JP4005683B2 - 粉状廃棄物を処理する竪型炉操業方法 - Google Patents
粉状廃棄物を処理する竪型炉操業方法 Download PDFInfo
- Publication number
- JP4005683B2 JP4005683B2 JP33825397A JP33825397A JP4005683B2 JP 4005683 B2 JP4005683 B2 JP 4005683B2 JP 33825397 A JP33825397 A JP 33825397A JP 33825397 A JP33825397 A JP 33825397A JP 4005683 B2 JP4005683 B2 JP 4005683B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- tuyere
- coke
- iron source
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture Of Iron (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Description
【発明の属する技術分野】
本発明は、鉄を含有するダストおよび/または鉄屑類および/または還元鉄等を鉄源とし、固体燃料の性状によらず、熱効率よく、低燃料比で粉状廃棄物を処理しながら銑鉄を連続的に溶製可能とする竪型炉操業方法に関する。
【0002】
【従来の技術】
未還元鉱石から銑鉄を製造する方法は、これまでに種々開発されてきたが、今日でも高炉法がその代表的な方法となっている。この高炉法の場合、炉頂から装入された原料は、降下していく間に、上方に向かって流れる高温ガスによって十分に予熱され、還元性雰囲気に保たれている炉内で、COガスによる60%以上の還元率まで間接還元される。
【0003】
しかし、高炉とその付帯設備は、老朽化すると、それらの修復や再建に莫大な費用がかかる。また、高炉法では、未還元鉱石の還元を行うために、羽口前でのコークスを燃焼させる。これは、原材料を昇熱、溶解するための熱源を供給するだけでなく、ηCO=0、すなわちCO還元ガスの生成が主目的である。
しかしながら、還元鉄や鉄屑、あるいは自己還元性鉱塊等を使用する場合には、羽口部で還元ガスを生成させる必要性が殆どなくなり、羽口前で得られるコークスの燃焼熱は、原燃料の昇熱や溶解のために活用することが効率的とされてい
る。
【0004】
一方、高炉法に代わる還元溶解炉として、特表平1−50140号公報に、2次羽口(下から2段目の羽口)を有する高炉と、高炉の直径より大きな直径を備え、1次羽口(下から1段目の羽口)を有する炉床とからなる銑鉄製造装置が開示されている。この装置では炉頂部から燃料は添加せずに鉱石類のみを装入し、燃料は高炉と炉床の結合部に設けられた装入口、すなわち1次羽口の上方から燃料ベッド上に直接添加する構造となっている。この装置において主原料となる自己還元性鉱塊は、炉床部でベッドコークスと接触反応し、吸熱反応である溶融還元を生じる。
従って、2次羽口における燃焼によって生じる下記(2)式の反応熱を装入した鉱石類の予熱、加熱、溶解に利用することになる。
CO+(1/2)O2 =CO2 +67590kcal/kmoltCO・・・(2)
【0005】
しかしながら、本発明者らが、その内容について詳細な解析と十分な検討を行った結果、炉床径≧1mの大型炉を用いて、長時間の連続操業を行った場合、時間の経過とともにベッドコークスが溶銑に対する浸炭によって消費され、ついには消失して、連続操業が不可能になることが判明した。
しかし、炉床径<1mの小型炉では、高炉と炉床の結合部から燃料を別装入するとその燃料が燃焼して熱源となるだけでなく、ベッドコークス層を形成する可能性があり、連続操業の可能性をある程度見込めることが実験により明らかになった。これは、炉床径の大きな炉では、高炉上部から装入される鉱石類により炉壁に向かう応力が発生するため、別装入する燃料が内部へ移動してベッドコークスを補填することは力学上不可能であることによる。
このことは炉床径をパラメーターとする数多くの実験から確認した。
【0006】
