JPH0574569A - Driving device of thin film el and its driving method - Google Patents

Driving device of thin film el and its driving method

Info

Publication number
JPH0574569A
JPH0574569A JP25601891A JP25601891A JPH0574569A JP H0574569 A JPH0574569 A JP H0574569A JP 25601891 A JP25601891 A JP 25601891A JP 25601891 A JP25601891 A JP 25601891A JP H0574569 A JPH0574569 A JP H0574569A
Authority
JP
Japan
Prior art keywords
voltage
tft
driving
thin film
gate voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25601891A
Other languages
Japanese (ja)
Inventor
Yoshihide Sato
嘉秀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP25601891A priority Critical patent/JPH0574569A/en
Publication of JPH0574569A publication Critical patent/JPH0574569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

PURPOSE:To provide a driving method of a thin film EL driving circuit which has a large tolerance to error components of a data signal, and to obtain a desired gradation level on a stabilized even display screen. CONSTITUTION:An EL driving circuit is formed of a TFT1 for writing to charge a capacitor for holding according to a luminous signal Vda, and a TFT4 for driving to control the luminance of an EL element 3 by operating a switching according to the voltage Vg from the capacitor for holding. By inserting a current control resistance 6 between the source of the TFT4 for driving and the ground, the gate voltage width corresponding from the nonluminous brightness to the saturated brightness has been expanded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の技術分野】本発明は、アクティブマトリック
スEL表示装置、電子式印字装置の露光系に用いられる
ELイメージバーなどにおける薄膜ELの駆動方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a thin film EL in an EL image bar used in an exposure system of an active matrix EL display device or an electronic printing device.

【0002】[0002]

【従来の技術】”A 6×6-in20lpi Electroluminescen
t Display Panel,”(T.P.Blody,et al,IEEE,Trans.Ele
ctron Devices, Vol.ED-22,No-9,Sept.1975,pp.739-74
9)や”DESIGN OF A PROTOTYPE ACTIVE MATRIX CdSe T
FT ADRESSEDEL DISPLAY,”(J.Vanfleteren,et a
l.,Eurodisplay 1990,pp.216ー219)に示される従来の
薄膜ELの1ビットの駆動回路は図10の回路構成を持
つものであり、ソースにデータ信号(Vda)が供給され
る書き込み用TFT(1)のドレーンに信号保持用コン
デンサ(2)が接続され、書き込み用TFTのドレーン
と信号保持用コンデンサの接続点がEL駆動用TFT
(4)のゲートに接続されている。EL駆動信号(5)
とEL発光素子(3)とEL駆動用TFTは直列に接続
され閉回路を構成している。このようなEL駆動回路に
おいて、書き込み用TFT(1)を介して蓄積用コンデ
ンサ(2)に書き込み保持されたデータ信号電圧(Vd
a)に対応する電圧がEL駆動用TFT(4)のオン/
オフを制御し、駆動信号(5)とでEL素子の(3)発
光が制御される。ここで、データ信号電圧(Vda)に対
するEL発光素子(3)の輝度特性は、図4に示す様に
発光開始輝度(Loff)から飽和輝度(Lon)まで急峻
に立ち上がるものであり、変調データ電圧(Vdhm)の
範囲で非発光時の輝度(Loff)から飽和輝度(Lon)
までの間で階調表示を得るときに、この変調データ電圧
幅(Vdhm)は狭く、マトリックス回路のクロストー
ク、データ書き込み保持回路のバラツキ等によるデータ
信号電圧(Vda)の誤差分を受け、所望の階調レベルを
安定した均一な輝度の表示画面で得ることが困難である
欠点があった。
2. Description of the Related Art "A 6 × 6-in20lpi Electroluminescen
t Display Panel, ”(TPBlody, et al, IEEE, Trans.Ele
ctron Devices, Vol.ED-22, No-9, Sept.1975, pp.739-74
9) and "DESIGN OF A PROTOTYPE ACTIVE MATRIX CdSe T
FT ADRESSEDEL DISPLAY, ”(J.Vanfleteren, et a
l., Eurodisplay 1990, pp.216-219), the conventional 1-bit driving circuit of the thin film EL has the circuit configuration of FIG. 10, and is for writing in which the data signal (Vda) is supplied to the source. The signal holding capacitor (2) is connected to the drain of the TFT (1), and the connection point between the drain of the writing TFT and the signal holding capacitor is the EL driving TFT.
It is connected to the gate of (4). EL drive signal (5)
The EL light emitting element (3) and the EL driving TFT are connected in series to form a closed circuit. In such an EL drive circuit, the data signal voltage (Vd which is written and held in the storage capacitor (2) through the writing TFT (1) is held.
The voltage corresponding to a) turns on / off the EL driving TFT (4).
The off state is controlled, and the light emission of the EL element (3) is controlled by the drive signal (5). Here, the luminance characteristic of the EL light emitting element (3) with respect to the data signal voltage (Vda) is such that as shown in FIG. 4, it rapidly rises from the light emission start luminance (Loff) to the saturation luminance (Lon), and the modulation data voltage In the range of (Vdhm), the luminance (Loff) to the saturation luminance (Lon) when not emitting light
This is because the modulation data voltage width (Vdhm) is narrow when a grayscale display is obtained, and it receives the error of the data signal voltage (Vda) due to the crosstalk of the matrix circuit, the variation of the data write / hold circuit, etc. However, it is difficult to obtain the gradation level of (3) on a display screen with stable and uniform brightness.

【0003】[0003]

【発明が解決しようとする課題】本発明は、薄膜ELの
駆動方法において、マトリックス回路のクロストーク、
データ信号書き込み保持回路のバラツキ等によるデータ
信号の誤差分に対する許容量が大きな、所望の階調レベ
ルを安定した均一な表示画面で得ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for driving a thin film EL, wherein crosstalk of a matrix circuit,
An object of the present invention is to obtain a desired gradation level on a stable and uniform display screen, which has a large allowance for an error amount of a data signal due to variations in the data signal write / hold circuit.

【0004】[0004]

【課題を解決するための手段】発光信号に応じて蓄積用
コンデンサを充電する第1のTFTと、前記蓄積用コン
デンサからの電圧に応じてスイッチング動作しEL素子
とGNDとの接続を制御することで前記EL素子の発光
を制御する第2のTFTとを有する薄膜ELの駆動装置
において、第2のTFTとGNDとの間に前記蓄積コン
デンサからの電圧に応じて前記EL素子の駆動電流を抑
制する電流制御抵抗を挿入する。
A first TFT that charges a storage capacitor according to a light emission signal, and a switching operation according to a voltage from the storage capacitor to control connection between an EL element and GND. In a device for driving a thin film EL having a second TFT for controlling light emission of the EL element, a driving current of the EL element is suppressed according to a voltage from the storage capacitor between the second TFT and GND. Insert the current control resistor.

【0005】[0005]

【作用】EL駆動用TFTとGND間にドレイン電流を
抑制する抵抗を挿入することによりEL駆動用TFTの
ソース電位がドレイン電流の変化に応じて変化し、実質
的にゲート−ソース電圧が変化するので、ゲート電圧が
高くなるに従って電流抑制抵抗に流れるドレイン電流す
なわちEL素子の駆動電流が抑制される。このEL素子
を所望の輝度で発光させるためには、必要な電圧を得る
ところまでゲート電圧を上げねばならず、結果としてE
L素子の非発光輝度から飽和輝度までに対応したゲート
電圧までに電圧幅を拡大することになる。
By inserting a resistor that suppresses the drain current between the EL driving TFT and the GND, the source potential of the EL driving TFT changes according to the change of the drain current, and the gate-source voltage substantially changes. Therefore, as the gate voltage increases, the drain current flowing in the current suppressing resistor, that is, the drive current of the EL element is suppressed. In order for this EL element to emit light with a desired brightness, the gate voltage must be raised to the point where a necessary voltage is obtained, and as a result, E
The voltage width is expanded to the gate voltage corresponding to the non-luminous brightness of the L element to the saturated brightness.

【0006】[0006]

【実施例】第1の実施例 本発明の駆動方法が図1に示される。図10に示された
EL駆動回路のEL駆動用TFT(4)のソースとGN
D間に電流抑制用抵抗(6)が挿入されている。EL素
子(3)の発光層の材料にZnS:Mnを用いた場合、駆
動電圧(5)に対する輝度(L)特性は、図3に示すよ
うに、駆動用TFT(4)のゲート電圧(Vg)を一定
にして、発光を開始する非発光輝度(Loff)の発光し
きい電圧(Vtel)から所望の発光輝度(Lon)の電圧
(Vpk)までの間で駆動電圧を変化させることで、対応
した輝度が得られる。ここで、駆動電圧(5)が所望の
発光輝度の電圧(Vpk)に等しいときに、データ電圧
(Vda)をわずかに変化させるだけで輝度が大幅に変化す
る。この輝度特性を図4に示す。図5の駆動タイミング
において、データ電圧(Vda)は、書き込み用TFT
(1)のゲートに走査電圧(Vsc)が印加されると、保
持用コンデンサ(2)に図5(d)のように充電または
放電が行われた後走査電圧が除かれると、書き込み用T
FTのゲート-ソース間容量と保持用コンデンサとのフ
ィードスルーによってΔVgh電圧が低下したところで保
持され駆動用TFT(4)のゲート電圧(Vg)として
作用する。このゲート電圧は、駆動用TFTのドレイン
電流特性を制御し、EL素子(3)に印加される駆動電
圧を変化させ、輝度変調を行う。したがって、変調輝度
範囲(LoffからLonまで)に対応する駆動用TFT
(4)の電流特性で、そのゲート電圧幅が決定され、こ
れにフィードスルー降下電圧を加えることにより所望の
輝度を得るためのデータ電圧(Vda)を求めることがで
きる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment The driving method of the present invention is shown in FIG. Source and GN of the EL driving TFT (4) of the EL driving circuit shown in FIG.
A current suppressing resistor (6) is inserted between D. When ZnS: Mn is used as the material of the light emitting layer of the EL element (3), the luminance (L) characteristic with respect to the driving voltage (5) is as shown in FIG. ) Is kept constant, and the drive voltage is changed from the light emission threshold voltage (Vtel) of non-luminance (Loff) at which light emission starts to the voltage (Vpk) of desired light emission luminance (Lon). The obtained brightness is obtained. Here, when the drive voltage (5) is equal to the voltage (Vpk) of the desired light emission luminance, the data voltage
Even a slight change in (Vda) changes the brightness significantly. This brightness characteristic is shown in FIG. At the driving timing of FIG. 5, the data voltage (Vda) is the writing TFT.
When the scanning voltage (Vsc) is applied to the gate of (1), the holding capacitor (2) is charged or discharged as shown in FIG.
When the ΔVgh voltage is lowered by the feedthrough between the gate-source capacitance of the FT and the holding capacitor, the ΔVgh voltage is held and acts as the gate voltage (Vg) of the driving TFT (4). This gate voltage controls the drain current characteristic of the driving TFT, changes the driving voltage applied to the EL element (3), and performs brightness modulation. Therefore, the driving TFT corresponding to the modulation luminance range (from Loff to Lon)
The gate voltage width is determined by the current characteristic of (4), and the data voltage (Vda) for obtaining the desired brightness can be obtained by adding the feedthrough drop voltage to the gate voltage width.

【0007】そこで、図2に示すEL駆動用TFT
(4)及び電流制御用抵抗(6)とで構成される部分に
おいて、駆動用TFT(4)のゲート電圧(Vg)に対
する駆動用TFT(4)の電流特性ならびにその回路で
駆動したときの輝度特性で以下に説明する。飽和領域に
おけるTFTのドレイン電流(Id)-ゲート電圧(V
g)特性は以下のようにして求められる。図2に示すE
L駆動部において、まず、電流抑制用抵抗(6)のない
ときのId-Vg特性は、チャネル幅W、チャネル長L、
移動度μ、ゲート絶縁膜容量Ci、スレショルド電圧Vt
h、について一般に(1)式で表わされる。 Id=(1/2)(W/L)μCi(Vg-Vth)2 (1) ここで、電流抑制用抵抗(6)をソースに挿入すると
(1)式は、(2)、(3)式で表わされる。 Id=(1/2)(W/L)μCi(Vg-Vth-Vs)2 (2) Vs=Id×Rs (3) ここでRsは電流抑制用抵抗値でありVsはソース電圧
(2)、(3)式をIdについて解くと、(4)式が得られる。
Therefore, the EL driving TFT shown in FIG.
In the portion composed of (4) and the current control resistor (6), the current characteristics of the driving TFT (4) with respect to the gate voltage (Vg) of the driving TFT (4) and the brightness when driven by the circuit. The characteristics will be described below. Drain current (Id) -gate voltage (V
g) Properties are obtained as follows. E shown in FIG.
In the L driving section, first, the Id-Vg characteristics when there is no current suppressing resistor (6) are as follows: channel width W, channel length L,
Mobility μ, gate insulating film capacitance Ci, threshold voltage Vt
h is generally expressed by the equation (1). Id = (1/2) (W / L) μCi (Vg-Vth) 2 (1) Here, if the current suppressing resistor (6) is inserted into the source,
Equation (1) is expressed by equations (2) and (3). Id = (1/2) (W / L) μCi (Vg-Vth-Vs) 2 (2) Vs = Id × Rs (3) where Rs is the resistance value for current suppression and Vs is the source voltage.
By solving equations (2) and (3) for Id, equation (4) is obtained.

【0008】[0008]

【数1】 [Equation 1]

【0009】ここで、K=(1/2)(W/L)μCiであり、
Vg-Vth≦0であれば、Id=0となるから、(4)式で表
わされる特性は、図6に示すように、ゲート電圧が高く
なるに従って電流が抑制されることになる。そのため、
電流抑制用抵抗のないときの特性(1)から電流抑制用抵
抗を挿入した特性(2)になり、飽和輝度および非発光輝
度のときのEL駆動電流(Id)に対応するゲート電圧
(Vg)がそれぞれ、Vgh1からVgh1'、Vgh2からVg
h2'に変わる。ここで、(Vgh1'-Vgh1)>(Vgh2'-Vgh
2)となっているから、拡張した変調ゲート電圧幅は、
(Vgh1'-Vgh1)-(Vgh2'-Vgh2)になり、ゲート電圧
(Vg)に対する輝度(L)は図7に示すように電流抑
制用抵抗(6)のないときの特性曲線(1)から電流抑
制用抵抗を挿入したときの特性曲線(2)に移り、変調
ゲート電圧幅(Vghm)を広げることができる。
Where K = (1/2) (W / L) μCi,
If Vg−Vth ≦ 0, then Id = 0, so that the characteristic represented by the equation (4) is that the current is suppressed as the gate voltage increases, as shown in FIG. for that reason,
The characteristic (1) when there is no current suppressing resistor is changed to the characteristic (2) in which the current suppressing resistor is inserted, and the gate voltage (Vg) corresponds to the EL drive current (Id) at saturated brightness and non-luminous brightness. Are Vgh 1 to Vgh 1 'and Vgh 2 to Vg, respectively
change to h 2 '. Here, (Vgh 1 '-Vgh 1) > (Vgh 2' -Vgh
2 ), the expanded modulation gate voltage width is
(Vgh 1 '-Vgh 1 )-(Vgh 2 ' -Vgh 2 ), and the brightness (L) with respect to the gate voltage (Vg) is a characteristic curve when there is no current suppressing resistor (6) as shown in FIG. It is possible to move from (1) to the characteristic curve (2) when the current suppressing resistor is inserted, and to widen the modulation gate voltage width (Vghm).

【0010】第2の実施例 図10の従来回路の駆動用TFT(4)ソースとGND
間にそのまま電流抑制用抵抗(6)を挿入すると、図8
に示すように、従来の特性曲線(1)が特性曲線(2)の様に
寝たものとなり駆動用TFTのドレイン電流(Id)が
減少する方向に作用するため、所望の輝度を得るために
は電流抑制用抵抗を挿入しない場合に比べてデータ電圧
(Vda)をさらに上げる必要があるが、これは、データ
ドライバの駆動電圧が高くなり、安価な低電圧ドライバ
の範囲を超える恐れもあるし、消費電力の増大も引き起
こす不都合がある。そこで、図8において、電流制限用
抵抗(6)を挿入することによって同一のゲート電圧(V
g)を印加してもドレイン電流(Id)は従来の特性曲線
(1)から特性曲線(2)の様に低下してしまうところを、発
光飽和ゲート電圧(Vgh1)のところでの従来のドレイ
ン電流(Id)が得られるような特性曲線(3)を得れ
ばデータ電圧を上げることなしに変調ゲート電圧幅(V
ghm')を広げることができる。(3)のような特性曲線を
得るためには、駆動用TFT(4)のチャネル幅Wとチ
ャネル長Lの比すなわちW/Lを大きくすることによ
り、発光飽和ゲート電圧(Vgh1)を変えることなく非
発光最大ゲート電圧をVgh2からVgh2'にまで低下させ
ることができ、変調ゲート電圧幅Vghmを(Vgh1-Vgh2)
から(Vgh1-Vgh2')に拡大することができる。この方法
によって、従来と同じ最大データ電圧の範囲で、階調表
示の駆動が可能になる。尚、駆動用TFT(4)のドレイ
ン電流(Id)を増大させる方法として、(1)式によれば、
移動度(μ)またはゲート絶縁膜容量(Ci)を大きくする
方法でも可能であるが、これらは、製造プロセス条件の
変更や、薄膜ELの全体構造のデザイン変更を必要と
し、また、制御方法が困難で可変範囲が狭いため、W/
Lのサイズ変更に比べて容易ではない。
Second Embodiment Driving TFT (4) source and GND of the conventional circuit of FIG.
If the current suppressing resistor (6) is directly inserted between them, the result shown in FIG.
As shown in Fig. 2, the conventional characteristic curve (1) is laid down like the characteristic curve (2) and the drain current (Id) of the driving TFT acts in the direction of decreasing, so that the desired brightness is obtained. Needs to further increase the data voltage (Vda) as compared with the case where the current suppressing resistor is not inserted, but this may increase the driving voltage of the data driver and may exceed the range of an inexpensive low voltage driver. However, there is an inconvenience that also causes an increase in power consumption. Therefore, in FIG. 8, the same gate voltage (V
Even if g) is applied, the drain current (Id) will be
Where the characteristic curve (2) decreases from ( 1 ), the characteristic curve (3) is obtained so that the conventional drain current (Id) at the emission saturation gate voltage (Vgh 1 ) can be obtained. For example, without increasing the data voltage, the modulation gate voltage width (V
ghm ') can be spread. In order to obtain the characteristic curve as shown in (3), the emission saturation gate voltage (Vgh 1 ) is changed by increasing the ratio of the channel width W and the channel length L of the driving TFT (4), that is, W / L. the non-emission maximum gate voltage can be reduced from Vgh 2 down to Vgh 2 'without, the modulated gate voltage width Vghm (Vgh 1 -Vgh 2)
To (Vgh 1 -Vgh 2 '). By this method, it is possible to drive the gradation display in the same range of the maximum data voltage as the conventional one. As a method of increasing the drain current (Id) of the driving TFT (4), according to the equation (1),
It is possible to increase the mobility (μ) or the gate insulating film capacitance (Ci), but these require changes in the manufacturing process conditions and the design of the entire structure of the thin film EL. It is difficult and the variable range is narrow, so W /
It is not as easy as changing the size of L.

【0011】[0011]

【発明の効果】本発明によれば、簡単な構成を付加する
だけで、階調表示データ電圧幅を拡大できるため、マト
リックス回路のクロストーク、データ書き込み保持回路
のバラツキ等に起因する誤差分に対する許容幅が拡大で
き、所望の階調レベルを安定した均一な輝度の表示画面
で得ることができる。さらに本発明の第2の実施例によ
れば、発光飽和ゲート電圧(Vgh1)を上げることなく
変調ゲート電圧幅(Vghm)を広げることができるの
で、従来のデータドライバの最大駆動電圧範囲を超える
ことなく、階調表示の駆動が可能となる。
According to the present invention, the gradation display data voltage width can be expanded by simply adding a simple structure. Therefore, it is possible to cope with an error caused by crosstalk of the matrix circuit, variation of the data write / hold circuit, and the like. The allowable range can be expanded, and a desired gradation level can be obtained on a stable and uniform display screen. Further, according to the second embodiment of the present invention, the modulation gate voltage width (Vghm) can be widened without increasing the light emission saturation gate voltage (Vgh 1 ), so that it exceeds the maximum drive voltage range of the conventional data driver. It is possible to drive gradation display without the need.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による1画素の駆動回路図。FIG. 1 is a drive circuit diagram of one pixel according to the present invention.

【図2】 EL駆動用TFTに電流抑制抵抗を挿入した
ときの特性を説明するための回路構成図。
FIG. 2 is a circuit configuration diagram for explaining characteristics when a current suppressing resistor is inserted in an EL driving TFT.

【図3】 ゲート電圧を一定にしたときのEL素子の駆
動電圧に対する輝度特性を示す図。
FIG. 3 is a diagram showing luminance characteristics with respect to a drive voltage of an EL element when a gate voltage is constant.

【図4】 駆動電圧を一定にしたときのEL駆動用TF
Tのゲート電圧に対する輝度特性を示す図。
FIG. 4 TF for EL driving when the driving voltage is constant
The figure which shows the luminance characteristic with respect to the gate voltage of T.

【図5】 駆動回路の駆動タイミングとゲート電圧の特
性を示す図。
FIG. 5 is a diagram showing characteristics of drive timing and gate voltage of a drive circuit.

【図6】 電流抑制抵抗を挿入したときのゲート電圧に
対するドレイン電流特性の変化を示す図。
FIG. 6 is a diagram showing changes in drain current characteristics with respect to a gate voltage when a current suppressing resistor is inserted.

【図7】 図6の特性におけるデータ電圧に対する輝度
特性の変化を説明する図。
FIG. 7 is a diagram for explaining changes in luminance characteristics with respect to the data voltage in the characteristics of FIG.

【図8】 電流抑制抵抗を挿入し、EL駆動用TFT
(4)のW/Lを大きくしたときのゲート電圧に対する
電流特性の変化を示す図。
FIG. 8 is a TFT for EL drive in which a current suppressing resistor is inserted.
The figure which shows the change of the current characteristic with respect to a gate voltage when W / L of (4) is enlarged.

【図9】 図8の特性におけるデータ電圧に対する輝度
特性の変化を説明する図。
9A and 9B are views for explaining changes in luminance characteristics with respect to the data voltage in the characteristics of FIG.

【図10】 従来の1画素の駆動回路構成図。FIG. 10 is a configuration diagram of a conventional drive circuit for one pixel.

【符号の説明】[Explanation of symbols]

1.書き込み用TFT、2.保持用コンデンサ、3.EL
発光素子、4.EL駆動用TFT、6.電流抑制用抵抗、
5.EL駆動信号、Vda.データ信号、Vsc.走査信号、
Vg.ゲート電圧、Vd.ドレイン電圧、Vs.ソース電圧、
ld.ドレイン電流、Vtel.発光しきい電圧、Vpk.発光
時電圧、Vmod.変調電圧、Loff.非発光時輝度、Lon.
発光時輝度、Vdh1.発光飽和データ電圧、Vdh2.非発光
最大データ電圧、Vdhm.変調データ電圧、Vgh1.Qdの
発光飽和ゲート電圧、Vgh2.Qdの非発光最大ゲート電
圧、Vghm.Qdの変調ゲート電圧、Vgh.書き込みデータ
電圧の最大電圧、Vg.EL駆動用TFTのゲート電圧、
ΔVgh.フィードスルー降下電圧
1. Writing TFT, 2. Holding capacitor, 3. EL
Light emitting element, 4. EL driving TFT, 6. Current suppressing resistor,
5. EL drive signal, Vda. Data signal, Vsc. Scan signal,
Vg. Gate voltage, Vd. Drain voltage, Vs. source voltage,
ld. drain current, Vtel. light emission threshold voltage, Vpk. light emission voltage, Vmod. modulation voltage, Loff. non-light emission luminance, Lon.
Luminance during light emission, Vdh 1. Saturation emission data voltage, Vdh 2. Non-emission maximum data voltage, Vdhm. Modulation data voltage, Vgh 1. Qd emission saturation gate voltage, Vgh 2. Qd non-emission maximum gate voltage, Vghm. Modulation gate voltage of Qd, maximum voltage of Vgh. Write data voltage, Vg. Gate voltage of EL driving TFT,
ΔVgh. Feedthrough drop voltage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G09G 3/12 9176−5G 3/30 Z 9176−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location G09G 3/12 9176-5G 3/30 Z 9176-5G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光信号に応じて蓄積用コンデンサを充
電する薄膜トランジスタ(TFT)からなる第1のスイ
ッチング素子と、前記蓄積用コンデンサからの電圧に応
じてスイッチング動作しエレクロトルミネッセンス素子
(EL素子)と接地(GND)との接続を制御すること
で前記EL素子の発光を制御するTFTからなる第2の
スイッチング素子とを有する薄膜ELの駆動装置におい
て、 前記第2のTFTと前記GNDとの間に前記蓄積コンデ
ンサからの電圧に応じて前記EL素子の駆動電流を抑制
する電流制御抵抗を挿入することを特徴とする薄膜EL
の駆動装置。
1. A first switching element composed of a thin film transistor (TFT) that charges a storage capacitor according to a light emission signal, and an electroluminescence element (EL element) that performs a switching operation according to a voltage from the storage capacitor. In a thin film EL drive device having a second switching element formed of a TFT that controls light emission of the EL element by controlling a connection between the second TFT and the ground (GND), between the second TFT and the GND. A thin film EL, characterized in that a current control resistor for suppressing the drive current of the EL element according to the voltage from the storage capacitor is inserted in
Drive.
【請求項2】 発光信号に応じて蓄積用コンデンサを充
電する薄膜トランジスタ(TFT)からなる第1のスイ
ッチング素子と、前記蓄積用コンデンサからの電圧に応
じてスイッチング動作しエレクロトルミネッセンス素子
(EL素子)と接地(GND)との接続を制御すること
で前記EL素子の発光を制御するTFTからなる第2の
スイッチング素子とを有する薄膜ELの駆動方法におい
て、 前記第2のTFTと前記GNDとの間に電流制御抵抗を
挿入することによりゲート電圧が高くなるにしたがって
前記第2のTFTのドレイン電流を抑制し、 前記第2のTFTのドレイン電流を抑制することで前記
第2のTFTの前記EL素子の輝度が飽和するまでのゲ
ート電圧と非発光時のゲート電圧との差を拡大し、 この拡大した差の間の電圧を選択することで選択した電
圧に応じた輝度を得ることを特徴とする薄膜ELの駆動
方法。
2. A first switching element composed of a thin film transistor (TFT) that charges a storage capacitor according to a light emission signal, and an electroluminescence element (EL element) that performs a switching operation according to a voltage from the storage capacitor. In a method of driving a thin film EL having a second switching element including a TFT for controlling light emission of the EL element by controlling a connection between a ground and a ground (GND), a method for driving between the second TFT and the GND. The drain current of the second TFT is suppressed as the gate voltage is increased by inserting a current control resistor into the EL element of the second TFT by suppressing the drain current of the second TFT. The difference between the gate voltage until the brightness of the pixel is saturated and the gate voltage during non-light emission is expanded, and the voltage between this expanded difference is A method of driving a thin film EL, characterized in that the brightness according to the selected voltage is obtained by selecting.
JP25601891A 1991-09-09 1991-09-09 Driving device of thin film el and its driving method Pending JPH0574569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25601891A JPH0574569A (en) 1991-09-09 1991-09-09 Driving device of thin film el and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25601891A JPH0574569A (en) 1991-09-09 1991-09-09 Driving device of thin film el and its driving method

Publications (1)

Publication Number Publication Date
JPH0574569A true JPH0574569A (en) 1993-03-26

Family

ID=17286771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25601891A Pending JPH0574569A (en) 1991-09-09 1991-09-09 Driving device of thin film el and its driving method

Country Status (1)

Country Link
JP (1) JPH0574569A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11282419A (en) * 1998-03-31 1999-10-15 Nec Corp Element driving device and method and image display device
JP2001060076A (en) * 1999-06-17 2001-03-06 Sony Corp Picture display device
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
WO2001096492A1 (en) * 2000-06-13 2001-12-20 Matsushita Electric Industrial Co.,Ltd. Exciton forming substance, luminescent material using the substance, method for light emission and luminescent element, and device using the element
JP2005507505A (en) * 2001-09-28 2005-03-17 サムスン エレクトロニクス カンパニー リミテッド Organic EL display panel and organic EL display device having the same
JP2006243755A (en) * 1999-06-17 2006-09-14 Sony Corp Image display apparatus and driving method therefor
JP2006251632A (en) * 2005-03-14 2006-09-21 Sony Corp Pixel circuit and display device
JP2006285267A (en) * 1999-06-17 2006-10-19 Sony Corp Image display device
JP2006309260A (en) * 1997-03-12 2006-11-09 Seiko Epson Corp Pixel circuit, display device and electronic apparatus
JP2007188099A (en) * 1999-06-17 2007-07-26 Sony Corp Image display apparatus and method for driving the same
US7362322B2 (en) 1997-03-12 2008-04-22 Seiko Epson Corporation Pixel circuit, display apparatus and electronic apparatus equipped with current driving type light-emitting device
CN100399391C (en) * 2002-03-25 2008-07-02 Lg电子株式会社 Method and appts. of driving electroluminescent display device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362322B2 (en) 1997-03-12 2008-04-22 Seiko Epson Corporation Pixel circuit, display apparatus and electronic apparatus equipped with current driving type light-emitting device
JP2006309260A (en) * 1997-03-12 2006-11-09 Seiko Epson Corp Pixel circuit, display device and electronic apparatus
US6091203A (en) * 1998-03-31 2000-07-18 Nec Corporation Image display device with element driving device for matrix drive of multiple active elements
JPH11282419A (en) * 1998-03-31 1999-10-15 Nec Corp Element driving device and method and image display device
JP2006285267A (en) * 1999-06-17 2006-10-19 Sony Corp Image display device
JP2001060076A (en) * 1999-06-17 2001-03-06 Sony Corp Picture display device
JP2007188099A (en) * 1999-06-17 2007-07-26 Sony Corp Image display apparatus and method for driving the same
JP2006243755A (en) * 1999-06-17 2006-09-14 Sony Corp Image display apparatus and driving method therefor
US8674909B2 (en) 2000-02-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7995010B2 (en) 2000-02-29 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8493295B2 (en) 2000-02-29 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2001318627A (en) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
US9035853B2 (en) 2000-02-29 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9178004B2 (en) 2000-02-29 2015-11-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9331130B2 (en) 2000-02-29 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9502483B2 (en) 2000-02-29 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US10032840B2 (en) 2000-02-29 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2001096492A1 (en) * 2000-06-13 2001-12-20 Matsushita Electric Industrial Co.,Ltd. Exciton forming substance, luminescent material using the substance, method for light emission and luminescent element, and device using the element
JP2005507505A (en) * 2001-09-28 2005-03-17 サムスン エレクトロニクス カンパニー リミテッド Organic EL display panel and organic EL display device having the same
CN100399391C (en) * 2002-03-25 2008-07-02 Lg电子株式会社 Method and appts. of driving electroluminescent display device
JP2006251632A (en) * 2005-03-14 2006-09-21 Sony Corp Pixel circuit and display device

Similar Documents

Publication Publication Date Title
US7616178B2 (en) Driving device and driving method for a light emitting device, and a display panel and display device having the driving device
US8907876B2 (en) Pixel circuit, image display apparatus, driving method therefor and driving method of electronic device
US8373696B2 (en) Electro-optical device, method of driving the same, and electronic apparatus
US9202858B2 (en) Display apparatus
US8907875B1 (en) Pixel circuit, display and driving method thereof
EP1628283B1 (en) Pixel circuit, display unit, and pixel circuit drive method
US7646366B2 (en) Driving current of organic light emitting display and method of driving the same
US7091940B2 (en) Organic light-emitting diode display
JP2019211775A (en) Electronic device having low refresh rate display pixel with reduced sensitivity to oxide transistor threshold voltage
EP3440664B1 (en) Pixel circuit and driving method, array substrate, display panel, and display device
US6870553B2 (en) Drive circuit to be used in active matrix type light-emitting element array
WO2004109639A1 (en) Pixel circuit, display device, and method for driving pixel circuit
US8564582B2 (en) Display device, driving method therefor, and electronic apparatus
JP2005352411A (en) Driving circuit for current drive type display element and display apparatus equipped with the same
JPH0574569A (en) Driving device of thin film el and its driving method
US20210056901A1 (en) Display device and method for driving same
US8068078B2 (en) Electro-luminescence display device and driving apparatus thereof
JP4831392B2 (en) Pixel circuit and display device
CN101640026A (en) Display device, method for driving the same, and electronic device
US11361708B2 (en) Pixel circuit, pixel driving method and display device
JP2002358049A (en) Drive circuit for light emitting element and active matrix type display panel
CN116741094B (en) Display panel, display driving method and display device
US7405714B2 (en) Pixel driving circuit and pixel driving method
CN1794329A (en) Organic electroluminescence display device
JP2006038964A (en) Pixel circuit, display device, and their driving method