JP4046422B2 - 運動補償回路及びレーダ装置 - Google Patents

運動補償回路及びレーダ装置 Download PDF

Info

Publication number
JP4046422B2
JP4046422B2 JP25682198A JP25682198A JP4046422B2 JP 4046422 B2 JP4046422 B2 JP 4046422B2 JP 25682198 A JP25682198 A JP 25682198A JP 25682198 A JP25682198 A JP 25682198A JP 4046422 B2 JP4046422 B2 JP 4046422B2
Authority
JP
Japan
Prior art keywords
range
movement amount
circuit
compensation
history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25682198A
Other languages
English (en)
Other versions
JP2000088955A (ja
Inventor
山本  和彦
雅史 岩本
哲郎 桐本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25682198A priority Critical patent/JP4046422B2/ja
Publication of JP2000088955A publication Critical patent/JP2000088955A/ja
Application granted granted Critical
Publication of JP4046422B2 publication Critical patent/JP4046422B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、移動する目標に対して電波を送信し、目標からの反射波を受信して上記目標の画像を得る際、目標の移動に伴う目標のレンジ及びドップラー周波数の変化を補償する運動補償回路及び当該運動補償回路を備えて高い分解能を得るためのレーダ装置に関するものである。
【0002】
【従来の技術】
従来のこの種のレーダ装置は、一般に高分解能レーダ装置と呼ばれ、例えば、Donald R. Wehner, “High Resolution Radar”, Artech House, INC. 1987, pp273‐339に記載されているISAR(Inverse Synthetic Aperture Radar)、及び特開平7−92257号公報に記載のものがある。
【0003】
図10は上記文献に従って構成したレーダ装置のブロック構成図である。
図10において、1は送信機、2は送受切換器、3は送受信アンテナ、4は受信機、5はレンジ圧縮手段、6はレンジ補償回路、7は位相補償回路、8はクロスレンジ圧縮回路、9はモニタ・テレビ(以下、モニタTVと呼ぶ)、26は運動補償回路である。
【0004】
図11は、図10に示すレーダ装置のブロック構成図におけるレンジ補償回路6の内容を記した構成図である。
図11において、10は振幅最大レンジビン検出回路、11は平滑化回路、12はレンジ移動量推定回路、13はレンジ補償手段である。
【0005】
また、図12は、図10に示すレーダ装置のブロック構成図における位相補償回路7の内容を記した構成図である。
図12において、14は注目レンジビン決定手段、15は区分周波数分析手段、16はドップラー移動量推定回路、17は振幅最大周波数検出回路、18は位相補償量算出手段、19は位相補償手段、25はドップラー移動量推定手段である。
【0006】
次に、上記構成に係るレーダ装置の動作原理について、回転運動を行う目標を観測するジオメトリである図13、図13のジオメトリで観測した結果得られたISAR画像の一例を示す図14、並進運動を行う目標を観測するジオメトリである図15、レンジプロフィールのヒストリの最大振幅検出結果の一例を示す図16、レンジ補償処理を施した後のレンジプロフィールにおける最大振幅検出結果のヒストリの一例を示す図17、区分周波数分析手段15の処理内容を説明する図18、及び区分周波数分布のヒストリの最大振幅検出結果の一例を示す図19の各図面を用いて説明する。
【0007】
まず、ISARの画像再生の原理について説明する。
図13に示す通り、x−y平面の原点に設置されたレーダ装置21で、レンジr0の点oを通り紙面に垂直な軸を中心に角速度ωで反時計周りで回転する目標20を観測するジオメトリを考える。
【0008】
図10に示す構成において、まず、送信機1では、時間とともに周波数が変化する信号(チャープ)に変調された高周波パルスを発生し、送受切換器2を介して送受信アンテナ3に供給する。目標20で反射された信号(エコー)は、送受信アンテナ3に入り、送受切換器2を介して受信機4で復調される。
【0009】
この復調された信号は、送信信号の瞬時周波数に対しレーダ装置21と目標20の間の電波伝搬の往復に要する時間分遅延したものであるから、レンジ圧縮手段5において、送信信号s(t)を用いて受信信号r(t)にマッチドフィルターをかけること、すなわち、式(1)に示すように、送信信号s(t)の共役信号s*(t)と受信信号r(t)とのコンボリューションを求めることにより、遅延に相当した時間にインパルスv(t)(以下では、レンジプロフィールと呼ぶ)を得ることができる。このことにより、レンジ分解能が向上する。
【0010】
【数1】
Figure 0004046422
【0011】
レーダが送信を繰り返すごとに上記レンジ圧縮された信号が得られるから、レーダの送信(ヒット)ごとにレンジ圧縮された信号をまとめることにより、レンジrとヒットhを軸とする二次元複素信号v(h、r)(以下では、レンジプロフィールのヒストリと呼ぶ)が得られる。
レンジrと時間tの間には、r=(Δr/Δt)・tなる関係がある。ここで、Δtはサンプリング間隔(=1/B、Bは送信帯域)、Δrはレンジ分解能(=C/2B、Cは光速)である。
【0012】
目標20が図15に示すような運動、すなわち並進運動を行う場合には、レーダ装置21から目標20までの距離の変化の影響を補償することにより、並進運動を行う目標20を、等価的に、図13に示すような回転運動を行う目標20とみなすことができる。
レーダ21と目標20の間の距離の変化を補償するレンジ補償回路6、位相補償回路7の動作は後述することにし、以下では、目標20が回転運動を行うもの、もしくは何等かの方法でレーダ装置21から目標20までの距離の変化の影響を補償されたものとする。
【0013】
クロスレンジ圧縮手段8では、レンジプロフィールのヒストリv(h、r)を、式(2)に従って、各レンジごとに、ヒット方向にフーリエ変換することにより、レンジ、クロスレンジの両方について圧縮された複素信号u(c、r)を得る。ここに、cはクロスレンジ(方位)方向を示す。
【0014】
【数2】
Figure 0004046422
【0015】
上式で、hnumはヒット数、rnumはレンジビン数である。この処理は、クロスレンジ方向の分解能を改善する効果がある。以下、この原理を説明する。
【0016】
図13に示す運動を行う目標上のある部位(例えば点a)で反射した信号のドップラー周波数fdは次の式(3)で表される。
【0017】
【数3】
Figure 0004046422
【0018】
ここで、λは送信波長、xは反射を生じた部位の回転半径、θ(h)は観測の基準となるLOS(Line Of Sight)を基準とした目標部位の角度である。
式(3)により、同じ角度θ上の点では、回転軸からの距離xに比例して、目標上のそれぞれの部位からの反射信号のドップラー周波数が変わる。
従って、複素信号u(c、r)は、回転軸によって定まる投影面に目標を投影した画像を表していることになる。
【0019】
レンジ圧縮手段5とクロスレンジ圧縮手段8により、レンジ方向、クロスレンジ方向の両方について分解能が向上した複素信号u(c、r)は、その絶対値が目標のレーダ反射断面積に対応するから、モニタTV9上のレンジr、クロスレンジcの二次元平面にu(c、r)の絶対値またはその二乗に応じた輝度で表示を行うことにより、図14に示すような、レンジとクロスレンジの両方について高分解能化された目標のISAR画像22を表示することができる。
ここで、画像上で、例えばa点は、目標上でレーダに近い位置にあるので、レンジが小さく、かつ、回転運動によりレーダから遠ざかる運動をしているのでドップラー周波数が小さくなっている。
【0020】
次に、上記説明で省略した、目標の並進運動の影響を補償する処理について説明する。
観測時間内のt0、t1、t2という時間において、並進運動により、図15のように位置が変化する目標20のISAR画像を生成する場合、各ヒットごとに得られたレンジプロフィールのヒストリv(h,r)をそのままヒット方向にフーリエ変換するだけでは、目標上の各点(例えば点a)が観測時間中にレンジ方向に移動するため、レンジ、クロスレンジ方向にきちんと圧縮されず、結果として画像にぼけが生じてしまうのは、式(2)において、各レンジごとにフーリエ変換を行うというその処理内容より明らかである。
従って、ぼけのない鮮明な画像を得るためには、目標上の各々の点を観測時間中、同一レンジビン内に固定するための補償処理を必要とする。
この処理をレンジ補償処理と呼ぶ。
【0021】
レンジ補償処理を行うレンジ補償回路6の処理内容について説明する。
目標が図15に示す運動を行う場合について考える。
ここで、電波の反射をする点は、図中a、b、cの三点のみとし、このうち、b点とc点は常に同じレンジビンにあるものとする。
【0022】
図11に示すレンジ補償回路6の構成において、まず、レンジ移動量推定回路12によりレンジ追尾を行う。レンジ移動量推定回路12の中の振幅最大レンジビン検出回路10では、各ヒットごとに、レンジプロフィールの振幅が最大となるレンジビンを検出する。
【0023】
その結果の例を図16に示す。同図で横軸はヒット、縦軸はレンジであり、図中太実線で示した部分が、各ヒットのレンジプロフィールで振幅が最大となるレンジビンを示しているものとする。a、b、cは同一目標上の点であり、実際は、図中の点線に示されるように、同じ変化率でレンジが変化しているはずであるが、見込み角の変化に従う各点のレーダ断面積の変化や、同一レンジビン内に複数の反射点が存在する場合の干渉などの影響で、観測時間中に各点の存在するレンジビンの振幅が変動するため、振幅最大レンジビンの位置の変化に不連続な部分が発生する。
【0024】
この振幅最大レンジビンの位置の時間変化に対して平滑化回路11では、例えば最小二乗法などを用いて平滑化することにより、図中点線で示した、上述の目標のレンジの実際の時間変化を得る事ができる。このレンジの時間変化を観測時間中のレンジ方向の移動量を表すレンジ移動量sで定義する。
【0025】
レンジ補償手段13では、レンジ移動量推定回路12で得られたシフト量から、各ヒットにおけるレンジ補償量sf(h)を式(4)により得る。
【0026】
【数4】
Figure 0004046422
【0027】
次に、式(4)で得られたレンジ補償量sf(h)を用いて、各ヒットhにおけるレンジプロフィールのヒストリv(h、r)をレンジ方向に補償し、レンジ補償後のレンジプロフィールのヒストリv2(h、r)を得る。
レンジ補償後のレンジプロフィールのヒストリv2(h、r)で、各ヒットごとに、レンジプロフィールの振幅が最大となるレンジビンを検出した結果は、図17に示すようにそれぞれの点の反射信号が同一レンジビンに並ぶ。
【0028】
上記レンジ補償処理回路5によるレンジ補償処理により、観測時間中の各点のレンジビンを超えた距離変化については除去することができたが、レンジビン内の距離変化については除去できていない。
一般に、目標が加速運動、旋回運動をする時は勿論の事、等速直線運動を行う場合でも、進行方向がLOS軸に沿った方向で無い限り、その距離変化は、線形な成分に加えて、非線形な加速度成分も含む。
このうちの加速度成分の影響で、各点よりの反射信号のドップラー周波数(クロスレンジ)に広がりが生じるため、結果として生成した画像がクロスレンジ方向にぼけてしまう。
上記加速度成分を除去するための補償処理が位相補償処理である。
【0029】
以下では、この位相補償処理を行う位相補償回路7の処理内容について説明する。
並進運動に伴う上記加速度成分は、すべてのレンジビンに対してほぼ等しく加わるため、ある一つのレンジビンに着目して、そのレンジビンに加わる加速度成分を推定し、その推定結果を用いて、すべてのレンジビンの位相補償を行う。
【0030】
図12に示す位相補償回路7の構成において、注目レンジビン決定手段14では、レンジ補償後のレンジプロフィールv2(h、r)の各レンジrにおける平均電力を算出し、その値を最大とするレンジビンを注目レンジビンとして、そのレンジビンの受信信号列w(h)を出力する。例えば図15のジオメトリの例では、点b、cを含むレンジビンが注目レンジビンとして選択されたものとする。
【0031】
次に、区分周波数分析手段15では、式(5)に従い、図18に示した注目レンジビンの受信信号列w(h)23を長さΔhで区分フーリエ変換して区分周波数分布のヒストリfs(h’,f)24を求める。
【0032】
【数5】
Figure 0004046422
【0033】
ドップラー移動量推定手段25では、得られた区分周波数分布のヒストリfs(h’,f)の追尾を行う。
まず、振幅最大周波数検出回路17では、各ヒットh’ごとに、周波数分布の振幅が最大となるドップラービンを検出する。その結果の例を図19に示す。同図で横軸はヒット、縦軸はドップラービンであり、図中太実線で示した部分が、各ヒットの周波数分布で振幅が最大となるドップラーを示しているものとする。見込み角の変化に従うレーダ断面積の変化のため、振幅最大周波数の位置が変動すること、および、周波数の折り返しの影響で、その位置の変化に不連続な部分が発生する。
【0034】
これに対し、レンジ補償回路6のレンジ移動量推定回路12と同様に、平滑化回路11により平滑化を行うことにより、図中点線で示した、上述の目標のドップラーの実際の時間変化を得ることができる。
この時間変化を観測時間中のドップラー方向の移動量を表すシフト量sで定義する。
位相補償量算出手段18では、式(6)に従い、位相補償量ph(h)を計算する。
【0035】
【数6】
Figure 0004046422
【0036】
さらに、位相補償手段19では、位相補償量算出手段18で得られた位相補償量ph(h)を用いて、式(7)により、レンジ補償後のレンジプロフィールのヒストリv2(h、r)の位相補償を行い、最終的なレンジプロフィールのヒストリvL(h、r)を得る。
【0037】
【数7】
Figure 0004046422
【0038】
以上の処理を経る事により、並進運動を行う目標に関して、目標上の各点のレンジビンを超える移動、位相の二次の変動を補償することができるため、並進運動を伴わず、回転運動のみを行う目標と同様に鮮明な高分解能画像が得られる。
【0039】
【発明が解決しようとする課題】
しかしながら、上記のような従来のレーダ装置では、レンジ補償誤差が発生した場合に、その影響で位相補償誤差までが増大するため、ISAR画像の画質の劣化が生じやすいという問題があった。
【0040】
また、レンジ補償回路6によるレンジ補償が終わった後に位相補償回路7による位相補償を行う必要があるため、運動補償に要する時間が増大するという問題があった。
【0041】
さらに、レンジ補償において、レンジプロフィールのヒストリの振幅分布のみに着目して、位相の情報を用いないため、レンジ補償の精度が悪いためISAR画像の画質の劣化が生じやすいという問題があった。
【0042】
また、位相補償の際に、ある一つの反射点の軌跡のドップラー周波数の時間変化のみに着目して位相補償量を推定するために、複数の反射点の軌跡が存在して、その反射強度がそれぞれ時間の経過とともに変化する場合に、位相補償量推定誤差が発生してISAR画像の画質の劣化が生じやすいという問題があった。
【0043】
この発明はかかる問題点を解消するためになされたもので、目標の運動により生ずる反射波のドップラーの変化に基づき目標の高分解能画像を得る際、目標のレンジ移動量の補償誤差の影響で目標の位相補償誤差が増大する問題を回避することができ、ISAR画像の画質劣化の発生を抑えることができる可能な運動補償回路及び運動補償回路を備えたレーダ装置を得ることを目的とするものである。
【0044】
【課題を解決するための手段】
この発明に係る運動補償回路は、移動する目標に対して電波を送信し、上記目標からの反射波を受信して上記目標の画像を得る際、上記目標の移動に伴う上記目標のレンジ及びドップラー周波数の変化を補償する運動補償回路であって、受信信号列の入力に基づいて各時刻におけるレンジ方向に並ぶデータ列の総和を生成する総和手段と、当該総和手段の出力を区分周波数分析して区分周波数分布のヒストリを得る区分周波数分析手段と、当該区分周波数分析手段の出力からドップラー移動量の推定を行うドップラー移動量推定手段とからなるドップラー移動量推定回路と、上記ドップラー移動量推定回路からのドップラー移動量に基づいて上記受信信号列からドップラー周波数の時間変化成分を除去した位相補償後の受信信号列を出力する位相補償手段とを有する位相補償回路を備えたことを特徴とするものである。
【0045】
また、受信信号列を入力して上記目標の移動に伴う上記目標のレンジの変化を補償しレンジ補償後の受信信号列を出力するレンジ補償回路をさらに備えたことを特徴とするものである。
【0046】
また、上記レンジ補償回路は、上記位相補償回路からの位相補償後の受信信号列を入力して当該受信信号列上に残存する上記目標の移動に伴う上記目標のレンジの変化を補償することを特徴とするものである。
【0047】
また、上記レンジ補償回路は、受信した上記反射波の受信信号列を入力して上記目標の移動に伴う上記目標のレンジの変化を補償しレンジ補償後の受信信号列を出力すると共に、上記位相補償回路は、上記レンジ補償回路からのレンジ補償後の受信信号列を入力して位相補償し位相補償後の受信信号列を出力することを特徴とするものである。
【0048】
また、上記ドップラー移動量推定回路は、上記反射波の受信信号列を入力してドップラー移動量の推定を行うと共に、当該ドップラー移動量推定回路によるドップラー移動量の推定処理と平行して、上記反射波の受信信号列を入力して各時刻におけるレンジ方向のレンジ移動量を推定するレンジ移動量推定回路をさらに備え、上記位相補償手段は、上記反射波の受信信号列を入力して上記ドップラー移動量推定回路からのドップラー移動量及び上記レンジ移動量推定回路からのレンジ移動量に基づいて位相補償及びレンジ補償を同時に行い位相補償及びレンジ補償された受信信号列を出力することを特徴とするものである。
【0049】
また、レンジプロフィールのヒストリの切出し幅を蓄積する切出し幅蓄積手段をさらに備えると共に、上記レンジ補償回路と上記位相補償回路のドップラー移動量推定回路との間に、上記レンジ補償回路の出力であるレンジ補償後のレンジプロフィールのヒストリ上の各レンジの電力の比較により注目レンジビンを決定して注目レンジビン番号を出力する注目レンジビン決定手段と、当該注目レンジビン決定手段からの注目レンジビン番号と上記切出し幅蓄積手段からのレンジ方向の切出し幅とに基づいて上記レンジ補償回路の出力であるレンジ補償後のレンジプロフィールのヒストリから注目レンジビン番号近傍のデータ列を切り出して切出し後のレンジプロフィールのヒストリを上記ドップラー移動量推定回路に出力する切出し手段とをさらに備えたことを特徴とするものである。
【0050】
また、上記レンジ補償回路は、上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとにクロスレンジ圧縮を行い得られたISAR画像のピーク電力値を算出するピーク電力算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のピーク電力値を蓄積するピーク電力蓄積手段と、当該ピーク電力蓄積手段に蓄積された各レンジ移動量想定値に対応するピーク電力値の比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段とからなるピーク電力着目レンジ移動量推定回路と、上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリを入力して上記ピーク電力着目レンジ移動量推定回路からの各レンジ移動量想定値ごとにレンジ補償を行いレンジ補償後のレンジプロフィールのヒストリを出力するレンジ補償手段とを有することを特徴とするものである。
【0051】
また、上記レンジ補償回路は、上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに、上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行ってISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとに、クロスレンジ圧縮を行い得られたISAR画像のエントロピーを算出するエントロピー算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のエントロピーを蓄積するエントロピー蓄積手段と、当該エントロピー蓄積手段に蓄積された各レンジ移動量想定値に対応するエントロピーの比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段とからなるエントロピー着目レンジ移動量推定回路と、上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリを入力して上記エントロピー着目レンジ移動量推定回路からの各レンジ移動量想定値ごとにレンジ補償を行いレンジ補償後のレンジプロフィールのヒストリを出力するレンジ補償手段とを有することを特徴とするものである。
【0052】
また、上記ピーク電力着目レンジ移動量推定回路またはエントロピー着目レンジ移動量推定回路の前段に、レンジプロフィールのヒストリの各ヒットごとの振幅最大レンジビンを検出する振幅レンジビン検出回路と、各ヒットごとの振幅最大レンジビンを平滑化する平滑化回路とを有するレンジ移動量推定回路と、上記レンジ移動量推定回路の誤差範囲をカバーするレンジ移動量の探索範囲を設定する探索範囲設定回路とを有するレンジ移動量推定前処理回路をさらに備えたことを特徴とするものである。
【0053】
また、上記ドップラー移動量推定手段は、上記区分周波数分析手段の出力である区分ドップラー周波数分布のヒストリの振幅検出を行う振幅検出手段と、振幅検出された区分ドップラー周波数分布のヒストリの二次元フーリエ変換を行う二次元フーリエ変換手段と、二次元フーリエ変換により得られる、区分ドップラー周波数分布のヒストリに対応する空間周波数分布の原点を通るさまざまな積分経路を設定し、各積分経路に沿った積分結果からドップラー移動量を推定する画像線積分手段とからなることを特徴とするものである。
【0054】
さらに、この発明に係るレーダ装置は、上述した運動補償回路の他に、移動する目標に対して電波を送信する送信手段と、上記目標からの反射波を受信する受信手段と、上記受信した反射波から得られた受信信号列をレンジ圧縮してレンジ圧縮した受信信号列を上記運動補償回路に出力するするレンジ圧縮手段と、上記運動補償回路の出力である運動補償後のヒストリのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段とをさらに備えたことを特徴とするものである。
【0055】
【発明の実施の形態】
実施の形態1.
図1は本実施の形態1に係る運動補償回路及びレーダ装置の構成を示す図である。
図1において、図10に示す部分と同一部分は同一符号を付してその説明は省略する。新たな符号として、26Aは、移動する目標に対して電波を送信し、目標からの反射波を受信して目標の画像を得る際、目標の移動に伴う目標のレンジ及びドップラー周波数の変化を補償する運動補償回路であり、位相補償回路7Aと、位相補償後の受信信号列を入力して当該受信信号列上に残存する目標の移動に伴う目標のレンジの変化を補償するレンジ補償回路6とを備えている。
【0056】
ここで、上記位相補償回路7Aは、受信信号列の入力に基づいて各時刻におけるレンジ方向に並ぶデータ列の総和を生成する総和手段101と、当該総和手段101の出力を区分周波数分析して区分周波数分布のヒストリを得る区分周波数分析手段15と、当該区分周波数分析手段15の出力からドップラー移動量の推定を行うドップラー移動量推定手段25とからなるドップラー移動量推定回路16Aと、上記ドップラー移動量推定回路16Aからのドップラー移動量に基づいて位相補償量を算出する位相補償量算出手段18と、算出された位相補償量に基づいて上記受信信号列からドップラー周波数の時間変化成分を除去した位相補償後の受信信号列を出力する位相補償手段19とを備えている。
【0057】
次に、図1を用いて本実施の形態1の処理内容を説明する。
送信機1で高周波パルスを生成して目標に照射し、受信信号をレンジ圧縮手段5でレンジ圧縮するまでの処理は従来例と同一である。本実施の形態1では、図1(a)中の運動補償回路26Aの構成に示されているように、位相補償回路7Aによりレンジ圧縮手段5で得られたレンジプロフィールのヒストリv(h,r)の位相補償を行った後に、レンジ補償回路6Aによりレンジ補償を行う点が従来例と異なる。
【0058】
まず、位相補償回路7A中の総和手段101では、各ヒットごとに、レンジプロフィールのヒストリ上のレンジ方向のデータ列を次式(8)により総和して、参照データ列w(h)を得る。
【0059】
【数8】
Figure 0004046422
【0060】
得られたデータ列w(h)には、各ヒットにおける全反射点の受信信号が含まれるので、これを区分周波数分析手段15で区分周波数分析して得られる区分周波数分布のヒストリ上には、全反射点のドップラー周波数の時間変化を表す軌跡が現れる。すなわち、以下、従来技術と同様に、ドップラー移動量推定手段25でドップラー移動量の推定を行い、得られたドップラー移動量から位相補償量算出手段18で位相補償量を算出し、得られた位相補償量を用いて位相補償手段19で位相補償することで、レンジプロフィールのヒストリ上のドップラー周波数の時間変化成分を除去することができる。つまり、位相補償後のレンジプロフィールのヒストリv1(h,r)を得ることができる。
【0061】
位相補償後のレンジプロフィールのヒストリv1(h,r)は、レンジプロフィールのヒストリv(h,r)と比較して位相の分布が異なるのみで、振幅分布は等しい。従来技術におけるレンジ補償回路6では、レンジ圧縮手段5の出力であるレンジプロフィールのヒストリv(h,r)の振幅分布に着目してレンジ補償を行うことから、ここでのレンジ補償回路6の動作は従来方式と同一になる。すなわち、以上の処理により、レンジプロフィールのヒストリ上の各反射点のレンジの移動およびドップラー周波数の移動成分を除去できる。
【0062】
運動補償回路26Aにより運動補償を行った後のレンジプロフィールのヒストリをクロスレンジ圧縮回路8でクロスレンジ圧縮してISAR画像を生成し、これをモニタTV9で表示する処理は、従来の技術と同一である。
従来技術では、レンジ補償後のレンジプロフィールのヒストリ上の、ある一つのレンジビンのみのデータ列を切出してこれを位相補償のための参照データ列w(h)とした。そのため、レンジ補償誤差が発生した場合には、ある注目する反射点の信号が参照データ列の途中でとぎれてしまい、結果として位相補償の精度まで劣化してしまうという問題があった。
【0063】
本実施の形態1では、ある一つのレンジビンのデータ列に着目するのではなく、全レンジビンのデータ列に着目するため、上記のある反射点の信号がとぎれる問題が発生しない。すなわち、たとえ後段のレンジ補償において、レンジ補償誤差が発生しても、その影響を受けずに位相補償を行えるため、再生画像のぼけの発生を従来方式より抑えることができるという効果がある。
【0064】
実施の形態2.
図2は、本実施の形態2における運動補償回路26Bの構成を示す図である。図2において、レンジ補償回路6は図11に示す従来例と同一であり、また、位相補償回路7Aは、図1に示す実施の形態1と同一である。
【0065】
以下、図1及び図2を用いて、本実施の形態2の処理内容を説明する。
本実施の形態2における処理は、運動補償回路26Bを除いて実施の形態1と同様である。本実施の形態2では、運動補償回路26B内のレンジ補償回路6と位相補償回路7Aの処理順序のみが、実施の形態1と異なる。
まず、レンジ補償回路6では、レンジ圧縮手段5で得られたレンジプロフィールのヒストリv(h,r)に対して従来の技術と同様にレンジ補償を行う。
【0066】
次に、位相補償回路7Aでは、図1(b)に示した構成で位相補償を行う。
レンジ補償後のレンジプロフィールのヒストリv1(h,r)に対して、総和手段101で、実施の形態1と同様に各ヒットごとに全レンジビンのデータ列を総和して、参照データ列w(h,r)を生成する。以下、区分周波数分析手段15から位相補償手段19までの処理は実施の形態1と同一である。
【0067】
すなわち、位相補償回路7Aの前段のレンジ補償回路6でレンジ補償誤差が存在した場合にも、レンジ補償後の受信信号列を入力して総和手段101で参照データ列を生成することで、誤差の影響を受けずに位相補償を行えるため、実施の形態1と同様、再生画像のぼけの発生を従来方式より抑えることができるという効果がある。
【0068】
実施の形態3.
図3は、本実施の形態3における運動補償回路26Cの構成を示す図である。図3において、新たな符号として、301はレンジ&位相補償手段である。レンジ移動量推定回路12は図11と同一であり、ドップラー移動量推定回路16Aは図1と同一である。
【0069】
以下、図1、図3、図12を用いて、本実施の形態3の処理内容を説明する。本実施の形態3では、運動補償回路26の処理のみが実施の形態1と異なる。従来の位相補償回路7では、図12に示したように、注目レンジビン決定手段14で注目レンジビンを決定し、このレンジビンのデータ列を参照データ列w(h)としたため、位相補償回路7におけるドップラー移動量推定回路16の前段には、レンジ補償回路6を必ず必要とした。
【0070】
しかし、ドップラー移動量推定回路16Aの構成を図1(b)のようにすることで、実施の形態1同様、前段にレンジ補償回路6が存在する必要がなくなる。つまり、レンジ移動量推定回路12、ドップラー移動量推定回路16Aのいずれも、レンジ圧縮手段5の直後に配置することが可能となる。すなわち、運動補償回路26Cを、図3に示すように、レンジ移動量推定回路12、ドップラー移動量推定回路16Aが並列になるように構成することができる。
【0071】
いずれの移動量推定回路においても、従来技術もしくは、実施の形態1と同様に、移動量を得ることができる。レンジ移動量推定回路12で得られたレンジ移動量をs1、ドップラー移動量推定回路16Aで得られたドップラー移動量をs2とする。レンジ&位相補償手段301では、式(4)、(6)より、レンジ補償量sf(h)、位相補償量ph(h) (h=0,1,…,hnum−1)をそれぞれ得ることができる。そこで、レンジ&位相補償手段301では、これらの値を用いて、次式(9)によりレンジ補償および位相補償を同時に行い、レンジ及び位相補償後のレンジプロフィールのヒストリvL(h,r)を得ることができる。
【0072】
【数9】
Figure 0004046422
【0073】
本実施の形態3では、運動補償回路26Cをドップラー移動量移動量推定回路16Aとレンジ移動量推定回路12を並列に構成するので、実施の形態1、実施の形態2と同様、レンジ移動量推定誤差の影響を受けることなしに、ドップラー移動量を推定できるので、再生画像のぼけの発生を従来方式より抑えることができるという効果がある。さらに、ドップラー移動量の推定とレンジ移動量の推定を同時に並列して行うことで、運動補償に要する時間を短縮できるという利点がある。また、それぞれ得られたレンジ移動量とドップラー移動量を用いて、レンジ補償と位相補償を一つの回路で同時に行うので、構成が簡単になるという利点がある。
【0074】
実施の形態4.
図4は本実施の形態4の運動補償回路26Dの構成を示す図である。
図4において、新たな符号として、7Bは本実施の形態4に係る位相補償回路、401は注目レンジビン決定手段14からの注目レンジビン番号と後述する切出し幅蓄積手段402からのレンジ方向の切出し幅とに基づいてレンジ補償回路6の出力であるレンジ補償後のレンジプロフィールのヒストリから注目レンジビン番号近傍のデータ列を切り出して切出し後のレンジプロフィールのヒストリをドップラー移動量推定回路16Aに出力する切出し手段、402はレンジプロフィールのヒストリの切出し幅を蓄積する切出し幅蓄積手段である。なお、レンジ補償回路6は図11と同一、注目レンジビン決定手段14は図12と同一であり、ドップラー移動量推定回路16A、位相補償量算出手段18、位相補償手段19、26は図1と同一である。
【0075】
次に、図1、図4を用いて、本実施の形態4の処理内容を説明する。
本実施の形態4の運動補償回路26Dの構成は、位相補償回路7Bの構成で、ドップラー移動量推定回路16Aの前段に注目レンジビン決定手段14と切出し手段401を配置している点のみが、実施の形態2と異なる。レンジ圧縮手段5により得られたレンジプロフィールのヒストリv(h,r)に対して、レンジ補償回路6でレンジ補償を行う処理は、実施の形態2もしくは従来の技術と同一である。
【0076】
また、レンジ補償後のレンジプロフィールのヒストリv2(h、r)に対して、注目レンジビン決定手段14で、ドップラー移動量推定の際の参照データを切り出すレンジビンを決定する処理については、従来の技術と同一である。注目するレンジビンをrpとする。実施の形態1〜3で述べたように、レンジ補償回路6で得られたレンジ補償後のレンジプロフィールのヒストリv2(h,r)においては、数レンジビン程度のレンジ補償誤差が残存じている可能性がある。従って、従来方式のように、レンジビンrpのヒット方向のデータ列をそのまま参照データにする方式では、同一の反射点のエコーを追い続けることができなくなり、ドップラー移動量推定誤差が発生する可能性がある。
【0077】
そこで、切り出し手段401では、切り出し幅蓄積手段402に蓄積された切り出し幅drpを用いて、次式(10)により、レンジ補償後のレンジプロフィールのヒストリから、データを切り出す。
【0078】
【数10】
Figure 0004046422
【0079】
レンジ補償誤差が存在する場合にも、得られたデータ列vp(h,r)には、注目する主要な反射点のエコーが含まれている。以下、このデータ列vp(h,r)をレンジプロフィールのヒストリとみなして、実施の形態1〜3と同様に総和手段101で参照データ列w(h)を生成して、ドップラー移動量を推定した後に位相補償を行う。
【0080】
本実施の形態4では、実施の形態1〜3と同様に、レンジ移動量推定誤差の影響で位相補償誤差が大きくなる問題を回避できる。また、参照データ列w(h)を生成する際に、各ヒットごとに全レンジビンのデータ列を用いるのではなく、注目するレンジビン近傍の数レンジビンのみを用いて生成するので、耐雑音性能が向上する。
【0081】
実施の形態5.
図5は本実施の形態5のレンジ補償回路6Aの構成を示す図である。
図5において、新たな符号として、501は位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段、502は各レンジ移動量想定値ごとにクロスレンジ圧縮を行って得られたISAR画像のピーク電力値を算出するピーク電力算出手段、503は各レンジ移動量推定値とその時の上記ISAR画像上のピーク電力値を蓄積するピーク電力蓄積手段、504はピーク電力蓄積手段503に蓄積された各レンジ移動量想定値に対応するピーク電力値の比較から位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段、505はピーク電力着目レンジ移動量推定回路である。なお,クロスレンジ圧縮回路8は図1と、レンジ補償手段13は図11と同一である。
【0082】
次に、図1、図5を用いて、本実施の形態5の処理内容を説明する。
本実施の形態5では、図1のレンジ補償回路の部分を図5の構成にしたところが、実施の形態1と異なる。従来のレンジ補償方式においては、レンジ圧縮手段5の直後にレンジ補償を行うために、対象となるレンジプロフィールのヒストリ上では、各反射点のレンジビン移動とともに、ドップラー周波数の移動が同時に発生していた。つまり、各反射点のエコーの位相の変化には未知の二次以上の非線形成分が含まれていたため、従来方式では、レンジプロフィールのヒストリ上の位相情報は無視して振幅分布のみに着目してレンジ補償を行っていた。
【0083】
これに対し、図1のように、レンジ補償の前段に位相補償を行う場合には、対象となるレンジプロフィールのヒストリ上のドップラ−周波数の移動成分は除去されているので、各反射点の位相変化はヒットに対してリニアな関係にある。
本実施の形態5では、この点に着目し、レンジプロフィールのヒストリ上の振幅分布に加えて、位相情報まで利用してレンジ補償を行う。
【0084】
レンジ補償回路6Aには、前段の位相補償回路7Aの出力である位相補償後のレンジプロフィールのヒストリv1(h,r)が入力するものとする。ピーク電力着目レンジ移動量推定回路505内のレンジ移動量想定手段501には、複数種類のレンジ移動量想定値dk(k=0,1,…,K−1)が記憶されている。レンジ補償手段13では、各レンジ移動量想定値dkごとにそれを打ち消すためのレンジ補償を行いレンジ補償後のレンジプロフィールのヒストリv2k(h,r)を得る。クロスレンジ圧縮手段8では、各レンジ移動量想定値dkごとに、クロスレンジ圧縮すなわち、ヒット方向のフーリエ変換を行い、ISAR画像Imgk(c,r) (c:クロスレンジビン=0,1,…,hnum−1)を得る。
【0085】
ピーク電力算出手段502では、各レンジ移動量想定値dkごとに、ISAR画像Imgk(c,r)中の各分解能セルの電力のうちの最大値Mxkを算出する。ピーク電力蓄積手段503では、各レンジ移動量dkとその時のMxkをついにして蓄積する。蓄積データ比較手段504では、得られたMxkの比較から、レンジプロフィールのヒストリ上の各軌跡の真のレンジ移動量dtrueを推定する。ここで、すでに位相補償を行っていることから、想定レンジ移動量とレンジプロフィールのヒストリのレンジ移動量が等しい場合には、各反射点は一点に結像することになり、結果として、画像上の各反射点の電力が最大となる。すなわち、dtrueは、Mxkを最大とする想定レンジ移動量dkとして求めることができる。得られたレンジ移動量dtrueを用いて、レンジプロフィールのヒストリv1(h、r)のレンジ補償を行う処理については、実施の形態1と同様である。
【0086】
本実施の形態5では、クロスレンジ圧縮によりISAR画像を生成して画像上の各分解能セルの最大電力を評価指標として、レンジ移動量の推定を行った。これは、前段で位相補償を行って、各反射点の位相変化をヒットに対してリニアにしたから可能となった処理であり、従来方式の構成では不可能である。本実施の形態5の効果としては、従来のレンジプロフィールのヒストリの振幅分布の情報のみを用いてレンジ移動量を推定していたのに対して、位相情報まで用いて推定を行うので、推定精度が向上するとともに、耐雑音性能も向上する点が挙げられる。
【0087】
実施の形態6.
図6は本実施の形態6のレンジ補償回路6Bの構成を示す図である。
図6において、新たな符号として、601は各レンジ移動量想定値ごとにクロスレンジ圧縮を行い得られたISAR画像のエントロピーを算出するエントロピー算出手段、602は各レンジ移動量推定値とその時の上記ISAR画像上のエントロピーを蓄積するエントロピー蓄積手段、603はエントロピー着目レンジ移動量推定回路であり、レンジ補償手段13は、各レンジ移動量想定値ごとに位相補償後のレンジプロフィールのヒストリのレンジ補償を行い、クロスレンジ圧縮回路8は、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行ってISAR画像を生成し、蓄積データ比較手段504は、エントロピー蓄積手段602に蓄積された各レンジ移動量想定値に対応するエントロピーの比較から位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する。なお、レンジ移動量想定手段501は図5のものと同一である。
【0088】
以下、図1、図5、図6を用いて、本実施の形態6の処理内容を説明する。
本実施の形態6では、図1のレンジ補償回路6を図6のような構成にする点のみが実施の形態1と異なる。また、実施の形態5との比較で述べると、図5におけるピーク電力算出手段502がエントロピー算出手段601に、ピーク電力蓄積手段がエントロピー蓄積手段602になっている点のみが構成上の変化である。
【0089】
上述した実施の形態5では、位相補償後のレンジプロフィールのヒストリv1(h,r)に対して、さまざまなレンジ移動量を想定し、各想定レンジ移動量ごとにレンジ補償、クロスレンジ圧縮を行ってISAR画像を生成し、ISAR画像上の各分解能セルの最大値の比較によりレンジ移動量を推定した。
【0090】
ところで、分布の偏りを評価する指標にエントロピーがある。エントロピーは、画像の情報量を定量的に示す指標としてしばしば用いられ、ディジタル画像を、その情報量を損なわずに符号化するために必要な最も短い符号長を与えることが知られている。その定義は式(11)で与えられる。
【0091】
【数11】
Figure 0004046422
【0092】
ここで、PWRは想定する画像の総電力である。エントロピーはその定義からもわかるように、分布が一様であれば、大きな値を示し、逆に分布に偏りが有ると減少する。すなわち、実施の形態5でピーク電力に着目したのと同様に、エントロピーを用いて画像の結像度の評価を行うことができる。
【0093】
エントロピー算出手段601では、各想定レンジ移動量dkごとに得られたISAR画像Imgk(h,r)を式(11)のt(x,y)とみなし、その想定移動量に対応したエントロピーHk(k=0,1,…,K−1)を算出する。エントロピー蓄積手段602では、各レンジ移動量dkとその時のエントロピーHkにマイナスを掛けた値(−Hk)を蓄積する。この値が最大となる場合に、ISAR画像が最も結像していることになる。蓄積データ比較手段504では、エントロピー蓄積手段602に蓄積された(−Hk)の値が最大となる想定レンジ移動量dkをレンジプロフィールのヒストリv1(h,r)のレンジ移動量の真値dtrueとみなしてこれを出力する。レンジ補償手段13以降の処理は、実施の形態5と同様である。
【0094】
本実施の形態6では、クロスレンジ圧縮によりISAR画像を生成し、得られた画像のエントロピーを評価指標としてレンジ移動量の推定を行った。これは、前段で位相補償を行って、各反射点の位相変化をヒットに対してリニアにしたから可能となった処理であり、従来方式の構成では不可能である。
本実施の形態6の効果としては、従来のレンジプロフィールのヒストリの振幅分布の情報のみを用いてレンジ移動量を推定していたのに対して、位相情報まで用いて推定を行うので、推定精度が向上するとともに、耐雑音性能も向上する点が挙げられる。
【0095】
実施の形態7.
図7は本実施の形態7のレンジ補償回路6Cの構成を示す図である。
図7において、新たな符号として、701はレンジ移動量推定回路12の誤差範囲をカバーするレンジ移動量の探索範囲を設定する探索範囲設定回路、702はピーク電力着目レンジ移動量推定回路505(またはエントロピー着目レンジ移動量推定回路)の前段に設けられたレンジ移動量推定前処理回路であり、ここで、レンジ移動量推定回路12は、図11と同様に、レンジプロフィールのヒストリの各ヒットごとの振幅最大レンジビンを検出する振幅レンジビン検出回路10と、各ヒットごとの振幅最大レンジビンを平滑化する平滑化回路11とを有する。レンジ補償手段13は図11と同一である。
【0096】
次に図1、図5、図7、図11を用いて、本実施の形態7の処理内容を説明する。本実施の形態7では、図1のレンジ補償回路6を図7のような構成にする点のみが実施の形態1と異なる。また、実施の形態5との比較で述べると、図5におけるピーク電力着目レンジ移動量推定回路505の前段にレンジ移動量推定前処理回路702を設けた点が異なる。レンジ移動量推定前処理回路702では、前段の位相補償回路7で位相補償を行って得られたレンジプロフィールのヒストリv1(h,r)に対して、従来方式を適用してレンジ移動量を推定する。この結果をdrとする。
【0097】
探索範囲設定回路701では、従来方式のレンジ移動量推定誤差範囲をdr近傍のdr−de〜dr+de(deは誤差範囲設定値)と設定し、この情報をv1(h,r)と共にピーク電力着目レンジ移動量推定回路505に送る。ピーク電力着目レンジ移動量推定回路505では、実施の形態5の動作と同様にv1(h,r)のレンジ移動量の想定値dkを設定してそれぞれに対応したISAR画像を生成してピーク電力を評価指標としてレンジ移動量真値dtrueを推定するが、レンジ移動量の想定範囲を前述のdr−de〜dr+deとする。dtrueが得られた後の処理については、実施の形態5と同一である。
【0098】
本実施の形態7では、クロスレンジ圧縮によりISAR画像を生成して画像上の各分解能セルの最大電力を評価指標として、レンジ移動量の推定を行った。これは、前段で位相補償を行って、各反射点の位相変化をヒットに対してリニアにしたから可能となった処理であり、従来方式の構成では不可能である。
本実施の形態7の効果としては、従来のレンジプロフィールのヒストリの振幅分布の情報のみを用いてレンジ移動量を推定していたのに対して、位相情報まで用いて推定を行うので、推定精度が向上するとともに、耐雑音性能も向上する点が挙げられる。また、レンジ移動量の推定の前処理を行うことで、実施の形態5に比べて処理負荷を軽減できるという利点も有する。
【0099】
また、本実施の形態7では、実施の形態5で示したピーク電力着目レンジ移動量推定回路505を用いたが、実施の形態6で示したエントロピー着目レンジ移動量推定回路603を用いて構成しても同様の効果を得られるのはいうまでもない。
【0100】
実施の形態8.
図8は本実施の形態8のドップラー移動量推定回路16Bの処理内容を示す図である。
図8において、新たな符号として、801は区分周波数分析手段15の出力である区分ドップラー周波数分布のヒストリの振幅検出を行う振幅検出手段、802は振幅検出された区分ドップラー周波数分布のヒストリの二次元フーリエ変換を行う二次元フーリエ変換手段、803は二次元フーリエ変換により得られる、区分ドップラー周波数分布のヒストリに対応する空間周波数分布の原点を通るさまざまな積分経路を設定し、各積分経路に沿った積分結果からドップラー移動量を推定する画像線積分手段、804は二次元フーリエ変換型移動量推定回路である。なお、区分周波数分析手段15、総和手段101は図1と同一である。
【0101】
以下、図1、図8、及び本実施の形態の動作を示す図9を用いて、本実施の形態8の処理内容を説明する。
本実施の形態8では、実施の形態1で図1(b)のように構成したドップラー移動量推定回路16を図8のように構成した点が、実施の形態1と異なる。レンジ圧縮手段5で得られたレンジプロフィールのヒストリv(h,r)に対して、総和手段101でドップラー移動量推定のための参照データ列w(h)を生成する区分周波数分析手段15でw(h)の区分フーリエ変換を行い区分周波数分布のヒストリfs(h’、f)を算出する手段については、実施の形態1と同一である。
【0102】
二次元フーリエ変換型移動量推定回路804では、総和手段101で、全レンジビンのデータを用いて参照データ列w(h)を生成したことで、参照データ列に含まれる反射点の数が増加したこと、言い換えると、区分周波数分布のヒストリ上で、各反射点のドップラ−周波数の時間変化を表す軌跡の本数が増加したことを考慮に入れて、ドップラー移動量の推定を行う。
【0103】
ここで、区分ドップラ−周波数分布のヒストリ上に現れる各反射点の軌跡間の関係について考えると、これらは、いずれも同じ目標上の点であることから、目標の並進運動によって発生するドップラ−移動量はいずれも等しい。かつ、目標の距離変化成分を時間、すなわちヒットに対するn次(n=0,1,2,…)の変化の和として捉えた場合、一般に、高次の成分ほど小さな値になる。特にドップラー周波数の場合、ヒットに対する一次のドップラー変化成分は、二次の距離変化成分によって発生し、二次以上のドップラー変化成分は、三次以上の距離変化成分によって発生することと、区分周波数分析では、周波数分析に用いるデータ長が短くなるので周波数分解能が劣化することを考慮すると、各軌跡は、少なくともドップラービンの精度では直線で表されることが多い。
【0104】
すなわち、以上の性質を踏まえると、各軌跡のドップラー移動量の推定問題は、二次元平面上の複数の、同じ傾きの直線を推定する問題に帰着させることができる。そこで、以下では、図9(a)に示す二次元画像g(x,y) (x=0,1,…,xnum−1、y=0,1,…,ynum−1)上の各反射点のy方向の移動量dyを推定する問題を例に、処理内容を説明する。
【0105】
まず、振幅検出手段801では、入力画像g0(x,y)に対して、次式(12)で振幅検出を行い、画像g(x,y)を得る。
【0106】
【数12】
Figure 0004046422
【0107】
次に、二次元フーリエ変換手段802では、画像g(x,y)に対して、次式(13)の二次元フーリエ変換を適用して、空間周波数画像G0(fx,fy)を得る。
【0108】
【数13】
Figure 0004046422
【0109】
二次元画像上の傾きa(=dy/xnum)の直線は、その画像を二次元フーリエ変換して得られる空間周波数画像上では、原点を通り傾きが−1/aの直線となる。ここで、空間周波数画像上のその直線のfxすなわち、xに対応する空間周波数方向の移動量をdfxとすると、その値は、fx、fy方向の空間周波数分解能がそれぞれ1/xnum、1/ynumであることを考慮して、次式(14)で表される。
【0110】
【数14】
Figure 0004046422
【0111】
フーリエ変換の線形性から、元の画像上の同じ移動量dyの直線は、いずれも、空間周波数画像上の原点を通り、fx方向の移動量が−dyの直線上に変換されることから、空間周波数画像上の定点(=原点)を通る一本の直線の探索により、dyを推定できる。なお、式(13)により得られる二次元フーリエ変換画像G0(fx,fy)は、fxを右方向、yを上方向とした場合には、画像の左下が原点に対応する。G0(fx、fy)の原点が画像の中心になるように、画像のシフトを行った結果をG(fx、fy)とし、これを図9(b)に示す。
【0112】
画像線積分手段803では、図9(b)の空間周波数画像G(fx,fy)上の原点を通り、fx方向の移動量がdfxk (k=0,1,…,K−1)のK種類の積分経路kを、図9(c)のように設定し、各経路に沿って空間周波数画像G(fx,fy)の振幅値の線積分を行う。各経路ごとに得られた積分結果を示したのが図9(d)である。積分経路と画像上の直線が一致した時に、積分値はピーク値vmaxを取る。この時の積分経路のfx方向の移動量をdcとすると、式(14)より、元の画像上の各軌跡のy方向移動量dy=−dcと得ることができる。画像線積分手段803は、こうして得られたdyの値を出力する。以下、この値を用いてレンジ補償手段13でレンジ補償を行う処理については、実施の形態1と同様である。
【0113】
本実施の形態8では、以上で説明したように、参照データ列の区分周波数分析によって得られた区分ドップラー周波数分布のヒストリ上の各反射点の軌跡が、それぞれ同じ傾きの直線になるという性質に着目し、さらに、二次元画像上の同じ傾きの任意の直線が、空間周波数画像上で、原点を通り、元の画像上での傾きに依存した傾きの一本の直線上に変換されるという性質を利用して、ドップラー移動量推定問題を空間周波数画像上の定点を通る一本の直線の検出問題として解くため、以下の効果を有する。
【0114】
1.本実施の形態8では、ある一つのレンジビンのデータ列に着目するのではなく、全レンジビンのデータ列に着目するため、上記のある反射点の信号がとぎれる問題が発生しない。すなわち、たとえ後段のレンジ補償において、レンジ補償誤差が発生しても、その影響を受けずに位相補償を行えるため、再生画像のぼけの発生を従来方式より抑えることができるという効果がある。
【0115】
2.区分ドップラー周波数分布のヒストリ上に各反射点に対応した複数の軌跡が存在し、それらの振幅が時間の経過と共に変化する場合にも、その変動の影響を受けずにドップラー移動量を推定できるので、安定してISAR画像を結像させることができる。
【0116】
3.区分ドップラー周波数分布のヒストリ上の複数の反射点の軌跡の電力を、空間周波数画像上の一本の直線上に集めた後にドップラー移動量推定を行うので、耐雑音性能が向上する。
【0117】
なお、本実施の形態8では、実施の形態1の改良として、その処理内容を説明したが、従来技術もしくは、これまで示した実施の形態2〜7の改良として適用しても以上の効果を得ることができるのは言うまでもない。
【0118】
上述した各実施の形態1ないし8の運動補償回路は、実施の形態1の如く、これを備えたレーダ装置として構成できるのは言うまでもなく、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができるレーダ装置を得ることができる。
すなわち、レーダ装置の構成としては、実施の形態1ないし8の運動補償回路の他に、図1に示すように、移動する目標に対して電波を送信する送信機1と、目標からの反射波を受信する受信機4と、上記受信した反射波から得られた受信信号列をレンジ圧縮してレンジ圧縮した受信信号列を運動補償回路に出力するするレンジ圧縮手段5と、運動補償回路の出力である運動補償後のヒストリのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段8と備えればよい。
【0119】
【発明の効果】
以上に説明したように、この発明に係る運動補償回路は、移動する目標に対して電波を送信し、上記目標からの反射波を受信して上記目標の画像を得るため、上記目標の移動に伴う上記目標のドップラー周波数の変化を補償する運動補償回路であって、上記反射波の受信信号列を基に、上記ドップラー周波数の変化の補償量を決定するための参照データ列を、各時刻におけるレンジ方向に並ぶデータ列の総和により生成する総和手段を有するドップラー移動量推定回路を備えたので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができる。
【0120】
また、目標の移動に伴う目標のレンジの変化を補償するレンジ補償回路を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができる。
【0121】
また、位相補償後の受信信号列上に残存する上記目標の移動に伴う上記目標のレンジの変化を補償するレンジ補償回路を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができる。
【0122】
また、上記目標の移動に伴う上記目標のレンジの変化を補償するレンジ補償回路と、レンジ補償後の受信信号列上に残存する上記目標の移動に伴う上記目標のドップラー周波数の変化を補償する位相補償回路を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができる。
【0123】
また、上記レンジ移動量推定回路と上記レンジ移動量推定回路の処理と並列して、上記目標の移動に伴う上記目標のドップラー周波数の変化を補償するドップラー移動量推定回路と、レンジ移動量推定回路の出力である上記目標のレンジ移動量とドップラー移動量推定回路の出力である上記目標のドップラー移動量を元に目標のレンジ移動とドップラー移動を同時に補償する補償手段を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えながら、処理に要する時間も抑えることができる。
【0124】
また、レンジ補償後のレンジプロフィールのヒストリ上の各レンジの電力の比較により注目レンジビンを決定する注目レンジビン決定手段と、レンジプロフィールのヒストリの切出し幅を蓄積する切出し幅蓄積手段と、注目レンジビンの出力である注目レンジビン番号と、切出し幅蓄積手段の出力であるレンジ方向の切出し幅を基に、レンジ補償回路の出力であるレンジ補償後のレンジプロフィールのヒストリから注目レンジビン番号近傍のデータ列を切り出す切出し手段と、切出し手段の出力である切出し後のレンジプロフィールのヒストリに対してドップラー移動量の推定を行うドップラー移動量推定回路を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えながら、耐雑音性能を向上させることができる。
【0125】
また、位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに、上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行ってISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとに、クロスレンジ圧縮を行い得られたISAR画像のピーク電力値を算出するピーク電力算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のピーク電力値を蓄積するピーク電力蓄積手段とピーク電力蓄積手段に蓄積された各レンジ移動量想定値に対応するピーク電力値の比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段と、レンジ移動量想定手段、レンジ補償手段クロスレンジ圧縮手段、ピーク電力算出手段、ピーク電力蓄積手段、蓄積データ比較手段を含むピーク電力着目レンジ移動量推定回路を有するので、レンジプロフィールのヒストリの振幅情報のみならず位相情報まで用いてレンジ補償を行うことで、レンジ補償精度を向上させることができてISAR画像の画質劣化の発生を抑えることができる。
【0126】
また、位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに、上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行ってISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとに、クロスレンジ圧縮を行い得られたISAR画像のエントロピーを算出するエントロピー算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のエントロピーを蓄積するエントロピー蓄積手段とエントロピー蓄積手段に蓄積された各レンジ移動量想定値に対応するエントロピーの比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段と、レンジ移動量想定手段、レンジ補償手段クロスレンジ圧縮手段、エントロピー算出手段、エントロピー蓄積手段、蓄積データ比較手段を含むエントロピー着目レンジ移動量推定回路を有するので、レンジプロフィールのヒストリの振幅情報のみならず位相情報まで用いてレンジ補償を行うことで、レンジ補償精度を向上させることができてISAR画像の画質劣化の発生を抑えることができる。
【0127】
また、ピーク電力着目レンジ移動量推定回路又はエントロピー着目レンジ移動量推定回路の前段に、レンジプロフィールのヒストリの各ヒットごとの振幅最大レンジビンを検出する振幅レンジビン検出回路と、各ヒットごとの振幅最大レンジビンを平滑化する平滑化回路を含むレンジ移動量推定回路と、レンジ移動量推定回路の誤差範囲をカバーするレンジ移動量の探索範囲を設定する探索範囲設定回路とを含むレンジ移動量推定前処理回路を有するので、レンジプロフィールのヒストリの振幅情報のみならず位相情報まで用いてレンジ補償を行うことで、レンジ補償精度を向上させることができてISAR画像の画質劣化の発生を抑えながら運動補償の要する処理負荷を低減させることができる。
【0128】
また、ドップラー移動量推定回路を、参照データ列の区分周波数分析を行う区分周波数分析手段と、区分周波数分析手段の出力である区分ドップラー周波数分布のヒストリの振幅検出を行う振幅検出手段と、振幅検出された区分ドップラー周波数分布のヒストリの二次元フーリエ変換を行う二次元フーリエ変換手段と、二次元フーリエ変換により得られる、区分ドップラー周波数分布のヒストリに対応する空間周波数分布の原点を通るさまざまな積分経路を設定し、各積分経路に沿った積分結果からドップラー移動量を推定する画像線積分手段と、振幅検出手段と二次元フーリエ変換手段と画像線積分手段を含む二次元フーリエ変換型移動量推定回路で構成するので、区分ドップラー周波数分布のヒストリ上に各反射点に対応した複数の軌跡が存在し、それらの振幅が時間の経過と共に変化する場合にも、その変動の影響を受けずにドップラー移動量を推定できるので、安定してISAR画像を結像させることができる。
【0129】
さらに、この発明に係るレーダ装置は、移動する目標に対して電波を送信する送信手段と、上記目標からの反射波を受信する受信手段と、上記受信した反射波から得られた受信信号列をレンジ圧縮するレンジ圧縮手段と、上述した運動補償回路と、上記運動補償回路の出力である運動補償後のヒストリのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段を有するので、レンジ移動量推定誤差の影響で位相補償推定誤差が増大する問題を回避できてISAR画像の画質劣化の発生を抑えることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の構成を示す図である。
【図2】 この発明の実施の形態2の運動補償回路の構成を示す図である。
【図3】 この発明の実施の形態3の運動補償回路の構成を示す図である。
【図4】 この発明の実施の形態4の運動補償回路の構成を示す図である。
【図5】 この発明の実施の形態5のレンジ補償回路の構成を示す図である。
【図6】 この発明の実施の形態6のレンジ補償回路の構成を示す図である。
【図7】 この発明の実施の形態7のレンジ補償回路の構成を示す図である。
【図8】 この発明の実施の形態8のドップラー移動量推定回路の構成を示す図である。
【図9】 この発明の実施の形態8の動作を示す図である。
【図10】 従来のレーダ装置のブロック構成図である。
【図11】 従来のレーダ装置のレンジ補償を実現するための構成図である。
【図12】 従来のレーダ装置の位相補償を実現するための構成図である。
【図13】 回転運動を行う目標を観測するジオメトリを示す図である。
【図14】 ISAR画像の一例を示す図である。
【図15】 並進運動を行う目標を観測するジオメトリを示す図である。
【図16】 レンジプロフィールのヒストリの最大振幅検出結果の一例を示す図である。
【図17】 レンジ補償処理を施した後のレンジプロフィールのヒストリにおける最大振幅検出結果の一例を示す図である。
【図18】 区分周波数分析手段の処理内容を説明する図である。
【図19】 区分周波数分布のヒストリの最大振幅検出結果の一例を示す図である。
【符号の説明】
1 送信機、4 受信機、5 レンジ圧縮手段、6,6A,6B,6C レンジ補償回路、7A,7B 位相補償回路、8 クロスレンジ圧縮回路、10 振幅最大レンジビン検出回路、11 平滑化回路、12 レンジ移動量推定回路、13 レンジ補償手段、14 注目レンジビン決定手段、15 区分周波数分析手段、16A,16B ドップラー移動量推定回路、18 位相補償量算出手段、19 位相補償手段、20 目標、21 レーダ装置、22 目標のISAR画像、23 注目レンジビンの受信信号列、24 区分周波数分布のヒストリ、25 ドップラー移動量推定手段、26,26A,26B,26C,26D 運動補償回路、101 総和手段、301 レンジ&位相補償手段、401 切出し手段、402 切出し幅蓄積手段、501 レンジ移動量想定手段、
502 ピーク電力算出手段、503 ピーク電力蓄積手段、504 蓄積データ比較手段、505 ピーク電力着目レンジ移動量推定回路、601 エントロピー算出手段、602 エントロピー蓄積手段、603 エントロピー着目レンジ移動量推定回路、701 探索範囲設定回路、702 レンジ移動量推定前処理回路、801 振幅検出手段、802 二次元フーリエ変換手段、803 画像線積分手段、804 二次元フーリエ変換型移動量推定回路。

Claims (11)

  1. 移動する目標に対して電波を送信し、上記目標からの反射波を受信して上記目標の画像を得る際、上記目標の移動に伴う上記目標のレンジ及びドップラー周波数の変化を補償する運動補償回路であって、
    受信信号列の入力に基づいて各時刻におけるレンジ方向に並ぶデータ列の総和を生成する総和手段と、当該総和手段の出力を区分周波数分析して区分周波数分布のヒストリを得る区分周波数分析手段と、当該区分周波数分析手段の出力からドップラー移動量の推定を行うドップラー移動量推定手段とからなるドップラー移動量推定回路と、
    上記ドップラー移動量推定回路からのドップラー移動量に基づいて上記受信信号列からドップラー周波数の時間変化成分を除去した位相補償後の受信信号列を出力する位相補償手段と
    を有する位相補償回路を備えたことを特徴とする運動補償回路。
  2. 請求項1に記載の運動補償回路において、受信信号列を入力して上記目標の移動に伴う上記目標のレンジの変化を補償しレンジ補償後の受信信号列を出力するレンジ補償回路をさらに備えたことを特徴とする運動補償回路。
  3. 請求項2に記載の運動補償回路において、上記レンジ補償回路は、上記位相補償回路からの位相補償後の受信信号列を入力して当該受信信号列上に残存する上記目標の移動に伴う上記目標のレンジの変化を補償することを特徴とする運動補償回路。
  4. 請求項2に記載の運動補償回路において、上記レンジ補償回路は、受信した上記反射波の受信信号列を入力して上記目標の移動に伴う上記目標のレンジの変化を補償しレンジ補償後の受信信号列を出力すると共に、上記位相補償回路は、上記レンジ補償回路からのレンジ補償後の受信信号列を入力して位相補償し位相補償後の受信信号列を出力することを特徴とする運動補償回路。
  5. 請求項1に記載の運動補償回路において、上記ドップラー移動量推定回路は、上記反射波の受信信号列を入力してドップラー移動量の推定を行うと共に、当該ドップラー移動量推定回路によるドップラー移動量の推定処理と平行して、上記反射波の受信信号列を入力して各時刻におけるレンジ方向のレンジ移動量を推定するレンジ移動量推定回路をさらに備え、上記位相補償手段は、上記反射波の受信信号列を入力して上記ドップラー移動量推定回路からのドップラー移動量及び上記レンジ移動量推定回路からのレンジ移動量に基づいて位相補償及びレンジ補償を同時に行い位相補償及びレンジ補償された受信信号列を出力することを特徴とする運動補償回路。
  6. 請求項4に記載の運動補償回路において、レンジプロフィールのヒストリの切出し幅を蓄積する切出し幅蓄積手段をさらに備えると共に、上記レンジ補償回路と上記位相補償回路のドップラー移動量推定回路との間に、上記レンジ補償回路の出力であるレンジ補償後のレンジプロフィールのヒストリ上の各レンジの電力の比較により注目レンジビンを決定して注目レンジビン番号を出力する注目レンジビン決定手段と、当該注目レンジビン決定手段からの注目レンジビン番号と上記切出し幅蓄積手段からのレンジ方向の切出し幅とに基づいて上記レンジ補償回路の出力であるレンジ補償後のレンジプロフィールのヒストリから注目レンジビン番号近傍のデータ列を切り出して切出し後のレンジプロフィールのヒストリを上記ドップラー移動量推定回路に出力する切出し手段とをさらに備えたことを特徴とする運動補償回路。
  7. 請求項2または3に記載の運動補償回路において、
    上記レンジ補償回路は、
    上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとにクロスレンジ圧縮を行い得られたISAR画像のピーク電力値を算出するピーク電力算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のピーク電力値を蓄積するピーク電力蓄積手段と、当該ピーク電力蓄積手段に蓄積された各レンジ移動量想定値に対応するピーク電力値の比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段とからなるピーク電力着目レンジ移動量推定回路と、
    上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリを入力して上記ピーク電力着目レンジ移動量推定回路からの各レンジ移動量想定値ごとにレンジ補償を行いレンジ補償後のレンジプロフィールのヒストリを出力するレンジ補償手段と
    を有することを特徴とする運動補償回路。
  8. 請求項2または3に記載の運動補償回路において、
    上記レンジ補償回路は、
    上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリのレンジ移動量の値を想定するレンジ移動量想定手段と、各レンジ移動量想定値ごとに、上記位相補償後のレンジプロフィールのヒストリのレンジ補償を行うレンジ補償手段と、各レンジ移動量想定値ごとにレンジ補償された、レンジ及び位相補償後のレンジプロフィールのクロスレンジ圧縮を行ってISAR画像を生成するクロスレンジ圧縮手段と、各レンジ移動量想定値ごとに、クロスレンジ圧縮を行い得られたISAR画像のエントロピーを算出するエントロピー算出手段と、各レンジ移動量推定値とその時の上記ISAR画像上のエントロピーを蓄積するエントロピー蓄積手段と、当該エントロピー蓄積手段に蓄積された各レンジ移動量想定値に対応するエントロピーの比較から上記位相補償後のレンジプロフィールのヒストリ上の各反射点の軌跡のレンジ移動量を推定する蓄積データ比較手段とからなるエントロピー着目レンジ移動量推定回路と、
    上記位相補償回路の出力である位相補償後のレンジプロフィールのヒストリを入力して上記エントロピー着目レンジ移動量推定回路からの各レンジ移動量想定値ごとにレンジ補償を行いレンジ補償後のレンジプロフィールのヒストリを出力するレンジ補償手段と
    を有することを特徴とする運動補償回路。
  9. 請求項7または8に記載の運動補償回路において、
    上記ピーク電力着目レンジ移動量推定回路またはエントロピー着目レンジ移動量推定回路の前段に、
    レンジプロフィールのヒストリの各ヒットごとの振幅最大レンジビンを検出する振幅レンジビン検出回路と、各ヒットごとの振幅最大レンジビンを平滑化する平滑化回路とを有するレンジ移動量推定回路と、上記レンジ移動量推定回路の誤差範囲をカバーするレンジ移動量の探索範囲を設定する探索範囲設定回路とを有するレンジ移動量推定前処理回路をさらに備えたことを特徴とする運動補償回路。
  10. 請求項1ないし9のいずれかに記載の運動補償回路において、
    上記ドップラー移動量推定手段は、
    上記区分周波数分析手段の出力である区分ドップラー周波数分布のヒストリの振幅検出を行う振幅検出手段と、
    振幅検出された区分ドップラー周波数分布のヒストリの二次元フーリエ変換を行う二次元フーリエ変換手段と、
    二次元フーリエ変換により得られる、区分ドップラー周波数分布のヒストリに対応する空間周波数分布の原点を通るさまざまな積分経路を設定し、各積分経路に沿った積分結果からドップラー移動量を推定する画像線積分手段と
    からなることを特徴とする運動補償回路。
  11. 請求項1ないし10のいずれかに記載の運動補償回路において、
    移動する目標に対して電波を送信する送信手段と、
    上記目標からの反射波を受信する受信手段と、
    上記受信した反射波から得られた受信信号列をレンジ圧縮してレンジ圧縮した受信信号列を上記運動補償回路に出力するするレンジ圧縮手段と、
    上記運動補償回路の出力である運動補償後のヒストリのクロスレンジ圧縮を行いISAR画像を生成するクロスレンジ圧縮手段と
    をさらに備えたことを特徴とする有するレーダ装置。
JP25682198A 1998-09-10 1998-09-10 運動補償回路及びレーダ装置 Expired - Lifetime JP4046422B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25682198A JP4046422B2 (ja) 1998-09-10 1998-09-10 運動補償回路及びレーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25682198A JP4046422B2 (ja) 1998-09-10 1998-09-10 運動補償回路及びレーダ装置

Publications (2)

Publication Number Publication Date
JP2000088955A JP2000088955A (ja) 2000-03-31
JP4046422B2 true JP4046422B2 (ja) 2008-02-13

Family

ID=17297910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25682198A Expired - Lifetime JP4046422B2 (ja) 1998-09-10 1998-09-10 運動補償回路及びレーダ装置

Country Status (1)

Country Link
JP (1) JP4046422B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
CN103837862A (zh) * 2014-02-20 2014-06-04 北京理工大学 一种基于图像的频率步进sar距离向栅瓣抑制方法
CN107300458A (zh) * 2017-07-18 2017-10-27 深圳市杰普特光电股份有限公司 光响应特性快速测量装置及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131466B2 (ja) * 2003-04-02 2008-08-13 三菱電機株式会社 画像レーダ装置及び超解像処理方法
JP4722574B2 (ja) * 2005-06-10 2011-07-13 三菱電機株式会社 画像レーダ装置
KR101016845B1 (ko) 2009-05-14 2011-02-22 영남대학교 산학협력단 편대 비행 중인 다수의 표적에 대한 역합성 개구면 레이더 영상을 생성하는 방법 및 장치
KR101029175B1 (ko) 2009-09-09 2011-04-12 영남대학교 산학협력단 다항식과 가우시안 기저 함수를 이용하는 장거리 역합성 개구면 레이더 영상 생성 방법 및 그 장치
KR101029217B1 (ko) 2009-10-01 2011-04-12 영남대학교 산학협력단 표적의 회전 이동을 보상하는 역합성 개구면 레이더 영상을 생성하는 방법 및 장치
JP5979868B2 (ja) * 2011-12-21 2016-08-31 三菱電機株式会社 画像レーダ装置
JP5971981B2 (ja) * 2012-02-29 2016-08-17 東京計器株式会社 目標運動予測装置及び目標運動予測方法
JP5865794B2 (ja) * 2012-07-13 2016-02-17 三菱電機株式会社 レーダ装置
JP5823062B2 (ja) * 2012-12-14 2015-11-25 三菱電機株式会社 レーダ装置
CN110048975A (zh) * 2018-01-15 2019-07-23 中兴通讯股份有限公司 移动终端频率补偿方法及装置
CN108594229B (zh) * 2018-04-28 2021-03-23 中国科学院电子学研究所 星载sar脉内多普勒效应二维补偿方法、装置及存储介质
CN108594228B (zh) * 2018-04-28 2022-02-22 西安电子科技大学 基于isar图像重聚焦的空间目标姿态估计方法
JP6860528B2 (ja) * 2018-06-22 2021-04-14 株式会社東芝 画像レーダ装置及びそのレーダ信号処理方法
JP7155211B2 (ja) * 2020-09-18 2022-10-18 株式会社東芝 逆合成開口レーダ装置および信号処理方法
CN115632718B (zh) * 2022-09-15 2023-07-28 华北电力大学(保定) 光纤射频信号稳定传输系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174875A (ja) * 2010-02-25 2011-09-08 Mitsubishi Electric Corp パッシブレーダ装置
CN103837862A (zh) * 2014-02-20 2014-06-04 北京理工大学 一种基于图像的频率步进sar距离向栅瓣抑制方法
CN103837862B (zh) * 2014-02-20 2016-03-30 北京理工大学 一种基于图像的频率步进sar距离向栅瓣抑制方法
CN107300458A (zh) * 2017-07-18 2017-10-27 深圳市杰普特光电股份有限公司 光响应特性快速测量装置及方法
CN107300458B (zh) * 2017-07-18 2019-07-02 深圳市杰普特光电股份有限公司 光响应特性快速测量装置及方法

Also Published As

Publication number Publication date
JP2000088955A (ja) 2000-03-31

Similar Documents

Publication Publication Date Title
JP4046422B2 (ja) 運動補償回路及びレーダ装置
US6952178B2 (en) Method of detecting moving objects and estimating their velocity and position in SAR images
US5818383A (en) Interferometric moving vehicle imaging apparatus and method
US6545762B2 (en) Method of investigating vibrations and an apparatus therefor
US9348021B2 (en) Methods and apparatus for adaptive motion compensation to remove translational movement between a sensor and a target
JP3395606B2 (ja) 位相補償回路、位相補償方法およびレーダ装置
Yang et al. Airborne SAR moving target signatures and imagery based on LVD
EP3751309B1 (en) Radar image processing device and radar image processing method
JP3645133B2 (ja) レーダ装置
US20120001795A1 (en) Multipath SAR imaging
JP4722574B2 (ja) 画像レーダ装置
JP4943065B2 (ja) 画像レーダ装置
JP2009236720A (ja) 移動目標検出装置
JP2013130472A (ja) 画像レーダ装置
JPH08220218A (ja) 移動物体の速度の測定方法及びその方法を実施する遠隔検出装置
JP3946860B2 (ja) レーダ装置
JP3642149B2 (ja) 補償回路、補償方法およびレーダ装置
JP3360562B2 (ja) 補償回路、補償方法およびレーダ装置
JP3756400B2 (ja) 波源検出装置及び波源検出方法
CA2069979C (en) Method of generating a reference function for a pulse compression of frequency; phase and/or amplitude-modulated signals
JP3949489B2 (ja) レーダ装置
JP3709701B2 (ja) レーダ信号処理器
JP2000155165A (ja) レーダ装置
JP3631136B2 (ja) レーダ装置
JP4110896B2 (ja) レーダ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term