JP4019444B2 - 半導体製造装置 - Google Patents

半導体製造装置 Download PDF

Info

Publication number
JP4019444B2
JP4019444B2 JP34788796A JP34788796A JP4019444B2 JP 4019444 B2 JP4019444 B2 JP 4019444B2 JP 34788796 A JP34788796 A JP 34788796A JP 34788796 A JP34788796 A JP 34788796A JP 4019444 B2 JP4019444 B2 JP 4019444B2
Authority
JP
Japan
Prior art keywords
wafer
temperature
gas
rotation
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34788796A
Other languages
English (en)
Other versions
JPH10189468A (ja
Inventor
裕司 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP34788796A priority Critical patent/JP4019444B2/ja
Publication of JPH10189468A publication Critical patent/JPH10189468A/ja
Application granted granted Critical
Publication of JP4019444B2 publication Critical patent/JP4019444B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法及び半導体製造装置に係り、特に急速熱プロセス(RTP;Rapid Thermal Process )を行う半導体装置の製造方法(以下、「RTP処理方法」という)及びRTP処理を行う半導体製造装置(以下、「RTP処理装置」という)に関するものである。
【0002】
【従来の技術】
次世代の半導体集積回路においては、更なるデバイスサイズの縮小化に伴い、垂直及び水平方向の微細化・集積化が今後ますます重要となってくる。
水平方向の微細化は、より微細なパターンを形成するリソグラフィ技術の改善とこの微細パターンに忠実に加工する微細加工技術の改善とにより達成される。他方、垂直方向の微細化は、必ずしも水平方向の微細化と同様な展開を示すものではない。それは、例えば配線材料を加工して配線抵抗を形成する場合や、絶縁膜材料を加工して層間膜容量を形成する場合において、デバイスの動作速度の高速化の要求と垂直方向のスケーリングの縮小化の要求とが相反するものとなるからである。
【0003】
但し、拡散層の接合深さに関しては、水平方向及び垂直方向の両方において、ほぼ同じ割合でスケーリングの縮小化が進められている。これは、主にトランジスタの短チャネル効果を抑制しようとする要求を満たすためであるが、将来的には接合深さが更に浅く、且つ拡散層の抵抗が小さいことが要求されるようになるであろう。
【0004】
このような浅い接合を実現する際に、既存のバッチ式拡散炉を用いた技術の場合、特にその熱処理時間の制約による限界が表面化してきている。そのため、近年においては、RTP処理方法を用いて拡散層に注入された不純物イオンを活性化することについての検討が進められている。
ここで、RTP処理方法とは、ランプ等の光源からの赤外線の照射により短時間に半導体ウェーハ(以下、「ウェーハ」と略する)を加熱したり、又は冷却したりする技術をいう。従って、このRTP処理方法を用いることにより、ウェーハは実効的に短時間のみ加熱されるため、拡散層内の各種不純物イオンの注入プロファイルの変化を少なくして、浅い接合を実現することが可能となる。同時に、拡散層内の不純物イオンの活性化率は最高熱処理温度で決定されるため、イオン活性化率を比較的高く維持して、拡散層の低抵抗化を実現することも可能となる。同様に、ゲート電極等の熱処理による低抵抗化を行う際にも、RTP処理方法を利用することができる。
このような利点から、次世代の微細デバイスを作製するためには、RTP処理方法は必要不可欠なものであると考えられている。
【0005】
以下、従来のRTP処理装置を用いたRTP処理方法を、図6を用いて説明する。ここで、図6は従来のRTP処理装置を示す概略断面図である。
例えば石英チューブからなるRTP処理室60の一方の端には、所定の雰囲気ガスを内部に導入するためのガス導入口62が設けられ、他方の端には、その雰囲気ガスを外部に排出するためのガス排出部64が設けられている。
また、RTP処理室60内には、例えば石英からなるウェーハホールダ66が設置され、その上に例えばSi(シリコン)ウェーハ68を搭載するようになっている。また、このSiウェーハ68の周囲には、例えばポリシリコン等を材料とするガードリング70が配置され、Siウェーハ68の中央部と周辺部との間に生じるウェーハ温度の不均一を抑制するようになっている。
【0006】
また、RTP処理室60を上下に挟んで、加熱源としてのハロゲンランプ72が複数個等間隔をおいて配置されている。そしてこれら複数個のハロゲンランプ72の背後には、各ハロゲンランプ72を焦点とする放物面形状をなす反射板74が設置され、RTP処理室60内のウェーハホールダ66上に搭載されたSiウェーハ68表面に向かうハロゲンランプ72の反射光が略平行光になるようにしている。
【0007】
次に、図6のRTP処理装置を用いたRTP処理方法について述べる。
先ず、ガス導入口62からRTP処理室60内に雰囲気ガスの導入を開始した後、このRTP処理室60内に、Siウェーハ68を搭載したウェーハホールダ66をローディング(loading )する。
次いで、複数個のハロゲンランプ72のスイッチをオン(ON)にして、RTP処理室60内のウェーハホールダ66上に搭載したSiウェーハ68を加熱し、その昇温を開始する。このとき、複数個のハロゲンランプ72の強力な発熱によってRTP処理装置の本質的な特徴である急峻な温度上昇が可能であるため、ウェーハ温度は室温から所定の処理温度に急速に上昇する。そしてウェーハ温度が所定の処理温度に到達した段階で、目的とする熱処理を開始する。この熱処理は、必要に応じて所望の時間行う。
【0008】
次いで、所望の処理時間が経過した時点で、熱処理を終了する。同時に、複数個のハロゲンランプ72のスイッチをオフ(OFF)にして、Siウェーハ68の冷却を開始する。そしてウェーハ温度が所定の処理温度から室温に達した時点で、Siウェーハ68の降温を終了する。
次いで、RTP処理室60内からSiウェーハ68を搭載したウェーハホールダ66をアンローディング(unloading )した後、このウェーハホールダ66上から、所定の熱処理を施したSiウェーハ68を取り出す。そしてRTP処理室60内に流している雰囲気ガスの導入を停止する。こうして、RTP処理を完了する。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来のRTP処理装置を用いたRTP処理方法には、以下に示す幾つかのRTP処理装置等に起因するウェーハ面内における温度分布の不均一性という問題点がある。
【0010】
(1)ランプの形状を反映した温度分布の不均一性
RTP処理装置の加熱源としては、上述のように、一般に直線形状のハロゲンランプが使用される。そしてウェーハ全体を均等に加熱するために、直線形状のハロゲンランプを短冊状に配置して加熱を行っているが、この短冊状に配置されたハロゲンランプの形状を反映した温度分布がウェーハ面内に観測されるという問題もある。
勿論、ハロゲンランプの後方にはハロゲンランプを焦点とする放物面形状の反射板が配置され、ウェーハ表面上へは略平行なランプ光が照射されるように工夫されてはいるが、ハロゲンランプには有限の大きさがあるため、ウェーハ表面においてランプ光密度を完全に均一化することは不可能である。
なお、ハロゲンランプの配置や形状を工夫して、ウェーハの表面温度の均一性を向上させようとする試みも行われている。しかし、同一工程において同時に製造されたハロゲンランプであってもその特性が個々に微妙に異なっているのが通例であるため、幾つかのハロゲンランプを組合せて配置する場合、ウェーハ温度を均一化することが困難であるという問題がある。また、ハロゲンランプは消耗品であり、たとえ初期特性が同一であっても劣化曲線は個々に微妙に異なっているのが通例であるため、ハロゲンランプの個々に異なる劣化によりウェーハ温度の均一性が悪化してしまうという問題もある。
【0011】
(2)ウェーハが有限の大きさを有することに起因する温度分布の不均一性
ウェーハ外周は、通常、室温のガス雰囲気と接するために、中央部分に比べて冷却され易く、そのために温度が低くなる傾向にある。そしてこのウェーハ面内における温度勾配はウェーハ外周ほど大きくなり易く、従ってウェーハ外周部にスリップラインが発生するという問題があった。
この問題に対して、ウェーハ外周にガードリングを配置することによりスリップラインの発生を抑制しようとする技術が開発されている。しかしながら、このガードリングの設置は、被加熱物の熱容量を増加させるために急俊な温度制御の追随性が悪くなり、熱処理温度や熱処理時間によっては逆にウェーハ外周部分の方が実効的な熱処理量の増加を招いてしまうという問題も生じる。
【0012】
(3)雰囲気ガスの流れに起因する温度分布の不均一性
RTP処理の種類としては、いわゆるRTA(Rapid Thermal Anneal)処理やRTO(Rapid Thermal Oxidation )処理等がある。そして例えばSi基板中に注入した不純物イオンを活性化するための熱処理や、Ti(チタン)等の高融点金属層をシリサイド化するための熱処理等を行うRTA処理の場合には、通常、N2 (窒素)やAr(アルゴン)等の不活性ガス雰囲気中において処理されるが、急速酸化を行うRTO処理の場合には、O2 (酸素)を含む酸化性ガス雰囲気中において処理される。いずれの場合も、雰囲気ガスの流れは一般に導入口から排出口に向かう所定の方向に定まっている場合が多く、その場合、この一定方向に流れる雰囲気ガスの冷却効果により、その雰囲気ガスの流量や温度に応じてウェーハ面内に温度差が生じてしまうという問題があった。
【0013】
このようなRTP処理におけるウェーハ面内における温度分布の不均一性は、本発明者が行った実験によっても裏付けられた。
例えば、雰囲気ガスの温度を変化させてRTA処理を行い、直径8インチのウェーハにおけるp+ 拡散層のシート抵抗及びWSix(タングステン・シリサイド)層とポリシリコン層を積層したポリサイド構造のゲート電極のシート抵抗の面内均一性を評価したところ、図7のグラフに示す分布となった。両シート抵抗は、温度以外にも、不純物濃度(p+ 拡散層の場合)や膜厚(WSixの場合)によっても変化するが、両シート抵抗の変化の仕方が同じなので、ウェーハ面内(のチップ位置)によって温度が異なるのがシート抵抗の分布の原因と考えられる。この場合、ウェーハ内の測定したチップの部分の温度が瞬間的に何度にまで上昇したかは不明であるが、実効的には8インチ・ウェーハの有効チップ領域内において、その温度分布に約30℃の温度差が認められる。
また、このときのp+ 拡散層のシート抵抗の面内分布形状をとると、図8の鳥瞰図(Bird's-eye View )に示すようになった。このp+ 拡散層のシート抵抗の面内分布形状からは、並列に配置されている直線状のハロゲンランプの形状の影響と明らかに考えられる形状が得られる。
【0014】
また、RTP処理におけるウェーハ面内の温度分布について論じている文献によれば、8インチ・ウェーハ面内における温度分布の実測値及び計算結果において40〜50℃の温度差を有することが報告されている(Karson L. Knutson,etal., "Modeling of Tree-Dimensional Effects on Temperature Uniformity in Rapid Thermal Processing of Eight Inch Wafers",IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING,VOL.7,No.1,Feb.1994 参照)。
従って、このようなRTP処理におけるウェーハ面内の温度分布の不均一性が今後改善されなければ、現在より更に低温のRTP処理方法を採用する場合や、使用するウェーハを大口径化する場合、RTP処理方法を適用したデバイス特性のバラツキが更に大きくなるおそれが強い。
【0015】
更にまた、RTP処理方法の抱えるもう一つの問題点として、ウェーハの降温特性の制御の問題がある。
即ち、RTP処理方法においては、例えば強力な出力のハロゲンランプを用いることにより昇温時に急俊に温度を上昇させることは容易に可能であるが、降温時においては、ハロゲンランプをオフにしてウェーハの自然冷却に任せているのが現状である。特にウェーハの温度分布の面内均一性を向上させるためにガードリングを装着した場合には、ウェーハ全体としての熱容量が増加することから、ハロゲンランプのオフ後も直ぐにはウェーハは冷却されない。このため、ウェーハの降温時においては、極めて短時間の熱処理の制御が困難になるという問題があった。これに対して、降温時に大量の雰囲気ガスを流すことによってウェーハを急冷することも考えられるが、単なる大量のガス流による急冷の場合、ガス流のパターンに応じてウェーハの降温時の温度分布が極端に不均一化するという問題が生じる。
従って、以上述べた状況下においては、RTP処理における実効的な温度のウェーハ面内均一性を向上させることが次世代の微細デバイスを作製するに当って必要とされ始めている。
【0016】
なお、このようなRTP処理におけるウェーハ温度の面内均一性を向上させるために、種々の提案がなされている。
例えば特開平4−286319号の「ハロゲンランプ及び熱処理炉」においては、加熱源としてのハロゲンランプの筒状管内にそれぞれ発熱部の位置が異なる3本のタングステン線を封入することにより、ハロゲンランプの長手方向に沿う温度分布を調整可能にすると共に、このようなハロゲンランプをその長手方向が熱処理炉本体の前後方向に対して直角となるような配置関係でもって熱処理炉本体の前後方向に多数配列することにより、熱処理炉の前後間及び左右間の温度分布の容易に調整できるようにして、熱処理炉内に挿入したウェーハ面内における温度分布の均一化を実現しようとしている。
【0017】
しかし、本提案のように加熱源としてのランプを工夫する手法は、既に述べたように、各ランプ間の製造上の特性ばらつきが大きいことや、消耗品であることによる劣化曲線が個々に異なるという問題がある。こうした一般的な問題に加えて、本提案に係るハロゲンランプは、その筒状管内に3本のタングステン線を封入しているため、新しいハロゲンランプに交換する度に温度制御のパラメータの設定を行う必要が生じる。しかもこの場合、本当に温度が均一化されているかを評価することは困難であり、また一度パラメータを適切に設定してもその後の経時変化に適宜対処することは殆ど不可能である。従って、本提案はハロゲンランプの温度制御のパラメータが多く、これらのパラメータを制御・維持することが困難であるという問題がある。
【0018】
更に、その筒状管内に3本のタングステン線を封入しているハロゲンランプを実際に製造するとなると、その製造コストが大きくなることを無視できず、その結果、RTP処理装置の製造コストも大きくなる。従って、本提案はハロゲンランプの製造コストの上昇、引いてはRTP処理装置の製造コストの上昇を招くという問題がある。
【0019】
また、特開平7−326578号の「薄膜製造装置」においては、ウェーハの局所を直接加熱する加熱源として例えばYAGレーザ、又はハロゲンランプやキセノンアークランプ等を用い、こうした加熱源をウェーハの半径方向に走査しつつ、同時にウェーハを回転させることにより、ウェーハ上をまんべんなく加熱して、高い制御精度をもって熱分布の均一化を実現しようとしている。
しかし、現在使用可能な加熱源において、レーザはハロゲンランプ等と比較してそのコストが非常に高い。このため、レーザによる加熱は、レーザでなければ不可能な用途、例えば数m秒の短時間の加熱や局所的な加熱等の場合に限って行われているのが通例である。従って、本提案は、加熱源として例えばレーザを用いる場合には、装置の製造コストの上昇を招くという問題がある。
【0020】
また、加熱源としてハロゲンランプやキセノンアークランプ等を用いる場合、これらのランプの一次光は放射状に進むため、レンズを用いて集光し、且つ光路を変更する等の操作を行う必要がある。そしてこうした操作を行う度にランプ光が減衰していく。従って、本提案は、加熱源として例えばハロゲンランプやキセノンアークランプ等を用いる場合には、ランプ光による加熱効率が低下するという問題がある。
【0021】
そこで本発明は、上記事情を鑑みてなされたものであり、RTP処理を行う際に、ウェーハ面内における温度分布の均一性を確保することができる半導体製造装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記課題は、以下の本発明に係る半導体製造装置によって達成される。
【0023
請求項1に係る半導体製造装置は、急速熱プロセスを行う半導体製造装置であって、所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、前記加熱源と半導体ウェーハとの相対位置を変化させる手段が、ウェーハを偏心自転させる手段であるように構成されていることにより、単なる自転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0024】
また、請求項2に係る半導体製造装置は、急速熱プロセスを行う半導体製造装置であって、所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、前記加熱源と半導体ウェーハとの相対位置を変化させる手段が、前記半導体ウェーハを偏心自転させつつ公転させる手段であるように構成されていることにより、単なる自転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0025
また、請求項に係る半導体製造装置は、上記請求項に係る半導体製造装置において、および請求項4に係る半導体製造装置は上記請求項2に係る半導体製造装置において、ウェーハの偏心自転の偏心率を調整する手段を有するように構成されていることにより、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合を最適にすることが可能になるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0026
また、請求項に係る半導体製造装置は、急速熱プロセスを行う半導体製造装置であって、所定の雰囲気ガス中において、前記加熱源と前記半導体ウェーハとの相対位置を変化させる手段が、ウェーハを偏心公転させる手段であるように構成されていることにより、単なる公転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0027】
また、請求項6に係る半導体製造装置は、急速熱プロセスを行う半導体製造装置であって、所定の雰囲気ガス中において、前記加熱源と前記半導体ウェーハとの相対位置を変化させる手段が、ウェーハを偏心公転させる手段であるように構成されていることにより、単なる公転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0028
また、請求項に係る半導体製造装置は、上記請求項に係る半導体製造装置において、および請求項8に係る半導体製造装置は上記請求項5に係る半導体製造装置において、ウェーハの偏心公転の偏心率を調整する手段を有するように構成されていることにより、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合を最適にすることが可能になるため、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0029
【発明の実施の形態】
以下、添付図面を参照しながら、本発明の実施の形態を説明する。
(第1の実施形態)
図1は本発明の第1の実施形態に係るRTP処理装置を示す概略断面図、図2は図1のRTP処理装置に装填されたウェーハ等を示す平面図、図3は図1のRTP処理装置を用いたRTA処理のタイムチャートを示す図である。
図1に示すように、例えば石英チューブからなるRTP処理室10の一方の端には、所定の雰囲気ガスを内部に導入するためのガス導入口12が設けられ、他方の端には、その雰囲気ガスを外部に排出するためのガス排出部14が設けられている。なお、図示はしないが、ガス導入口12の前段には、ガス導入口12からRTP処理室10内に導入する雰囲気ガスの流量を調整するガス流量制御部が設置されている。
【0030
また、RTP処理室10内には、例えば石英からなるウェーハホールダ16が設置され、その上に例えばSiウェーハ18を搭載するようになっている。また、Siウェーハ18の周囲には、例えばポリシリコン等を材料とするガードリング20が配置され、Siウェーハ18の中央部と周辺部との間に生じるウェーハ温度の不均一を抑制するようになっている。
【0031
また、ウェーハホールダ16は、回転伝達部22を介して回転駆動部24に接続され、回転駆動部24によって図中に破線で示す回転軸L1 の回りを水平回転すると共に、その回転速度を制御するようになっている。
そしてこのウェーハホールダ16の水平回転の回転軸L1 は、図2に示すように、ウェーハホールダ16上のSiウェーハ18の中心点C1 を通るのではなく、例えばSiウェーハ18のオリエンテーションフラットの反対側に僅かに偏位した偏心点C2 を通っている。このため、ウェーハホールダ16の水平回転に伴い、ウェーハホールダ16上に搭載されたSiウェーハ18は偏心点C2 を中心として偏心自転することになる。
【0032
また、RTP処理室10を上下に挟んで、例えば直線形状のハロゲンランプ26が加熱源として複数個等間隔をおいて短冊状に配置されている。そしてこれら複数個のハロゲンランプ26の背後には、各ハロゲンランプ26を焦点とする放物面形状をなす反射板28が設置され、RTP処理室10内のウェーハホールダ16上に搭載されたSiウェーハ18表面に向かうハロゲンランプ26の反射光が略平行光になるようにしている。なお、ハロゲンランプ26の代わりに、例えばキセノンランプ等を加熱源として用いてもよい。
【0033
次に、図1のRTP処理装置を用いたRTA処理方法を、図3のタイムチャートの時間軸tに沿って説明する。
(1)雰囲気ガスの導入開始(時刻t1
ガス導入口12からRTP処理室10内に、雰囲気ガスとして例えばArガスの導入を開始する。このとき、Arガスの流量は例えば0.5slmとし、その温度は室温とする。なお、Arガスの代わりに、例えばHeガスやN2 ガス等の不活性ガスを雰囲気ガスとして使用してもよい。
【0034
(2)ウェーハの装填(時刻t2
ウェーハホールダ16上にSiウェーハ18を搭載した後、Siウェーハ18を搭載したウェーハホールダ66をRTP処理室10内にローディングする。
通常の場合は、Siウェーハ18をウェーハホールダ16上に特に固定する必要はない。但し、Siウェーハ18の自転速度が高速になるなどの理由により、Siウェーハ18をウェーハホールダ16上に固定する必要が生じた場合において、略大気圧下でRTA処理を行うときは真空チャックを用いて固定すればよいし、減圧下でRTA処理を行うときは静電チャックを用いて固定すればよい。
【0035
(3)ウェーハの自転開始(時刻t3
回転駆動部24により、回転伝達部22を介してウェーハホールダ16を水平回転させる。このウェーハホールダ16の水平回転の回転軸L1 は、Siウェーハ18の中心点C1 ではなく僅かに偏位した偏心点C2 を通っているため、ウェーハホールダ16の水平回転に伴い、Siウェーハ18は偏心点C2 を中心とする偏心自転を開始する。このとき、Siウェーハ18の自転速度は例えば60rpm程度、即ち毎秒1回転する程度の速度とする。
【0036
(4)ウェーハの昇温開始(時刻t4
複数個のハロゲンランプ26のスイッチをオンにして、RTP処理室10内のウェーハホールダ16上に搭載したSiウェーハ18を加熱し、その昇温を開始する。このとき、高出力のハロゲンランプ26の強力な発熱光によってRTP処理装置の本質的な特徴である急峻な温度上昇が可能であるため、ウェーハ温度は室温から所定の処理温度に急速に上昇する。
【0037
(5)熱処理開始(時刻t5
ウェーハ温度が所定の処理温度に到達した段階で、目的とする熱処理を開始する。この熱処理は、必要に応じて所望の時間行えばよいが、ここでは処理時間を例えば10秒程度とする。
【0038
(6)熱処理終了(時刻t6
所望の処理時間が経過した時点で、熱処理を終了する。同時に、複数個のハロゲンランプ26のスイッチをオフにし、Siウェーハ18の冷却を開始する。このとき、ガス流量制御部(図示省略)により、RTP処理室10内に流しているArガスの流量をそれまでの0.5slmから例えば5slmに大幅に増加し、Siウェーハ18の降温速度を加速する。
【0039
(7)ウェーハの降温終了(時刻t7
流量を0.5slmから5slmに増加した大量のArガス流により、ウェーハ温度は所定の処理温度から急速に下降し、室温に達した時点で、Siウェーハ18の降温が終了する。
【0040
(8)ウェーハの自転終了(時刻t8
回転駆動部24によるウェーハホールダ16の水平回転を停止して、Siウェーハ18の偏心自転を停止する。同時に、RTP処理室10内に流しているArガスの流量を降温時の5slmから元の0.5slmに減少する。
【0041
(9)ウェーハの取り出し(時刻t9
RTP処理室10内からSiウェーハ18を搭載したウェーハホールダ16をアンローディングした後、このウェーハホールダ16上から、所定の熱処理を施したSiウェーハ18を取り出す。
【0042
(10)雰囲気ガスの導入停止(時刻t10
RTP処理室10内に流しているArガスの導入を停止する。こうしてRTA処理を完了する。
【0043
以上のように本実施形態によれば、RTP処理装置には、回転伝達部22を介してウェーハホールダ16を水平回転させる回転駆動部24が設置され、この回転駆動部24によるウェーハホールダ16の水平回転に伴い、このウェーハホールダ16の上に搭載したSiウェーハ18をその中心点C1 から僅かに偏位した偏心点C2 を中心として偏心自転させるように構成されていることにより、RTA処理の際に、Siウェーハ18を例えば自転速度60rpm程度で偏心自転させて、加熱源としての複数個のハロゲンランプ26とSiウェーハ18との相対位置を変化させながら熱処理を行うことが可能になるため、例えば複数個の直線形状のハロゲンランプ26が短冊状に配置されている加熱源の形状を反映した温度分布の不均一性等を解消して、ウェーハ温度の面内均一性を確保することができる。また、複数個のハロゲンランプ26のうちのある特定のハロゲンランプが他のハロゲンランプランプと微妙に異なる特性を有している場合においても、また異なる劣化曲線を有し、劣化の度合いが異なる場合においても、こうした複数個のハロゲンランプ26間の差異に起因する温度分布の均一性の悪化を抑制することができる。
【0044
また、回転駆動部24の回転速度を制御して、Siウェーハ18の自転速度を制御することが可能なため、熱処理期間の長さ等に応じてSiウェーハ18の自転速度を調整することにより、たとえ処理期間を変化させる必要が生じた場合においても、その処理期間中を通じてウェーハ温度の面内均一性を維持することができる。
【0045
また、熱処理を行う際、雰囲気ガスとして例えば流量0.5slmのArガスをガス導入口12からガス排出部14に向かって一定方向に流しても、Siウェーハ18を偏心自転させることにより、Arガスの一定方向の流れに対してもSiウェーハ18の相対位置を変化させることが可能になるため、雰囲気ガスとしてのArガスの流れに起因する温度分布の不均一性を解消し、ウェーハ温度の面内均一性を確保することが可能になる。
【0046
また、熱処理の後のSiウェーハ18を冷却する際に、ガス流量制御部によりRTP処理室10内に流しているArガスの流量を0.5slmから5slmに増加し、ウェーハ温度を所定の処理温度から室温にまで急冷することが可能になる。こうした大量のAr流によりSiウェーハ18を急冷する場合においても、Siウェーハ18の偏心自転によってArガスの流れに対するSiウェーハ18の相対位置を変化させることにより、大量のArガスの流れに起因する温度分布の不均一性を解消することが可能になるため、ウェーハ面内における温度分布の均一性を確保することができる。このことは、ガス流量制御部によってArガスの流量を調整することにより、ウェーハ面内における温度分布の均一性を確保しつつ、Siウェーハ18の降温速度を制御することが可能であることを意味している。
【0047
なお、上記第1の実施形態においては、熱処理の後のSiウェーハ18を降温する際に、室温のArガスの流量を0.5slmから5slmに増加してSiウェーハ18を急冷する場合にも、ウェーハ面内における温度分布の均一性を確保することができることについて述べたが、単に雰囲気ガスを大量に流すことによりSiウェーハ18を急冷する手法のみならず、冷却された雰囲気ガスを流すことによりSiウェーハ18を急冷する手法を採ることも可能である。
即ち、ガス導入口12の前段に、RTP処理室10内に導入する雰囲気ガスの温度を調整するガス温度制御部を設置し、熱処理が終了した時点(時刻t6 )で、ガス温度制御部によって室温より低い温度に冷却したArガスをRTP処理室10内に流すようにする。こうして、室温より低温に冷却したArガスを流すことにより、ウェーハ温度を所定の処理温度から室温にまで急冷する場合においても、Siウェーハ18の偏心自転によってArガスの流れに対するSiウェーハ18の相対位置を変化させることにより、冷却したArガスの流れに起因する温度分布の不均一性を解消することが可能になるため、ウェーハ面内における温度分布の均一性を確保することができる。このことは、ガス温度制御部によってArガスの温度を調整することにより、ウェーハ面内における温度分布の均一性を確保しつつ、Siウェーハ18の降温速度を制御することが可能であることを意味している。
【0048
更に、上記2つの手法を組み合わせ、冷却された雰囲気ガスを大量に流すことによりSiウェーハ18を急冷する手法を採ることも可能である。即ち、熱処理が終了した時点(時刻t6 )で、ガス温度制御部によってArガスを室温より低温に冷却すると共に、この冷却したArガスの流量をガス流量制御部によって増加することにより、ウェーハ温度を所定の処理温度から室温にまで急冷することが可能である。こうした大量の冷却したAr流によりSiウェーハ18を急冷する場合においても、Siウェーハ18の偏心自転によってArガスの流れに対するSiウェーハ18の相対位置を変化させることにより、大量の冷却したArガスの流れに起因する温度分布の不均一性を解消することが可能になるため、ウェーハ面内における温度分布の均一性を確保することができる。
【0049
また、上記第1の実施形態においては、ウェーハホールダ16の水平回転に伴ってその上に搭載したSiウェーハ18をその中心点C1 から僅かに偏位した偏心点C2 を中心として偏心自転させるように構成されているが、ウェーハホールダ16の水平回転の中心軸L1 がSiウェーハ18の中心点C1 を通るようにして、Siウェーハ18の中心点C1 を中心として単なる自転をするようにしてもよい。この場合、偏心自転と比較すると、加熱源とウェーハとの相対位置の変化の度合が制限されるが、ウェーハ面内における温度分布の均一性を確保するという効果を奏することは可能である。
【0050
これとは逆に、Siウェーハ18の偏心自転の偏心率を調整する偏心率調整部を設置し、この偏心率調整部により、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合が最適になるようにSiウェーハ18の偏心自転の偏心率を制御してもよい。この場合、加熱源とウェーハとの相対位置の変化の度合の最適化により、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0051
(第2の実施形態)
図4は本発明の第2の実施形態に係るRTP処理装置を示す概略断面図、図5は図4のRTP処理装置に装填されたウェーハ等を示す平面図である。
例えば石英チャンバからなるRTP処理室30内の上部には、ガス導入管32が設置されている。そしてこのガス導入管32には、多数の孔が下向きに開口されたシャワー部34が設けられ、ガス導入口36から導入された所定の雰囲気ガスが多数の孔からRTP処理室30内に下向きに吹き出すようになっている。また、RTP処理室30の下端部には、RTP処理室30内の雰囲気ガスを外部に排出するためのガス排出部38が設けられている。なお、図示はしないが、ガス導入口36の前段には、RTP処理室30内に導入する雰囲気ガスの流量を調整するガス流量制御部が設置されている。
【0052
また、RTP処理室30内には、回転支持台40が設置され、その中心を通る回転軸L2 の回りに水平回転するようになっている。また、この回転支持台40上には、回転軸L2 から僅かに偏位した位置に回転駆動部42が取り付けられ、この回転駆動部42により、回転伝達部44を介して円盤46をその中心点C3を通る回転軸L3 の回りに水平回転させると共に、その回転速度を制御するようになっている。
【0053
また、円盤46の外周に沿って、4つのウェーハホールダ48が一定の間隔をおいて配置され、各ウェーハホールダ48上にそれぞれSiウェーハ50を搭載するようになっている。そしてウェーハホールダ48上に搭載されたSiウェーハ50は、ガス導入管32のシャワー部34下方に位置するようになっている。また、各ウェーハホールダ48下には、それぞれ歯車52が接着されており、この歯車52の回転に伴い、ウェーハホールダ48がその中心点C4 を通る回転軸L4 の回りに水平回転するようになっている。
【0054
また、円盤46の外周面には歯車52のピッチと同一ピッチの凹凸が刻まれており、円盤46の回転に伴ってその外周を歯車52が自転しつつ公転するようになっている。即ち、これらの円盤46及び4つの歯車52は、いわゆる差動歯車機構(Differential gearing)のうちの遊星歯車機構(Planetary gearing )を構成し、円盤46がいわゆる太陽歯車に相当し、4つの歯車52がいわゆる遊星歯車に相当するようになっている。
従って、回転駆動部42の回転によって円盤46が回転軸L3 の回りに水平回転すると、この円盤46の外周に沿って歯車52、即ちウェーハホールダ48が自転しつつ公転する。また、回転駆動部42自体が、回転支持台40の回転によって回転軸L2 の回りに水平回転する。そしてこれらの回転運動が複合されて、ウェーハホールダ48上に装填されたSiウェーハ50が自転しつつ偏心公転することになる。
【0055
また、RTP処理室30上には、例えば直線形状のハロゲンランプ54が複数個等間隔をおいて短冊状に配置されている。そしてこれら複数個のハロゲンランプ54の背後には、各ハロゲンランプ54を焦点とする放物面形状をなす反射板56が設置され、RTP処理室30内のウェーハホールダ48上に搭載されたSiウェーハ50表面に向かってハロゲンランプ54の反射光が略平行光になるようにしている。
【0056
次に、図4のRTP処理装置を用いたRTA処理方法を説明するが、上記図3のタイムチャートの時間軸tに沿って説明した第1の実施形態の場合とほぼ同様であるため、共通する点の説明は簡略にし、異なる点のみ重点的に説明する。
(1)雰囲気ガスの導入開始、及び(2)ウェーハの装填の各ステップは、上記第1の実施形態の場合とほぼ同様に行う。なお、この場合の雰囲気ガスとしてのArガスの流量は、RTP処理室30の大きさ等を考慮して適切に設定する。また、上記第1の実施形態の場合と同様に、Arガスの代わりに、例えばHeガスやN2 ガス等の不活性ガスを雰囲気ガスとして使用してもよい。
【0057
次いで、上記第1の実施形態の場合の(3)ウェーハの自転開始のステップの代わりに、(3)ウェーハの自公転開始のステップを行う。即ち、回転支持台40の回転によって回転駆動部42を回転軸L2 の回りに水平回転させると共に、この回転駆動部42自体の回転によって円盤46を回転軸L3 の回りに水平回転させ、この円盤46の外周に沿って4つのウェーハホールダ48を自転させつつ公転させる。こうして、ウェーハホールダ48上に装填されたSiウェーハ50をその中心点C4 を通る回転軸L4 の回りに自転させつつ回転軸L2 の回りに偏心公転させる。なお、このときの回転支持台40及び回転駆動部42の各回転速度は、ウェーハ温度の面内均一性を確保することができる範囲内で適切に設定する。
【0058
次いで、(4)ウェーハの昇温開始、(5)熱処理開始、(6)熱処理終了、及び(7)ウェーハの降温終了の各ステップは、それぞれ上記第1の実施形態の場合とほぼ同様に行う。なお、処理温度及び処理時間は、処理目的に応じて適切に設定し、また冷却時のArガスの増量は、ウェーハ温度の面内均一性を確保することができる範囲内で適切に行う。
次いで、上記第1の実施形態の場合の(8)ウェーハの自転終了のステップの代わりに、(8)ウェーハの自公転終了のステップを行う。即ち、回転支持台40の回転及び回転駆動部42自体の回転を停止し、Siウェーハ50の自転及び偏心公転を停止する。
次いで、(9)ウェーハの取り出し、及び(10)雰囲気ガスの導入停止の各ステップは、それぞれ上記第1の実施形態の場合とほぼ同様に行う。
【0059
以上のように本実施形態によれば、RTP処理装置には、円盤46及び4つの歯車52からなる遊星歯車機構を介してウェーハホールダ48を回転軸L3 の回りに自公転させる回転駆動部42並びにこの回転駆動部42を回転軸L2 の回りに水平回転させる回転支持台40が設置され、ウェーハホールダ48上に搭載したSiウェーハ50を自転させつつ偏心公転させるように構成されていることにより、RTA処理の際に、Siウェーハ50を自転させつつ偏心公転させて、加熱源としての複数個のハロゲンランプ54とSiウェーハ50との相対位置を変化させながら熱処理を行うことが可能になるため、例えば複数個の直線形状のハロゲンランプ54が短冊状に配置されている加熱源の形状を反映した温度分布の不均一性等を解消して、ウェーハ温度の面内均一性を確保することができる。また、複数個のハロゲンランプ54のうちのある特定のハロゲンランプが他のハロゲンランプランプと微妙に異なる特性を有している場合においても、また異なる劣化曲線を有し、劣化の度合いが異なる場合においても、こうした複数個のハロゲンランプ54間の差異に起因する温度分布の均一性の悪化を抑制することができる。
【0060
また、RTA処理の際に、Siウェーハ50を偏心公転させ、加熱源としての複数個のハロゲンランプ54とSiウェーハ50との相対位置を変化させながら熱処理を行うことが可能になるため、Siウェーハ50の中心部と外周部との温度差を解消して、ウェーハ温度の面内均一性を確保することができる。従って、上記第1の実施形態のウェーハ16を偏心自転させるだけの場合と比較すると、公転運動が加わることによってウェーハ温度の面内均一性を更に向上させることができる。
【0061
また、回転支持台40及び回転駆動部42の回転速度を制御することにより、Siウェーハ50の自転及び偏心公転の速度を制御することが可能なため、熱処理期間の長さ等に応じてSiウェーハ18の自転及び偏心公転の速度を調整することにより、たとえ処理期間を変化させる必要が生じた場合においても、その処理期間中を通じてウェーハ温度の面内均一性を維持することができる。
【0062
また、熱処理や熱処理の後の冷却を行う際に、雰囲気ガスとしてのArガスの流れに起因する温度分布の不均一性を解消し、ウェーハ温度の面内均一性を確保することが要求されるが、Siウェーハ50を自転させつつ偏心公転させてArガスの流れに対するSiウェーハ50の相対位置を変化させることに加え、Arガスがガス導入管32のシャワー部34から下方のSiウェーハ50表面に略均等に吹き出すようになっているため、ガス流量制御部によりArガス流量を増加したり、ガス温度制御部を別個に設置して室温より低い温度にArガスを冷却したりしても、容易にウェーハ温度の面内均一性を確保することが可能になる。このことは、上記第1の実施形態の場合と同様に、ガス流量制御部によってArガスの流量を調整したり、ガス温度制御部によってArガス温度を低下したりすることにより、ウェーハ面内における温度分布の均一性を確保しつつ、Siウェーハ50の降温速度を制御することが可能であることを意味している。
【0063
なお、上記第2の実施形態においては、回転支持台40の回転によって回転駆動部42を回転軸L2 の回りに水平回転させ、回転駆動部42の回転によって円盤46及び4つの歯車52からなる遊星歯車機構を介してウェーハホールダ48を回転軸L3 の回りに自公転させることにより、Siウェーハ50を自転させつつ偏心公転させるように構成されているが、回転支持台40の回転軸L2 と回転駆動部42の回転軸L3 とを一致させて、Siウェーハ50が自転しつつ単に公転するようにしてもよい。この場合、自転しつつ偏心公転する場合と比較すると、加熱源とウェーハとの相対位置の変化の度合が制限されるが、ウェーハ面内における温度分布の均一性を確保するという効果を奏することは可能である。
これとは逆に、Siウェーハ50の偏心公転の偏心率を調整する偏心率調整部を設置し、この偏心率調整部により、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合が最適になるようにSiウェーハ18の偏心公転の偏心率を制御してもよい。この場合、加熱源とウェーハとの相対位置の変化の度合の最適化により、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0064
また、上記第2の実施形態においては、各ウェーハホールダ48下に接着された歯車52の回転に伴い、ウェーハホールダ48上に搭載したSiウェーハ50をその中心点C4 を通る回転軸L4 の回りに自転させるように構成しているが、上記第1の実施形態と同様にして、ウェーハホールダ48上のSiウェーハ50をその中心点C4 から僅かに偏位した偏心点を中心として偏心自転させるように構成して、Siウェーハ50を偏心自転させつつ偏心公転させるようにしてもよい。この場合、加熱源とウェーハとの相対位置の変化の度合は更に大きくなり、ウェーハ面内における温度分布の均一性を更に向上させることが可能になる。
【0065
また、上記第1及び第2の実施形態においては、RTP処理装置を用いてRTA処理を行う場合について説明しているが、RTA処理に限定されるものではなく、例えばRTP処理装置を用いてRTO処理を行う場合にも本発明を適用することは可能である。このRTO処理を行う場合、上記第1及び第2の実施形態において使用したArガスの代わりに、O2 を含む酸化性ガスを雰囲気ガスとして使用すればよい。
【0066
【発明の効果】
以上、詳細に説明した通り、本発明に係る半導体製造装置によれば、次のような効果を奏することができる。
【0067
また、請求項1および2に係る半導体製造装置によれば、ウェーハを偏心自転させる手段を有することにより、単なる自転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることができる。
【0068
また、請求項3および4に係る半導体製造装置によれば、ウェーハの偏心自転の偏心率を調整する手段を有することにより、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合を最適にすることが可能になるため、ウェーハ面内における温度分布の均一性を更に向上させることができる。
【0069
また、請求項5および6に係る半導体製造装置によれば、ウェーハを偏心公転させる手段を有することにより、単なる公転の場合よりも加熱源とウェーハとの相対位置の変化の度合が大きくなるため、ウェーハ面内における温度分布の均一性を更に向上させることができる。
【0070
また、請求項7および8に係る半導体製造装置によれば、ウェーハの偏心公転の偏心率を調整する手段を有することにより、他の熱処理条件に応じて加熱源とウェーハとの相対位置の変化の度合を最適にすることが可能になるため、ウェーハ面内における温度分布の均一性を更に向上させることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態に係るRTP処理装置を示す概略断面図である。
【図2】 図1のRTP処理装置に装填されたウェーハ等を示す平面図である。
【図3】 図1のRTP処理装置を用いたRTA処理のタイムチャートを示す図である。
【図4】 本発明の第2の実施形態に係るRTP処理装置を示す概略断面図である。
【図5】 図4のRTP処理装置に装填されたウェーハ等を示す平面図である。
【図6】 従来のRTP処理装置を示す概略断面図である。
【図7】 従来のRTP処理を行った場合のp+ 拡散層のシート抵抗及びポリサイド構造のゲート電極のシート抵抗の面内分布を示すグラフである。
【図8】 従来のRTP処理を行った場合のp+ 拡散層のシート抵抗の面内分布形状を示す鳥瞰図である。
【符号の説明】
10……RTP処理室、12……ガス導入口、14……ガス排出部、16……ウェーハホールダ、18……ウェーハ、20……ガードリング、22……回転伝達部、24……回転駆動部、26……ハロゲンランプ、28……反射板、30……RTP処理室、32……ガス導入管、34……シャワー部、36……ガス導入口、38……ガス排出部、40……回転支持台、42……回転駆動部、44……回転伝達部、46……円盤、48……ウェーハホールダ、50……ウェーハ、52……歯車、54……ハロゲンランプ、56……反射板、60……RTP処理室、62……ガス導入口、64……ガス排出部、66……ウェーハホールダ、68……ウェーハ、70……ガードリング、72……ハロゲンランプ、74……反射板。

Claims (8)

  1. 急速熱プロセスを行う半導体製造装置であって、
    所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、
    前記加熱源と半導体ウェーハとの相対位置を変化させる手段が、前記半導体ウェーハを偏心自転させる手段である
    ことを特徴とする半導体製造装置。
  2. 急速熱プロセスを行う半導体製造装置であって、
    所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、
    前記加熱源と前記半導体ウェーハとの相対位置を変化させる手段が、前記半導体ウェーハを偏心自転させつつ公転させる手段である
    ことを特徴とする半導体製造装置。
  3. 請求項記載の半導体製造装置において、
    前記半導体ウェーハの偏心自転の偏心率を調整する手段を有する
    ことを特徴とする半導体製造装置。
  4. 請求項記載の半導体製造装置において、
    前記半導体ウェーハの偏心自転の偏心率を調整する手段を有する
    ことを特徴とする半導体製造装置。
  5. 急速熱プロセスを行う半導体製造装置であって、
    所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、
    前記加熱源と前記半導体ウェーハとの相対位置を変化させる手段が、前記半導体ウェーハを偏心公転させる手段である
    ことを特徴とする半導体製造装置。
  6. 急速熱プロセスを行う半導体製造装置であって、
    所定の雰囲気ガス中において、加熱源と半導体ウェーハとの相対位置を変化させる手段を有し、
    前記加熱源と半導体ウェーハとの相対位置を変化させる手段が、前記半導体ウェーハを自転させつつ偏心公転させる手段である
    ことを特徴とする半導体製造装置。
  7. 請求項記載の半導体製造装置において、
    前記半導体ウェーハの偏心公転の偏心率を調整する手段を有する
    ことを特徴とする半導体製造装置。
  8. 請求項記載の半導体製造装置において、
    前記半導体ウェーハの偏心公転の偏心率を調整する手段を有する
    ことを特徴とする半導体製造装置。
JP34788796A 1996-12-26 1996-12-26 半導体製造装置 Expired - Fee Related JP4019444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34788796A JP4019444B2 (ja) 1996-12-26 1996-12-26 半導体製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34788796A JP4019444B2 (ja) 1996-12-26 1996-12-26 半導体製造装置

Publications (2)

Publication Number Publication Date
JPH10189468A JPH10189468A (ja) 1998-07-21
JP4019444B2 true JP4019444B2 (ja) 2007-12-12

Family

ID=18393278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34788796A Expired - Fee Related JP4019444B2 (ja) 1996-12-26 1996-12-26 半導体製造装置

Country Status (1)

Country Link
JP (1) JP4019444B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952017A1 (de) * 1999-10-28 2001-05-17 Steag Rtp Systems Gmbh Verfahren und Vorrichtung zum thermischen Behandeln von Substraten
JP2001297995A (ja) * 2000-04-13 2001-10-26 Nec Corp 回路製造方法および装置
US6599818B2 (en) 2000-10-10 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device manufacturing method, heat treatment apparatus, and heat treatment method
KR100483834B1 (ko) 2003-01-06 2005-04-20 삼성전자주식회사 회전식 가열부를 구비한 급속 열처리 장치
JP4869130B2 (ja) * 2007-04-02 2012-02-08 株式会社東芝 半導体装置の製造方法
JP5132695B2 (ja) * 2010-02-10 2013-01-30 株式会社東芝 半導体装置の製造方法
JP6119289B2 (ja) * 2013-02-14 2017-04-26 株式会社リコー 強誘電体膜の成膜方法および製造装置
CN113832449B (zh) * 2020-06-24 2023-10-20 拓荆科技股份有限公司 半导体薄膜的沉积设备和沉积方法

Also Published As

Publication number Publication date
JPH10189468A (ja) 1998-07-21

Similar Documents

Publication Publication Date Title
KR100430947B1 (ko) 가열장치및열처리장치
KR0139793B1 (ko) 막형성 방법
JP3438658B2 (ja) ランプユニット及び光照射式加熱装置
JP4916802B2 (ja) 熱処理装置
US20060291835A1 (en) Susceptor for heat treatment and heat treatment apparatus
US20060291832A1 (en) Heat treatment apparatus of light emission type
JPH09153491A (ja) タンタル酸化膜の形成方法及びその装置
US8355624B2 (en) Susceptor for heat treatment and heat treatment apparatus
JP4019444B2 (ja) 半導体製造装置
US11901200B2 (en) Light irradiation type heat treatment method and heat treatment apparatus
US20230369077A1 (en) Spot heating by moving a beam with horizontal rotary motion
KR101704843B1 (ko) 도포 장치, 도포 방법 및 기억 매체
JP2008288451A (ja) 半導体装置の製造方法
JP2006278802A (ja) 熱処理装置
JP3099101B2 (ja) 熱処理装置
JP2002324764A (ja) 基板の熱処理装置
JP3215498B2 (ja) 成膜装置
JP2001023883A (ja) 基板の処理方法及び処理装置
JP3195678B2 (ja) エネルギー線加熱装置
JP2007012846A (ja) 光照射式加熱装置および光照射式加熱方法
JPH0420253B2 (ja)
JPH1097999A (ja) 加熱装置、処理装置、加熱方法及び処理方法
JPH08316222A (ja) 熱処理方法及びその装置
JPH08335575A (ja) 熱処理装置および方法
JP3393213B2 (ja) 成膜方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees