JP3895257B2 - ハイブリッドコンプレッサ装置 - Google Patents

ハイブリッドコンプレッサ装置 Download PDF

Info

Publication number
JP3895257B2
JP3895257B2 JP2002311648A JP2002311648A JP3895257B2 JP 3895257 B2 JP3895257 B2 JP 3895257B2 JP 2002311648 A JP2002311648 A JP 2002311648A JP 2002311648 A JP2002311648 A JP 2002311648A JP 3895257 B2 JP3895257 B2 JP 3895257B2
Authority
JP
Japan
Prior art keywords
compressor
motor
pulley
cooling capacity
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002311648A
Other languages
English (en)
Other versions
JP2004142674A (ja
Inventor
康 鈴木
慶一 宇野
弘知 麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2002311648A priority Critical patent/JP3895257B2/ja
Publication of JP2004142674A publication Critical patent/JP2004142674A/ja
Application granted granted Critical
Publication of JP3895257B2 publication Critical patent/JP3895257B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/45Hybrid prime mover

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、走行状態に応じてエンジンが停止させるいわゆるアイドルストップ車両やハイブリッド車両に搭載される冷凍サイクル装置に適用して好適なハイブリッドコンプレッサ装置に関するものである。
【0002】
【従来の技術】
近年、省燃費の観点よりいわゆるアイドルストップ車両やハイブリッド車両が市場に投入される例が有る。これらの車両においては、走行状態(アイドルストップ車両では一時停車時、ハイブリッド車両では一時停車時、発進時、低速走行時等)に応じてエンジンを停止させるようにしているため、エンジンの駆動力を受けて作動する冷凍サイクル装置内の圧縮機はエンジン停止中に共に停止することになり、冷凍サイクル装置として機能しないことになる。
【0003】
この解決策として、例えば特許文献1に示すように、エンジンの回転が伝達されるプーリと圧縮機とを電磁クラッチを介して連結させ、更に圧縮機の駆動軸にモータを連結させたハイブリッドコンプレッサが知られている。これにより、エンジン停止時には、電磁クラッチを切断して、モータによって圧縮機を作動させることができ、エンジンの作動、停止にかかわらず冷凍サイクル装置の冷房機能を果たすようにしている。尚、ここでは、電磁クラッチの回転部材にモータのロータ部を形成することで、モータによる駆動軸の回転が圧縮機にできる限り近い部分で伝達されると共に、駆動部分の小型化を図るものとしている。
【0004】
【特許文献1】
特開2001−140757号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1における従来技術は、エンジン停止時においてモータを補助動力源とするものであって、エンジンおよびモータの両駆動源を組み合わせて圧縮機を作動させる思想は無い。よって、エンジンを停止したにもかかわらず、冷凍サイクル装置の熱負荷条件により、やむなくエンジンが始動される場合は、本来のエンジンによって圧縮機が作動されるモードとなるが、冷房状態が満足されるまでエンジンの作動は継続されるので、その分エンジンの稼動頻度が高くなり、走行状態に応じてエンジンを停止させて燃費性能を向上させることができない。
【0006】
本発明の目的は、上記問題に鑑み、エンジン停止時の冷房機能を確保しつつ、車両燃費性能の向上を可能とするハイブリッドコンプレッサ装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、以下の技術的手段を採用する。
【0008】
請求項1に記載の発明では、走行状態に応じてエンジン(10)が停止される車両に適用されるものであって、エンジン(10)によって回転駆動されるプーリ(110)と、電源(20)の電力を受けて回転駆動すると共に、制御装置(160)によってその回転数が制御されるモータ(120)と、冷凍サイクル装置(200)内の冷媒を圧縮する固定容量型の圧縮機(130)と、プーリ(110)、モータ(120)、圧縮機(130)の各回転軸(111、121、131)に接続されて、各回転軸(111、121、131)から他の前記回転軸(111、121、131)に対して回転数を可変して伝達可能とする変速機構(150)とを有し、制御装置(160)によって、モータ(120)の回転数が調整され、プーリ(110)の回転数に対して、圧縮機(130)の回転数が増減されるハイブリッドコンプレッサ装置において、制御装置(160)は、冷凍サイクル装置(200)に必要とされる冷房能力を判定する必要冷房能力判定手段(S120)と、エンジン(10)の停止有無を判定するエンジン停止判定手段(S130、S150)とを有し、必要冷房能力判定手段(S120)およびエンジン停止判定手段(S130、S150)の判定結果に応じて、圧縮機(130)の駆動源としてプーリ(110)およびモータ(120)の少なくとも一方を選択し、且つ、モータ(120)を駆動源として選択した場合に、圧縮機(130)の回転数に基づく冷媒吐出量が必要とされる冷房能力を満たすように、モータ(120)の回転数を増減させ
変速機構(150)は、遊星歯車(150)であり、モータ(120)のモータ回転軸(121)はサンギヤ(151)に接続され、プーリ(110)のプーリ回転軸(111)はプラネタリーキャリア(152)に接続され、圧縮機(130)の圧縮機回転軸(131)はリングギヤ(153)に接続され、
モータ(120)は、ロータ部(120a)およびステータ部(123)から成り、ロータ部(120a)の内周側に遊星歯車(150)を収容しており、
必要冷房能力手段(S120)によって必要冷房能力が高いと判定され、エンジン停止判定手段(S130)によってエンジンが作動状態であると判定されたとき、プーリ(110)の駆動力に加えてモータ(120)の駆動力を上乗せすることで圧縮機(130)の回転数をプーリ(110)の回転数よりも高くして冷媒吐出量を増加させることを特徴としている。
【0009】
これにより、冷凍サイクル装置(200)、エンジン(10)の作動状態に見合った対応が可能となる。即ち、エンジン(10)停止時においては、モータ(120)の駆動力で圧縮機(130)を作動させることができ、アイドルストップ時のための冷房機能の継続が可能となる。
【0010】
また、冷凍サイクル装置(200)の必要冷房能力が高く、エンジン(10)が作動するような場合でも、プーリ(110)の駆動力に加えてモータ(120)の駆動力を上乗せすることで圧縮機(130)を増速させ冷媒吐出量を増加させることができるので、短時間でのクールダウンを可能としてエンジン(10)の稼動時間を減らし車両燃費性能を向上させることができる。
【0011】
更に、必要冷房能力が中間レベルや低い場合においても、モータ(120)の回転数を増減させることで冷媒吐出量を可変でき、適切な冷房能力を維持できる。
【0012】
請求項2に記載の発明では、必要冷房能力判定手段(S120)は、冷凍サイクル装置(200)中の冷房用熱交換器(230)における実際の空気温度(Te)および目標空気温度(Teo)の差と所定値(ΔT)との比較によって、冷凍サイクル装置(200)に必要とされる冷房能力を判定するようにしたことを特徴としている。
【0013】
これにより、通常の冷凍サイクル装置(200)の制御に用いられる信号を活用でき、容易に対応ができる。
【0015】
尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0016】
【発明の実施の形態】
(第1実施形態)
本発明の第1実施形態を図1〜図4に示し、まず、具体的な構成について図1、図2を用いて説明する。図1に示すように、ハイブリッドコンプレッサ装置100は、走行運転中一時停車した時にエンジン10が停止されるいわゆるアイドルストップ車両に搭載される冷凍サイクル装置200に適用されるものとしており、ハイブリッドコンプレッサ101と制御装置160とから成る。
【0017】
ここで、冷凍サイクル装置200は、周知の冷凍サイクルを形成するものであり、後述するハイブリッドコンプレッサ101を構成する圧縮機130が配設されている。圧縮機130は、この冷凍サイクル内の冷媒を高温高圧に圧縮するものであり、以下、圧縮された冷媒を凝縮液化する凝縮器210、液化された冷媒を断熱膨張させる膨張弁220、膨張した冷媒を蒸発させ、その蒸発潜熱により自身を通過する空気を冷却する蒸発器(冷房用熱交換器)230が冷媒配管240によって順次接続され閉回路を形成している。尚、蒸発器230の空気流れ下流側には、冷却された実際の空気温度(蒸発器後方空気温度Te)を検出するための蒸発器温度センサ231が設けられている。
【0018】
ハイブリッドコンプレッサ101は、主にプーリ110、電磁クラッチ170、モータ120、圧縮機130および遊星歯車150から成り、以下、その詳細について図2を用いて説明する。
【0019】
プーリ110は、フロントハウジング141に固定されたプーリ軸受け112によって回転可能に支持され、エンジン10の駆動力がベルト11(図1)を介して伝達され回転駆動するようにしている。プーリ回転軸111は、プーリ110の中心部に設けられ、フロントハウジング141に固定された軸受け113によって回転可能に支持されている。
【0020】
また、プーリ回転軸111の略中央部には、外周側がフロントハウジング141に固定された一方向クラッチ180が設けられている。一方向クラッチ180は、プーリ回転軸111のプーリ回転方向の回転駆動を許容し、その逆回転方向に対しては噛み合いにより回転駆動を阻止する。
【0021】
電磁クラッチ170は、プーリ110から後述する圧縮機130に伝達される駆動力を断続するものであり、フロントハウジング141に固定されたコイル171とプーリ回転軸111に固定されたハブ172とから成る。周知のように電磁クラッチ170は、コイル171に通電されるとハブ172がプーリ110に吸着されプーリ110の駆動力をプーリ回転軸111に伝達する(クラッチON)。逆にコイル171への通電を遮断するとハブ172はプーリ110から離れ、プーリ110の駆動力は切断される(クラッチOFF)。
【0022】
モータ120は、主にロータ部120aおよびステ−タ部123から成り、中間ハウジング142内に収容されている。このモータ120は、ロータ部120aの外周部にマグネット(永久磁石)122が設けられるいわゆるSPモ−タ(Surface Permanent−magnet Motor)としており、ロータ部120aの内周側のスペースを活用して後述する遊星歯車150を収容している。尚、モータ回転軸121は、サンギヤ151の中心部に一点鎖線で示される架空上のものとなっている。
【0023】
ステ−タ部123にはコイル123aが設けられており、このステータ部123は中間ハウジング142の内周面に圧入により固定されている。そして、バッテリ20からの電力がインバータ30(図1)を介してコイル123aに供給されることによりロータ部120aは回転駆動される。
【0024】
圧縮機130は、ここでは1回転当りの吐出容量が所定値として設定されている固定容量型圧縮機、更に具体的には周知のスクロール式圧縮機としており、モータ120の反プーリ側となるエンドハウジング143内に固定される固定スクロール134と、圧縮機回転軸131の偏心シャフト133によって公転する可動スクロール135とを有している。この固定スクロール134と可動スクロール135との噛み合わせによって、外周部に吸入室136が形成され、また中心側に圧縮室137が形成される。そして、エンドハウジング143の側壁に設けられた吸入口136aから吸入室136に吸入された冷媒は、圧縮室137で圧縮され、吐出室138を経てエンドハウジング143の底壁に設けられた吐出口138aから吐出するようにしている。
【0025】
圧縮機回転軸131は、中間ハウジング142の反プーリ側で内側に突出する突出壁142aに固定された軸受け132によって回転可能に支持されている。尚、圧縮機回転軸131にはプーリ回転軸111の一端側が嵌入され、圧縮機回転軸131およびプーリ回転軸111は、軸受け115によって互いに独立して回転可能としている。
【0026】
そして、上記プーリ110、モータ120、圧縮機130の各回転軸111、121、131は、上述したようにロータ部120a内に設けられた変速機構としての遊星歯車150に連結される構成としている。
【0027】
遊星歯車150は、周知のように、中心部に設けられたサンギヤ151と、サンギヤ151の外周で自転しつつ公転するピニオンギヤ152aに連結されるプラネタリーキャリヤ152と、ピニオンギヤ152aのさらに外周に設けられたリング状のリングギヤ153とから成る。
【0028】
ここでは、プーリ回転軸111はプラネタリーキャリヤ152に接続され、モータ回転軸121(実体としてはロータ部120a)はサンギヤ151に接続され、圧縮機回転軸131はリングギヤ153に接続されるようにしている。尚、サンギヤ151は、軸受け114によってプーリ回転軸111に対して独立して回転可能に支持されている。
【0029】
一方、図1に戻って、制御装置160は、A/C要求信号、車速信号、エンジン回転数信号、アイドルストップ要求信号、乗員の設定する設定温度信号、内気(室内)温度信号、外気(室外)温度信号、蒸発器温度センサ231からの蒸発器後方空気温度(Te)信号等が入力されて、これらの信号に基づいて上記モータ120の作動および電磁クラッチ170の断続を制御するものとしている。
【0030】
具体的には、インバータ30内のスイッチ素子のON−OFFによりバッテリ20からの電力を可変して、モータ120の作動回転数を可変させる。尚、後述するようにプーリ110の駆動力によってロータ部120aが回転されてモータ120が発電機として作動する時には、発生する電力をインバータ30を介してバッテリ20に充電する。また、電磁クラッチ170のコイル171への通電をON−OFFすることで、プーリ110とプーリ回転軸111間の断続を行う。
【0031】
また、制御装置160は、冷凍サイクル装置200に必要とされる冷房能力を満たす圧縮機130の冷媒吐出量を決定し、この冷媒吐出量を確保するための圧縮機130の回転数を決定する。因みに、冷媒吐出量は圧縮機130の1回転当りの吐出容量に回転数を乗じて得られる時間当たりの吐出量であり、回転数が増加するに従って吐出量も増加する。更には図4に示す遊星歯車150における共線図に基づいて、プーリ110の回転数(エンジン回転数にプーリ比を乗じた値)と圧縮機130の回転数(上記冷媒吐出量を吐出容量で除した値)とからモータ120の回転数を決定する(共線図に基づく詳細作動については後述する)。
【0032】
尚、ここでは冷凍サイクル装置200の必要冷房能力は、設定温度、内気温度、外気温度から予め定めた演算式によって算出される目標蒸発器温度(目標空気温度)Teoと蒸発器後方空気温度(実際の空気温度)Teとの差として得られるものとしている(必要冷房能力=Te−Teo)。
【0033】
次に、上記構成に基づく作動について、図3に示すフローチャートおよび図4に示す共線図を用いて説明する。本発明においては、冷凍サイクル装置200の必要冷房能力およびエンジン10の停止有無を判定する必要冷房能力判定手段(図3中のステップS120)、エンジン停止判定手段(図3中のステップS130、S150)を設け、それぞれの判定結果に応じて圧縮機130を作動(電磁クラッチ170の断続およびモータ120の作動)させるところに特徴を持たせている。
【0034】
尚、図4に示す共線図は、遊星歯車150にそれぞれ連結されたプーリ110、モータ120、圧縮機130の回転数の関係を示すものである。周知のように横軸に各ギヤ、キャリヤ(左からサンギヤ151、プラネタリーキャリヤ152、リングギヤ153)の座標位置が示され、各座標位置には、上記したようにそれぞれのギヤ、キャリヤ151、152、153に連結されるモータ120、プーリ110、圧縮機130が対応している。また、横軸座標の間隔はサンギヤ151とリングギヤ153とのギヤ比λによって決定される。ここではギヤ比λを0.5と設定している。そして、縦軸には、各ギヤ、キャリヤ151、152、153の回転数が示され、各回転数は3者が直線で結ばれる関係となる。
【0035】
以下、図3に示す制御フローに基づく作動制御について説明する。まず、ステップS100でA/C要求があるか否かをA/C要求信号から判定し、否と判定すると冷凍サイクル装置200の作動が不要であるため、ステップS110で電磁クラッチ170、モータ120を共にOFFにし、圧縮機130を非作動状態とする。
【0036】
ステップS100でA/C要求があると判定するとステップS120に進む。ステップS120は必要冷房能力判定手段を成すステップであり、蒸発器後方空気温度Te−目標蒸発器温度Teoで定義される必要冷房能力を予め定めた所定値ΔTとの比較によって、その時点における冷房能力の必要度合いを判定する。
【0037】
ここでは、冷房能力の必要度合いを以下の3段階に分けて設定している。
▲1▼、Te−Teo≧ΔTで必要冷房能力が高い場合(クールダウン相当)。
▲2▼、0≦Te−Teo<ΔTで必要冷房能力が中間レベルの場合(通常冷房)。
▲3▼、Te−Teo<0で必要冷房能力が低い場合(能力過剰)。
【0038】
このステップS120で必要冷房能力が高いと判定されると、エンジン停止判定手段を成すステップS130に進み、アイドルストップによりエンジン10が停止状態にあるか否かを判定する。これはエンジン回転数信号から判定する。ここで否、即ちエンジン10が作動状態にあると判定すると、ステップS140で電磁クラッチ170をONにし、モータ120を逆回転側に作動させる。
【0039】
即ち、図4中(ア)に示すように、モータ120をプーリ110の回転方向とは逆回転方向に作動させることにより、圧縮機回転数をプーリ回転数よりも高くして冷媒吐出量を増大させる。尚、モータ回転数を上げるように作動させてやると、圧縮機回転数は上昇し、このモータ回転数の設定によって必要吐出量が得られる。
【0040】
次に、ステップS120で必要冷房能力が中間レベルであると判定すると、ステップS150(エンジン停止判定手段)でエンジン10の停止状態を判定し、停止状態でない、即ちエンジン10が作動していると判定すると、ステップS160で電磁クラッチ170をONにし、モータ120を正転方向にして作動させる。
【0041】
即ち、クールダウンの後の通常冷房時においては、電磁クラッチ170をONの状態として主にプーリ110の駆動力でモータ120および圧縮機130を作動させる。この時、モータ120と圧縮機130とでは、遊星歯車150のサンギヤ151がモータ120に、リングギヤ153が圧縮機130に接続されているため、両ギヤ151、153の歯数により圧縮機130の方が作動トルクが大きくなる。このため、図4中の(イ)に示すように、プーリ回転数に対して、圧縮機130は低回転側となり吐出量を減少させる。一方、モータ120は、プーリ回転数に対して高回転側で発電機として作動することになり、バッテリ20への充電を可能とする。尚、モータ回転数を下げるように作動させてやると、圧縮機回転数は上昇する。
【0042】
尚、上記ステップS130およびステップS150で共にアイドルストップによりエンジン10が停止状態にあると判定すると、ステップS170で電磁クラッチをOFFにし、モータ120を逆転方向にして作動させる。
【0043】
この時は、図4中の(ウ)に示すように、モータ120を逆回転方向に駆動させることで、プーリ回転軸111が同様に逆回転方向に作動しようとし、一方向クラッチ180によってロックされ、モータ120の駆動力は圧縮機130に伝達される。ここではモータ回転数を上げるように作動させてやると圧縮機回転数は上昇し、このモータ回転数の設定によって必要吐出量が得られる。
【0044】
一方、上記ステップS120で必要冷房能力が低い(能力過剰)と判定すると、ステップS180で電磁クラッチ170をOFFにし、モータ120を逆転方向に作動させる。ここでは、上記ステップS170と同様の作動パターン(図4中の(ウ))となり、モータ回転数を下げるように(あるいはモータ120の回転数がゼロになるように)作動させてやると圧縮機回転数は下降し、このモータ回転数の設定によって必要吐出量が得られる。
【0045】
以上のように、本発明ではハイブリッドコンプレッサ101の作動制御にあたって、必要冷房能力判定手段(ステップS120)とエンジン停止判定手段(ステップS130、S150)とを設けて、それぞれの判定結果に応じて圧縮機130の駆動源としてプーリ110(エンジン10)およびモータ120を選択し、且つモータ120を駆動源として選択している場合にはモータ120の回転数を増減するようにして必要冷房能力を満たすように圧縮機130の冷媒吐出量を可変するようにしているので、冷凍サイクル装置200、エンジン10の作動状態に見合った対応が可能となる。
【0046】
即ち、エンジン10停止時においては、モータ120の駆動力で圧縮機130を作動させることができ、アイドルストップ時のための冷房機能の継続が可能となる。
【0047】
また、冷凍サイクル装置200の必要冷房能力が高く、エンジン10が作動するような場合でも、プーリ110の駆動力に加えてモータ120の駆動力を上乗せすることで圧縮機130を増速させ冷媒吐出量を増加させることができるので、短時間でのクールダウンを可能としてエンジン10の稼動時間を減らし車両燃費性能を向上させることができる。
【0048】
更に、必要冷房能力が中間レベルや低い場合においても、モータ120の回転数を増減させることで冷媒吐出量を可変でき、適切な冷房能力を維持できる。尚、冷媒吐出量の可変にあたっては、上記説明のようにモータ120の回転数の増減でその対応可能としており、圧縮機130自身の吐出容量可変機構を不要としている。
【0049】
また、必要冷房能力判定手段(ステップS120)においては、蒸発器後方空気温度Te−目標蒸発器温度Teoで定義される必要冷房能力と所定値ΔTとの比較によって冷房能力の必要度合いを判定するようにしているので、通常の冷凍サイクル装置200の制御に用いられる信号を活用でき、容易に対応ができる。
【0050】
また、動力分配機構として遊星歯車150を用いており、容易にその対応を可能としている。
【0051】
(その他の実施形態)
必要冷房能力判定手段(ステップS120)における必要冷房能力は、蒸発器230における温度(Te、Teo)に限らず、車室内における温度(実際の車室内温度および目標吹出し温度)等を用いて定義するようにしても良い。
【0052】
また、冷房能力の必要度合いは3段階に限定されるものでは無く適宜設定すれば良い。例えば、制御の簡略化を考慮して、冷房能力の必要度合いを上記第1実施形態で説明した高い場合と、それ以下の場合の2段階にして、図3中のステップS180をステップS160に統合するようにしても良い。
【0053】
また、遊星歯車150に対する各回転軸111、121、131の接続は、他の組み合わせに成るようにしても良い。この場合は、モータ120の回転数の増減は共腺図上で圧縮機130の回転数に対応するように決定すれば良い。変速機構としては、遊星歯車150に代えて遊星ローラやディファレンシャルギヤ等としても良い。
【0054】
更に、対象とする車両はアイドルストップ車両に限らず、走行用モータを有し、走行中においても所定の走行条件に応じてエンジン10が停止されるいわゆるハイブリッド車両としても良い。
【図面の簡単な説明】
【図1】本発明を冷凍サイクル装置に適用した全体構成を示す模式図である。
【図2】図1における第1実施形態のハイブリッドコンプレッサを示す断面図である。
【図3】図2におけるハイブリッドコンプレッサの作動制御を示すフローチャートである。
【図4】モータ、プーリ、圧縮機の作動回転数を示す共線図である。
【符号の説明】
10 エンジン
20 バッテリ(電源)
100 ハイブリッドコンプレッサ装置
101 ハイブリッドコンプレッサ
110 プーリ
111 プーリ回転軸
120 モータ
121 モータ回転軸
130 圧縮機
131 圧縮機回転軸
150 遊星歯車(変速機構)
151 サンギヤ
152 プラネタリーキャリヤ
153 リングギヤ
160 制御装置
200 冷凍サイクル装置
230 蒸発器(冷房用熱交換器)

Claims (2)

  1. 走行状態に応じてエンジン(10)が停止される車両に適用されるものであって、
    前記エンジン(10)によって回転駆動されるプーリ(110)と、
    電源(20)の電力を受けて回転駆動すると共に、制御装置(160)によってその回転数が制御されるモータ(120)と、
    冷凍サイクル装置(200)内の冷媒を圧縮する固定容量型の圧縮機(130)と、
    前記プーリ(110)、前記モータ(120)、前記圧縮機(130)の各回転軸(111、121、131)に接続されて、前記各回転軸(111、121、131)から他の前記回転軸(111、121、131)に対して回転数を可変して伝達可能とする変速機構(150)とを有し、
    前記制御装置(160)によって、前記モータ(120)の回転数が調整され、前記プーリ(110)の回転数に対して、前記圧縮機(130)の回転数が増減されるハイブリッドコンプレッサ装置において、
    前記制御装置(160)は、前記冷凍サイクル装置(200)に必要とされる冷房能力を判定する必要冷房能力判定手段(S120)と、
    前記エンジン(10)の停止有無を判定するエンジン停止判定手段(S130、S150)とを有し、
    前記必要冷房能力判定手段(S120)および前記エンジン停止判定手段(S130、S150)の判定結果に応じて、前記圧縮機(130)の駆動源として前記プーリ(110)および前記モータ(120)の少なくとも一方を選択し、
    且つ、前記モータ(120)を駆動源として選択した場合に、前記圧縮機(130)の回転数に基づく冷媒吐出量が前記必要とされる冷房能力を満たすように、前記モータ(120)の回転数を増減させ
    前記変速機構(150)は、遊星歯車(150)であり、前記モータ(120)のモータ回転軸(121)はサンギヤ(151)に接続され、前記プーリ(110)のプーリ回転軸(111)はプラネタリーキャリア(152)に接続され、前記圧縮機(130)の圧縮機回転軸(131)はリングギヤ(153)に接続され、
    前記モータ(120)は、ロータ部(120a)およびステータ部(123)から成り、前記ロータ部(120a)の内周側に前記遊星歯車(150)を収容しており、
    前記必要冷房能力手段(S120)によって必要冷房能力が高いと判定され、前記エンジン停止判定手段(S130)によってエンジンが作動状態であると判定されたとき、前記プーリ(110)の駆動力に加えて前記モータ(120)の駆動力を上乗せすることで前記圧縮機(130)の回転数を前記プーリ(110)の回転数よりも高くして冷媒吐出量を増加させることを特徴とするハイブリッドコンプレッサ装置。
  2. 前記必要冷房能力判定手段(S120)は、前記冷凍サイクル装置(200)中の冷房用熱交換器(230)における実際の空気温度(Te)および目標空気温度(Teo)の差と所定値(ΔT)との比較によって、前記冷凍サイクル装置(200)に必要とされる冷房能力を判定するようにしたことを特徴とする請求項1に記載のハイブリッドコンプレッサ装置。
JP2002311648A 2002-10-25 2002-10-25 ハイブリッドコンプレッサ装置 Expired - Fee Related JP3895257B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311648A JP3895257B2 (ja) 2002-10-25 2002-10-25 ハイブリッドコンプレッサ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311648A JP3895257B2 (ja) 2002-10-25 2002-10-25 ハイブリッドコンプレッサ装置

Publications (2)

Publication Number Publication Date
JP2004142674A JP2004142674A (ja) 2004-05-20
JP3895257B2 true JP3895257B2 (ja) 2007-03-22

Family

ID=32456810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311648A Expired - Fee Related JP3895257B2 (ja) 2002-10-25 2002-10-25 ハイブリッドコンプレッサ装置

Country Status (1)

Country Link
JP (1) JP3895257B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101225563B1 (ko) 2006-09-25 2013-01-24 한라공조주식회사 하이브리드 차량의 공조 제어 방법
CN108468594B (zh) * 2017-02-23 2023-10-03 宇通客车股份有限公司 汽车空调压缩机传动结构及使用该传动结构的汽车

Also Published As

Publication number Publication date
JP2004142674A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4070684B2 (ja) ハイブリッドコンプレッサ装置
JP3855866B2 (ja) ハイブリッドコンプレッサ装置
US7296427B2 (en) Hybrid compressor device for a vehicle
JP3708499B2 (ja) 車両用複合型補機制御装置
JP3775351B2 (ja) ハイブリッドコンプレッサ装置およびハイブリッドコンプレッサの制御方法
JP3854119B2 (ja) 圧縮機制御装置
JP3700650B2 (ja) ハイブリッドコンプレッサおよびハイブリッドコンプレッサ装置
JP4070701B2 (ja) ハイブリッドコンプレッサ装置
JP2000229516A (ja) ハイブリッドコンプレッサの制御装置
JP3895257B2 (ja) ハイブリッドコンプレッサ装置
JP4047205B2 (ja) ハイブリッド駆動補機およびその制御装置
JP3895273B2 (ja) ハイブリッドコンプレッサ装置
JP4073575B2 (ja) 車両用空気調和装置
JP3922448B2 (ja) ハイブリッドコンプレッサ装置
JP4192712B2 (ja) ハイブリッドコンプレッサ装置
JP4101071B2 (ja) ハイブリッドコンプレッサ
JP2004204735A (ja) ハイブリッドコンプレッサ装置
JP3848609B2 (ja) ハイブリッドコンプレッサ装置
JP2004270548A (ja) ハイブリッドコンプレッサ装置
JPH11235925A (ja) 電気自動車用空調機駆動装置
JP2004144048A (ja) ハイブリッドコンプレッサ
JPH08300937A (ja) 車両搭載用冷凍・空調装置
JP2003306029A (ja) ハイブリッドコンプレッサ
JP2003254238A (ja) ハイブリッドコンプレッサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees