JP4011353B2 - 合わせ測定用のレジストパターン - Google Patents

合わせ測定用のレジストパターン Download PDF

Info

Publication number
JP4011353B2
JP4011353B2 JP2002023278A JP2002023278A JP4011353B2 JP 4011353 B2 JP4011353 B2 JP 4011353B2 JP 2002023278 A JP2002023278 A JP 2002023278A JP 2002023278 A JP2002023278 A JP 2002023278A JP 4011353 B2 JP4011353 B2 JP 4011353B2
Authority
JP
Japan
Prior art keywords
pattern
measurement
resist
box
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002023278A
Other languages
English (en)
Other versions
JP2003224063A (ja
Inventor
裕之 遊佐
あづさ 柳澤
敏文 菊地
明弘 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002023278A priority Critical patent/JP4011353B2/ja
Priority to US10/351,418 priority patent/US20030141606A1/en
Publication of JP2003224063A publication Critical patent/JP2003224063A/ja
Priority to US11/481,059 priority patent/US7670922B2/en
Application granted granted Critical
Publication of JP4011353B2 publication Critical patent/JP4011353B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路の製造に用いるレジストパターンに関し、特にホトリソグラフィ工程用のレジストパターン形成後における、前工程パターンとの合わせ測定用のレジストパターンに関するものである。
【0002】
【従来技術】
図8は従来の合わせ測定原理を説明する図である。
【0003】
従来、合わせ測定は図8に示すように、前工程で形成したパターン(例えばボックス)10と自工程(現在実行中の工程)で形成したパターン(例えば、ボックス)100を左右対称な波形が得られるような部分に波形処理領域をボックス指定し、波形を検出し、その波形を画像処理して直線近似してピーク点を求め、前工程のピーク点と自工程のピーク点を測定していた。
【0004】
即ち、合わせ測定用のレジストパターンは、 最外側に前工程でのボックスパターン10を設ける。このボックスパターン10の内部に、所定間隔で自工程のボックスパターン100を配置する。
【0005】
パターン測定素子、例えばフォトセンサー101〜104は断面部A−A’に沿って配置される。
【0006】
断面部A−A’の前工程のポジ型ボックスパターンと自工程の複数のポジ型ボックスパターンに対し、左右対称性が得られているとして選択したラインパターンの断面部A−A’における波形信号処理結果のB1−B1’画像を得、この波形信号処理結果の画像から合わせ測定装置での波形処理によりB2−B2’特性を得ている。
【0007】
即ち、エッジ10−1、10−2からなるラインパターンは、波形信号処理結果である点10−3、点10−4および点10−5を結ぶB1−B1’特性となり、合わせ測定装置での波形処理による点10−6、10−7および点10−8を結ぶB2−B2’特性となる。
【0008】
この結果、エッジ10−1と10−2からなるラインパターンの断面部A−A’の検出画像信号の波形処理結果は、点10−6と点10−7を端点として直線的に点10−8まで濃度値が増加する特性を示す。点10−8はラインパターンの中心位置の濃度値を表す。以下、ラインパターンの画像を波形処理したパターンの中心、例えば前記点10−8、を「中点」という。
【0009】
ボックスパターン100についても同じであり、両側エッジ100−1と100−2からなるボックスパターン100の断面部A−A’の検出画像信号の波形処理結果は点100−3と点100−4のB1−B1’特性となり、さらに合わせ測定装置での波形処理によって点100−5と点100−6とからなるB2−B2’特性となる。この結果、エッジ100−1の断面部A−A’の検出画像信号の波形処理結果は点100−5となる。
【0010】
合わせ測定は、少なくとも、1カ所、例えば前記点10−8と前記点100−5の間隔を測定する。測定個所を図8のB2−B2’特性図に示す両端矢印線のように2カ所とすることもできる。測定個所の設定については、左右対称性が担保できる限り、X方向、Y方向で任意に設定でき、任意の組み合わせが可能である。
【0011】
近年、パターンの微細化に伴い、通常のKrF露光/現像手法で形成したレジストパターン(ホールパターン)に対し、高温のベーク処理を行うことにより、前記レジストパターンに熱フローを生じさせ、レジストパターンをシュリンクさせて該レジストパターンで形成したホール内径を縮小させる製造方法が実施されている。
【0012】
図10は従来の熱フローによるパターン収縮の原理を説明する図である。
【0013】
左側の図が熱フロー前の形状を説明する図であり、右側の図が熱フロー後の形状を説明する図である。熱フロー前、断面円形のホールをレジストパターンに設ける。この状態から、レジストパターンに熱フローを生じさせ、レジストパターンをシュリンクさせて該レジストパターンに形成したホール内径を縮小させる。
【0014】
この方法によれば、KrF露光技術の解像限界を超える0.10μm以下のパターン形成が可能になる。
【0015】
【発明が解決しようとする課題】
しかしながら、この熱フローにより、ホール内径を縮小させる方法は、以下の問題点がある。
【0016】
(1)熱フロー前のレジストパターン寸法、即ち、ホール内径が約0.5μmより大きくなると劣化する。それは、レジスト膜厚がおおよそ決まっているので、前記ホール内径が一定以上に大きくなると流れ込むレジスト量が多くなり、前記図10の直線部分の膜厚bが著しく減少しホトリソグラフィー後のエッチング処理に悪影響がでることにある。
【0017】
(2)また、左右にパターンが存在する場合と、存在しない場合でシュリンクのされ方が異なる。それは、熱フロー時にパターンの周りに流れ込むレジスト量によって、シュリンクの形状が異なることにある。パターンが密集しているところでは、1つのホール当たりのレジストの流れ込み量が少なくなるので、1つ1つのパターンの収縮が少なくなる。これを、図11の例について説明する。
【0018】
図11は、従来の熱フローの左右対称性を説明する図である。
【0019】
図11のように、同じピッチで、同じホール径のレジストパターンを熱収縮させる場合には、次のABCのようになる。
【0020】
A)上下右には、パターンがあるため均等に収縮する。しかし、左にはパターンがないためレジストの流れ込みが多く、収縮が大きい。ホールの中心が、熱フロー前の中心よりB側に移動してしまう。
【0021】
B)上下左右に均等にパターンがあるため均等に収縮する。
【0022】
C)上下左には、パターンがあるため均等に収縮する。しかし、右にはパターンがないためレジストの流れ込みが多く、収縮が大きい。ホール中心が熱フロー前の中心よりB側に移動してしまう。
【0023】
(3)また、熱フロー前のレジストパターンの幅とパターン間のスペースの幅が1:2以上の比率でないと十分にシュリンクされないといった微細パターニング上での原則がある。このことは、上で述べたように、ある程度パターンを離さないと、レジストの流れ込み量が不足して十分に収縮されず、レジストの厚み方向における直線部分の高さが十分に得られないことにより裏付けられている。さらに、前記1:2以上の比率で所望の特性が得られることは実験的に確かめられている。
【0024】
実験結果は以下のとおりである。
▲1▼ 実験の目的:図10の熱フロー後における「直線部分の膜厚b」部分が実用上十分な直線となる条件の測定。
▲2▼ 条件
・レジスト:TDUR−P015 膜厚10000Å
・反射防止膜(バーク材):SWK−EX2 膜厚1100Å
・NSG膜 膜厚10000Å
・ウエハ:Si−sub
・露光エネルギー 85mj
・製造方法 熱シュリンク
▲3▼ 積層構造
TDUR−P015/SWK−EX2/NSG膜/Si−sub
▲4▼ 結果
レジストマスクのホールサイズ(穴の直径)を0.26μmとしたとき、ホールピッチ(穴間の長さ)が0.52μm以上のサンプルが上記条件を満足した。なお、サンプルデータとして、ホールピッチが0.78μm、1.04μmの場合も採取したが、これらも上記条件を満足した。
【0025】
(4)また、合わせ測定用のレジストパターンのような大きなパターンでは、熱フローを行ったことによってパターンエッジ部の直線性が損なわれる。即ち、熱フローはウエハ全体にかけるため、あらゆるパターンサイズのレジスト形状が図10のように収縮される。合わせ測定は光学的に行うため、ある程度大きなパターンである。大きなパターンの場合、流れ込み量も多いため、バランスが問題となるが、図11のように流れ込み位置によって流れ込み量が大きく変わる。そのため、ポジ型パターンの例ではあるが、例えば図9の自工程のパターンのように、各辺の流れ出し量の最も多い中央部分が最もズレが大きくなる。この結果、各辺は湾曲した形状を呈することとなる。
【0026】
図9は、従来の熱フロー後の合わせ測定用レジストパターンに関する図である。
【0027】
図9は図8と比べ、熱フロー処理を施すと、自工程におけるボックスパターン100が図9のようにシュリンクする点で相違する。
【0028】
従来、熱フロー後の合わせ測定用のレジストパターンは図9に示すように、前工程で形成したパターン(例えばボックス)10と自工程で形成したパターン(例えば、ボックス)100を画像処理し、それぞれの画像のパターンを波形処理し、中点位置を測定していた。
【0029】
即ち、最外側に前工程でボックスパターン10を設ける。このボックスパターン10の内部に、所定間隔で自工程のボックスパターン100を配置する。
【0030】
画像取得用のフォトセンサー101〜104は断面部A−A’に沿って配置される。
【0031】
断面部A−A’の前工程のポジ型ボックスパターンと自工程の複数のポジ型パターンに対し、左右対称性が得られているラインパターンの断面部A−A’の波形信号処理結果B1−B1’画像を得、この波形信号処理結果の画像を合わせ測定装置での波形処理によりB2−B2’特性を得る。
【0032】
即ち、エッジ10−1、10−2からなるラインパターンは、波形信号処理結果のB−B’特性の点10−3、10−4、10−5となり、さらに合わせ測定装置での波形処理によるB2−B2’特性の点10−6、10−7、10−8となる。この結果、エッジ10−1と10−2からなるラインパターンの断面部A−A’の画像信号の波形処理結果は、点10−6と点10−7を端点として直線的に点10−8まで濃度値が増加する特性を示す。点10−8はラインパターンの中心位置の濃度値を表す。
【0033】
高温ベーク処理にて熱フローをさせることにより、レジストパターンが収縮し、図9に示すように、エッジの直線性が保たれなくなる。これによって、検出対象の測定パターンであるボックスパターンの直線エッジが弧状120に湾曲する。
【0034】
このボックスパターン100については、両側の湾曲エッジ120−1と120−2からなるボックスパターン100の断面部A−A’の検出画像信号の波形処理結果のB1−B1’特性の点120−3と点120−4となり、合わせ測定装置での波形処理によるB2−B2’特性の点120−5と120−6となる。この結果、エッジ120の断面部A−A’の検出画像信号の波形処理結果は点120−5となる。
【0035】
前記点10−8と点120−5の間隔は熱フローを行った場合の自工程のボックスパターン100の湾曲変形位置を測定していることを意味する。
【0036】
この図9のレジストパターンの断面部A−A’の波形信号処理結果のB1−B1’特性を、合わせ測定装置で波形処理した結果のB2−B2’特性で評価すれば、レジストパターンのエッジの熱フローにより収縮する特性がいかに大きな問題かわかる。特に、図9のレジストパターンのように左右のエッジを波形信号として計測する場合には前記熱フローの影響が左右非対称な波形信号となってしまう。
【0037】
この左右非対称な波形信号を測定してしまうことにより、図9に示すような本来測定すべき中点位置とのずれが生じ、合わせ測定の測定値に悪影響を及ぼしている。
【0038】
このように、従来、熱フローを行うことによって、自工程のレジストパターンの直線性が損なわれている。この結果、エッジに対して左右非対象な波形処理が行われ、自工程中心位置がずれ、合わせ測定の時に誤測定をしてしまう問題が発生している。
【0039】
本発明の目的は、前記問題点に鑑み、合わせ測定用のレジストパターンに熱フロー処理を施しても、パターンエッジ部の画像処理信号が左右非対称とならないようにする合わせ測定用のレジストパターンを提供することである。
【0040】
【課題を解決するための手段】
本発明は、上記課題を達成するために以下の解決手段を採用する。
)レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型ボックスパターンの測定パターンと該測定パターンの内側および外側のポジ型ボックスパターンの補助パターンとすること。
)上記()記載の合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型ボックスパターンの代わりにネガ型ボックスパターンとすること。
)レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、測定用ポジ型パターンの内側および外側にポジ型スリットパターンで補助パターンを設けること。
)上記()記載の合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型スリットパターンの代わりにネガ型スリットパターンとすること。
)レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、ボックスパターンの測定パターンの内側エッジ間の上下左右間隔と該測定パターンとその外側の補助パターンの上下左右間隔を全て等しく配置すること。
)上記(乃至(5)のいずれか1項記載の合わせ測定用のレジストパターンにおいて、前記測定パターン及び前記補助パターンのラインの幅と隣接する該ライン間の幅の比を1:2以上とすること。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳細に説明する。
【0042】
(第1実施例)
図1は本発明の第1実施例のレジストパターン(ポジ型)図である。
【0043】
最外側のボックスパターン10は、前工程において形成したレジストパターンである。
【0044】
前工程のラインパターンのエッジを測定個所として、前記パターン測定素子によりラインパターンの画像を取得する。
【0045】
前記ボックスパターン10内には、自工程において、上から連続して3段のパターンが形成されている。
【0046】
上段は、所定幅・所定長さで水平方向に向き、頭を垂直方向に揃えて整列配置した横ラインパターン21、22および23と、それらの横ラインパターン間の所定幅のスペースとから構成される。
【0047】
中段は、所定幅・所定長さで垂直方向に向き、頭を水平方向に揃えて整列配置した縦ラインパターン24、25、26、27、28および29と、それらの間の所定幅のスペースとから構成される。
【0048】
下段は、所定幅・所定長さで水平方向に向き、頭を垂直方向に揃えて整列配置した横ラインパターン30、31および32と、それらの横ラインパターン間の所定幅のスペースとから構成される。
【0049】
合わせ測定は光学的に行うために、ある程度大きなパターンが必要である。その為、第1実施例のレジストパターンは、熱フロー前のラインパターンサイズが小さくなりすぎないように、例えば0.5μmより大きな幅のパターンサイズで、3本以上同じ大きさのライン及びスペースを配置したポジ型パターンに形成する。第1実施例でのパターンサイズは、前記従来のホールパターンのサイズをいうのではなく、ラインパターンのサイズをいう。
【0050】
さらに、熱フロー後のレジスト形状の安定性が向上するように、スペースについてはラインの2倍以上離して配置する。
【0051】
前記自工程のパターンの内の、前記上段および下段の水平方向の横ラインパターン21、22、23、30、31および32は、前記前工程のボックスパターン10の内の、同じ水平向きのライン部に対応して形成される。前記両パターンは位置合わせの計測を行うために組み合わせて設けられる。
【0052】
前記自工程のパターンの内の、前記中段の垂直方向の縦ラインパターン24〜29は、前記前工程のボックスパターン10の内の、同じ垂直向きのライン部に対応して形成される。前記両パターンは位置合わせの計測を行うために組み合わせて設けられる。
【0053】
前記自工程のレジストパターンの内、最外側の横ラインパターン21、32および縦ラインパターン24、29は、実測上、熱フローの影響を受け易い箇所であり、計測に用いない。
【0054】
第1実施例では、垂直向きの縦ラインパターンの内、○印の付いているA部の、左右対称性が得られている縦ラインパターン25、26、27および28が測定対象となる。この内、本実施例では縦ラインパターン25と28を測定パターンとし、前工程のパターンの同じ垂直向きのラインパターン部と組み合わせて位置合わせの計測を行う。
【0055】
但し、断面部が垂線となったときには、水平方向の横ラインパターン21、22、23、30、31および32の内、熱フローの影響を受け易い最外側の横ラインパターン21、32を除く任意のパターンを測定パターンとし、残りを補助パターンとする。
【0056】
前記両ラインパターン間のスペースの幅は、該両ラインパターンの幅の2倍以上に設定する。
【0057】
第1実施例の場合、パターン測定素子はA−A’線上に所定間隔で配置されている。パターン測定素子は例えばフォトトランジスタ、フォトダイオード等のフォトセンサーを用いる。説明の都合上、図1に、2組のパターン測定素子33、34、35および36を例示する。パターン測定素子によって断面部A−A’の計測パターンとなるラインパターンの画像信号を得る。この画像信号は波形処理されB−B’特性となる。
【0058】
合わせ測定機は、図示しないが、波形処理領域をボックス指定する機能、画像処理および測定する機能を備えている。
【0059】
次に、パターンの変更例を説明する。
【0060】
図7は、本発明の自工程のパターンをアウター部へ配置する例を示す図である。
【0061】
前工程のボックスパターン40を中心にして、各辺と平行に3本のラインパターン42、43、44および45が配置されている。3本のラインパターンは所定スペースで離隔されている。自工程のパターンを前工程のパターンのアウター側に配置した場合は、自工程のパターンを最低3つ以上配置する。ラインパターンはポジまたはネガで形成される。
【0062】
(計測動作)
合わせ測定は、合わせ測定機が波形処理領域をボックス指定できるようになっているので、左右対称な波形が得られるような部分に設定し、波形を検出する。その波形を画像処理により直線近似させピーク点を求める。測定は前工程のピークと自工程のピークで行う。以下、詳述する。
【0063】
複数のポジ型パターンを形成し、左右対称性が得られている断面部A−A’のラインパターンのエッジを測定箇所として、前記パターン測定素子によってラインパターンの画像を取得する。
【0064】
「左右対称性」とは、同じスペースおよび同じ幅をいう。図1の例では、縦ラインパターン26と27の中間点を中心として左右両側向きのラインパターンの配置態様が対称になっていることを意味する。代表的な例としては図3および図4のパターンをいう。
【0065】
ここで図1に戻る。前記A−A’線に沿ったパターンエッジの検出画像は、断面図の波形処理結果B−B’特性となる。B−B’特性は、ポジ型の部分の透過率に応じて濃度値が減衰する。
【0066】
即ち、ラインパターンのエッジ10−1は、波形処理結果のB−B’特性の点10−3となり、同じくエッジ10−2は、B−B’特性の点10−4となる。この結果、エッジ10−1と10−2からなるラインパターンの断面A−A’部の検出画像信号の波形処理結果のB−B’特性は、点10−3と点10−4を端点として直線的に点10−5まで濃度値が増加する特性を示す。
【0067】
同じく、縦ラインパターン25についても同じであり、両側エッジ25−1と25−2からなる縦ラインパターン25の断面A−A’部の検出画像信号の波形処理結果のB−B’特性は、点25−3と点25−4を端点として直線的に点25−5まで濃度値が増加する特性を示す。前記点10−5と25−5はそれぞれラインパターンの中心位置の濃度値を表す。
【0068】
合わせ測定は、少なくとも、1カ所、例えば前記点10−5と前記点25−5の間隔を測定する。測定個所を図1のように2カ所とすることもできる。測定個所の設定についてはX方向、Y方向で必ずしも同じ箇所である必要はなく、任意の組み合わせが可能である。
【0069】
自工程のパターンをアウター部へ配置する図7の例においても、前記図1の例と同様に測定する。ただし、自工程のパターンの内、熱フローで影響を受け易い箇所、即ち、最外側のラインパターンは測定対象外とする。
【0070】
(第1実施例の効果)
本来測定すべきエッジの中点位置が正確に検出できるので、合わせ測定を正確に行うことができる。自工程のパターンを前工程のパターンのアウター側に配置した場合は、自工程のパターンを最低3つ以上配置することで、図1に示すような自工程のパターンを前工程のパターンのインナー側に配置する場合と同様な効果が得られる。スペースについてはラインの2倍以上離して配置する。これにより熱フロー後のレジスト形状の安定性が向上する。
【0071】
(第2実施例)
図2は、本発明の第2実施例のレジストパターン(ネガ型)図である。
【0072】
前記第1実施例はポジ型のパターンであったが、本発明の第2実施例は、前記第1実施例のパターンのネガ型で構成される。
【0073】
ネガ型パターンのA−A’断面部の画像を得て波形処理した結果のB−B’特性は、前記ポジ型パターンのB−B’特性の反転特性となる。合わせ測定は第1実施例のポジ型パターンの場合と同じに行う。第2実施例の効果も前記第1実施例の効果と同じになる。
【0074】
(第3実施例)
図3は本発明の第3実施例のレジストパターン(ポジ型)図である。
【0075】
最外側に前工程のボックスパターン10を設ける。このボックスパターン10の内部に、所定間隔で相似形のボックスパターン51、52および53を配置する。
【0076】
このボックスパターン51〜53は、所定幅のスペースにより、相互に隔離されている。スペース幅は、ボックスパターンの各辺をなすラインの幅の2倍以上に形成する。
【0077】
ポジ型測定パターン52の内側および外側にボックス型の補助パターン51と53を形成する。このとき、補助パターン51と53は測定パターン52の寸法以下のサイズで形成する。また、スペース幅は測定パターン52の幅の2倍以上とする。
【0078】
「補助パターン」とは、レジストの流れ込み量または流れ出し量を調節するために設けるパターンであり、熱フロー後、測定パターンの合わせ測定が正確に行えるように設けられるパターンである。測定に使わないので、光学的なデータの取得の必要がない。極端な場合、熱フロー後、埋め込まれて消失してしまっても問題ない。
【0079】
補助パターンを測定パターンの寸法以下のサイズとする理由は、補助パターンのサイズが大きいと、レジストの流れ込み量が多くなり、形状が崩れやすいので、測定パターン以下のサイズが妥当な範囲と考えられているからである。
【0080】
また、内外、上下、左右のマスクサイズスペース幅はすべて同じ幅に保たれている。このことは、測定パターンの、熱フロー後の形状が左右均等な形状である必要があるためである。
【0081】
画像検出用のフォトセンサーはA−A’断面部に沿って配置される。図3においては、A−A’断面部に沿って例示的にフォトセンサー54、55、56および57が例示されている。
【0082】
熱フロー前の合わせ測定のパターンサイズが、小さくなりすぎないように、例えば0.5μmより大きなパターンサイズで、測定用パターン52を作成する。その内外にパターン51、53を複数同じ大きさのライン及びスペースを配置したポジ型パターンとして形成する。さらにスペースについてはラインの2倍以上離して配置することにより熱フロー後のレジスト形状の安定性が向上する。
【0083】
(計測動作)
断面部A−A’の前工程のポジ型ボックスパターンと自工程の複数のポジ型パターンに対し、左右対称性が得られているラインパターンの断面部A−A’のエッジを測定箇所として画像を得、波形処理してB−B’特性を得る。
【0084】
即ち、ラインパターンのエッジ10−1は、波形処理結果のB−B’特性の点10−3となり、同じくエッジ10−2は、波形処理結果のB−B’特性の点10−4となる。この結果、エッジ10−1と10−2からなるラインパターン10の断面部A−A’の検出画像信号の波形処理結果は、点10−3と点10−4を端点として直線的に点10−5(中点)まで濃度値が増加する特性を示す。
【0085】
同じく、測定パターン52についても同じであり、両側エッジ52−1と52−2からなる測定パターン52の断面部A−A’の検出画像信号の波形処理結果は、点52−3と点52−4を端点として直線的に点52−5まで濃度値が増加する特性を示す。前記点10−5と52−5はそれぞれラインパターンの中心位置の濃度値を表す。
【0086】
合わせ測定は、少なくとも、1カ所、例えば前記点10−5と前記点52−5の間隔を測定する。測定個所を図3のように2カ所とすることもできる。測定個所の設定についてはX方向、Y方向で必ずしも同じ箇所である必要はなく、任意の組み合わせが可能である。
【0087】
(第3実施例の効果)
合わせ測定用のレジストパターンの中点位置が熱フロー処理前後で変動することが防止できる。
【0088】
(第4実施例)
図4は、本発明の第4実施例のレジストパターン(ネガ型)図である。
【0089】
前記第3実施例はポジ型のパターンであったが、本発明の第4実施例は、前記第3実施例のパターンのネガ型で構成される。
【0090】
ネガ測定パターンの内外にボックスを形成する。このとき、補助パターンは測定パターンの寸法以下のサイズで形成されていること、またスペース幅は測定パターンの2倍以上離れていること、内外、上下、左右のマスクサイズスペース幅はすべて同じ幅が保たれているように設定する。
【0091】
(計測動作)
熱フロー処理後のレジスト形状は、左右対称となる。これによりネガ測定パターンの中点位置は、熱フロー処理前後で変わらなくなる。
【0092】
ネガ型パターンの断面部A−A’の画像を得、波形処理した結果のB−B’特性は、前記ポジ型パターンのB−B’特性の反転特性となる。合わせ測定は第3実施例のポジ型パターンの場合と同じに行う。
【0093】
(第4実施例の効果)
第4実施例の効果も前記第3実施例の効果と同じになる。合わせ測定用のレジストパターンの中点位置が熱フロー処理前後で変動することが、防止できる。
【0094】
(第5実施例)
前記第3、第4実施例においては、補助パターンの形状は、ボックスパターンであったが、第5実施例は補助パターンの形状をボックスの一部を成すスリットまたはラインとしたポジ/ネガパターンの例である。
【0095】
「スリット」とは、ラインパターンを開口で形成したものを意味し、レジストの流れ込み量または流れ出し量を調節するために設けるパターンであり、熱フロー後、測定パターンの合わせ測定が正確に行えるように設けられるパターンである。
【0096】
以下、ポジ型パターンの例について図を参照して説明する。
【0097】
図5は本発明の第5実施例のポジ型レジストパターンの図である。
【0098】
前工程のボックスパターン10の内部に、相似形のボックス型の測定パターン72と、前記ボックスパターン10と該測定パターン72の間のスペースに前記各ボックスパターンの各辺と平行な補助パターンであるライン状スリット73、74、77および78を形成する。また、該測定パターン72の内部にラインパターン75および76で十字状に設けた補助パターンを形成する。
【0099】
補助パターン73、74、77、78、75および76は、前記スリットの他にライン状パターンとすることも可能である。前記補助パターンであるライン状スリット73、74、77、78、75および76と、測定パターン72をポジ型に構成する。
【0100】
この実施例のスリットを含むポジ型パターンを、反転してネガ型パターンで形成することができる。
【0101】
(計測動作)
ポジ測定パターン72の内外に補助パターンとなるライン状スリット73〜76を形成する。このとき、補助パターンであるライン状スリット73〜76は測定パターン72の寸法以下のサイズで形成する。また、スペース幅は測定パターン72の幅の2倍以上とする。内外、上下、左右のマスクサイズスペース幅はすべて同じ幅に保たれている。
【0102】
画像取得用のフォトセンサーはA−A’断面部に沿って配置される。図5においては、断面部A−A’に沿って例示的にフォトセンサー79、80、81および82が例示されている。
【0103】
複数のポジ型パターンを形成し、左右対称性が得られている断面部A−A’のラインパターンのエッジを測定箇所として、前記パターン測定素子によりラインパターンの画像を取得する。
【0104】
前記A−A’線に沿ったパターンエッジの検出画像は、断面図の波形処理結果B−B’特性となる。B−B’特性は、ポジ型の部分の透過率に応じて濃度値が減衰する。
【0105】
即ち、ラインパターンのエッジ10−1は、波形処理結果のB−B’特性の点10−3となり、同じくエッジ10−2は、波形処理結果のB−B’特性の点10−4となる。この結果、エッジ10−1と10−2からなるラインパターンの断面A−A’部の検出画像信号の波形処理結果は、点10−3と点10−4を端点として直線的に点10−5(中点)まで濃度値が増加する特性を示す。
【0106】
測定パターン72についても同じであり、両側エッジ72−1と72−2からなるラインパターン72の断面部A−A’の検出画像信号の波形処理結果は、点72−3と点72−4を端点として直線的に点72−5(中点)まで濃度値が増加する特性を示す。前記点10−5と72−5はそれぞれラインパターンの中心位置の濃度値を表す。
【0107】
合わせ測定は、少なくとも、1カ所、例えば前記点10−5と前記点72−5の間隔を測定する。測定個所を図1のように2カ所とすることもできる。測定個所の設定についてはX方向、Y方向で必ずしも同じ箇所である必要はなく、任意の組み合わせが可能である。
【0108】
(第5実施例の効果)
熱フロー処理後のレジスト形状は、図5において、左右対称となる。これによりポジ/ネガ測定パターンの中点位置は、熱フロー処理前後で変わらなくなる事により合わせ測定用のレジストパターンのエッジ形状が熱フロー処理前後で変動することが、防止できる。また、補助パターンについてはサイズが任意で設定できる利点がある。ただし、補助パターンは測定パターンの寸法以下のサイズとするとする前提がある。これは、補助パターンのサイズが大きいと、レジストの流れ込み量が多くなり、形状が崩れやすいので、測定パターン以下のサイズが妥当な範囲と考えられているからである。
【0109】
(第6実施例)
図6は本発明の第6実施例のレジストパターン(ポジ型)図である。
【0110】
第6実施例は、補助パターン寸法=測定パターン寸法であることが前提となる。
【0111】
最外側に前工程のボックスパターン10を設ける。このボックスパターン10の内部に、所定間隔で相似形のボックスパターン92および93を配置する。
【0112】
このボックスパターン92および93は、所定幅のスペースにより、相互に隔離されている。スペース幅は、ボックスパターンの各辺をなすラインの幅の2倍以上に形成する。前記ボックスパターン92は、補助パターンとなる。前記ボックスパターン93は、測定パターンとなる。
【0113】
ポジ測定パターン93の外側に補助パターン92を配置する。このとき、補助パターン92は測定パターン93の寸法以下のサイズで形成する。内外、上下、左右のマスクサイズスペース幅はすべて同じ幅に保たれている。
【0114】
画像取得用のフォトセンサーは、一例として、断面部A−A’に沿って配置される。図6においては、断面部A−A’に沿って例示的にフォトセンサー54、55、56および57が例示されている。
【0115】
熱フロー前のパターンサイズが、小さくなりすぎないように、例えば0.5μmより大きなパターンサイズで、複数同じ大きさのライン及びスペースを配置したネガ型パターンを形成する。さらにスペースについてはラインの2倍以上離して配置することにより熱フロー後のレジスト形状の安定性が向上する。
【0116】
測定パターン93の内部開口は縦寸法d、横寸法aとする。測定パターン93の外側エッジと補助パターン92の内側エッジとの間隔は、縦間隔c、横間隔bとする。
【0117】
レジストの抜き及び残し部についてa=b=c=dの関係が保たれるようなパターン配置にすることで、補助パターンは、内側または外側の1箇所に配置するだけでよい配置となる。
【0118】
「a=b=c=d」とは、左右対称であることを意味する。
【0119】
第6実施例のスリットを含むポジ型パターンを、反転してネガ型パターンで形成することができる。
【0120】
(計測動作)
断面部A−A’の前工程のポジ型ボックスパターン10と自工程のポジ型ボックスパターン93に対し、左右対称性が得られているラインパターンのエッジを測定箇所として画像を取得し、波形処理してB−B’特性を得る。ボックスパターン92は補助パターンとなる。
【0121】
即ち、ラインパターン10のエッジ10−1は、波形処理結果のB−B’特性の点10−3となり、同じくエッジ10−2は、B−B’特性の点10−4となる。この結果、エッジ10−1と10−2からなるラインパターン10の断面A−A’部の検出画像信号の波形処理結果は、点10−3と点10−4を端点として直線的に点10−5(中点)まで濃度値が増加する特性を示す。
【0122】
同じく、ボックスパターン93についても同じであり、両側エッジ93−1と93−2からなるボックスパターン93の断面部A−A’の検出画像信号の波形処理結果は、点93−3と点93−4を端点として直線的に点93−5(中点)まで濃度値が増加する特性を示す。前記点10−5と93−5はそれぞれラインパターンの中心位置の濃度値を表す。
【0123】
合わせ測定は、少なくとも、1カ所、例えば前記点10−5と前記点93−5の間隔を測定する。測定個所を図2のように2カ所とすることもできる。測定個所の設定についてはX方向、Y方向で必ずしも同じ箇所である必要はなく、任意の組み合わせが可能である。
【0124】
(第6実施例の効果)
熱フロー処理後の形状は、左右対称となる。これによりポジ/ネガ測定パターンの中点位置は、熱フロー処理前後で変わらなくなる。
【0125】
合わせ測定用のレジストパターンの中点位置が熱フロー処理前後で変動することが、防止できる。補助パターンの数を減らすことができる。
【0126】
(他の実施の形態)
前記実施例は合わせ測定用のレジストパターンに適用した例であるが、同様に他の半導体設備においてアライメントマーク及び位置だし用マークなどの検出位置精度を向上させるレジストパターンとしても適用できる。
【0127】
【発明の効果】
本発明の合わせ測定用のレジストパターンは、合わせ測定用のレジストパターンに熱フロー処理を施しても、パターンエッジ部の画像処理信号が左右非対称とならないようにすることができる。
【0128】
また、熱フロー後のレジスト形状の安定性が向上する。
【図面の簡単な説明】
【図1】図1は本発明の第1実施例のレジストパターン(ポジ型)図である。
【図2】本発明の第2実施例のレジストパターン(ネガ型)図である。
【図3】本発明の第3実施例のレジストパターン(ポジ型)図である。
【図4】本発明の第4実施例のレジストパターン(ネガ型)図である。
【図5】本発明の第5実施例のポジ型レジストパターンの図である。
【図6】本発明の第6実施例のレジストパターン(ポジ型)図である。
【図7】本発明の自工程のパターンをアウター部へ配置する例を示す図である。
【図8】従来の合わせ測定原理を説明する図である。
【図9】従来の熱フロー後の合わせ測定用レジストパターンに関する図である。
【図10】従来の熱フローによるパターン収縮の原理を説明する図である。
【図11】従来の熱フローの左右対称性を説明する図である。
【符号の説明】
10、40 前工程の(ボックス)パターン
21、22、23、30、31、32、42、45 横ラインパターン
24、25、26、27、28、29、43、44 縦ラインパターン
33、34、35、36、54、55、56、57、79、80、81、82
パターン測定素子(フォトセンサー)
73、74、75、76、77、78 ライン状スリット(補助パターン)
52,72、93 ボックスパターン(測定パターン)
51、53、92 ボックスパターン(補助パターン)

Claims (6)

  1. レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型ボックスパターンの測定パターンと該測定パターンの内側および外側のポジ型ボックスパターンの補助パターンとすることを特徴とする合わせ測定用のレジストパターン。
  2. 請求項記載の合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型ボックスパターンの代わりにネガ型ボックスパターンとすることを特徴とする合わせ測定用のレジストパターン。
  3. レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、測定用ポジ型パターンの内側および外側にポジ型スリットパターンで補助パターンを設けることを特徴とする合わせ測定用のレジストパターン。
  4. 請求項記載の合わせ測定用のレジストパターンにおいて、前記レジストパターンをポジ型スリットパターンの代わりにネガ型スリットパターンとすることを特徴とする合わせ測定用のレジストパターン。
  5. レジストパターン形成後、熱フローによりシュリンクさせる合わせ測定用のレジストパターンにおいて、ボックスパターンの測定パターンの内側エッジ間の上下左右間隔と該測定パターンとその外側の補助パターンの上下左右間隔を全て等しく配置することを特徴とする合わせ測定用のレジストパターン。
  6. 請求項1乃至5のいずれか1項記載の合わせ測定用のレジストパターンにおいて、前記測定パターン及び前記補助パターンのラインの幅と隣接する該ライン間の幅の比を1:2以上とすることを特徴とする合わせ測定用のレジストパターン。
JP2002023278A 2002-01-31 2002-01-31 合わせ測定用のレジストパターン Expired - Fee Related JP4011353B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002023278A JP4011353B2 (ja) 2002-01-31 2002-01-31 合わせ測定用のレジストパターン
US10/351,418 US20030141606A1 (en) 2002-01-31 2003-01-27 Resist pattern for alignment measurement
US11/481,059 US7670922B2 (en) 2002-01-31 2006-07-06 Method of measuring alignment of measurement pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023278A JP4011353B2 (ja) 2002-01-31 2002-01-31 合わせ測定用のレジストパターン

Publications (2)

Publication Number Publication Date
JP2003224063A JP2003224063A (ja) 2003-08-08
JP4011353B2 true JP4011353B2 (ja) 2007-11-21

Family

ID=27606383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023278A Expired - Fee Related JP4011353B2 (ja) 2002-01-31 2002-01-31 合わせ測定用のレジストパターン

Country Status (2)

Country Link
US (2) US20030141606A1 (ja)
JP (1) JP4011353B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564579B1 (ko) * 2003-09-29 2006-03-28 삼성전자주식회사 레지스트 리플로우 측정 키 및 이를 이용한 반도체 소자의미세 패턴 형성 방법
CN110676243B (zh) * 2019-09-30 2021-09-14 芯盟科技有限公司 芯片及对位方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196822A (ja) * 1988-02-02 1989-08-08 Nec Corp 半導体集積回路装置
JP2687418B2 (ja) * 1988-04-25 1997-12-08 ソニー株式会社 半導体装置
US5298365A (en) * 1990-03-20 1994-03-29 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
US5615006A (en) * 1992-10-02 1997-03-25 Nikon Corporation Imaging characteristic and asymetric abrerration measurement of projection optical system
US5928820A (en) * 1994-06-10 1999-07-27 Hyundai Electronics Industries Co., Ltd. Method for measuring pattern line width during manufacture of a semiconductor device
JP3859764B2 (ja) * 1995-06-27 2006-12-20 株式会社ルネサステクノロジ 重ね合わせ精度測定マーク、そのマークの欠陥修正方法、および、そのマークを有するフォトマスク
US5805290A (en) * 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
KR19980030438A (ko) * 1996-10-29 1998-07-25 김영환 반도체 버어니어 구조 및 그것을 이용한 오버레이 정확도 측정방법
JP3274396B2 (ja) * 1997-11-07 2002-04-15 株式会社東芝 パターン測定方法
JPH11258776A (ja) * 1998-03-13 1999-09-24 Sony Corp 重ね合わせ測定パターン、フォトマスク、重ね合わせ測定方法及び重ね合わせ測定装置
US5969807A (en) * 1998-03-25 1999-10-19 Advanced Micro Devices, Inc. Method for measuring lens imaging uniformity
JP3533087B2 (ja) * 1998-05-06 2004-05-31 沖電気工業株式会社 重ね合わせ精度測定用マーク及びそれを用いた測定方法
JP3201362B2 (ja) * 1998-10-27 2001-08-20 日本電気株式会社 半導体製造方法及び半導体装置
JP2000133576A (ja) * 1998-10-28 2000-05-12 Nec Corp 位置ずれ計測マーク及び位置ずれ計測方法
JP3288320B2 (ja) * 1998-12-21 2002-06-04 沖電気工業株式会社 レジストマーク
JP2000357644A (ja) * 1999-06-14 2000-12-26 Canon Inc 露光方法及び露光装置
JP3371852B2 (ja) * 1999-07-09 2003-01-27 日本電気株式会社 レチクル
JP3348783B2 (ja) * 1999-07-28 2002-11-20 日本電気株式会社 重ね合わせ用マーク及び半導体装置
JP2001168002A (ja) * 1999-12-06 2001-06-22 Mitsubishi Electric Corp 半導体装置およびその製造に用いるフォトマスクならびにその重ね合わせ精度向上方法
JP2001351843A (ja) * 2000-06-06 2001-12-21 Matsushita Electric Ind Co Ltd フォトマスクの作成方法及びアライメント方法
JP4725822B2 (ja) * 2000-07-10 2011-07-13 株式会社ニコン 光学的位置ずれ検出装置
US6218200B1 (en) * 2000-07-14 2001-04-17 Motorola, Inc. Multi-layer registration control for photolithography processes
US6432591B1 (en) * 2000-08-30 2002-08-13 Micron Technology, Inc. Overlay target design method with pitch determination to minimize impact of lens aberrations
US7068833B1 (en) * 2000-08-30 2006-06-27 Kla-Tencor Corporation Overlay marks, methods of overlay mark design and methods of overlay measurements
JP2002131884A (ja) * 2000-10-30 2002-05-09 Hitachi Ltd フォトマスクの製造方法、フォトマスクおよび半導体集積回路装置の製造方法
KR100455684B1 (ko) * 2001-01-24 2004-11-06 가부시끼가이샤 도시바 포커스 모니터 방법, 노광 장치 및 노광용 마스크
US6492073B1 (en) * 2001-04-23 2002-12-10 Taiwan Semiconductor Manufacturing Company Removal of line end shortening in microlithography and mask set for removal
US6842237B2 (en) * 2001-12-28 2005-01-11 International Business Machines Corporation Phase shifted test pattern for monitoring focus and aberrations in optical projection systems
US7190823B2 (en) * 2002-03-17 2007-03-13 United Microelectronics Corp. Overlay vernier pattern for measuring multi-layer overlay alignment accuracy and method for measuring the same

Also Published As

Publication number Publication date
US20030141606A1 (en) 2003-07-31
US7670922B2 (en) 2010-03-02
JP2003224063A (ja) 2003-08-08
US20070004059A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
US7180593B2 (en) Overlay mark for aligning different layers on a semiconductor wafer
TWI575335B (zh) 計量圖案佈局及其使用方法
JP4011353B2 (ja) 合わせ測定用のレジストパターン
JP2023027763A (ja) オーバーレイマーク、これを用いたオーバーレイ計測方法、及び半導体デバイスの製造方法
JP3442007B2 (ja) ステッパレンズの収差測定パターンおよびステッパレンズの収差特性評価方法
JP5612416B2 (ja) 材料のシートのエッジを検出するための方法
US6943458B2 (en) Semiconductor device and manufacturing method thereof, and registration accuracy measurement enhancement method
JP2001093820A (ja) マーク、アライメントマーク、合わせずれ測定用マーク、フォトマスク、及び、半導体ウェーハ
US7136520B2 (en) Method of checking alignment accuracy of patterns on stacked semiconductor layers
KR20010029893A (ko) 포토 마스크, 반도체 장치, 및 포토 마스크를 이용한 노광방법
CN111580351B (zh) 一种套刻对准标记结构及相关方法和器件
JP2007206333A (ja) フレア測定用マスク及びフレア測定方法
US6326106B1 (en) Overlay measuring pattern, and photomask
JP3462989B2 (ja) フォトマスク及びその作成方法
JP2000010254A (ja) ハーフトーン型位相シフトマスク及び合わせずれ測定マークの測定方法
JPH01215022A (ja) 半導体装置の製造方法
US5817437A (en) Method for detecting phase error of a phase shift mask
JPH08162383A (ja) 重ね合わせ精度評価パターンおよびこれを用いた評価方法
JPH10185541A (ja) 配置精度測定方法、フォトマスク及び半導体装置
KR0131751Y1 (ko) 상면 기울기 측정용 테스트 패턴형성 레티클
KR102545517B1 (ko) 모아레 패턴을 형성하는 오버레이 마크, 이를 이용한 오버레이 측정 방법, 오버레이 측정 장치, 및 반도체 소자의 제조 방법
KR0172287B1 (ko) 중첩 정확도와 노광장비의 포커스를 동시에 측정하기 위한 측정마크를 이용한 중첩 정확도 및 노광장비의 포커스 측정 방법
JP3828063B2 (ja) 半導体装置の製造方法
JP3745054B2 (ja) 重ね合わせ精度測定用パターン及びこれを用いた半導体装置の製造方法
JP2892068B2 (ja) 荷電ビーム描画方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees