JP4047205B2 - ハイブリッド駆動補機およびその制御装置 - Google Patents

ハイブリッド駆動補機およびその制御装置 Download PDF

Info

Publication number
JP4047205B2
JP4047205B2 JP2003073377A JP2003073377A JP4047205B2 JP 4047205 B2 JP4047205 B2 JP 4047205B2 JP 2003073377 A JP2003073377 A JP 2003073377A JP 2003073377 A JP2003073377 A JP 2003073377A JP 4047205 B2 JP4047205 B2 JP 4047205B2
Authority
JP
Japan
Prior art keywords
shaft
electromagnetic clutch
compressor
engine
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003073377A
Other languages
English (en)
Other versions
JP2004278459A (ja
Inventor
弘知 麻
康 鈴木
慶一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2003073377A priority Critical patent/JP4047205B2/ja
Publication of JP2004278459A publication Critical patent/JP2004278459A/ja
Application granted granted Critical
Publication of JP4047205B2 publication Critical patent/JP4047205B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/45Hybrid prime mover

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Rotary Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走行状態に応じてエンジンが停止されるアイドルストップ車両やハイブリッド車両に搭載され、ランキンサイクルを備える冷凍サイクルに適用して好適なハイブリッド駆動補機およびその制御装置に関するものである。
【0002】
【従来の技術】
近年、省燃費の観点よりアイドルストップ車両やハイブリッド車両が市場に投入される例が有る。これらの車両においては、走行状態に応じてエンジンを停止させるようにしているため、エンジンの駆動力を受けて作動する冷凍サイクル内の圧縮機はエンジン停止中は共に停止することになり、冷房機能を果たさないことになる。
【0003】
これを解決するために、例えば、特許文献1に示されるように、エンジンの回転が伝達されるプーリと圧縮機とを電磁クラッチを介して連結させ、更に圧縮機の反プーリ側の回転軸にモータを連結させたハイブリッドコンプレッサを用いたものが知られている。
【0004】
これにより、エンジン停止時には、電磁クラッチを切断して、モータによって圧縮機を作動させることができ、エンジンの作動、停止にかかわらず冷凍サイクルの冷房機能を果たすようにしている。
【0005】
【特許文献1】
特開2000−130323号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、エンジンによって圧縮機が作動されている時には、同一回転軸に接続されるモータも同時に回転され、モータは発電機能を伴うことになるので、エンジンにとっては発電分の負荷を受けることになり、燃費の悪化に繋がる。特にエンジンが高速走行などで高回転作動している場合には、モータも高回転で作動し、内部の磁束が高周波数で変動することから鉄損が大きくなり、エンジンへの負荷は増加する。
【0007】
この対策として、圧縮機とモータ間にクラッチ等の断続機構を設けて、エンジン作動中は断続機構を切断してモータを非作動状態とすればよいが、構造の複雑化を伴う。
【0008】
本発明の目的は、上記問題に鑑み、比較的簡単な構造で、エンジンの負荷を軽減して補機の作動およびモータでの発電を可能とするハイブリッド駆動補機およびその制御装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は上記目的を達成するために、以下の技術的手段を採用する。
【0010】
請求項1に記載の発明では、冷媒を加熱する加熱器(250)が設けられ、ランキンサイクル(201)を備える車両用の冷凍サイクル(200)に適用されるハイブリッド駆動補機において、車両のエンジン(10)から駆動力を受けて回転駆動する駆動軸(111)に設けられ、エンジン(10)からの駆動力の伝達を断続する電磁クラッチ(120)と、電動機および発電機の両機能を備える回転機(130)と、一方向回転時に冷媒を圧縮する圧縮機として作動すると共に、加熱器(250)からの過熱蒸気冷媒の逆流入によって他方向回転側に膨張機として作動する補機(140)と、駆動軸(111)、回転機(130)の回転機軸(131)、補機(140)の補機軸(141)の間に設けられ、1つの軸(111)の駆動トルクを他の2つの軸(131、141)へ分配可能とするトルク分配機構(150)と、電磁クラッチ(120)が切断された時に、回転機軸(131)あるいは補機軸(141)から駆動軸(111)への駆動トルクの伝達を阻止するロック機構(160)と、電磁クラッチ(120)が接続された時に、回転機(130)のロータ部(132)を電磁クラッチ(120)のコイル(121)に吸着してロータ部(132)を固定状態にする固定機構(170)とを有することを特徴としている。
【0011】
これにより、エンジン(10)作動時においては電磁クラッチ(120)を接続してエンジン(10)の駆動力で補機(140)を圧縮機として作動させることができ、また、エンジン(10)停止時においては、電磁クラッチ(120)を切断して、回転機(130)の駆動力で補機(140)を圧縮機として作動させることができ、エンジン(10)の作動、停止に関わらず冷凍サイクル(200)を作動させることができる。
【0012】
ここで、電磁クラッチ(120)を接続した時には、既存部材(121、132)を用いて比較的簡単な構成で成し得る固定機構(170)によって、回転機(130)のロータ部(132)が固定状態となるようにして、回転機(130)が発電機として作動しないようにすることができるので、作動中のエンジン(10)の負荷を低減することができる。
【0013】
また、冷凍サイクル(200)が停止状態の時には、電磁クラッチ(120)を切断して加熱器(250)からの過熱蒸気冷媒によって補機(140)を膨張機として作動させることで、回転機(130)を発電機として作動させ、エンジン(10)からの駆動力を直接使用する事無く、発電することができる。
【0014】
請求項2に記載の発明のように、各軸(111、131、141)を遊星歯車(150)のサンギヤ(151)、プラネタリーキャリヤ(152)、リングギヤ(153)のいずれかに対応して連結することでトルク分配機構(150)を容易に形成することができる。
【0015】
そして、請求項3に記載の発明では、駆動軸(111)は、プラネタリーキャリヤ(152)に対応して連結され、ロック機構(160)は、駆動軸(111)の正規回転方向にのみ回転駆動を許容する一方向クラッチ(160)としたことを特徴としている。
【0016】
これにより、電磁クラッチ(120)が切断された時に、回転機(130)あるいは補機(140)の一方を駆動軸(111)の正規回転方向とは逆側に作動させることで、共連れにより駆動しようとする駆動軸(111)を一方向クラッチ(160)によりロックさせ、回転機(130)あるいは補機(140)の他方に駆動トルクを伝達することができ、安価なロック機構として対応することができる。
【0017】
更に、請求項4に記載の発明では、回転機軸(131)は、サンギヤ(151)に対応して連結され、補機軸(141)は、リングギヤ(153)に対応して連結されるようにしたことを特徴としている。
【0018】
これにより、回転機(130)で補機(140)を圧縮機として作動させる時に、回転機(130)に対して減速させ、且つその減速比を大きく取ることができるので、高回転、低トルク型の回転機(130)での対応を可能として小型で安価にすることができる。
【0019】
また、補機(140)を膨張機として作動させ、その駆動トルクによって回転機(130)を発電機として作動させる時には、補機(140)に対して増速させ、且つその増速比を大きく取ることができるので、回転機(130)での発電量を高めることができ、同様に回転機(130)の小型化が可能となる。
【0020】
また、請求項5に記載の発明では、請求項1〜請求項4のいずれかに記載のハイブリッド駆動補機(100A)と、加熱器(250)の作動、電磁クラッチ(120)の断続、回転機(130)の作動を制御する制御装置(180)とを有するハイブリッド駆動補機制御装置において、制御装置(180)は、エンジン(10)作動時において、冷凍サイクル(200)を作動状態とする場合は、電磁クラッチ(120)を接続状態にし、補機(140)を圧縮機として作動させ、エンジン(10)停止時において、冷凍サイクル(200)を作動状態とする場合は、電磁クラッチ(120)を切断状態にし、回転機(130)によって補機(140)を圧縮機として作動させ、エンジン(10)作動時で冷凍サイクル(200)を停止状態とする場合に、電磁クラッチ(120)を切断し、加熱器(250)によって補機(140)を膨張機として作動させることを特徴としている。
【0021】
これにより、請求項1〜4に記載の発明と同様の効果を得ることができる。
【0022】
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0023】
【発明の実施の形態】
(第1実施形態)
本発明の第1実施形態を図1〜図5に示し、まず、具体的な構成について図1、図2を用いて説明する。
【0024】
ハイブリッド駆動補機100Aは、走行運転中一時停車した時にエンジン10が停止されるいわゆるアイドルストップ車両に搭載される冷凍サイクル200に適用されるものとしている。このハイブリッド駆動補機100Aは、制御装置180によってその作動が制御され、ハイブリッド駆動補機制御装置100を形成している。
【0025】
尚、詳細については後述するが、ここで言う補機とは、冷凍サイクル200内の冷媒を圧縮する圧縮機として作動すると共に、ランキンサイクル201の加熱器250によって加熱された過熱蒸気冷媒によって膨張機として作動するものとしており、以下、補機については圧縮機、そしてハイブリッド駆動補機についてはハイブリッドコンプレッサと呼ぶことにする。
【0026】
冷凍サイクル200は、図1に示すように、車両のエンジン10で発生する廃熱を加熱源とする加熱器250を構成要素とするランキンサイクル201を備えるものとしている。
【0027】
凝縮器210は、後述するハイブリッドコンプレッサ100Aに組込まれる圧縮機140の吐出側(冷媒吐出口148b)に接続され、放熱しながら冷媒を凝縮液化する熱交換器である。気液分離器220は、凝縮器210から流出した冷媒を気相冷媒と液相冷媒とに分離するレシーバである。減圧器230は、気液分離器220で分離された液相冷媒を減圧膨脹させるもので、本実施形態では、冷媒を等エンタルピ的に減圧するとともに、圧縮機140に吸入される冷媒の過熱度が所定値となるように絞り開度を制御する温度式膨脹弁を採用している。
【0028】
蒸発器240は、減圧器230によって減圧された冷媒を蒸発させて、その時の蒸発潜熱によって空調空気を冷却する熱交換器であり、蒸発器240の冷媒出口側には圧縮機140の冷媒吸入口146aにのみ冷媒が流れることを許容する逆止弁240aが設けられている。そして、これらの圧縮機140、凝縮器210、気液分離器220、減圧器230および蒸発器240が閉回路を成して冷凍サイクル200を形成している。
【0029】
加熱器250は、圧縮機140と凝縮器210とを繋ぐ冷媒通路に設けられ、この冷媒通路を流れる冷媒とエンジン冷却水との間で熱交換することにより冷媒を加熱する熱交換器であり、三方弁21によってエンジン10から流出したエンジン冷却水を加熱器250に循環させる場合と循環させない場合とが切替えられる。
【0030】
尚、ラジエータ22は、エンジン冷却水と外気との間で熱交換してエンジン冷却水を冷却する熱交換器であり、水ポンプ23は、エンジン冷却水を循環させるものである。そして、エンジン10、三方弁21、ラジエータ22、水ポンプ23によって温水回路20が形成される。図1では、ラジエータ22を迂回させて冷却水を流すバイパス回路およびこのバイパス回路に流す冷却水量とラジエータ22に流す冷却水量とを調節する流量調整弁は省略している。
【0031】
第1バイパス回路260は、気液分離器220で分離された液相冷媒を加熱器250の凝縮器210側の冷媒出入口に導く冷媒通路であり、この第1バイパス回路260には、気液分離器220側から加熱器250側にのみ冷媒が流れることを許容する逆止弁260aおよび液相冷媒を循環させるための液ポンプ260bが設けられている。尚、液ポンプ260bは、本実施形態では、電動式のポンプとしている。
【0032】
また、第2バイパス回路270は、圧縮機140の冷媒吸入口146a(膨張機として作動する場合の冷媒出口側)と凝縮器210の冷媒入口側とを繋ぐ冷媒通路であり、この第2バイパス回路270には、圧縮機140の冷媒吸入口146aから凝縮器210の冷媒入口側にのみ冷媒が流れることを許容する逆止弁270aが設けられている。
【0033】
更に、凝縮器210と加熱器250との間には開閉弁280が設けられている。開閉弁280は電磁式のバルブであり、このバルブを開くことにより上記の冷凍サイクル200における冷媒流れを可能とし、またバルブを閉じることにより、以下で説明するランキンサイクル201における冷媒流れを可能とする。
【0034】
ランキンサイクル201は、気液分離器220、第1バイパス回路260、液ポンプ260b、加熱器250、圧縮機140(この時は膨張機として作動する)、第2バイパス回路270、凝縮器210が閉回路を成して形成される。
【0035】
ハイブリッドコンプレッサ100Aは、主にプーリ110、電磁クラッチ120、モータ130、圧縮機140および遊星歯車150等から成り、以下、その詳細について図2を用いて説明する。
【0036】
プーリ110は、フロントハウジング101に固定されたプーリ軸受け112によって回転可能に支持され、エンジン10の駆動力がベルト11(図1)を介して伝達され回転駆動するようにしている。駆動軸111は、プーリ110の中心部に設けられ、フロントハウジング101に固定された軸受け113によって回転可能に支持されている。
【0037】
また、駆動軸111の略中央部(後述する電磁クラッチ120と遊星歯車150との間)には、外周側がフロントハウジング101に固定された一方向クラッチ160が設けられている。一方向クラッチ160は、本発明におけるロック機構を成すものであり、駆動軸111のプーリ回転方向(正規回転方向)の回転駆動を許容し、その逆回転方向に対しては噛み合いにより回転駆動を阻止する。
【0038】
電磁クラッチ120は、プーリ110から圧縮機140に伝達される駆動力を断続するものであり、フロントハウジング101および中間ハウジング102に固定されたコイル121と駆動軸111に固定されたハブ122とから成る。周知のように電磁クラッチ120は、コイル121に通電されるとハブ122がプーリ110に吸着されプーリ110の駆動力を駆動軸111に伝達する(クラッチON)。逆にコイル121への通電を遮断するとハブ122はプーリ110から離れ、プーリ110の駆動力は切断される(クラッチOFF)。
【0039】
モータ130は、電動機および発電機の両機能を備える回転機としており、主にロータ部132およびステ−タ部133から成り、中間ハウジング102内に収容されている。モータ130は、ロータ部132の外周部にマグネット(永久磁石)132aが設けられるいわゆるSPモ−タ(Surface Permanent−magnet Motor)としており、ロータ部132の内周側のスペースを活用して後述する遊星歯車150を収容している。尚、モータ軸(回転機軸)131は、遊星歯車150のサンギヤ151の中心部に二点鎖線で示される架空上のものとなっている。
【0040】
ステ−タ部133にはコイル133aが設けられており、このステータ部133は中間ハウジング102の内周面に圧入により固定されている。そして、図示しないバッテリからの電力がインバータを介してコイル133aに供給されることによりロータ部132は回転駆動される。
【0041】
ここで、電磁クラッチ120のコイル121は、フロントハウジング101および中間ハウジング102を貫通してモータ130側に延びるようにしており、また、モータ130のロータ部132の外周部には張出し部132bを設けるようにしており、コイル121と張出し部132bとが近接して対向するようにしている。そして、電磁クラッチ120がONされた時には、張出し部132bがコイル121に吸着されて、ロータ部132は固定状態となるようにしている。尚、コイル121および張出し部132bは、本発明における固定機構170に対応する。
【0042】
圧縮機140は、ここでは固定容量型のスクロール式圧縮機としており、モータ130の反プーリ側となるエンドハウジング103内に固定される固定スクロール144と、圧縮機軸(補機軸)141の偏心シャフト143によって公転する可動スクロール145とを有している。
【0043】
この固定スクロール144と可動スクロール145との噛み合わせによって、外周部に吸入室146が形成され、また中心側に圧縮室147が形成される。エンドハウジング103の側壁には吸入室146に連通する冷媒吸入口146aが設けられている。また、圧縮室147の中心側は、吐出ポート147aを経て吐出室148、更にはエンドハウジング103の端部側に設けられた冷媒吐出口148bに繋がっている。そして、固定スクロール144には、吐出ポート147aを開閉する吐出弁148aが設けられている。
【0044】
この圧縮機140においては、冷媒吸入口146aから吸入室146に吸入された冷媒を圧縮室147で圧縮し、吐出ポート147a、吐出室148を経て冷媒吐出口148bから吐出する圧縮機として文字通り作動する。加えて、圧縮機140は、上記の加熱器250で加熱された過熱蒸気冷媒が冷媒吐出口148bから圧縮室147に流入されると、この過熱蒸気冷媒が膨張することで可動スクロール145を圧縮時とは逆回転側に駆動させる膨張機として作動するものとしている。尚、この圧縮機140が膨張機として作動される時は、吐出弁148aは、後述する制御装置180によって開状態が維持されるようにしている。
【0045】
圧縮機軸141は、中間ハウジング102の反プーリ側で内側に突出する突出壁102aに固定された軸受け142によって回転可能に支持されている。圧縮機軸141には駆動軸111の一端側が嵌入され、圧縮機軸141および駆動軸111は、軸受け115によって互いに独立して回転可能としている。尚、圧縮機軸141のモータ130側にはシール材142aが設けられ、圧縮機140内における冷媒がモータ130側に洩れないようにしている。
【0046】
そして、上記駆動軸111、モータ軸131、圧縮機軸141は、上述したようにロータ部132内に設けられたトルク分配機構としての遊星歯車150に連結される構成としている。
【0047】
遊星歯車150は、周知のように、中心部に設けられたサンギヤ151と、サンギヤ151の外周で自転しつつ公転するピニオンギヤ152aに連結されるプラネタリーキャリヤ152と、ピニオンギヤ152aのさらに外周に設けられたリング状のリングギヤ153とから成る。
【0048】
ここでは、駆動軸111はプラネタリーキャリヤ152に連結され、モータ軸131(実体としてはロータ部132)はサンギヤ151に連結され、圧縮機軸141はリングギヤ153に連結されるようにしている。尚、サンギヤ151は、軸受け114によって駆動軸111に対して独立して回転可能に支持されている。
【0049】
一方、図1に戻って、制御装置180は、A/C要求信号、アイドルストップ要求信号等が入力されて、これらの信号に基づいて上記三方弁21の切替え、液ポンプ260bの作動、開閉弁280の開閉、電磁クラッチ120の断続(ON−OFF)、モータ130の作動、吐出弁148aの開状態の形成を制御するものとしている。
【0050】
次に、上記構成に基づく作動について、図3〜図5を用いて説明する。因みに、図5は、遊星歯車150にそれぞれ連結された駆動軸111、モータ130(モータ軸131)、圧縮機140(圧縮機軸141)の回転数の関係を示すものである。周知のように横軸に各ギヤ、キャリヤ(右からサンギヤ151、プラネタリーキャリヤ152、リングギヤ153)の座標位置が示され、各座標位置には、上記したようにそれぞれのギヤ、キャリヤ151、152、153に連結されるモータ130、駆動軸111、圧縮機140が対応している。また、横軸座標の間隔はサンギヤ151とリングギヤ153とのギヤ比λによって決定される。ここではギヤ比λを0.5と設定している。そして、縦軸には、各ギヤ、キャリヤ151、152、153の回転数が示され、各回転数は3者が直線で結ばれる関係となる。
【0051】
まず、A/C要求がある場合の冷房運転モードについて説明すると、この運転モードは、圧縮機140によって冷凍サイクル200を作動させ、蒸発器240にて空調空気を冷却するものである。
【0052】
具体的には、制御装置180は、液ポンプ260bを停止させた状態で開閉弁280を開き、且つ、三方弁21を図3に示すように作動させて加熱器250を迂回させてエンジン冷却水を循環させる。
【0053】
そして、アイドルストップ要求信号からエンジン10が作動していると判定した時は、ハイブリッドコンプレッサ100Aの電磁クラッチ120をONにし、モータ130を停止状態にし、吐出弁148aを冷媒の圧力に応じて開閉する本来の形に維持する。
【0054】
すると、ハイブリッドコンプレッサ100Aにおいては、電磁クラッチ120がONされることで固定機構170によってモータ130のロータ部132(張出し部132b)がコイル121に吸着され、固定状態となる。そして、エンジン10の駆動力がベルト11を介して、プーリ110、駆動軸111に伝達され、この駆動力は遊星歯車150によって増速されて圧縮機140に伝達され、圧縮機140を作動させる(図5中の(ア))。
【0055】
冷凍サイクル200において冷媒は、圧縮機140→加熱器250→凝縮器210→気液分離器220→減圧器230→蒸発器240→圧縮機140の順に循環する。減圧器230にて減圧された低圧冷媒は、蒸発器240において空調空気から吸熱して蒸発し、空調空気は冷却されることになる。尚、加熱器250にエンジン冷却水が循環しないので、加熱器250にて冷媒は加熱されず、加熱器250は単なる冷媒通路として機能する。
【0056】
また、A/C要求がある場合で、アイドルストップ要求信号からエンジン10が停止に至ったと判定した時は、制御装置180はハイブリッドコンプレッサ100Aの電磁クラッチ120をOFFにし、吐出弁148aを冷媒の圧力に応じて開閉する本来の形に維持する。
【0057】
すると、ハイブリッドコンプレッサ100Aにおいては、電磁クラッチ120がOFFされることでモータ130のロータ部132(張出し部132b)はコイル121から離され回転可能状態となる。そして、制御装置180は、圧縮機140における圧縮時の回転方向とは逆回転方向にモータ130を作動させる(電動機として作動させる)。この時、駆動軸111も共連れにより逆回転方向に駆動しようとするが一方向クラッチ160の作用によりロックされ、モータ130の駆動力は遊星歯車150によって減速されて圧縮機140に伝達され、圧縮機140を作動させる(図5の(イ))。
【0058】
そして、モータ130による圧縮機140の作動により、冷凍サイクル200において冷媒は、上記と同様に循環され、冷房機能が継続されることになる。
【0059】
一方、A/C要求が無い場合の廃熱回収運転モードについて説明すると、この運転モードは、冷凍サイクル200を停止させて、エンジン10の廃熱を利用可能なエネルギとして回収するものである。
【0060】
具体的には、アイドルストップ要求信号からエンジン10が作動していると判定した時は、制御装置180は、ハイブリッドコンプレッサ100Aの電磁クラッチ120をOFFにし、吐出弁148aを常に開状態となるように維持する。すると、モータ130のロータ部132はコイル121から離され回転可能状態となる。
【0061】
また、開閉弁280を閉じた状態で液ポンプ260bを作動させ、且つ、三方弁21を図4に示すように作動させてエンジン10から流出したエンジン冷却水を加熱器250に循環させる。すると、冷媒は、気液分離器220→第1バイパス回路260→加熱器250→圧縮機(膨張機)140→第2バイパス回路270→凝縮器210→気液分離器220のようにランキンサイクル210を循環する。
【0062】
この時、加熱器250によって加熱された過熱蒸気冷媒が圧縮機140の冷媒吐出口148bから圧縮室147に流入し(吐出弁148aは開状態とされているので圧縮室147への流入が可能となる)、圧縮室147内で等エントロピ的に膨脹しながらそのエンタルピを低下させていく。そして、可動スクロール145を圧縮時とは逆回転方向に駆動させ膨張機として作動することになる。この駆動力によって駆動軸111は、共連れにより逆回転方向に駆動しようとするが一方向クラッチ160の作用によりロックされ、圧縮機(膨張機)140の駆動力は遊星歯車150によって増速されてモータ130に伝達され、モータ130を発電機として作動させる(図5の(ウ))。そして、発電された電力は、図示しないバッテリやキヤパシタ等の蓄電器に蓄えられる。
【0063】
また、圧縮機(膨張機)140の冷媒吸入口146aから流出する冷媒は、凝縮器210によって冷却されて凝縮液化され、気液分離器220に蓄えられ、気液分離器220内の液相冷媒は、液ポンプ260bにて加熱器250側に送られる。尚、液ポンプ260bは、加熱器250にて加熱されて生成された過熱蒸気冷媒が、気液分離器220側に逆流しない程度の圧力にて液相冷媒を加熱器250に送り込む。
【0064】
以上の構成説明並びに作動説明より、本発明においては、エンジン10作動時においては電磁クラッチ120をONにしてエンジン10の駆動力で圧縮機140を作動させることができ、また、エンジン10停止時においては、電磁クラッチ120をOFFにして、モータ130の駆動力で圧縮機140を作動させることができ、エンジン10の作動、停止に関わらずA/C要求時において冷凍サイクル200を作動させることができる。
【0065】
ここで、電磁クラッチ120をONにした時には、既存部材(コイル121、ロータ部132の張出し部132b)を用いて比較的簡単な構成で成し得る固定機構170によって、モータ130のロータ部132(張出し部132b)が電磁クラッチ120のコイル121に吸着して固定状態となるようにして、モータ130が発電機として作動しないようにすることができるので、作動中のエンジン10の負荷を低減することができる。
【0066】
また、冷凍サイクル200が停止状態の時には、電磁クラッチ120をOFFにして加熱器250からの過熱蒸気冷媒によって圧縮機140を膨張機として作動させることで、モータ130を発電機として作動させ、エンジン10からの駆動力を直接使用する事無く、廃熱を利用して発電することができる。
【0067】
そして、各軸111、131、141を遊星歯車150のサンギヤ151、プラネタリーキャリヤ152、リングギヤ153に連結することでトルク分配機構150を容易に形成することができる。
【0068】
また、駆動軸111をプラネタリーキャリヤ152に連結し、ロック機構160として、駆動軸111の正規回転方向にのみ回転駆動を許容する一方向クラッチ160としているので、電磁クラッチ120をOFFにした時に、モータ130あるいは圧縮機140の一方を駆動軸111の正規回転方向とは逆側に作動させることで、共連れにより駆動しようとする駆動軸111を一方向クラッチ160によりロックさせ、モータ130あるいは補機140の他方に駆動トルクを伝達することができ、安価なロック機構として対応することができる。
【0069】
また、モータ軸131をサンギヤ151に連結し、圧縮機軸141をリングギヤ153に連結するようにしているので、モータ130で圧縮機140を作動させる時に、モータ130に対して減速させ、且つその減速比を大きく取ることができるので、高回転、低トルク型のモータ130での対応を可能として小型で安価にすることができる。更に、圧縮機140を膨張機として作動させ、その駆動トルクによってモータ130を発電機として作動させる時には、圧縮機140に対して増速させ、且つその増速比を大きく取ることができるので、モータ130での発電量を高めることができ、同様にモータ130の小型化が可能となる。
【0070】
(その他の実施形態)
上記第1実施形態ではトルク分配機構として遊星歯車150を適用するものとして説明したが、遊星歯車150に代えて遊星ローラやディファレンシャルギヤ等としても良い。
【0071】
また、遊星歯車150の各ギヤ、キャリヤ151、152、153と駆動軸111、モータ軸131、圧縮機軸141との連結は、上記第1実施形態に対してモータ軸131と圧縮機軸141とを入れ替えた連結としても良い。更に、ロック機構として一方向クラッチ160に限らず、電磁クラッチ120がOFFとなった時に駆動軸111を拘束可能とするものにすれば、各ギヤ、キャリヤ151、152、153と駆動軸111、モータ軸131、圧縮機軸141との連結は他の組み合わせとしても良い。
【0072】
また、圧縮機140は、固定容量型のものの中でもスクロール式のものに限らず、ロータリ式やスルーベーン式のもの等としても良い。尚、コスト面では固定容量型のものが好適であるが、これに代えて可変容量型のものとしても良く、これによれば、エンジン10によって圧縮機140が作動される際の吐出量の可変が可能となる。
【0073】
更に、対象とする車両としては、走行用モータを有し、走行中においても所定の走行条件に応じてエンジン10が停止されるいわゆるハイブリッド車両としても良い。
【図面の簡単な説明】
【図1】本発明をランキンサイクルを備えた冷凍サイクルに適用した全体構成を示す模式図である。
【図2】図1における第1実施形態のハイブリッドコンプレッサを示す断面図である。
【図3】冷房運転モードにおけるエンジン冷却水および冷媒の流れを示す模式図である。
【図4】廃熱回収運転モードにおけるエンジン冷却水および冷媒の流れを示す模式図である。
【図5】駆動軸、モータ、圧縮機の作動回転数を示す共線図である。
【符号の説明】
10 エンジン
100 ハイブリッドコンプレッサ制御装置(ハイブリッド駆動補機制御装置)
100A ハイブリッドコンプレッサ(ハイブリッド駆動補機)
111 駆動軸
120 電磁クラッチ
121 コイル
130 モータ(回転機)
131 モータ軸(回転機軸)
132 ロータ部
140 圧縮機(補機)
141 圧縮機軸(補機軸)
150 遊星歯車(トルク分配機構)
151 サンギヤ
152 プラネタリーキャリヤ
153 リングギヤ
160 一方向クラッチ(ロック機構)
170 固定機構
180 制御装置
200 冷凍サイクル
201 ランキンサイクル
250 加熱器

Claims (5)

  1. 冷媒を加熱する加熱器(250)が設けられ、ランキンサイクル(201)を備える車両用の冷凍サイクル(200)に適用されるものであって、
    前記車両のエンジン(10)から駆動力を受けて回転駆動する駆動軸(111)に設けられ、前記エンジン(10)からの駆動力の伝達を断続する電磁クラッチ(120)と、
    電動機および発電機の両機能を備える回転機(130)と、
    一方向回転時に前記冷媒を圧縮する圧縮機として作動すると共に、前記加熱器(250)からの過熱蒸気冷媒の逆流入によって他方向回転側に膨張機として作動する補機(140)と、
    前記駆動軸(111)、前記回転機(130)の回転機軸(131)、前記補機(140)の補機軸(141)の間に設けられ、1つの軸(111)の駆動トルクを他の2つの軸(131、141)へ分配可能とするトルク分配機構(150)と、
    前記電磁クラッチ(120)が切断された時に、前記回転機軸(131)あるいは前記補機軸(141)から前記駆動軸(111)への駆動トルクの伝達を阻止するロック機構(160)と、
    前記電磁クラッチ(120)が接続された時に、前記回転機(130)のロータ部(132)を前記電磁クラッチ(120)のコイル(121)に吸着して前記ロータ部(132)を固定状態にする固定機構(170)とを有することを特徴とするハイブリッド駆動補機。
  2. 前記トルク分配機構(150)は、遊星歯車(150)であり、
    前記各軸(111、131、141)は、前記遊星歯車(150)を構成するサンギヤ(151)、プラネタリーキャリヤ(152)、リングギヤ(153)のいずれかに対応して連結されるようにしたことを特徴とする請求項1に記載のハイブリッド駆動補機。
  3. 前記駆動軸(111)は、前記プラネタリーキャリヤ(152)に対応して連結され、
    前記ロック機構(160)は、前記駆動軸(111)の正規回転方向にのみ回転駆動を許容する一方向クラッチ(160)としたことを特徴とする請求項2に記載のハイブリッド駆動補機。
  4. 前記回転機軸(131)は、前記サンギヤ(151)に対応して連結され、
    前記補機軸(141)は、前記リングギヤ(153)に対応して連結されるようにしたことを特徴とする請求項3に記載のハイブリッド駆動補機。
  5. 請求項1〜請求項4のいずれかに記載のハイブリッド駆動補機(100A)と、
    前記加熱器(250)の作動、前記電磁クラッチ(120)の断続、前記回転機(130)の作動を制御する制御装置(180)とを有するハイブリッド駆動補機制御装置において、
    前記制御装置(180)は、前記エンジン(10)作動時において、前記冷凍サイクル(200)を作動状態とする場合は、前記電磁クラッチ(120)を接続状態にし、前記補機(140)を圧縮機として作動させ、
    前記エンジン(10)停止時において、前記冷凍サイクル(200)を作動状態とする場合は、前記電磁クラッチ(120)を切断状態にし、前記回転機(130)によって前記補機(140)を圧縮機として作動させ、
    前記エンジン(10)作動時で前記冷凍サイクル(200)を停止状態とする場合に、前記電磁クラッチ(120)を切断し、前記加熱器(250)によって前記補機(140)を膨張機として作動させることを特徴とするハイブリッド駆動補機制御装置。
JP2003073377A 2003-03-18 2003-03-18 ハイブリッド駆動補機およびその制御装置 Expired - Fee Related JP4047205B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073377A JP4047205B2 (ja) 2003-03-18 2003-03-18 ハイブリッド駆動補機およびその制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073377A JP4047205B2 (ja) 2003-03-18 2003-03-18 ハイブリッド駆動補機およびその制御装置

Publications (2)

Publication Number Publication Date
JP2004278459A JP2004278459A (ja) 2004-10-07
JP4047205B2 true JP4047205B2 (ja) 2008-02-13

Family

ID=33289288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073377A Expired - Fee Related JP4047205B2 (ja) 2003-03-18 2003-03-18 ハイブリッド駆動補機およびその制御装置

Country Status (1)

Country Link
JP (1) JP4047205B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631426B2 (ja) * 2004-12-21 2011-02-16 株式会社デンソー 蒸気圧縮式冷凍機
JP4654655B2 (ja) * 2004-10-19 2011-03-23 株式会社デンソー 蒸気圧縮式冷凍機
JP2006188156A (ja) * 2005-01-06 2006-07-20 Denso Corp 蒸気圧縮式冷凍機
JP4725344B2 (ja) * 2005-04-26 2011-07-13 株式会社日本自動車部品総合研究所 流体機械および蒸気圧縮式冷凍機
JP2006321389A (ja) * 2005-05-19 2006-11-30 Denso Corp 車両用廃熱利用装置
JP5969800B2 (ja) * 2012-04-12 2016-08-17 サンデンホールディングス株式会社 流体機械及びランキンサイクル
CN107842500B (zh) * 2016-09-21 2019-09-13 比亚迪股份有限公司 双驱动压缩机
CN111734629A (zh) * 2020-08-11 2020-10-02 山东永申机电科技有限公司 带电双驱汽车空调压缩机减速离合机构与电机传动装置

Also Published As

Publication number Publication date
JP2004278459A (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
US7418824B2 (en) Refrigerating apparatus and fluid machine therefor
US7748226B2 (en) Waste heat utilizing system
JP4070684B2 (ja) ハイブリッドコンプレッサ装置
US20050235670A1 (en) Fluid machine
US20060254309A1 (en) Fluid machine
US7341438B2 (en) Scroll-type fluid machine including passage formed in movable scroll
JP4675717B2 (ja) 内燃機関の廃熱利用装置およびその制御方法
JP4039320B2 (ja) 流体機械
JP3700650B2 (ja) ハイブリッドコンプレッサおよびハイブリッドコンプレッサ装置
JP3886924B2 (ja) 内燃機関の廃熱利用装置
US7344364B2 (en) Fluid machine
JP4047205B2 (ja) ハイブリッド駆動補機およびその制御装置
JP2003312239A (ja) 車両用複合型補機およびその制御装置
JP5721676B2 (ja) 補助動力発生装置及びこの装置の運転方法
JP2007327668A (ja) 廃熱利用装置を備える冷凍装置
JP4606840B2 (ja) 複合流体機械およびそれを用いた冷凍装置
JP2010255468A (ja) 排熱回収システム
JP4034219B2 (ja) 廃熱回収サイクル
JP4070701B2 (ja) ハイブリッドコンプレッサ装置
JP2006242049A (ja) 流体機械およびそれを用いた内燃機関の始動制御装置
JP4711884B2 (ja) 回転出力発生装置
JP4549884B2 (ja) 流体機械
JP4463660B2 (ja) 冷凍装置
JP4024701B2 (ja) 車両用空調装置
JP3895257B2 (ja) ハイブリッドコンプレッサ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees