased by increasing the voltage value of the power supply VSS2 during the writing period of the signal voltage Vsig from the time t5 to the time t6.
  • the compression amount of the gate-source voltage Vgs in the period from the time t8 to the time t9 can be suppressed. That is, the gate-source voltage Vgs at the time of light emission after the time t9 can be increased, and the current flowing through the transistor T2 can be increased.
  • the emission brightness of the organic EL element EL can be improved.
  • FIG. 6 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the comparative example of the present disclosure.
  • the comparative example is different from the first embodiment in that the VSS2 scanner 134 is not provided and the fixed voltage power supply VSS is connected to the drain of the transistor T4 instead of the power supply VSS2 having a variable voltage value. ing.
  • FIG. 7 is an explanatory diagram showing an example of a driving method of the display device 100 according to the comparative example of the present disclosure.
  • the voltage value of the power supply VSS is substantially constant (DC (Direct Current)). Therefore, the drain potential Vd is substantially constant during the writing period of the signal voltage Vsig from the time t5 to the time t6.
  • the voltage value of the power supply VSS is, for example, substantially the same as the cathode potential Vcat of the organic EL element EL.
  • the drain potential Vd shown in FIG. 7 of the comparative example is smaller than the drain potential Vd shown in FIG. 5 of the first embodiment in which the voltage value of the power supply VSS2 fluctuates (AC (Alternating Current)). Therefore, in the period from time t8 to time t9, the increase value of the drain potential Vd in the comparative example is larger than the increase value of the drain potential Vd in the first embodiment. That is, in the comparative example, the increase value of the gate potential Vg via the parasitic capacitance Cp is large, and the compression amount of the gate-source voltage Vgs is large. As a result, at time t9, the gate-source voltage Vgs shown in FIG. 7 of the comparative example is smaller than the gate-source voltage Vgs shown in FIG. 5 of the first embodiment.
  • the voltage of the main power supply has been reduced for the purpose of reducing power consumption.
  • the amplitude of the signal voltage Vsig cannot be sufficiently increased, and the maximum brightness may be limited.
  • the parasitic capacitance Cp compresses the gate-source voltage Vgs at the time of light emission at time t9. The smaller the amplitude of the signal voltage Vsig, the greater the effect of compression of the gate-source voltage Vgs. As a result, the maximum brightness may be further limited.
  • the amount of increase in the anode potential Vand due to the parasitic capacitance Cp during the light emission transition period is suppressed. can do. That is, it is possible to suppress the amount of compression of the gate-source voltage Vgs due to the parasitic capacitance Cp during the light emission transition period.
  • the gate-source voltage Vgs at the time of light emission can be increased, and the light emission brightness can be improved.
  • the emission brightness can be improved without increasing the amplitude of the signal voltage Vsig. That is, it is possible to suppress the limitation of the maximum luminance due to the small amplitude of the signal voltage Vsig.
  • FIG. 8 is an explanatory diagram showing a first modification of the driving method of the display device 100 according to the first embodiment of the present disclosure.
  • the first modification is different from the first embodiment in that the timing at which the voltage value of the power supply VSS2 becomes small is before the time t7.
  • the voltage value of the power supply VSS2 becomes smaller at time t6, and becomes substantially the same as, for example, the cathode potential Vcat. Therefore, the width of the pulse voltage of the power supply VSS2 is the period from the time t5 to the time t6.
  • the width of the pulse voltage of the power supply VSS corresponds to, for example, the period during which the signal WS becomes low due to the writing of the signal voltage Vsig. That is, the voltage value of the power supply VSS2 transitions from the first voltage to the second voltage according to the timing when the transistor T3 is turned on, and then from the second voltage to the first voltage according to the timing when the transistor T3 is turned off. Transition to the voltage of.
  • the voltage value of the power supply VSS2 is preferably larger than the cathode potential Vcat, at least during the period when the signal WS is low.
  • FIG. 9 is an explanatory diagram showing a second modification of the driving method of the display device 100 according to the first embodiment of the present disclosure.
  • the second modification is different from the first embodiment in that the timing at which the voltage value of the power supply VSS2 becomes small is after the time t7.
  • the voltage value of the power supply VSS2 becomes smaller at time t10, and becomes substantially the same as, for example, the cathode potential Vcat.
  • Time t10 is the timing at which the light emission period ends and the quenching period begins. That is, the voltage value of the power supply VSS2 transitions from the first voltage to the second voltage according to the timing when the transistor T3 is turned on, and then the second voltage is matched with the timing when the light emission of the organic EL element EL is stopped. The transition from the voltage to the first voltage.
  • the timing at which the voltage value of the power supply VSS2 becomes small is not limited to the solid line shown in FIG. 9, and may be within the period from time t9 to time t10, for example, as shown by the broken line.
  • the timing at which the voltage value of the power supply VSS2 decreases is, for example, any of the time t6 from the time when the signal WS becomes high to t10 which is the start of the quenching period.
  • the timing is fine.
  • FIG. 10 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the second embodiment of the present disclosure.
  • the pixel circuit has a so-called "4Tr1C" configuration as compared with FIG.
  • the capacitor C1 is not provided.
  • the transistors T1 to T4 shown in FIG. 11 are N-channel type transistors.
  • the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Therefore, the emission brightness can be improved as in the first embodiment.
  • FIG. 11 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the third embodiment of the present disclosure.
  • the pixel circuit has a so-called “5Tr” configuration as compared with FIG.
  • the capacitor C1 is not provided.
  • the transistor T1 which is a light emission control transistor is connected not between the power supply voltage VCCP and the source of the transistor T2 but between the drain of the transistor T2 and the anode of the organic EL element EL.
  • the pixel circuit further has a transistor T5.
  • the transistor T5 is connected between the drain and the gate of the transistor T2.
  • the transistor T5 is a threshold value compensating transistor that compensates for the threshold value of the transistor T2.
  • the transistor T5 is turned on in a predetermined period before the write period of the signal voltage Vsig. That is, the transistor T5 is a second switching transistor in which the gate and drain of the transistor T2 are connected and the transistor T2 is connected by a diode during the compensation period for compensating the threshold value of the transistor T2.
  • the capacitor C2 holds the threshold voltage of the transistor T2.
  • the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Therefore, the emission brightness can be improved as in the first embodiment.
  • FIG. 12 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the fourth embodiment of the present disclosure.
  • the pixel circuit has a so-called "6Tr" configuration as compared with FIG.
  • the fourth embodiment shown in FIG. 12 is also a modification of the third embodiment shown in FIG.
  • the signal line SL shown in FIG. 12 has a signal line SL1 and a plurality of signal lines SL2 as compared with FIG. Further, the pixel circuit further includes a transistor T6 and capacitors C3 and C4.
  • a plurality of signal lines SL2 are provided for one signal line SL1.
  • Each of the plurality of signal lines SL2 is electrically connected to the signal line SL1.
  • Each of the plurality of signal lines SL2 is electrically connected to the plurality of pixels 111. That is, one signal line SL1 is shared by a plurality of signal lines SL2, and one signal line SL2 is shared by a plurality of pixels 111. Thereby, the signal line SL2 can be made shorter than the signal line when connected to all the pixels 111.
  • the compensation operation for compensating for the threshold value of the transistor T2 the time required for charging or discharging the parasitic capacitance of the signal line SL2 can be shortened. Therefore, in the fourth embodiment, the compensation period for compensating the threshold value of the transistor T2 can be shortened as compared with the third embodiment.
  • a plurality of transistors T6 are provided for each signal line SL2 corresponding to the signal line SL2.
  • the plurality of transistors T6 are connected between the signal line SL1 and each of the plurality of signal lines SL2.
  • the transistor T6 is a switching transistor that controls the connection between the signal line SL1 and the signal line SL2.
  • a plurality of capacitors C3 are provided for each signal line SL2 corresponding to the signal line SL2.
  • the plurality of capacitors C3 are connected between the signal line SL1 and each of the plurality of signal lines SL2.
  • the capacitor C4 is connected between the signal line SL1 and the power supply VSS2.
  • the capacitor C4 holds the potential of the signal line SL1.
  • the capacitor C4 is formed, for example, by a parasitic capacitance between a signal line SL1 adjacent to each other and a feeder line of the power supply VSS2.
  • the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Therefore, the emission brightness can be improved as in the first embodiment.
  • the present technology can have the following configurations.
  • a pixel array unit in which a pixel circuit is arranged and A drive circuit for driving the pixel array unit is provided.
  • the pixel circuit is A light emitting element that emits light with brightness according to the current flowing from the anode to the cathode, A drive transistor that drives the light emitting element based on the written signal voltage, A sampling transistor that samples the signal voltage written to the drive transistor, It has an anode voltage control unit that makes the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during the signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor. , Display device.
  • the anode voltage control unit has a first switching transistor that is turned on within the signal voltage writing period to set the anode voltage of the light emitting element to the reference voltage.
  • the drive circuit has a reference voltage control unit that controls the voltage value of the reference voltage so that the voltage value of the reference voltage becomes higher than the cathode voltage at least during the signal voltage writing period (2). ).
  • the display device (4) The display device according to (3), wherein the reference voltage control unit generates a pulse voltage whose voltage level is higher than the cathode voltage during the signal voltage writing period and outputs the pulse voltage to the reference voltage.
  • the reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then at the timing when the sampling transistor is turned off, the second voltage.
  • the display device according to any one of (2) to (4), which transitions from a voltage to the first voltage.
  • the reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then at the timing when the light emitting of the light emitting element is stopped, the first voltage.
  • the display device according to any one of (2) to (4), which transitions from the voltage of 2 to the first voltage.
  • the anode voltage control unit makes the anode voltage substantially the same as the cathode voltage during a predetermined period before the signal voltage writing period is started, any one of (1) to (8).
  • the pixel circuit further includes a second switching transistor for diode-connecting the drive transistor in a predetermined period before the signal voltage writing period is started.
  • the predetermined period is a period in which the gate-source voltage of the drive transistor is set to a voltage corresponding to the threshold voltage of the drive transistor.
  • the light emitting element emits light with brightness corresponding to the current flowing through the drive transistor based on the signal voltage.
  • 100 display device 110 pixel unit, 111R pixel, 111G pixel, 111B pixel, 112 anode potential control unit, 120 horizontal selector, 130 vertical scanner, 134 VSS2 scanner, EL organic EL element, SL signal line, T1 to T6 transistor, Band Anode potential, Vcat cathode potential, Vsig signal voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

[Problem] To improve brightness. [Solution] This display device is provided with a pixel array unit in which a pixel circuit is arranged, and a drive circuit for driving the pixel array unit, wherein the pixel circuit includes: a light emitting element which emits light having a brightness corresponding to a current flowing from an anode to a cathode; a drive transistor for driving the light emitting element on the basis of a written signal voltage; a sampling transistor for sampling the signal voltage written to the drive transistor; and an anode voltage control unit for making the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during a signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor.

Description

表示装置Display device
 本開示による実施形態は、表示装置に関する。 The embodiment according to the present disclosure relates to a display device.
 近年、表示装置の分野では、発光部を含む画素が行列状(マトリクス状)に配置された平面型(フラットパネル型)の表示装置が主流となっている。平面型の表示装置の一つとして、発光部に流れる電流値に応じて発光輝度が変化する、所謂、電流駆動型の電気光学素子、例えば、有機エレクトロルミネッセンス(Electro Luminescence:EL)素子を用いる有機EL表示装置がある。 In recent years, in the field of display devices, flat type (flat panel type) display devices in which pixels including light emitting parts are arranged in a matrix shape have become mainstream. Organic using a so-called current-driven electroluminescence element, for example, an organic electroluminescence (EL) element, in which the emission brightness changes according to the current value flowing through the light emitting unit as one of the planar display devices. There is an EL display device.
 この有機EL表示装置に代表される平面型の表示装置にあっては、発光部に流れる電流値、すなわち、発光輝度は、画素回路に供給される信号電圧Vsigの大きさに応じて変化する(特許文献1参照)。 In a planar display device typified by this organic EL display device, the current value flowing through the light emitting unit, that is, the light emission luminance, changes according to the magnitude of the signal voltage Vsig supplied to the pixel circuit ( See Patent Document 1).
特開2019-82548号公報Japanese Unexamined Patent Publication No. 2019-82548
 しかし、低消費電力化を目的として、主電源の低電圧化が進んでいる。この結果、信号電圧Vsigの振幅を十分大きくすることができず、発光部の最大輝度が制限される可能性がある。 However, the voltage of the main power supply is being lowered for the purpose of lowering power consumption. As a result, the amplitude of the signal voltage Vsig cannot be sufficiently increased, and the maximum brightness of the light emitting unit may be limited.
 そこで、本開示では、輝度を向上させることができる表示装置を提供するものである。 Therefore, in the present disclosure, a display device capable of improving the brightness is provided.
 上記の課題を解決するために、本開示によれば、
 画素回路が配置される画素アレイ部と、
 前記画素アレイ部を駆動させる駆動回路と、を備え、
 前記画素回路は、
 アノードからカソードに流れる電流に応じた輝度で発光する発光素子と、
 書き込まれた信号電圧に基づいて、前記発光素子を駆動する駆動トランジスタと、
 前記駆動トランジスタへ書き込まれる前記信号電圧をサンプリングするサンプリングトランジスタと、
 前記サンプリングトランジスタをオンにして前記駆動トランジスタへの前記信号電圧の書き込みを行う信号電圧書き込み期間に、前記発光素子のアノード電圧を前記発光素子のカソード電圧よりも高くするアノード電圧制御部と、を有する、表示装置が提供される。
In order to solve the above problems, according to this disclosure,
The pixel array section where the pixel circuit is arranged and
A drive circuit for driving the pixel array unit is provided.
The pixel circuit is
A light emitting element that emits light with brightness according to the current flowing from the anode to the cathode,
A drive transistor that drives the light emitting element based on the written signal voltage,
A sampling transistor that samples the signal voltage written to the drive transistor,
It has an anode voltage control unit that makes the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during the signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor. , A display device is provided.
 前記アノード電圧制御部は、前記信号電圧書き込み期間内にオンして、前記発光素子のアノード電圧を基準電圧に設定する第1スイッチングトランジスタを有し、
 前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて、第1の電圧から、前記カソード電圧より高い第2の電圧に遷移してもよい。
The anode voltage control unit has a first switching transistor that is turned on within the signal voltage writing period to set the anode voltage of the light emitting element to a reference voltage.
The reference voltage may transition from the first voltage to a second voltage higher than the cathode voltage in accordance with the timing at which the sampling transistor is turned on.
 前記駆動回路は、少なくとも前記信号電圧書き込み期間に前記基準電圧の電圧値が前記カソード電圧よりも高くなるように、前記基準電圧の電圧値を制御する基準電圧制御部を有してもよい。 The drive circuit may have a reference voltage control unit that controls the voltage value of the reference voltage so that the voltage value of the reference voltage becomes higher than the cathode voltage at least during the signal voltage writing period.
 前記基準電圧制御部は、前記信号電圧書き込み期間に電圧レベルが前記カソード電圧よりも高くなるパルス電圧を生成して前記基準電圧に出力してもよい。 The reference voltage control unit may generate a pulse voltage whose voltage level is higher than the cathode voltage during the signal voltage writing period and output it to the reference voltage.
 前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記サンプリングトランジスタがオフするタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移してもよい。 The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then from the second voltage at the timing when the sampling transistor is turned off. It may transition to the first voltage.
 前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記発光素子の発光が停止するタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移してもよい。 The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then the second voltage at the timing when the light emitting of the light emitting element is stopped. May transition to the first voltage.
 前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Pチャネル型のトランジスタであってもよい。 The drive transistor, the sampling transistor, and the first switching transistor may be P-channel type transistors.
 前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Nチャネル型のトランジスタであってもよい。 The drive transistor, the sampling transistor, and the first switching transistor may be N-channel type transistors.
 前記アノード電圧制御部は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記アノード電圧を前記カソード電圧と略同じにしてもよい。 The anode voltage control unit may make the anode voltage substantially the same as the cathode voltage during a predetermined period before the signal voltage writing period is started.
 前記画素回路は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記駆動トランジスタをダイオード接続させる第2スイッチングトランジスタをさらに有してもよい。 The pixel circuit may further include a second switching transistor for diode-connecting the drive transistor in a predetermined period before the signal voltage writing period is started.
 前記所定の期間は、前記駆動トランジスタのゲート及びソース間電圧を、前記駆動トランジスタの閾値電圧に応じた電圧にする期間であってもよい。 The predetermined period may be a period in which the gate-source voltage of the drive transistor is set to a voltage corresponding to the threshold voltage of the drive transistor.
 前記発光素子は、前記信号電圧に基づいて前記駆動トランジスタを流れる電流に応じた輝度で発光してもよい。 The light emitting element may emit light with a brightness corresponding to the current flowing through the drive transistor based on the signal voltage.
本開示の第1実施形態に係る表示装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the display device which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る表示装置のより詳細な構成の一例を示す説明図である。It is explanatory drawing which shows an example of the more detailed structure of the display device which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る表示装置のより詳細な構成の一例を示す説明図である。It is explanatory drawing which shows an example of the more detailed structure of the display device which concerns on 1st Embodiment of this disclosure. 図3に示した画素回路を抜き出して示した説明図である。It is explanatory drawing which took out and showed the pixel circuit shown in FIG. 本開示の第1実施形態に係る表示装置の駆動方法の一例を示す説明図である。It is explanatory drawing which shows an example of the driving method of the display device which concerns on 1st Embodiment of this disclosure. 本開示の比較例に係る表示装置のより詳細な構成の一例を示す説明図である。It is explanatory drawing which shows an example of the more detailed structure of the display device which concerns on the comparative example of this disclosure. 本開示の比較例に係る表示装置の駆動方法の一例を示す説明図である。It is explanatory drawing which shows an example of the driving method of the display device which concerns on the comparative example of this disclosure. 本開示の第1実施形態に係る表示装置の駆動方法の第1変形例を示す説明図である。It is explanatory drawing which shows the 1st modification of the driving method of the display device which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る表示装置の駆動方法の第2変形例を示す説明図である。It is explanatory drawing which shows the 2nd modification of the driving method of the display device which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る画素回路の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the pixel circuit which concerns on 2nd Embodiment of this disclosure. 本開示の第3実施形態に係る画素回路の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the pixel circuit which concerns on 3rd Embodiment of this disclosure. 本開示の第4実施形態に係る画素回路の構成の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the pixel circuit which concerns on 4th Embodiment of this disclosure.
 以下、図面を参照して、表示装置の実施形態について説明する。以下では、表示装置の主要な構成部分を中心に説明するが、表示装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Hereinafter, embodiments of the display device will be described with reference to the drawings. In the following, the main components of the display device will be mainly described, but the display device may have components and functions not shown or described. The following description does not exclude components or functions not shown or described.
<第1実施形態>
 [本開示の表示装置全般に関する説明]
 本開示の表示装置は、発光部を駆動する駆動トランジスタの他に、サンプリングトランジスタ及び保持容量を有する画素回路が配置されて成る平面型(フラットパネル型)の表示装置である。平面型の表示装置としては、有機EL表示装置、液晶表示装置、プラズマ表示装置などを例示することができる。これらの表示装置のうち、有機EL表示装置は、有機材料のエレクトロルミネッセンスを利用し、有機薄膜に電界をかけると発光する現象を用いた有機EL素子を画素の発光素子(電気光学素子)として用いている。
<First Embodiment>
[Explanation of the display device in general in the present disclosure]
The display device of the present disclosure is a flat panel type display device in which a sampling transistor and a pixel circuit having a holding capacity are arranged in addition to a drive transistor for driving a light emitting unit. Examples of the flat display device include an organic EL display device, a liquid crystal display device, and a plasma display device. Among these display devices, the organic EL display device uses electroluminescence of an organic material and uses an organic EL element that emits light when an electric field is applied to an organic thin film as a pixel light emitting element (electro-optical element). ing.
 画素の発光部として有機EL素子を用いた有機EL表示装置は次のような特長を持っている。有機EL素子が自発光型の素子であるために、有機EL表示装置は、同じ平面型の表示装置である液晶表示装置に比べて、画像の視認性が高く、しかも、バックライト等の照明部材を必要としないために軽量化及び薄型化が容易である。更に、有機EL素子の応答速度が数マイクロ秒程度と非常に高速であるために、有機EL表示装置は動画表示時の残像が発生しない。 An organic EL display device that uses an organic EL element as the light emitting part of a pixel has the following features. Since the organic EL element is a self-luminous element, the organic EL display device has higher image visibility than the liquid crystal display device, which is the same flat display device, and is a lighting member such as a backlight. It is easy to reduce the weight and thickness because it does not require. Further, since the response speed of the organic EL element is as high as several microseconds, the organic EL display device does not generate an afterimage when displaying a moving image.
 有機EL素子は、自発光型の素子であるとともに、電流駆動型の電気光学素子である。電流駆動型の電気光学素子としては、有機EL素子の他に、無機EL素子、LED素子、半導体レーザー素子などを例示することができる。 The organic EL element is a self-luminous element and a current-driven electro-optical element. Examples of the current-driven electro-optical element include an inorganic EL element, an LED element, a semiconductor laser element, and the like, in addition to the organic EL element.
 有機EL表示装置等の平面型の表示装置は、表示部を備える各種の電子機器において、その表示部(表示装置)として用いることができる。各種の電子機器としては、テレビジョンシステムの他、ヘッドマウントディスプレイ、デジタルカメラ、ビデオカメラ、ゲーム機、ノート型パーソナルコンピュータ、電子書籍等の携帯情報機器、PDA(Personal Digital Assistant)や携帯電話機等の携帯通信機器などを例示することができる。 A flat display device such as an organic EL display device can be used as a display unit (display device) in various electronic devices provided with a display unit. Various electronic devices include television systems, head-mounted displays, digital cameras, video cameras, game machines, notebook personal computers, mobile information devices such as electronic books, PDA (Personal Digital Assistant), mobile phones, etc. A mobile communication device or the like can be exemplified.
 本開示の表示装置にあっては、駆動部について、駆動トランジスタのゲートノードをフローティング状態にした後ソースノードをフローティング状態にする構成とすることができる。また、駆動部について、駆動トランジスタのソースノードをフローティング状態にしたままサンプリングトランジスタによる信号電圧の書込みを行う構成とすることができる。初期化電圧については、信号電圧と異なるタイミングで信号線に供給され、信号線からサンプリングトランジスタによるサンプリングによって駆動トランジスタのゲートノードに書き込まれる構成とすることができる。 In the display device of the present disclosure, the drive unit may be configured so that the gate node of the drive transistor is in a floating state and then the source node is in a floating state. Further, the drive unit may be configured to write the signal voltage by the sampling transistor while keeping the source node of the drive transistor in the floating state. The initialization voltage may be supplied to the signal line at a timing different from the signal voltage, and may be written from the signal line to the gate node of the drive transistor by sampling by the sampling transistor.
 上述した好ましい構成を含む本開示の表示装置にあっては、画素回路について、シリコンのような半導体上に形成する構成とすることができる。また、駆動トランジスタについて、Pチャネル型のトランジスタから成る構成とすることができる。駆動トランジスタとして、Nチャネル型のトランジスタではなく、Pチャネル型のトランジスタを用いるのは次の理由による。 In the display device of the present disclosure including the above-mentioned preferable configuration, the pixel circuit can be configured to be formed on a semiconductor such as silicon. Further, the drive transistor may be configured to consist of a P-channel type transistor. The reason why the P-channel type transistor is used as the drive transistor instead of the N-channel type transistor is as follows.
 トランジスタをガラス基板のような絶縁体上ではなく、シリコンのような半導体上に形成する場合、トランジスタは、ソース/ゲート/ドレインの3端子ではなく、ソース/ゲート/ドレイン/バックゲート(ベース)の4端子となる。そして、駆動トランジスタとしてNチャネル型のトランジスタを用いた場合、バックゲート(基板)電圧が0Vとなり、駆動トランジスタの閾値電圧の画素毎のばらつきを補正する動作などに悪影響を及ぼすことになる。 When a transistor is formed on a semiconductor such as silicon rather than on an insulator such as a glass substrate, the transistor is not a source / gate / drain terminal but a source / gate / drain / backgate (base). It has 4 terminals. When an N-channel type transistor is used as the drive transistor, the back gate (board) voltage becomes 0 V, which adversely affects the operation of correcting the variation of the threshold voltage of the drive transistor for each pixel.
 また、トランジスタの特性ばらつきは、LDD(Lightly Doped Drain)領域を持つNチャネル型のトランジスタに比べて、LDD領域を持たないPチャネル型のトランジスタの方が小さく、画素の微細化、ひいては、表示装置の高精細化を図る上で有利である。このような理由などから、シリコンのような半導体上への形成を想定した場合、駆動トランジスタとして、Nチャネル型のトランジスタではなく、Pチャネル型のトランジスタを用いるのが好ましい。 Further, the variation in the characteristics of the transistor is smaller in the P-channel type transistor having no LDD region than in the N-channel type transistor having the LDD (Lightly Doped Drain) region, and the pixel miniaturization and eventually the display device. It is advantageous for achieving high definition. For this reason, when it is assumed that the transistor is formed on a semiconductor such as silicon, it is preferable to use a P-channel transistor instead of an N-channel transistor as the drive transistor.
 上述した好ましい構成を含む本開示の表示装置にあっては、サンプリングトランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。 In the display device of the present disclosure including the above-mentioned preferable configuration, the sampling transistor may also be configured to include a P-channel type transistor.
 あるいは又、上述した好ましい構成を含む本開示の表示装置にあっては、画素回路について、発光部の発光/非発光を制御する発光制御トランジスタを有する構成とすることができる。このとき、発光制御トランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。 Alternatively, in the display device of the present disclosure including the above-mentioned preferable configuration, the pixel circuit may be configured to have a light emission control transistor for controlling light emission / non-light emission of the light emitting unit. At this time, the light emission control transistor may also be configured to consist of a P-channel type transistor.
 あるいは又、上述した好ましい構成を含む本開示の表示装置にあっては、保持容量について、駆動トランジスタのゲートノードとソースノードとの間に接続された構成とすることができる。また、画素回路について、駆動トランジスタのソースノードと固定電位のノードとの間に接続された補助容量を有する構成とすることができる。 Alternatively, in the display device of the present disclosure including the above-mentioned preferable configuration, the holding capacity may be configured to be connected between the gate node and the source node of the drive transistor. Further, the pixel circuit can be configured to have an auxiliary capacitance connected between the source node of the drive transistor and the node of the fixed potential.
 あるいは又、上述した好ましい構成を含む本開示の表示装置にあっては、画素回路について、駆動トランジスタのドレインノードと発光部のアノードノードとの間に接続されたスイッチングトランジスタを有する構成とすることができる。このとき、スイッチングトランジスタについても、Pチャネル型のトランジスタから成る構成とすることができる。また、駆動部について、発光部の非発光期間にスイッチングトランジスタを導通状態にする構成とすることができる。 Alternatively, in the display device of the present disclosure including the above-mentioned preferable configuration, the pixel circuit may have a configuration having a switching transistor connected between the drain node of the drive transistor and the anode node of the light emitting unit. can. At this time, the switching transistor may also be configured to consist of a P-channel type transistor. Further, the drive unit may be configured to have the switching transistor in a conductive state during the non-light emission period of the light emitting unit.
 あるいは又、上述した好ましい構成を含む本開示の表示装置にあっては、駆動部は、スイッチングトランジスタを駆動する信号を、サンプリングトランジスタによる初期化電圧のサンプリングタイミングよりも前にアクティブ状態にする。そして、発光制御トランジスタを駆動する信号をアクティブ状態にした後に非アクティブ状態にする構成とすることができる。このとき、駆動部について、発光制御トランジスタを駆動する信号を非アクティブ状態にする前に、サンプリングトランジスタによる初期化電圧のサンプリングを完了する構成とすることができる。 Alternatively, in the display device of the present disclosure including the above-mentioned preferable configuration, the drive unit activates the signal for driving the switching transistor before the sampling timing of the initialization voltage by the sampling transistor. Then, the signal for driving the light emission control transistor can be activated and then inactive. At this time, the drive unit may be configured to complete the sampling of the initialization voltage by the sampling transistor before the signal for driving the light emission control transistor is inactive.
 [構成例および動作例]
 続いて、本開示の実施の形態に係る表示装置の構成例を説明する。図1は、本開示の第1実施形態に係る表示装置100の構成の一例を示す説明図である。以下、図1を用いて本開示の第1実施形態に係る表示装置100の構成の一例を説明する。
[Configuration example and operation example]
Subsequently, a configuration example of the display device according to the embodiment of the present disclosure will be described. FIG. 1 is an explanatory diagram showing an example of the configuration of the display device 100 according to the first embodiment of the present disclosure. Hereinafter, an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
 画素部110は、有機EL素子その他の自発光素子がそれぞれ設けられた画素がマトリクス状に配置された構成を有する。画素部110は、マトリックス状に配置した画素に対して、走査線がライン単位で水平方向に設けられ、また走査線と直交するように信号線SLが列毎に設けられる。 The pixel unit 110 has a configuration in which pixels provided with organic EL elements and other self-luminous elements are arranged in a matrix. The pixel unit 110 is provided with scanning lines in the horizontal direction in line units with respect to the pixels arranged in a matrix, and signal lines SL are provided for each row so as to be orthogonal to the scanning lines.
 水平セレクタ120は、所定のサンプリングパルスを順次転送し、このサンプリングパルスで画像データを順次ラッチすることにより、この画像データを各信号線SLに振り分ける。また水平セレクタ120は、各信号線SLに振り分けた画像データをそれぞれアナログディジタル変換処理し、これにより各信号線SLに接続された各画素の発光輝度を時分割により示す駆動信号を生成する。水平セレクタ120は、この駆動信号を対応する信号線SLに出力する。 The horizontal selector 120 sequentially transfers a predetermined sampling pulse, and sequentially latches the image data with this sampling pulse, thereby distributing the image data to each signal line SL. Further, the horizontal selector 120 performs analog digital conversion processing on the image data distributed to each signal line SL, thereby generating a drive signal indicating the emission luminance of each pixel connected to each signal line SL by time division. The horizontal selector 120 outputs this drive signal to the corresponding signal line SL.
 垂直スキャナ130は、この水平セレクタ120による信号線SLの駆動に応動して、各画素の駆動信号を生成して走査線SCNに出力する。これにより表示装置100は、垂直スキャナ130により画素部110に配置された各画素を順次駆動し、水平セレクタ120より設定される各信号線SLの信号レベルで各画素を発光させ、所望の画像を画素部110で表示する。 The vertical scanner 130 responds to the driving of the signal line SL by the horizontal selector 120, generates a driving signal for each pixel, and outputs the driving signal to the scanning line SCN. As a result, the display device 100 sequentially drives each pixel arranged in the pixel unit 110 by the vertical scanner 130, causes each pixel to emit light at the signal level of each signal line SL set by the horizontal selector 120, and produces a desired image. It is displayed by the pixel unit 110.
 図2は、本開示の第1実施形態に係る表示装置100のより詳細な構成の一例を示す説明図である。以下、図2を用いて本開示の第1実施形態に係る表示装置100の構成の一例を説明する。 FIG. 2 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure. Hereinafter, an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
 画素部110には、赤色を表示する画素111R、緑色を表示する画素111G、青色を表示する画素111Bがマトリクス状に配置されている。 In the pixel unit 110, a pixel 111R displaying red, a pixel 111G displaying green, and a pixel 111B displaying blue are arranged in a matrix.
 そして垂直スキャナ130は、オートゼロスキャナ131、駆動スキャナ132及び書き込みスキャナ133を有する。それぞれのスキャナから信号が画素部110にマトリクス状に配置された画素に供給されることで、それぞれの画素に設けられるTFTのオン、オフ動作が行われる。 The vertical scanner 130 includes an auto-zero scanner 131, a drive scanner 132, and a write scanner 133. By supplying a signal from each scanner to the pixels arranged in a matrix in the pixel unit 110, the TFTs provided in the respective pixels are turned on and off.
 また、垂直スキャナ130は、VSS2スキャナ(基準電圧制御部)134をさらに有する。VSS2スキャナ134は、例えば、制御電圧信号を生成し、画素部110にマトリクス状に配置された画素に供給する。より詳細には、VSS2スキャナ134は、制御電圧信号を基準電圧の給電線に供給する。すなわち、VSS2スキャナ134は、オートゼロスキャナ131、駆動スキャナ132、書き込みスキャナ133の信号出力と同様に、制御電圧信号を出力する。電圧レベルが時間変化する制御電圧信号を画素内の基準電圧に供給することにより、後で説明するように、信号電圧Vsigの書き込みの際に有機EL素子のアノード電位(アノード電圧)を制御することができる。この結果、有機EL素子ELの発光輝度を向上させることができる。 Further, the vertical scanner 130 further has a VSS2 scanner (reference voltage control unit) 134. The VSS2 scanner 134 generates, for example, a control voltage signal and supplies the control voltage signal to the pixels arranged in a matrix in the pixel unit 110. More specifically, the VSS2 scanner 134 supplies the control voltage signal to the feeder line of the reference voltage. That is, the VSS2 scanner 134 outputs a control voltage signal in the same manner as the signal outputs of the auto zero scanner 131, the drive scanner 132, and the write scanner 133. By supplying a control voltage signal whose voltage level changes with time to a reference voltage in the pixel, the anode potential (anode voltage) of the organic EL element is controlled when the signal voltage Vsig is written, as will be described later. Can be done. As a result, the emission brightness of the organic EL element EL can be improved.
 図3は、本開示の第1実施形態に係る表示装置100のより詳細な構成の一例を示す説明図である。以下、図3を用いて本開示の第1実施形態に係る表示装置100の構成の一例を説明する。 FIG. 3 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the first embodiment of the present disclosure. Hereinafter, an example of the configuration of the display device 100 according to the first embodiment of the present disclosure will be described with reference to FIG.
 図3には、画素部110にマトリクス状に配置された1つの画素に対する画素回路を図示している。画素回路は、トランジスタT1~T3と、アノード電位制御部(アノード電圧制御部)112と、キャパシタC1、C2と、有機EL素子ELと、を含んで構成される。なお、アノード電位制御部112は、例えば、トランジスタT4を有する。図4は、図3に示した画素回路を抜き出して示した説明図である。 FIG. 3 illustrates a pixel circuit for one pixel arranged in a matrix in the pixel unit 110. The pixel circuit includes transistors T1 to T3, an anode potential control unit (anode voltage control unit) 112, capacitors C1 and C2, and an organic EL element EL. The anode potential control unit 112 includes, for example, the transistor T4. FIG. 4 is an explanatory diagram showing the pixel circuit shown in FIG. 3 extracted.
 トランジスタT1は有機EL素子ELの発光を制御する発光制御トランジスタである。トランジスタT1は、電源電圧VCCPの電源ノードと、トランジスタT2のソースノード(ソース電極)との間に接続され、駆動スキャナ132から出力される発光制御信号(信号DS)による駆動の下に、有機EL素子ELの発光/非発光を制御する。 Transistor T1 is a light emission control transistor that controls light emission of the organic EL element EL. The transistor T1 is connected between the power supply node of the power supply voltage VCCP and the source node (source electrode) of the transistor T2, and is driven by a light emission control signal (signal DS) output from the drive scanner 132, and is an organic EL. Controls the light emission / non-light emission of the element EL.
 トランジスタT2は、キャパシタC2の保持電圧に応じた駆動電流を有機EL素子ELに流すことによって有機EL素子ELを駆動する駆動トランジスタである。トランジスタT2は、有機EL素子ELのアノードと電源電圧VCCPの電源ノードとの間に接続され、有機EL素子ELに流れる電流を信号電圧Vsigに基づいて制御する。また、有機EL素子ELは、アノードからカソードに流れる電流に応じた輝度で発光する。より詳細には、有機EL素子ELは、信号電圧Vsigに基づいてトランジスタT2を流れる電流に応じた輝度で発光する。なお、図4に示すように、トランジスタT2は、ゲートとドレインとの間に寄生容量Cpを有する。 The transistor T2 is a drive transistor that drives the organic EL element EL by passing a drive current corresponding to the holding voltage of the capacitor C2 through the organic EL element EL. The transistor T2 is connected between the anode of the organic EL element EL and the power supply node of the power supply voltage VCCP, and controls the current flowing through the organic EL element EL based on the signal voltage Vsig. Further, the organic EL element EL emits light with brightness corresponding to the current flowing from the anode to the cathode. More specifically, the organic EL element EL emits light with a brightness corresponding to the current flowing through the transistor T2 based on the signal voltage Vsig. As shown in FIG. 4, the transistor T2 has a parasitic capacitance Cp between the gate and the drain.
 トランジスタT3は、書き込みスキャナ133から供給される駆動信号(信号WS)による駆動の下に、信号電圧Vsigをサンプリングすることによって、トランジスタT2のゲートノード(ゲート電極)に信号電圧Vsigを書き込むサンプリングトランジスタである。トランジスタT3は、トランジスタT2のゲートと信号線SLとの間に接続される。 The transistor T3 is a sampling transistor that writes the signal voltage Vsig to the gate node (gate electrode) of the transistor T2 by sampling the signal voltage Vsig under the drive by the drive signal (signal WS) supplied from the write scanner 133. be. The transistor T3 is connected between the gate of the transistor T2 and the signal line SL.
 トランジスタT4は、トランジスタT2のドレインノード(ドレイン電極)と電流排出先ノード(例えば、電源VSS2)との間に接続される第1スイッチングトランジスタである。トランジスタT4は、オートゼロスキャナ131からの駆動信号(信号AZ)による駆動の下に、有機EL素子ELの非発光期間に有機EL素子ELが発光しないように制御する。電源VSS2の給電線には、例えば、VSS2スキャナ134で生成された制御電圧が供給される。 The transistor T4 is a first switching transistor connected between the drain node (drain electrode) of the transistor T2 and the current discharge destination node (for example, the power supply VSS2). The transistor T4 is controlled so that the organic EL element EL does not emit light during the non-emission period of the organic EL element EL under the drive by the drive signal (signal AZ) from the auto-zero scanner 131. For example, the control voltage generated by the VSS2 scanner 134 is supplied to the feeder line of the power supply VSS2.
 トランジスタT1~T4は、いずれもPチャネル型のトランジスタから成る構成とすることができる。 The transistors T1 to T4 can all be configured to be composed of P-channel type transistors.
 キャパシタC2は、トランジスタT2のゲートノードとソースノードとの間に接続されており、トランジスタT3によるサンプリングによって書き込まれた信号電圧Vsigを保持する。キャパシタC1は、トランジスタT2のソースノードと、固定電位のノード(例えば、電源電圧VCCPの電源ノード)との間に接続されている。このキャパシタC1は、信号電圧Vsigを書き込んだときにトランジスタT2のソース電圧が変動するのを抑制するとともに、トランジスタT2のゲートソース間電圧VgsをトランジスタT2の閾値電圧Vthにする作用をなす。 The capacitor C2 is connected between the gate node and the source node of the transistor T2, and holds the signal voltage Vsig written by sampling by the transistor T3. The capacitor C1 is connected between the source node of the transistor T2 and the node of a fixed potential (for example, the power supply node of the power supply voltage VCCP). The capacitor C1 suppresses the fluctuation of the source voltage of the transistor T2 when the signal voltage Vsig is written, and also acts to change the gate-source voltage Vgs of the transistor T2 to the threshold voltage Vth of the transistor T2.
 この種の表示装置100では、ポリシリコンTFTを用いてガラス基板等による透明絶縁基板上に画素部110、水平セレクタ120、垂直スキャナ130等がまとめて形成される。ポリシリコンTFTは、しきい値電圧または移動度にばらつきを避け得ず、有機EL素子を用いたディスプレイ装置では、これらのばらつきにより画質が劣化する問題がある。 In this type of display device 100, a pixel portion 110, a horizontal selector 120, a vertical scanner 130, and the like are collectively formed on a transparent insulating substrate made of a glass substrate or the like using a polysilicon TFT. Polysilicon TFTs cannot avoid variations in threshold voltage or mobility, and in display devices using organic EL elements, there is a problem that image quality deteriorates due to these variations.
 そこで、例えば図4に示す回路構成により画素回路を構成し、信号電圧Vsigの書き込みの前に、駆動用トランジスタのしきい値電圧または移動度のばらつきを補正することが考えられる。 Therefore, for example, it is conceivable to configure a pixel circuit with the circuit configuration shown in FIG. 4 and correct variations in the threshold voltage or mobility of the drive transistor before writing the signal voltage Vsig.
 また、トランジスタT4を有するアノード電位制御部112は、信号電圧書き込み期間が開始される前の所定の期間に、有機EL素子ELのアノード電位Vandをカソード電位Vcathと略同じにする。所定の期間は、駆動用トランジスタのしきい値電圧、移動度のばらつきを補正するための期間である。 Further, the anode potential control unit 112 having the transistor T4 makes the anode potential Band of the organic EL element EL substantially the same as the cathode potential Vcat in a predetermined period before the signal voltage writing period is started. The predetermined period is a period for correcting variations in the threshold voltage and mobility of the drive transistor.
 アノード電位制御部112は、トランジスタT3をオンにしてトランジスタT2への信号電圧Vsigの書き込みを行う信号電圧書き込み期間に、有機EL素子ELのアノード電位Vandを有機EL素子ELのカソード電位Vcathよりも高くする。トランジスタT4は、例えば、信号電圧書き込み期間内にオンして、有機EL素子ELのアノード電位Vandを電源VSS2に設定する。VSS2スキャナ134は、例えば、少なくとも信号電圧書き込み期間に電源VSS2の電圧値がカソード電位Vcathよりも高くなるように、電源VSS2の電圧値を制御する。この結果、図5を参照して説明するように、有機EL素子ELの発光輝度を向上させることができる。 The anode potential control unit 112 sets the anode potential Vand of the organic EL element EL higher than the cathode potential Vcat of the organic EL element EL during the signal voltage writing period in which the transistor T3 is turned on and the signal voltage Vsig is written to the transistor T2. do. The transistor T4 is turned on, for example, within the signal voltage writing period, and the anode potential Band of the organic EL element EL is set to the power supply VSS2. The VSS2 scanner 134 controls the voltage value of the power supply VSS2 so that the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat at least during the signal voltage writing period. As a result, as described with reference to FIG. 5, the emission brightness of the organic EL element EL can be improved.
 上記の構成の表示装置100の駆動方法に関して、駆動用トランジスタの特性ばらつきの補正、及び、信号電圧Vsigの書き込みの動作について説明する。なお、信号電圧Vsigの書き込みにおいて、VSS2スキャナ134による電源VSS2の電圧値の変更動作についても説明する。 Regarding the driving method of the display device 100 having the above configuration, the correction of the characteristic variation of the driving transistor and the operation of writing the signal voltage Vsig will be described. In writing the signal voltage Vsig, the operation of changing the voltage value of the power supply VSS2 by the VSS2 scanner 134 will also be described.
 図5は、本開示の第1実施形態に係る表示装置100の駆動方法の一例を示す説明図である。図5には、トランジスタT2のソース電位Vs、ゲート電位Vg及びドレイン電位Vd、並びに、有機EL素子ELのアノード電位Vand及びカソード電位(カソード電圧)Vcathの時間的推移が示されている。なお、図5に示す例では、アノード電位Vandは、ドレイン電位Vdと略同じである。また、図5には、VSS2スキャナ134から電源VSS2に供給される制御信号電圧、駆動スキャナ132からの信号DS、書き込みスキャナ133からの信号WS及びオートゼロスキャナ131からの信号AZの時間的推移も示されている。 FIG. 5 is an explanatory diagram showing an example of a driving method of the display device 100 according to the first embodiment of the present disclosure. FIG. 5 shows the temporal transition of the source potential Vs, the gate potential Vg and the drain potential Vd of the transistor T2, and the anode potential Vand and the cathode potential (cathode voltage) Vcat of the organic EL element EL. In the example shown in FIG. 5, the anode potential Vand is substantially the same as the drain potential Vd. Further, FIG. 5 also shows the temporal transition of the control signal voltage supplied from the VSS2 scanner 134 to the power supply VSS2, the signal DS from the drive scanner 132, the signal WS from the write scanner 133, and the signal AZ from the auto-zero scanner 131. Has been done.
 まず、時刻t1は、例えば、消光期間が終了し、1水平ライン(1H)の書き込み期間が開始するタイミングである。時刻t1において、信号AZはローであり、トランジスタT4はオンである。これは、後述のVth補正期間中に有機EL素子ELに電流が流れ込み、有機EL素子ELが発光することを防ぐためである。 First, time t1 is, for example, the timing at which the quenching period ends and the writing period of one horizontal line (1H) begins. At time t1, the signal AZ is low and the transistor T4 is on. This is to prevent the organic EL element EL from emitting light due to a current flowing into the organic EL element EL during the Vth correction period described later.
 次に、時刻t2において、信号WS、DSがハイからローになることにより、トランジスタT1、T3がオンする。これにより、トランジスタT2の閾値電圧Vthの補正の準備期間に入る。ここでトランジスタT2のゲート電位Vgがオフセット電圧Vofsまで低下する。 Next, at time t2, the transistors T1 and T3 are turned on by changing the signals WS and DS from high to low. As a result, the preparation period for correcting the threshold voltage Vth of the transistor T2 is entered. Here, the gate potential Vg of the transistor T2 drops to the offset voltage Vofs.
 次に、時刻t3において、信号WSがローからハイになることにより、トランジスタT3がオフする。 Next, at time t3, the transistor T3 is turned off when the signal WS changes from low to high.
 次に、時刻t4において、信号DSがローからハイになることにより、トランジスタT1がオフする。これにより、Vth補正期間に入る。Vth補正期間において、トランジスタT2のゲートソース間電圧Vgsが閾値電圧Vthに設定される。 Next, at time t4, the transistor T1 is turned off when the signal DS changes from low to high. As a result, the Vth correction period is entered. In the Vth correction period, the gate-source voltage Vgs of the transistor T2 is set to the threshold voltage Vth.
 次に、時刻t5において、信号WSがハイからローになることにより、トランジスタT3がオンする。これにより、トランジスタT2への信号電圧Vsigの書き込み期間となる。この書き込み期間において、トランジスタT2のゲート電位VgがVsigになる。 Next, at time t5, the transistor T3 is turned on by changing the signal WS from high to low. As a result, the writing period of the signal voltage Vsig to the transistor T2 is set. During this writing period, the gate potential Vg of the transistor T2 becomes Vsig.
 また、時刻t5において、電源VSS2の電圧値が大きくなる。より詳細には、時刻t5よりも前の電源VSS2の電圧値は、例えば、カソード電位Vcathと略同じである。従って、Vth補正期間等において無駄な電流が流れることを抑制することができる。時刻t5において、電源VSS2の電圧値は、例えば、カソード電位Vcathよりも大きくなる。これにより、オン状態のトランジスタT4を介して、ドレイン電位Vdが大きくなる。VSS2スキャナ134は、例えば、時刻t5から時刻t7までの期間に電圧レベルが高くなるパルス電圧を制御電圧信号として生成し、1水平ライン(1H)ごとに電源VSS2に出力する。電源VSS2の電圧値は、トランジスタT3がオンするタイミングに合わせて、第1の電圧から、カソード電位Vcathより高い第2の電圧に遷移する。 Also, at time t5, the voltage value of the power supply VSS2 becomes large. More specifically, the voltage value of the power supply VSS2 before the time t5 is substantially the same as, for example, the cathode potential Vcat. Therefore, it is possible to suppress the flow of unnecessary current during the Vth correction period or the like. At time t5, the voltage value of the power supply VSS2 becomes larger than, for example, the cathode potential Vcat. As a result, the drain potential Vd increases via the transistor T4 in the on state. The VSS2 scanner 134 generates, for example, a pulse voltage whose voltage level increases during the period from time t5 to time t7 as a control voltage signal, and outputs the pulse voltage to the power supply VSS2 for each horizontal line (1H). The voltage value of the power supply VSS2 transitions from the first voltage to the second voltage higher than the cathode potential Vcat at the timing when the transistor T3 is turned on.
 次に、時刻t6において、信号WSがローからハイになることにより、トランジスタT3がオフする。これにより、トランジスタT2への信号電圧Vsigの書き込み期間が終了する。なお、時刻t6と時刻t7との間において、信号AZがローからハイになることにより、トランジスタT4がオフする。 Next, at time t6, the transistor T3 is turned off when the signal WS changes from low to high. As a result, the writing period of the signal voltage Vsig to the transistor T2 ends. The transistor T4 is turned off when the signal AZ changes from low to high between the time t6 and the time t7.
 次に、時刻t7において、信号DSがハイからローになることにより、トランジスタT1がオンする。これにより、有機EL素子ELが発光する。トランジスタT2のソース電位Vsは電源電圧VCCPとなる。 Next, at time t7, the transistor T1 is turned on by changing the signal DS from high to low. As a result, the organic EL element EL emits light. The source potential Vs of the transistor T2 becomes the power supply voltage VCCP.
 また、時刻t7において、電源VSS2の電圧値が小さくなる。時刻t7における電源VSS2の電圧値は、時刻t5以前の電圧値であり、例えば、カソード電位Vcathと略同じである。すなわち、電源VSS2の電圧値は、時刻t7において、第2の電圧から第1の電圧に遷移する。 Also, at time t7, the voltage value of the power supply VSS2 becomes smaller. The voltage value of the power supply VSS2 at time t7 is a voltage value before time t5, and is substantially the same as, for example, the cathode potential Vcat. That is, the voltage value of the power supply VSS2 transitions from the second voltage to the first voltage at time t7.
 次に、時刻t8において、有機EL素子ELが発光する発光期間となる。より詳細には、時刻t8から時刻t9までの期間は、発光遷移期間である。時刻t8から時刻t9までの期間では、有機EL素子ELに電流が流れ、有機EL素子ELのI-V特性によって、アノード電位Vandとカソード電位Vcathとの間の電位差Voledが徐々に広がる。カソード電位Vcathは固定されているため、アノード電位Vand、及び、アノード電位Vandと略同じドレイン電位Vdが徐々に大きくなる。その後、時刻t9において、ドレイン電位Vdは安定する。 Next, at time t8, it becomes a light emitting period in which the organic EL element EL emits light. More specifically, the period from time t8 to time t9 is a light emission transition period. In the period from time t8 to time t9, a current flows through the organic EL element EL, and the potential difference Vold between the anode potential Vand and the cathode potential Vcat gradually widens due to the IV characteristics of the organic EL element EL. Since the cathode potential Vcat is fixed, the anode potential Vand and the drain potential Vd substantially the same as the anode potential Vd gradually increase. After that, at time t9, the drain potential Vd stabilizes.
 ここで、トランジスタT2のゲートとドレインとの間の寄生容量Cp(図4を参照)により、時刻t8から時刻t9にかけてドレイン電位Vdが大きくなるに伴って、ゲート電位Vgも大きくなる。一方、ソース電位Vsは電源電圧VCCPに固定されている。従って、時刻t8から時刻t9にかけて、ゲートソース間電圧Vgsは徐々に圧縮される。 Here, due to the parasitic capacitance Cp between the gate and drain of the transistor T2 (see FIG. 4), the gate potential Vg also increases as the drain potential Vd increases from time t8 to time t9. On the other hand, the source potential Vs is fixed to the power supply voltage VCCP. Therefore, from time t8 to time t9, the gate-source voltage Vgs is gradually compressed.
 なお、時刻t5から時刻t6までの信号電圧Vsigの書き込み期間では、ゲート電位Vgは信号電圧Vsigに設定される。従って、電源VSS2の電圧値が大きくなることによりドレイン電位Vdが上昇しても、寄生容量Cpを介したゲート電位Vgへの影響は小さい。 In the writing period of the signal voltage Vsig from the time t5 to the time t6, the gate potential Vg is set to the signal voltage Vsig. Therefore, even if the drain potential Vd rises due to the increase in the voltage value of the power supply VSS2, the influence on the gate potential Vg via the parasitic capacitance Cp is small.
 第1実施形態では、時刻t5から時刻t6までにおける信号電圧Vsigの書き込み期間に、電源VSS2の電圧値を大きくすることにより、ドレイン電位Vdを大きくすることができる。これにより、時刻t8から時刻t9までの期間におけるゲートソース間電圧Vgsの圧縮量を抑制することができる。すなわち、時刻t9以降の発光時のゲートソース間電圧Vgsを大きくすることができ、トランジスタT2に流れる電流を大きくすることができる。この結果、有機EL素子ELの発光輝度を向上させることができる。 In the first embodiment, the drain potential Vd can be increased by increasing the voltage value of the power supply VSS2 during the writing period of the signal voltage Vsig from the time t5 to the time t6. Thereby, the compression amount of the gate-source voltage Vgs in the period from the time t8 to the time t9 can be suppressed. That is, the gate-source voltage Vgs at the time of light emission after the time t9 can be increased, and the current flowing through the transistor T2 can be increased. As a result, the emission brightness of the organic EL element EL can be improved.
 [比較例]
 図6は、本開示の比較例に係る表示装置100のより詳細な構成の一例を示す説明図である。比較例は、VSS2スキャナ134が設けられず、また、電圧値が可変である電源VSS2に代えて、固定電圧の電源VSSがトランジスタT4のドレインと接続される点で、第1実施形態とは異なっている。
[Comparison example]
FIG. 6 is an explanatory diagram showing an example of a more detailed configuration of the display device 100 according to the comparative example of the present disclosure. The comparative example is different from the first embodiment in that the VSS2 scanner 134 is not provided and the fixed voltage power supply VSS is connected to the drain of the transistor T4 instead of the power supply VSS2 having a variable voltage value. ing.
 図7は、本開示の比較例に係る表示装置100の駆動方法の一例を示す説明図である。 FIG. 7 is an explanatory diagram showing an example of a driving method of the display device 100 according to the comparative example of the present disclosure.
 図7に示すように、電源VSSの電圧値は、略一定(DC(Direct Current))である。従って、時刻t5から時刻t6までにおける信号電圧Vsigの書き込み期間において、ドレイン電位Vdは略一定である。電源VSSの電圧値は、例えば、有機EL素子ELのカソード電位Vcathと略同じである。 As shown in FIG. 7, the voltage value of the power supply VSS is substantially constant (DC (Direct Current)). Therefore, the drain potential Vd is substantially constant during the writing period of the signal voltage Vsig from the time t5 to the time t6. The voltage value of the power supply VSS is, for example, substantially the same as the cathode potential Vcat of the organic EL element EL.
 時刻t8において、比較例の図7に示すドレイン電位Vdは、電源VSS2の電圧値が変動する(AC(Alternating Current))第1実施形態の図5に示すドレイン電位Vdよりも小さい。従って、時刻t8から時刻t9までの期間において、比較例におけるドレイン電位Vdの上昇値は、第1実施形態におけるドレイン電位Vdの上昇値よりも大きい。すなわち、比較例では、寄生容量Cpを介したゲート電位Vgの上昇値が大きく、ゲートソース間電圧Vgsの圧縮量が大きい。この結果、時刻t9において、比較例の図7に示すゲートソース間電圧Vgsは、第1実施形態の図5に示すゲートソース間電圧Vgsよりも小さい。 At time t8, the drain potential Vd shown in FIG. 7 of the comparative example is smaller than the drain potential Vd shown in FIG. 5 of the first embodiment in which the voltage value of the power supply VSS2 fluctuates (AC (Alternating Current)). Therefore, in the period from time t8 to time t9, the increase value of the drain potential Vd in the comparative example is larger than the increase value of the drain potential Vd in the first embodiment. That is, in the comparative example, the increase value of the gate potential Vg via the parasitic capacitance Cp is large, and the compression amount of the gate-source voltage Vgs is large. As a result, at time t9, the gate-source voltage Vgs shown in FIG. 7 of the comparative example is smaller than the gate-source voltage Vgs shown in FIG. 5 of the first embodiment.
 近年、低消費電力化を目的として、主電源の低電圧化が進んでいる。この結果、信号電圧Vsigの振幅を十分大きくすることができず、最大輝度が制限される可能性がある。また、上記のように、寄生容量Cpによって、時刻t9の発光時におけるゲートソース間電圧Vgsが圧縮されてしまう。信号電圧Vsigの振幅が小さくなるほど、ゲートソース間電圧Vgsの圧縮の影響が大きくなる。この結果、最大輝度がさらに制限される可能性がある。 In recent years, the voltage of the main power supply has been reduced for the purpose of reducing power consumption. As a result, the amplitude of the signal voltage Vsig cannot be sufficiently increased, and the maximum brightness may be limited. Further, as described above, the parasitic capacitance Cp compresses the gate-source voltage Vgs at the time of light emission at time t9. The smaller the amplitude of the signal voltage Vsig, the greater the effect of compression of the gate-source voltage Vgs. As a result, the maximum brightness may be further limited.
 これに対して、第1実施形態では、信号電圧Vsigの書き込み期間においてドレイン電位Vdを上昇させることにより、発光遷移期間(時刻t8~時刻t9)における寄生容量Cpによるアノード電位Vandの上昇量を抑制することができる。すなわち、発光遷移期間における寄生容量Cpによるゲートソース間電圧Vgsの圧縮量を抑制することができる。これにより、発光時(時刻t9以降)におけるゲートソース間電圧Vgsを大きくすることができ、発光輝度を向上させることができる。この結果、信号電圧Vsigの振幅を増加させることなく、発光輝度を向上させることができる。すなわち、信号電圧Vsigの振幅が小さくなることによる最大輝度の制限を抑制することができる。 On the other hand, in the first embodiment, by increasing the drain potential Vd during the writing period of the signal voltage Vsig, the amount of increase in the anode potential Vand due to the parasitic capacitance Cp during the light emission transition period (time t8 to time t9) is suppressed. can do. That is, it is possible to suppress the amount of compression of the gate-source voltage Vgs due to the parasitic capacitance Cp during the light emission transition period. As a result, the gate-source voltage Vgs at the time of light emission (time t9 or later) can be increased, and the light emission brightness can be improved. As a result, the emission brightness can be improved without increasing the amplitude of the signal voltage Vsig. That is, it is possible to suppress the limitation of the maximum luminance due to the small amplitude of the signal voltage Vsig.
 [動作方法の変形例]
 次に、表示装置100の動作方法の変形例について説明する。
[Modification example of operation method]
Next, a modified example of the operation method of the display device 100 will be described.
 図8は、本開示の第1実施形態に係る表示装置100の駆動方法の第1変形例を示す説明図である。第1変形例は、電源VSS2の電圧値が小さくなるタイミングが時刻t7より前である点で、第1実施形態とは異なっている。 FIG. 8 is an explanatory diagram showing a first modification of the driving method of the display device 100 according to the first embodiment of the present disclosure. The first modification is different from the first embodiment in that the timing at which the voltage value of the power supply VSS2 becomes small is before the time t7.
 図8に示す例では、時刻t6において、電源VSS2の電圧値が小さくなり、例えば、カソード電位Vcathと略同じになる。従って、電源VSS2のパルス電圧の幅は、時刻t5から時刻t6までの期間である。 In the example shown in FIG. 8, the voltage value of the power supply VSS2 becomes smaller at time t6, and becomes substantially the same as, for example, the cathode potential Vcat. Therefore, the width of the pulse voltage of the power supply VSS2 is the period from the time t5 to the time t6.
 また、電源VSSのパルス電圧の幅は、例えば、信号電圧Vsigの書き込みのために信号WSがローになる期間と対応する。すなわち、電源VSS2の電圧値は、トランジスタT3がオンするタイミングに合わせて第1の電圧から第2の電圧に遷移し、その後、トランジスタT3がオフするタイミングに合わせて、第2の電圧から第1の電圧に遷移する。アノード電位Vandを大きくするために、電源VSS2の電圧値は、少なくとも信号WSがローである期間に、カソード電位Vcathよりも大きいことが好ましい。 Further, the width of the pulse voltage of the power supply VSS corresponds to, for example, the period during which the signal WS becomes low due to the writing of the signal voltage Vsig. That is, the voltage value of the power supply VSS2 transitions from the first voltage to the second voltage according to the timing when the transistor T3 is turned on, and then from the second voltage to the first voltage according to the timing when the transistor T3 is turned off. Transition to the voltage of. In order to increase the anode potential Band, the voltage value of the power supply VSS2 is preferably larger than the cathode potential Vcat, at least during the period when the signal WS is low.
 図9は、本開示の第1実施形態に係る表示装置100の駆動方法の第2変形例を示す説明図である。第2変形例は、電源VSS2の電圧値が小さくなるタイミングが時刻t7より後である点で、第1実施形態とは異なっている。 FIG. 9 is an explanatory diagram showing a second modification of the driving method of the display device 100 according to the first embodiment of the present disclosure. The second modification is different from the first embodiment in that the timing at which the voltage value of the power supply VSS2 becomes small is after the time t7.
 図9に示す例では、時刻t10において、電源VSS2の電圧値が小さくなり、例えば、カソード電位Vcathと略同じになる。時刻t10は、発光期間が終了し消光期間が開始するタイミングである。すなわち、電源VSS2の電圧値は、トランジスタT3がオンするタイミングに合わせて第1の電圧から第2の電圧に遷移し、その後、有機EL素子ELの発光が停止するタイミングに合わせて、第2の電圧から第1の電圧に遷移する。 In the example shown in FIG. 9, the voltage value of the power supply VSS2 becomes smaller at time t10, and becomes substantially the same as, for example, the cathode potential Vcat. Time t10 is the timing at which the light emission period ends and the quenching period begins. That is, the voltage value of the power supply VSS2 transitions from the first voltage to the second voltage according to the timing when the transistor T3 is turned on, and then the second voltage is matched with the timing when the light emission of the organic EL element EL is stopped. The transition from the voltage to the first voltage.
 なお、電源VSS2の電圧値が小さくなるタイミングは、図9に示す実線に限られず、例えば、破線で示すように、時刻t9から時刻t10までの期間内であってもよい。 The timing at which the voltage value of the power supply VSS2 becomes small is not limited to the solid line shown in FIG. 9, and may be within the period from time t9 to time t10, for example, as shown by the broken line.
 上記の変形例1及び変形例2に基づいて、電源VSS2の電圧値が小さくなるタイミングは、例えば、信号WSがハイになる時刻t6から、消光期間の開始時であるt10までの間のいずれかのタイミングでよい。 Based on the above modification 1 and modification 2, the timing at which the voltage value of the power supply VSS2 decreases is, for example, any of the time t6 from the time when the signal WS becomes high to t10 which is the start of the quenching period. The timing is fine.
 次に、表示装置100のうち画素回路の構成の変形例として、第2実施形態~第4実施形態について説明する。 Next, the second to fourth embodiments will be described as a modification of the configuration of the pixel circuit in the display device 100.
<第2実施形態>
 図10は、本開示の第2実施形態に係る画素回路の構成の一例を示す説明図である。
<Second Embodiment>
FIG. 10 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the second embodiment of the present disclosure.
 図10に示す例では、図4と比較して、画素回路はいわゆる「4Tr1C」の構成を有する。図10に示す例では、キャパシタC1が設けられていない。また、図11に示すトランジスタT1~T4は、Nチャネル型のトランジスタである。 In the example shown in FIG. 10, the pixel circuit has a so-called "4Tr1C" configuration as compared with FIG. In the example shown in FIG. 10, the capacitor C1 is not provided. Further, the transistors T1 to T4 shown in FIG. 11 are N-channel type transistors.
 第2実施形態においても、信号電圧Vsigの書き込み期間に、電源VSS2の電圧値はカソード電位Vcathよりも高くなる。これにより、第1実施形態と同様に、発光輝度を向上させることができる。 Also in the second embodiment, the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Thereby, the emission brightness can be improved as in the first embodiment.
<第3実施形態>
 図11は、本開示の第3実施形態に係る画素回路の構成の一例を示す説明図である。
<Third Embodiment>
FIG. 11 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the third embodiment of the present disclosure.
 図11に示す例では、図4と比較して、画素回路はいわゆる「5Tr」の構成を有する。図11に示す例では、キャパシタC1が設けられていない。また、発光制御トランジスタであるトランジスタT1は、電源電圧VCCPとトランジスタT2のソースとの間ではなく、トランジスタT2のドレインと有機EL素子ELのアノードとの間に接続されている。 In the example shown in FIG. 11, the pixel circuit has a so-called “5Tr” configuration as compared with FIG. In the example shown in FIG. 11, the capacitor C1 is not provided. Further, the transistor T1 which is a light emission control transistor is connected not between the power supply voltage VCCP and the source of the transistor T2 but between the drain of the transistor T2 and the anode of the organic EL element EL.
 画素回路は、トランジスタT5をさらに有する。トランジスタT5は、トランジスタT2のドレインとゲートとの間に接続される。トランジスタT5は、トランジスタT2の閾値を補償する閾値補償トランジスタである。トランジスタT5は、信号電圧Vsigの書き込み期間の前の所定の期間にオンする。すなわち、トランジスタT5は、トランジスタT2の閾値を補償する補償期間にトランジスタT2のゲートとドレインとを接続させ、トランジスタT2をダイオード接続させる第2スイッチングトランジスタである。補償期間の終了時、すなわち、信号電圧Vsigの書き込み期間の開始時に、キャパシタC2には、トランジスタT2の閾値電圧が保持される。この結果、画素回路ごとのトランジスタの閾値等の特性ばらつきの影響を抑制し、表示特性を向上させることができる。 The pixel circuit further has a transistor T5. The transistor T5 is connected between the drain and the gate of the transistor T2. The transistor T5 is a threshold value compensating transistor that compensates for the threshold value of the transistor T2. The transistor T5 is turned on in a predetermined period before the write period of the signal voltage Vsig. That is, the transistor T5 is a second switching transistor in which the gate and drain of the transistor T2 are connected and the transistor T2 is connected by a diode during the compensation period for compensating the threshold value of the transistor T2. At the end of the compensation period, that is, at the beginning of the write period of the signal voltage Vsig, the capacitor C2 holds the threshold voltage of the transistor T2. As a result, it is possible to suppress the influence of characteristic variations such as the threshold value of the transistor for each pixel circuit and improve the display characteristics.
 第3実施形態においても、信号電圧Vsigの書き込み期間に、電源VSS2の電圧値はカソード電位Vcathよりも高くなる。これにより、第1実施形態と同様に、発光輝度を向上させることができる。 Also in the third embodiment, the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Thereby, the emission brightness can be improved as in the first embodiment.
<第4実施形態>
 図12は、本開示の第4実施形態に係る画素回路の構成の一例を示す説明図である。
<Fourth Embodiment>
FIG. 12 is an explanatory diagram showing an example of the configuration of the pixel circuit according to the fourth embodiment of the present disclosure.
 図12に示す例では、図4と比較して、画素回路はいわゆる「6Tr」の構成を有する。図12に示す第4実施形態は、図11に示す第3実施形態の変形例でもある。 In the example shown in FIG. 12, the pixel circuit has a so-called "6Tr" configuration as compared with FIG. The fourth embodiment shown in FIG. 12 is also a modification of the third embodiment shown in FIG.
 図12に示す信号線SLは、図11と比較して、信号線SL1と、複数の信号線SL2と、を有する。また、画素回路は、トランジスタT6と、キャパシタC3、C4と、をさらに有する。 The signal line SL shown in FIG. 12 has a signal line SL1 and a plurality of signal lines SL2 as compared with FIG. Further, the pixel circuit further includes a transistor T6 and capacitors C3 and C4.
 信号線SL2は、1つの信号線SL1に対して複数設けられる。複数の信号線SL2のそれぞれは、信号線SL1と電気的に接続される。複数の信号線SL2のそれぞれは、複数の画素111と電気的に接続される。すなわち、1つの信号線SL1は複数の信号線SL2に共有され、かつ、1つの信号線SL2は複数の画素111に共有される。これにより、信号線SL2を、全ての画素111と接続される場合の信号線よりも短くすることができる。この結果、トランジスタT2の閾値を補償する補償動作において、信号線SL2の寄生容量への充電又は放電に要する時間を短くすることができる。従って、第4実施形態では、第3実施形態と比較して、トランジスタT2の閾値を補償する補償期間を短くすることができる。 A plurality of signal lines SL2 are provided for one signal line SL1. Each of the plurality of signal lines SL2 is electrically connected to the signal line SL1. Each of the plurality of signal lines SL2 is electrically connected to the plurality of pixels 111. That is, one signal line SL1 is shared by a plurality of signal lines SL2, and one signal line SL2 is shared by a plurality of pixels 111. Thereby, the signal line SL2 can be made shorter than the signal line when connected to all the pixels 111. As a result, in the compensation operation for compensating for the threshold value of the transistor T2, the time required for charging or discharging the parasitic capacitance of the signal line SL2 can be shortened. Therefore, in the fourth embodiment, the compensation period for compensating the threshold value of the transistor T2 can be shortened as compared with the third embodiment.
 トランジスタT6は、信号線SL2に対応して、信号線SL2ごとに複数設けられる。複数のトランジスタT6は、信号線SL1と複数の信号線SL2のそれぞれとの間に接続される。トランジスタT6は、信号線SL1と信号線SL2との間の接続を制御するスイッチングトランジスタである。 A plurality of transistors T6 are provided for each signal line SL2 corresponding to the signal line SL2. The plurality of transistors T6 are connected between the signal line SL1 and each of the plurality of signal lines SL2. The transistor T6 is a switching transistor that controls the connection between the signal line SL1 and the signal line SL2.
 キャパシタC3は、信号線SL2に対応して、信号線SL2ごとに複数設けられる。複数のキャパシタC3は、信号線SL1と複数の信号線SL2のそれぞれとの間に接続される。 A plurality of capacitors C3 are provided for each signal line SL2 corresponding to the signal line SL2. The plurality of capacitors C3 are connected between the signal line SL1 and each of the plurality of signal lines SL2.
 キャパシタC4は、信号線SL1と電源VSS2との間に接続される。キャパシタC4は、信号線SL1の電位を保持する。キャパシタC4は、例えば、互いに隣り合う信号線SL1と電源VSS2の給電線との寄生容量により形成される。 The capacitor C4 is connected between the signal line SL1 and the power supply VSS2. The capacitor C4 holds the potential of the signal line SL1. The capacitor C4 is formed, for example, by a parasitic capacitance between a signal line SL1 adjacent to each other and a feeder line of the power supply VSS2.
 第4実施形態においても、信号電圧Vsigの書き込み期間に、電源VSS2の電圧値はカソード電位Vcathよりも高くなる。これにより、第1実施形態と同様に、発光輝度を向上させることができる。 Also in the fourth embodiment, the voltage value of the power supply VSS2 becomes higher than the cathode potential Vcat during the writing period of the signal voltage Vsig. Thereby, the emission brightness can be improved as in the first embodiment.
 なお、本技術は以下のような構成を取ることができる。
 (1)画素回路が配置される画素アレイ部と、
 前記画素アレイ部を駆動させる駆動回路と、を備え、
 前記画素回路は、
 アノードからカソードに流れる電流に応じた輝度で発光する発光素子と、
 書き込まれた信号電圧に基づいて、前記発光素子を駆動する駆動トランジスタと、
 前記駆動トランジスタへ書き込まれる前記信号電圧をサンプリングするサンプリングトランジスタと、
 前記サンプリングトランジスタをオンにして前記駆動トランジスタへの前記信号電圧の書き込みを行う信号電圧書き込み期間に、前記発光素子のアノード電圧を前記発光素子のカソード電圧よりも高くするアノード電圧制御部と、を有する、表示装置。
 (2)前記アノード電圧制御部は、前記信号電圧書き込み期間内にオンして、前記発光素子のアノード電圧を基準電圧に設定する第1スイッチングトランジスタを有し、
 前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて、第1の電圧から、前記カソード電圧より高い第2の電圧に遷移する、(1)に記載の表示装置。
 (3)前記駆動回路は、少なくとも前記信号電圧書き込み期間に前記基準電圧の電圧値が前記カソード電圧よりも高くなるように、前記基準電圧の電圧値を制御する基準電圧制御部を有する、(2)に記載の表示装置。
 (4)前記基準電圧制御部は、前記信号電圧書き込み期間に電圧レベルが前記カソード電圧よりも高くなるパルス電圧を生成して前記基準電圧に出力する、(3)に記載の表示装置。
 (5)前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記サンプリングトランジスタがオフするタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移する、(2)乃至(4)のいずれか一項に記載の表示装置。
 (6)前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記発光素子の発光が停止するタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移する、(2)乃至(4)のいずれか一項に記載の表示装置。
 (7)前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Pチャネル型のトランジスタである、(2)乃至(6)のいずれか一項に記載の表示装置。
 (8)前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Nチャネル型のトランジスタである、(2)乃至(6)のいずれか一項に記載の表示装置。
 (9)前記アノード電圧制御部は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記アノード電圧を前記カソード電圧と略同じにする、(1)乃至(8)のいずれか一項に記載の表示装置。
 (10)前記画素回路は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記駆動トランジスタをダイオード接続させる第2スイッチングトランジスタをさらに有する、(1)乃至(9)のいずれか一項に記載の表示装置。
 (11)前記所定の期間は、前記駆動トランジスタのゲート及びソース間電圧を、前記駆動トランジスタの閾値電圧に応じた電圧にする期間である、(9)又は(10)に記載の表示装置。
 (12)前記発光素子は、前記信号電圧に基づいて前記駆動トランジスタを流れる電流に応じた輝度で発光する、(1)乃至(11)のいずれか一項に記載の表示装置。
The present technology can have the following configurations.
(1) A pixel array unit in which a pixel circuit is arranged and
A drive circuit for driving the pixel array unit is provided.
The pixel circuit is
A light emitting element that emits light with brightness according to the current flowing from the anode to the cathode,
A drive transistor that drives the light emitting element based on the written signal voltage,
A sampling transistor that samples the signal voltage written to the drive transistor,
It has an anode voltage control unit that makes the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during the signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor. , Display device.
(2) The anode voltage control unit has a first switching transistor that is turned on within the signal voltage writing period to set the anode voltage of the light emitting element to the reference voltage.
The display device according to (1), wherein the reference voltage changes from a first voltage to a second voltage higher than the cathode voltage in accordance with the timing at which the sampling transistor is turned on.
(3) The drive circuit has a reference voltage control unit that controls the voltage value of the reference voltage so that the voltage value of the reference voltage becomes higher than the cathode voltage at least during the signal voltage writing period (2). ). The display device.
(4) The display device according to (3), wherein the reference voltage control unit generates a pulse voltage whose voltage level is higher than the cathode voltage during the signal voltage writing period and outputs the pulse voltage to the reference voltage.
(5) The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then at the timing when the sampling transistor is turned off, the second voltage. The display device according to any one of (2) to (4), which transitions from a voltage to the first voltage.
(6) The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then at the timing when the light emitting of the light emitting element is stopped, the first voltage. The display device according to any one of (2) to (4), which transitions from the voltage of 2 to the first voltage.
(7) The display device according to any one of (2) to (6), wherein the drive transistor, the sampling transistor, and the first switching transistor are P-channel type transistors.
(8) The display device according to any one of (2) to (6), wherein the drive transistor, the sampling transistor, and the first switching transistor are N-channel type transistors.
(9) The anode voltage control unit makes the anode voltage substantially the same as the cathode voltage during a predetermined period before the signal voltage writing period is started, any one of (1) to (8). The display device described in the section.
(10) Any one of (1) to (9), wherein the pixel circuit further includes a second switching transistor for diode-connecting the drive transistor in a predetermined period before the signal voltage writing period is started. The display device described in the section.
(11) The display device according to (9) or (10), wherein the predetermined period is a period in which the gate-source voltage of the drive transistor is set to a voltage corresponding to the threshold voltage of the drive transistor.
(12) The display device according to any one of (1) to (11), wherein the light emitting element emits light with brightness corresponding to the current flowing through the drive transistor based on the signal voltage.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 The aspects of the present disclosure are not limited to the individual embodiments described above, but also include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-mentioned contents. That is, various additions, changes and partial deletions are possible without departing from the conceptual idea and purpose of the present disclosure derived from the contents specified in the claims and their equivalents.
100 表示装置、110 画素部、111R 画素、111G 画素、111B 画素、112 アノード電位制御部、120 水平セレクタ、130 垂直スキャナ、134 VSS2スキャナ、EL 有機EL素子、SL 信号線、T1~T6 トランジスタ、Vand アノード電位、Vcath カソード電位、Vsig 信号電圧 100 display device, 110 pixel unit, 111R pixel, 111G pixel, 111B pixel, 112 anode potential control unit, 120 horizontal selector, 130 vertical scanner, 134 VSS2 scanner, EL organic EL element, SL signal line, T1 to T6 transistor, Band Anode potential, Vcat cathode potential, Vsig signal voltage

Claims (12)

  1.  画素回路が配置される画素アレイ部と、
     前記画素アレイ部を駆動させる駆動回路と、を備え、
     前記画素回路は、
     アノードからカソードに流れる電流に応じた輝度で発光する発光素子と、
     書き込まれた信号電圧に基づいて、前記発光素子を駆動する駆動トランジスタと、
     前記駆動トランジスタへ書き込まれる前記信号電圧をサンプリングするサンプリングトランジスタと、
     前記サンプリングトランジスタをオンにして前記駆動トランジスタへの前記信号電圧の書き込みを行う信号電圧書き込み期間に、前記発光素子のアノード電圧を前記発光素子のカソード電圧よりも高くするアノード電圧制御部と、を有する、表示装置。
    The pixel array section where the pixel circuit is arranged and
    A drive circuit for driving the pixel array unit is provided.
    The pixel circuit is
    A light emitting element that emits light with brightness according to the current flowing from the anode to the cathode,
    A drive transistor that drives the light emitting element based on the written signal voltage,
    A sampling transistor that samples the signal voltage written to the drive transistor,
    It has an anode voltage control unit that makes the anode voltage of the light emitting element higher than the cathode voltage of the light emitting element during the signal voltage writing period in which the sampling transistor is turned on and the signal voltage is written to the drive transistor. , Display device.
  2.  前記アノード電圧制御部は、前記信号電圧書き込み期間内にオンして、前記発光素子のアノード電圧を基準電圧に設定する第1スイッチングトランジスタを有し、
     前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて、第1の電圧から、前記カソード電圧より高い第2の電圧に遷移する、請求項1に記載の表示装置。
    The anode voltage control unit has a first switching transistor that is turned on within the signal voltage writing period to set the anode voltage of the light emitting element to a reference voltage.
    The display device according to claim 1, wherein the reference voltage changes from a first voltage to a second voltage higher than the cathode voltage in accordance with the timing at which the sampling transistor is turned on.
  3.  前記駆動回路は、少なくとも前記信号電圧書き込み期間に前記基準電圧の電圧値が前記カソード電圧よりも高くなるように、前記基準電圧の電圧値を制御する基準電圧制御部を有する、請求項2に記載の表示装置。 2. The drive circuit has a reference voltage control unit that controls the voltage value of the reference voltage so that the voltage value of the reference voltage becomes higher than the cathode voltage at least during the signal voltage writing period. Display device.
  4.  前記基準電圧制御部は、前記信号電圧書き込み期間に電圧レベルが前記カソード電圧よりも高くなるパルス電圧を生成して前記基準電圧に出力する、請求項3に記載の表示装置。 The display device according to claim 3, wherein the reference voltage control unit generates a pulse voltage whose voltage level is higher than the cathode voltage during the signal voltage writing period and outputs the pulse voltage to the reference voltage.
  5.  前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記サンプリングトランジスタがオフするタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移する、請求項2に記載の表示装置。 The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then from the second voltage at the timing when the sampling transistor is turned off. The display device according to claim 2, which transitions to the first voltage.
  6.  前記基準電圧は、前記サンプリングトランジスタがオンするタイミングに合わせて前記第1の電圧から前記第2の電圧に遷移し、その後、前記発光素子の発光が停止するタイミングに合わせて、前記第2の電圧から前記第1の電圧に遷移する、請求項2に記載の表示装置。 The reference voltage transitions from the first voltage to the second voltage at the timing when the sampling transistor is turned on, and then the second voltage at the timing when the light emitting of the light emitting element is stopped. The display device according to claim 2, wherein the voltage transitions from the first voltage to the first voltage.
  7.  前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Pチャネル型のトランジスタである、請求項2に記載の表示装置。 The display device according to claim 2, wherein the drive transistor, the sampling transistor, and the first switching transistor are P-channel type transistors.
  8.  前記駆動トランジスタ、前記サンプリングトランジスタ及び前記第1スイッチングトランジスタは、Nチャネル型のトランジスタである、請求項2に記載の表示装置。 The display device according to claim 2, wherein the drive transistor, the sampling transistor, and the first switching transistor are N-channel type transistors.
  9.  前記アノード電圧制御部は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記アノード電圧を前記カソード電圧と略同じにする、請求項1に記載の表示装置。 The display device according to claim 1, wherein the anode voltage control unit makes the anode voltage substantially the same as the cathode voltage in a predetermined period before the signal voltage writing period is started.
  10.  前記画素回路は、前記信号電圧書き込み期間が開始される前の所定の期間に、前記駆動トランジスタをダイオード接続させる第2スイッチングトランジスタをさらに有する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the pixel circuit further includes a second switching transistor for diode-connecting the drive transistor in a predetermined period before the signal voltage writing period is started.
  11.  前記所定の期間は、前記駆動トランジスタのゲート及びソース間電圧を、前記駆動トランジスタの閾値電圧に応じた電圧にする期間である、請求項9に記載の表示装置。 The display device according to claim 9, wherein the predetermined period is a period in which the gate-source voltage of the drive transistor is set to a voltage corresponding to the threshold voltage of the drive transistor.
  12.  前記発光素子は、前記信号電圧に基づいて前記駆動トランジスタを流れる電流に応じた輝度で発光する、請求項1に記載の表示装置。 The display device according to claim 1, wherein the light emitting element emits light with a brightness corresponding to a current flowing through the drive transistor based on the signal voltage.
PCT/JP2021/044153 2020-12-10 2021-12-01 Display device WO2022124165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022568219A JPWO2022124165A1 (en) 2020-12-10 2021-12-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-205264 2020-12-10
JP2020205264 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022124165A1 true WO2022124165A1 (en) 2022-06-16

Family

ID=81973588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044153 WO2022124165A1 (en) 2020-12-10 2021-12-01 Display device

Country Status (2)

Country Link
JP (1) JPWO2022124165A1 (en)
WO (1) WO2022124165A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200441A (en) * 2017-05-29 2018-12-20 キヤノン株式会社 Light-emitting device and imaging apparatus
JP2019082548A (en) * 2017-10-30 2019-05-30 ソニーセミコンダクタソリューションズ株式会社 Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200441A (en) * 2017-05-29 2018-12-20 キヤノン株式会社 Light-emitting device and imaging apparatus
JP2019082548A (en) * 2017-10-30 2019-05-30 ソニーセミコンダクタソリューションズ株式会社 Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2022124165A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US10909919B2 (en) Display device, method for driving display device, and electronic apparatus
US20240119897A1 (en) Pixel Circuit and Driving Method Therefor and Display Panel
JP3772889B2 (en) Electro-optical device and driving device thereof
JP4477617B2 (en) Organic light emitting diode display element and driving method thereof
JP5080733B2 (en) Display device and driving method thereof
US9633604B2 (en) Display device, method for driving display device, and electronic apparatus
KR100858618B1 (en) Organic light emitting display and driving method thereof
JP6201465B2 (en) Display device, driving method of display device, and electronic apparatus
US11222587B2 (en) Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus
US20050285826A1 (en) Light emitting display
US11398186B2 (en) Pixel circuit, display device, driving method of pixel circuit, and electronic apparatus
CN108597445B (en) Display device, driving method for display device, and electronic apparatus
WO2020100616A1 (en) Pixel circuit, display device, drive method for pixel circuit, and electronic device
JP4039441B2 (en) Electro-optical device and electronic apparatus
KR20050026919A (en) Active matrix type display apparatus
US11289019B2 (en) Pixel circuit, display device, method for driving pixel circuit, and electronic apparatus
JP4260586B2 (en) Display device drive circuit and drive method
CN111344774B (en) Pixel circuit, display device, and electronic apparatus
JP6690614B2 (en) Display device
WO2022124165A1 (en) Display device
CN114023261A (en) Display panel and display device
KR100640052B1 (en) Electro-Luminescence Display Apparatus and Driving Method thereof
JP2010026119A (en) Display and method of driving the same, and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903269

Country of ref document: EP

Kind code of ref document: A1