また、ηCO>30%の酸化度の高いガス組成でかつ温度が1000℃以上の環境下で予備還元率の低い鉱石類を使用する場合には、Fe−C−O平衡状態図からも明らかなように、FeOまでの還元で反応が停滞し、FeOからFeへの還元は溶融還元で行われるため、ベッドコークスの消費量は、浸炭による消費に加えて更に増加する。ところが炉床径の大きな炉の場合には、ベッドコークスの補給が行われないため、ベッドコークスが消失すると、もはや溶融還元は起こらない。そのかわり、融液が炉床と高炉の結合部の肩のところにある隙間部に充満するため、ガスの通気不良を招来し、溶解不能に至って、操業不能に陥る。
【0007】
一方、特表平1−501401号公報には、高炉と炉床の結合部から装入する燃料の別装入口と1次羽口部の位置が具体的に明記されていないが、該公報の図2から判断すると、隣合う別装入口の中心角の真ん中の方向に1次羽口が設置されている。小型炉の場合、1次羽口部でコークスが燃焼して消費されると、炉中心から炉周辺部にわたっての原燃料がスムーズに降下するため、燃料の別装入口と1次羽口の相対位置関係について、特にこだわる必要はないと思われる。
しかし、大型炉については、本発明者らが試験操業を行ったところ、隣り合う別装入口の中心角の真ん中の方向に1次羽口が設置されている場合には、別装入された燃料がスムーズには降下せず、降下不能となるケースも数多くあった。
これは1次羽口部で燃焼したコークスに代わり、炉上部から降下してきた鉱石類が置きかわったためであり、この場合には送風によって鉱石を冷却することとなって、鉱石は溶融できずに操業不能に至った。
【0008】
さて、都市ゴミあるいは産業廃棄物の処理に関しては、コークスベッド式ゴミ溶融炉がある。この場合には、文献[志垣政信:廃棄物の燃焼技術、p50(1995)オーム社]によれば、燃料コークスとして、100〜150mmの大径コークスが必要である。都市ゴミや産業廃棄物は、大径コークス及び石灰石とともにゴミ溶融炉の炉頂部から装入され、乾燥及び乾留工程を経る過程で、乾留残渣、タール、乾留ガス、及び水蒸気に分解し、そのうちタール、乾留ガス、及び水蒸気は炉頂部から排出される。これら炉頂部から排出されたタール、ガス、水蒸気、及びダストはその後の燃焼室で完全燃焼するようになっている。
【0009】
しかし、鋳物用大径コークスは高価であることから、燃料費削減のために、小粒度のコークスを使用しようとすると、ソルーションロス反応速度が大きくなる。 その結果、コークスの燃焼効率が低下し、ガス発生量が多くなるとともに、廃棄物残渣の溶融に向けられる熱量が減少して、安定した操業は困難になる。
また、炉頂部から排出されたタール、ガス、及びダストは全て燃焼室に導かれ、ここで完全燃焼させるようになっているが、資源化リサイクル、すなわち有用物の回収という点からすると、完全燃焼させることでその排熱を回収できるだけであり、炉頂部から排出されるタール、ガス、及びダストを燃料として利用してはいない。
【0010】
【発明が解決しようとする課題】
ところで、粉状廃棄物を処理する炉として、川崎製鉄株式会社のSTAR炉が知られている。このSTAR炉は、コークス充填炉であり、炉体の側壁高さ方向に2段の羽口を有し、両羽口ともにレースウェイ部を形成するように構成されており、上段の羽口から粉状ダストを吹き込み、下段の羽口の燃焼熱で溶解するような操業を行っている。しかし、コークス比が1200〜1500kg/t と高く、炉頂ガス温度も1000℃以上と高いことから、エネルギー的には問題があり、特殊な操業の一つと考えられている。
また、このコークス充填炉の操業では、還元の必要な酸化した粉状鉄源や含Cダスト粉の処理については考慮されていなかった。
【0011】
本発明は、上記課題に鑑み、細粒の固体燃料を使用した低燃料比操業においてエネルギー的に好適な状態で粉状鉄源や含Cダスト粉を処理することができる粉状廃棄物を処理する竪型炉操業方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成すべく、本発明に係る粉状廃棄物を処理する竪型炉操業方法は、炉体の側壁高さ方向に多段羽口を有する竪型炉の炉上部から鉄源と固体燃料とを炉内に装入し、羽口から常温または600℃以下の酸素含有ガスを送風して還元・溶解する操業方法において、炉周辺部に金属化率が低い鉄源と細粒の固体燃料とを混合して装入するとともに、炉中心部に金属化率の高い鉄源を装入し、最下段を除く上段羽口径を縮小して、羽口風速を上げることにより、上段の羽口のみにレースウェイ部を形成させ、炉周辺部に空間部を形成して、細粒コークス内に粉状鉄源および/または含Cダスト粉を吹き込んで処理し、最下段羽口はレースウェイ部を形成させずに燃焼率を高くして、高η CO 条件とするようにしたものである。
【0014】
さらに、前記竪型炉の最下段の羽口の突き出し位置を調整して燃焼効率を制御するようにしたものである。
【0015】
本発明は、低燃料比操業というエネルギー的に好適な状態で、粉状鉄源や含Cダスト粉を処理するプロセスを開発したものである。すなわち、炉体の側壁高さ方向に多段羽口を有する竪型炉において、上段の羽口のみにレースウェイ部を形成させて、この上段羽口から細粒の固体燃料内に粉状鉄源および/または含Cダスト粉を吹き込むことを容易にしている。特に、含Cダスト粉の吹き込みでは、低燃料比操業が助長される。さらに、含Cダスト粉の処理だけでなく、粉状鉄源の溶融処理をも併用することにより、炉頂温度を200℃以下に抑えて、効率の良い操業が可能となる。一方、下段の羽口は、低燃料比での操業を指向するため、レースウェイ部を形成させずに燃焼率を高くして、高ηCO条件とする。
また、竪型炉の半径方向において、原料および燃料の区分け装入を実施し、炉周辺部に積極的に細粒の固体燃料を使用することにより、炉中心部のガス流化を促進して、高ηCO条件を継続するものである。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施形態を添付図面に基づき詳細に説明する。
まず、本発明の操業方法に用いる竪型炉について説明する。図1(a)〜(c)は、本発明の操業方法に用いる竪型炉の一例を示す説明図であり、図1(b)と図1(c)は、図1(a)の上部装入装置を示したものである。
図示するように、この竪型炉1の炉頂には装入装置2が設けられており、装入装置2は、バケット3、ベル4、可動アーマー5および装入ガイド6を有しており、原料および固体燃料を半径方向に区分けして装入することが可能な装置として構成されている。
【0017】
竪型炉1の炉体7の上部には、炉内の向流ガスを排気するための排ガス管8が設けられており、下部には炉内下部に送風するための羽口9が設けられている。羽口9は、炉体7の側壁高さ方向に多段に設けられており、本実施形態では、1次送風を行う下段羽口(1次羽口)9aと、2次送風を行う上段羽口(2次羽口)9bとの2段羽口として形成されている。また、これらの羽口9a,9bは、炉体7の周方向に適宜間隔で複数配置されている。送風条件は常温送風または600℃以下の熱風送風であり、1次羽口9aはレースウェイ部を形成しないような羽口径(例えば、40〜60mmφ)に設定されているが、2次羽口9bはレースウェイ部10を形成するような羽口径(例えば、約20mmφ)に設定されている。また、1次羽口9aは、装入原料によって炉内突き出し位置を変更しうるように構成されている。
なお、本実施形態では、炉体7の側壁高さ方向に設けられた多段羽口9が、1次送風を行う1次羽口9aと、2次送風を行う2次羽口9bとの2段羽口として形成されているが、最下段を除く上段の羽口のみにレースウェイ部10が形成されれば、3段以上の羽口を設けてもよい。3段以上の場合には、中段に位置する羽口にレースウェイ部を形成することが好ましい。この場合、上段(中段)の羽口はレースウェイ部を形成させて細粒コークス内に粉状廃棄物を吹き込むための補助的なものであり、主な送風は最下段や、これより上段の羽口で行って燃焼効率を維持するものである。
【0018】
また、原料および固体燃料は、炉中心部11と炉周辺部12とに区分して装入可能であり、上述したように、炉頂部には半径方向に区分け装入が可能な装入装置2を有している(図1(b)、(c))。なお、炉内下部に形成されるコークスベッド13は、操業条件に応じて高さ調整して形成される。
【0019】
次に、上記の竪型炉1を用いて実施する本発明の粉状廃棄物を処理する竪型炉操業方法を説明する。
炉頂から装入する原料は、鉄屑、銑鉄(型銑)、鋳物屑(戻り屑)、HBI(ホットブリケット還元鉄)、DRI(直接還元鉄)等の金属化率の高い鉄源と、ダスト塊成鉱、自己還元性鉱塊(含C塊成鉱)、還元鉄のような金属化率の低い鉄源を主体とし、燃料は、コークスや無煙炭等の固体燃料を主体とする。
装入方法は、コークスベッド層を形成するためにコークスを装入した後、原燃料を完全混合または層状装入する通常の装入方法と、原燃料を半径方向で区分け装入する新装入方法を採用した。
新装入方法は、装入原料の各金属化率を加重平均した平均金属化率(平均M.Fe/T.Fe )で場合分けし、平均金属化率(平均M.Fe/T.Fe )の高い原料を中心側に、平均金属化率(平均M.Fe/T.Fe )の低い原料を細粒コークスと混合して周辺側に装入することで、反応効率の高い操業を指向する。具体的には、図2に示すように、炉中心部に鉄屑類のような金属化率の高い鉄源を溶解のみを目的として装入し、炉周辺部にダスト類のような金属化率の低い鉄源と細粒の固体燃料(細粒コークス)を装入する。このように竪型炉の半径方向において、原料および燃料の区分け装入を実施し、炉周辺部に積極的に細粒コークスを使用することにより、炉中心部のガス流化を促進して、高ηCO条件を継続することができる。
【0020】
竪型炉の操業は、コークスベッド高さ、ストックレベル位置の調節と原燃料品種に応じた装入区分け法、1次羽口突き出し位置等で制御する。コークスベッドの最適高さは、鉄源の溶解が主か、鉄源の還元が主かによって異なり、目標ηCOに対応する位置にコークスベッド上端位置を設定する。なお、コークスベッド内では、コークスの燃焼反応と、燃焼後のソルーションロス反応が進行するが、両反応の反応速度を、固体燃料粒度、ガス流速、送風温度により調整する。
また、ストックレベル位置については、原燃料の昇温速度と関係し、特に、固体燃料のソルーションロス反応速度に影響するため、反応効率を低下させないための制御手段として使用する。
【0021】
特に、本発明の操業方法は、2次羽口9bのみに衝風してレースウェイ部10を形成させる。この2次羽口9bにレースウェイ部10を形成するのは、炉周辺部に空間部を形成して、この細粒コークス内に他の設備から発生した粉状鉄源や含Cダスト粉を吹き込んで処理するためである。すなわち、2次羽口9bの羽口径がレースウェイ部10を形成するように絞り込まれており、この2次羽口9bのみにレースウェイ部10を形成することにより、細粒コークス内に粉状鉄源および/または含Cダスト粉を吹き込むことを容易にしている。
特に、含Cダスト粉は酸化しているので、還元を促進する条件として細粒コークス内に吹き込むことが好ましい。また、含Cダスト粉の処理だけでなく、粉状鉄源の溶融処理に加え、炉中心部に鉄屑類のような金属化率の高い鉄源の溶融処理を併用することにより、炉頂温度を200℃以下に抑えることができ、エネルギー的に好適な状態で効率の良い操業を行うことができるものである。
一方、1次羽口9aは、低燃料比での操業を指向するため、レースウェイ部を形成させずにメイン送風を行い、燃焼率を高くして、高ηCO条件とする。
【0022】
上述した半径方向の区分け装入については、金属化率の高い部分と金属化率の低い部分を区分けして、前者については溶解重視の操業を指向し、1次燃焼率ηCOの上限を狙い、後者については還元重視で、原料の平均金属化率や含C量に応じて、還元に必要な1次燃焼率を制御することにより、全体として最も効率の良い操業を指向することができる。金属化率の高い溶解重視部分は、1次羽口9aを有効利用し、1次送風により1次燃焼率の上限を狙う。半径方向区分け装入で、溶解重視部分を中心側に設定する場合、1次羽口9aの突き出し位置は、炉の中心と周辺の境界位置に設定すると最も効果がある。
【0023】
つぎに、1次燃料率ηCOを制御する方法を説明する。本発明のηCO制御法の一例は下記の通りである。
本発明の炉内ηCOの制御フローの概要について説明する。本発明の制御は次の▲1▼〜▲5▼のようにまとめられる。
【0024】
▲1▼竪型炉への装入鉄源の成分および配合量(使用量)から、平均金属化率(平均M.Fe/T.Fe )を求める。
より効率の良い操業を指向する場合に、半径方向区分け装入を実施するが、この装入法を適用する場合、中心部、周辺部に装入する鉄源に対し、それぞれ平均金属化率を求める。
【0025】
▲2▼この装入鉄源の平均金属化率(平均M.Fe/T.Fe )と、鉄源中の含C量とから下記(1)式(図3参照)をもとに、操業に適したηCOレベル範囲を特定する。半径方向区分け装入法を適用する場合、中心部、周辺部それぞれに適正ηCOを特定する。
1.5×C%≦ηCO−0.7×(平均M.Fe/T.Fe )≦3.0×C%・・・(1)
但し、
C : 鉄源中に含まれるC%であって、0%≦C%≦20%
ηCO : ガス利用率(%)
(平均M.Fe/T.Fe) : 平均金属化率(%)
金属化率 : 鉄源中の金属鉄(M.Fe)/鉄源中のトータル鉄(T.Fe)
平均金属化率 : 数種の鉄源を加重平均した金属化率
【0026】
▲3▼溶解炉の操業条件(出銑量の目安)により、炉内平均ガス流速(Nm/s)が決まるため、使用する固体燃料粒度により、図4のデータから1次羽口からのコークスベッド高さを設定する。
【0027】
▲4▼ストックレベルについては、下記(3)式(図5参照)をもとに、目標ηCOに対応したストックレベル(1次羽口からの装入面高さ)H(m)を特定し、設定する。
(3)式は、最小自乗法による近似線で、鉄源種類、金属化率によって、多少異なると思われるが、目標ηCOをもとに、ストックレベルH(m)を設定する。
H=−0.02775ηCO+4.775 ・・・(3)
半径区分け装入法を採用する場合、中心部、周辺部にそれぞれ別々に、ストックレベルを設定するのが好ましい。
【0028】
▲5▼燃料比については、炉の特性である炉体放散熱(kcal/h)と、目標出銑量(t/d)ならびに鉄源種類、品質等を含む操業条件に加え、上記に示す目標ηCOが決まれば、熱・物質バランスから燃料比(kg/t)レベルが求まることから、最終的には、1次送風量の微調整、ストックレベルの微調整を実施して、目標ηCOレベルを維持するようにして操業する。
半径区分け装入法を採用する場合、中心部、周辺部それぞれ別々に、燃料比を設定して装入する。
【0029】
つぎに、鉄源と固体燃料からなる装入物の縦型炉内の装入高さ(ストックレベル)を変更することが、ηCO制御に有効なことを説明する。
ストックレベルについては、例えば、大径の鋳物用コークスを使用し、鉄屑、鋳物屑を溶解処理するキュポラ操業では、通常、下段羽口からストックレベルまでの高さ(H)/炉径(D)=4〜5に設定されているが、高炉用コークスなどの細粒コークスを使用し、かつダスト還元などの還元機能を必要とする竪型炉に関しては、ストックレベルに関する検討結果が見当たらない。そこで、鉄屑多量使用条件下で、ストックレベル変更試験を実施し、排ガスηCOとの関係を図5に整理した。
【0030】
炉床径D=1.4mの竪型炉を用いた試験結果によると、H/D=2.0と小さく設定することで、排ガスηCO>70%と高く維持できること、ストックレベルを上昇させることで、排ガスηCOを低下させることが可能なことが判明した。これは、ストックレベルを高くすると、ガスから原燃料への伝熱が良好となり、固体燃料の予熱、昇温がより上部から進行する結果、下記(4)式のソルーションロス反応領域が炉上部に拡がるためで、この結果、Cの消費量が多くなり、ηCOが低下することを示唆している。
C+CO2 =2CO ・・・(4)
このように、ストックレベルの変更は、炉内の原燃料の昇温速度を制御する役割があり、排ガスηCOの制御手段となる。
【0031】
つぎに、竪型炉内下部のコークスベッド高さを変更すること、さらには、送風量、羽口径、羽口突き出し位置の変更が、ηCO制御に有効なことを説明する。
図4は、コークス粒度および送風量(ガス流速)を変化させて、羽口からのコークスベッド高さと、その部位のηCOの推移を調査したオフラインシミュレータによる実験結果である。図4によると、羽口から送風された空気中の酸素並びに富化酸素は、下記(5)式の反応で、コークスと燃焼してCO2 を生成し、O2 が消失した部位で完全燃焼に至る。この部位が、最もガス温度が高く、これより上部では、吸熱反応である(4)式のソルーション反応が進行して、ηCOが低下し、ガス温度も低下する。
C+O2 →CO2 ・・・(5)
コークス粒度が小さくなると、(5)式の燃焼速度が速くなるため、最高ガス温度(O2 =0%でηCO=100%)の部位は、羽口に近くなる。また、送風量を増量し、ガス流速を上げた場合、羽口から吹き込まれた酸素の炉内流速が上昇し、羽口近傍のCとの接触時間が短くなるため、(5)式の燃焼反応は炉上部に拡がる。そのため、同じコークス粒度で、流速を上げると、図5に見られるように、炉内におけるηCOは流速の低い場合に比べて、全体的に高くなる。1次羽口を炉内に突き出すこと、あるいは羽口径を絞り、羽口風速を上げることは、送風酸素とCとの接触時間を短縮することに相当し、炉内流速を上げるのと同様の効果がある。このように、竪型炉内下部のコークスベッド高さを変更すること、さらには、送風量、羽口径、羽口突き出し位置を変更することは、炉内ηCO制御に有効な手段となる。
【0032】
つぎに、半径方向の区分け装入法を採用した鉄源の還元溶解法が、操業の安定性、低燃料比操業に有効で、鉄源の種類、粒度によらず、効率の良い操業が指向できること、また、鉄源、固体燃料の性状に応じて、効率の良い操業を指向するための操業方法について、説明する。
半径方向の区分け装入法については、鉄源の種類によって、適正な装入法がある。
一つは、炉内のηCOを高くして、効率の良い操業を指向する例で、鉄源のM.Fe/T.Fe による分別法であり、一方は鉄源の粒度に応じた分別法である。
【0033】
まず、最初に、鉄源の金属化率(M.Fe/T.Fe)による分別法が、操業安定化に寄与し、効率の良い操業が指向できることを説明する。
還元溶解に使用する鉄源が、数種類に及び、M.Fe/T.Feの大小で分別できる場合、好ましくは、金属化率の高い鉄源、例えば銑鉄(型銑)、鉄屑、鋳物屑、HBI、DRI等は炉中心部に装入し、金属化率の低い鉄源、例えばダスト塊成鉱、自己還元性鉱塊、一部酸化した還元鉄、ペレット類等を炉周辺部に装入する。これは、炉中心部は溶解機能、炉周辺部は還元機能を持たせる装入方法であり、炉周辺部に金属化率の低い鉄源を装入し、炉中心部に金属化率の高い鉄源を装入する理由は、炉中心部のコークスベッドの高さ制御を容易にすること、中心ガス流を確保すること、低燃料比操業を指向することにある。
【0034】
この操業を指向する場合、1次羽口は、羽口先端が炉壁よりも炉内部に突き出した構造とし、基本的には、1次羽口の先端位置を、炉中心部と炉周辺部の境界に設けるのが理想的である。また、ガス流を中心流とし、炉周辺部に装入する鉄源の還元機能を重視すると、周辺部の固体燃料は細粒が好ましく、中心部の固体燃料は大粒が好ましい。
1次羽口を炉の中心部と周辺部の境界に設定する理由は、1次送風を2次羽口の下の周辺部に存在する固体燃料の燃焼に使用させないためで、2次羽口部直下の周辺部ηCOを高くして、含Cダスト粉、紛状鉄源の溶解用に作用させるためである。炉中心部は溶解機能を主体とするため、コークスベッド高さを制御して、炉中心部のηCO>90%の操業を指向すれば最も効率的である。また、3段以上の羽口を有する炉では炉内に突出した3次羽口による送風で(2)式のCOガス燃焼を行うことにより、より容易に炉中心部ηCO>90%の操業を達成できる。この操業を指向することにより、炉中心部の固体燃料は最低燃料比である浸炭分程度とすることができる。そのため、急激なコークスベッド高さの変化を抑制できる上、粒径を維持したコークスがコークスベッドとなるため、通気・通液性を確保した低燃料比操業が可能となる。
【0035】
つぎに、金属化率の低い鉄源を炉周辺部に装入する場合に固体燃料と混合する装入法が効率的であることを説明する。
ηCOの高い操業を指向できれば、低燃料比の操業が可能となるが、還元機能を必要とする金属化率の低い鉄源をηCO>30%の条件で還元させる実験を実施したところ、コークスと混合しない条件では、鉄源中のウスタイトから鉄への還元反応は進行せず、高温部で操業に悪影響を及ぼす溶融還元を引き起こす。それに対し、金属化率の低い鉄源でも、コークスと混合して装入すると、コークスと混合しない場合に比べ、少なくとも20%以上の還元率改善効果があることが、オフラインシミュレータの検討結果で明かとなった。
このことは、金属化率の低い鉄源を装入する操業では、固体燃料(細粒コークス)と混合する装入法が、固体燃料(細粒コークス)と混合しない操業に比べると、鉄源の還元性改善に効果があり、その結果、溶融時のスラグ融液量を低減することができ、棚吊り回避にも寄与する。
【0036】
炉周辺部に装入する金属化率の低い鉄源の還元を促進し、溶融前の鉄源の還元率を高くする方法として、鉄を含有するダスト中にCを内装すること、内装C量を多くすることが有効である。内装C量の上限は、強度制約上20%程度である。
図3は、鉄源の平均金属化率と鉄源の還元・溶解が支障なく行えるηCOレベルを検討した一例であり、鉄を含有するダストに内装するC量によって多少ηCOレベルは異なるが、装入鉄源の金属化率から、操業可能なηCOレベルを判定できる。
固体燃料としては、一般的に、コークスを使用するが、無煙炭のような炭材なども使用できる。
【0037】
つぎに、竪型炉の半径方向に装入する原燃料の装入部位に応じて、ストックラインを変更することが有効なことについて説明する。
例えば、還元が必要でない鉄屑、銑鉄、鋳物屑等を炉中心部に装入する場合においては、ηCOは極力高い方が望ましく、ηCO>70%以上を目標とすると、ストックレベルは(1次羽口からの装入高さH)/(炉床径D)<2.0が適当である。また、還元が必要なダスト塊成鉱、自己還元性鉱塊、還元鉄を還元・溶解する場合、ηCOを低下させることが必要で、この場合、例えばηCO=50%を目標とすると、ストックレベルは、H/D=約2.4に設定すればよい。このように、装入する鉄源の種類に応じて、半径方向でストックレベルの適正値が存在する。
半径方向で、ストックレベルを制御する方法としては、専用の装入装置が必要である。
例えば、図1に示す装入装置が挙げられる。これは、炉頂半径方向において、装入物の装入位置を、炉中心部と炉周辺部に区分できるもので、この装置に装入ガイドを設け、装入ガイド内で、各装入物のストックレベルを管理する方法である。
これにより、還元の必要のない鉄源の装入部位では、コークスベッドより上の部位でのコークスのソルーションロス反応を抑制できることになり、より効率の良い操業が可能となる。
【0038】
つぎに、コークスベッド高さを維持するための制御方法について述べる。
コークスベッド高さの制御が難しいのは、これが炉の中心下部にあり、コークス比が適当でなければ、未還元のFeO分が炉下部で溶融還元し、コークスベッドを消費することによって、コークスベッドの異常消耗が引き起こされるためである。特に、炉の中心下部で、このようなコークスの異常消耗が生じると、鉄源の溶解に支障となる上、スラグの固化等により、操業不能に陥る可能性もあり、問題となる。
そこで、前記したように、炉中心部には、主として金属化率の高い鉄源、すなわち型銑、鉄屑、鋳物屑類を装入することにより、炉中心部で溶融還元の生じ難い操業とし、炉中心部のコークスベッドの異常消耗を抑制する。
また、コークスのソルーションロス反応を極力抑制するために、炉中心部に装入する固体燃料を、炉周辺部に装入する固体燃料と区別し、大径コークスを使用する。これによって、炉中心部のコークスベッドの異常損耗を抑制でき、さらに、炉下部の燃焼効率ηCOを高めた操業が可能となる。
【0039】
上段羽口の設置位置は、コークス粒度、送風量等の操業諸元によって、適正位置が存在するが、基本的には、1次羽口部でのηCOレベルが、65%<ηCO<90数%程度が目安となる。
また、コークスベッド上端位置は、装入する鉄源の種類によって異なり、還元機能の不必要な鉄源の装入部位については、1次羽口より下の位置に制御して、極力コークス燃焼を抑制するのが好ましい。一方、還元機能が必要な鉄源の装入部位では、コークスベッド上端位置は、1次羽口より上部とすることが好ましい。これは、鉄源のM.Fe/T.Fe の割合により、コークスベッド上端位置でのηCOをコントロールすることが必要なためである。
コークスベッド高さを制御または監視する簡易法として、1次羽口部での肉眼観察、炉内圧損値による判定などがある。1次羽口部での観察は、少なくとも、鉄源の溶融部位が、2次羽口上部か下部のいずれかに存在することを判定できる。 また、コークスベッド高さを、精度良く測定する方法としては、炉上部から装入した垂直ゾンデもしくは鉄線類の降下挙動を測定することによって、判定可能である。垂直ゾンデの場合、炉内温度が急に上昇し、1200℃以上となる部位に相当し、鉄線類を用いた場合、降下速度がストップした地点が、コークスベッドの上端部に相当する。
なお、本実施形態では、2次羽口9bから含Cダスト粉を吹き込んで処理するだけでなく、粉状鉄源をも吹き込んで、鉄源の溶融処理を併用することにより、炉頂温度は200℃以下に抑えられ、効率の良い操業が可能となる。
【0040】
本発明でいう炉中心部と炉周辺部の境界位置は、鉄源の金属化率やコークス粒度、さらには、鉄を含有するダストの使用割合によって、多少は炉半径方向で移動する。
この炉中心部と炉周辺部の境界位置riは、各部に装入する鉄源と固体燃料の量が決まれば、下記式(6)によって求められる。
ri2 =(Wm(c)/ρm(c)+Wc(c)/ρc(c))/{(Wm(c)/ρm(c)+Wc(c)/ρc(c))+(Wm(p)/ρm(p)+Wc(p)/ρc(p))} ・・・(6)
ただし、
ri : 中心部と炉周辺部との無次元境界半径(−)
Wm(c) : 中心部に装入する鉄源重量(kg/チャージ)
Wc(c) : 中心部に装入する固体燃料重量(kg/チャージ)
Wm(p) : 周辺部に装入する鉄源重量(kg/チャージ)
Wc(p) : 周辺部に装入する固体燃料重量(kg/チャージ)
ρm(c) : 中心部に装入する鉄源の嵩密度(kg/m3 )
ρc(c) : 中心部に装入する固体燃料の嵩密度(kg/m3 )
ρm(p) : 周辺部の装入する鉄源の嵩密度(kg/m3 )
ρc(p) : 周辺部に装入する固体燃料の嵩密度(kg/m3 )
なお、このriは、無次元半径で表されており、炉中心部と炉周辺部の装入物の降下速度を一定とした場合の境界位置を示している。
このriで示される境界位置を調節するための装入方法については、種々考えられるが、ベル式の装入装置を使用する場合でも、アーマーを使用し、装入チャージ毎に中心装入、周辺装入を交互に繰り返して装入することにより、一部混合層が生成するものの、所定の境界設定は可能である。
【0041】
【実施例】
以下、実施例により本発明の特徴を具体的に説明する。
炉床径1.5m、1次羽口数6本、2次羽口数6本、1次羽口部からの有効高さ4.2mの炉頂開放型の移動層型竪型炉を用いた。本装置は2段羽口構造となっている。また、装入装置については、炉半径方向で装入物の区分けが行える図1に示す装入装置を使用した。
炉頂排ガス組成は、
ηCO(TOP) =(CO2 (TOP) /(CO(TOP) +CO2 (TOP)))
で定義した。
また、操業諸元のうち、送風湿分は大気湿分15g/N3 、炉頂から装入する石灰石原単位は、スラグ塩基度=1.0を目標として設定した。
装入する鉄源割合は、C(12%)内装の自己還元性鉱塊(粒度40mm×20mm×30mmで、3mm以下の還元鉄粉に、高炉2次灰、コークス粉を混合した塊成鉱)と、高炉2次灰を主体に製鉄所内ダストを混合して塊成化したダスト塊成鉱、及び一般市中屑であるカーシュレッダー屑鉄、ならびに3mm〜5mmの還元鉄粉である。
表1に検討状況の詳細を示す。
【0042】
【表1】
【0043】
装入割合は、実施例1、比較例1の場合、自己還元性鉱塊:ダスト塊成鉱:カーシュレッダー屑鉄:還元鉄粉=50:10:30:10の割合とし、実施例2、比較例2の場合、ダスト塊成鉱20%+カーシュレッダー屑鉄80%を装入したケースである。
実施例においては、固体燃料として、周辺部に約30mmの高炉用小塊コークスを使用し、中心部の浸炭補給用には、約60mmの大塊コークスを使用した。送風条件は、比較例、実施例とも、常温送風とした。
実施例1、比較例1は、周辺部に自己還元性鉱塊+ダスト塊成鉱+還元鉄粉と小粒コークスを混合装入し、中心部には、カーシュレッダー屑鉄+浸炭用大塊コークスを装入した条件で、上段羽口から含Cダスト粉、紛状鉄源を吹き込んだ操業である。
また、実施例2、比較例2は、周辺部にダスト塊成鉱、小粒コークスを混合装入し、中心部にカーシュレッダー屑鉄+浸炭用大塊コークスを装入した条件で、上段羽口から含Cダスト粉、紛状鉄源を吹き込んだ操業である。
実施例1、2とも、含Cダスト粉、紛状鉄源を吹き込む際に、上段羽口径を縮小して、レースウェイ部を形成させたのに対し、比較例1、2は、上段羽口部にはレースウェイを作らない条件での操業である。
比較例1、2は、上段羽口から含Cダスト粉、紛状鉄源を吹き込んだ後、徐々に羽口前面が暗くなりだし、結局、吹き込みダスト粉が目詰まりを起こして、操業不納に陥った。それに対し、実施例1、2とも、含Cダスト粉、紛状鉄源を吹き込んだ後も、順調に操業を継続できており、紛状廃棄物を処理することが可能であった。
【0044】
【発明の効果】
以上説明したように、本発明は、炉体の側壁高さ方向に多段羽口を有する竪型炉を用い、炉上部から鉄源と固体燃料とを炉内に装入し、羽口から常温または600℃以下の酸素含有ガスを送風して還元・溶解する操業を行う場合に、最下段を除く上段の羽口のみにレースウェイ部を形成させ、細粒コークス内への粉状鉄源および/または含Cダスト粉の吹き込みを容易にすることにより、細粒の固体燃料を使用した低燃料比操業において、エネルギー的に好適な状態で粉状鉄源や含Cダスト粉を処理することができるものである。
【図面の簡単な説明】
【図1】図1(a)は反応装置および装入装置の一例を示す説明図、図1(b)は、中心装入時の上部装入装置の説明図、図1(c)は、周辺部装入時の上部装入装置の説明図である。
【図2】竪型炉の中心部に鉄屑類のみとし、周辺部に細粒コークス+ダスト類とした装入を示す説明図である。
【図3】鉄源の平均金属化率と鉄源の還元・溶解が支障なく行えるηCOレベルとの関係を示す説明図である。
【図4】図4(a)は、炉内ガス流速:0.35Nm/sで、コークス粒度が変化した時のコークスベッド高さとηCOの関係図、図4(b)は、コークス粒度:30mmで、炉内ガス流速が変化した時のコークスベッド高さとηCOの関係図、図4(c)は、炉内ガス流速が変化した時のコークスベッド高さとηCOの関係図である。
【図5】ストックレベルとηCOの関係図である。
【符号の説明】
1 竪型炉
2 装入装置
3 バケット
4 ベル
5 可動アーマー
6 装入ガイド
7 炉体
8 排ガス管
9 羽口
9a 下部羽口(1次羽口)
9b 上部羽口(2次羽口)
10 レースウェイ部
11 炉中心部
12 炉周辺部
13 コークスベッド
Claims (2)
- 炉体の側壁高さ方向に多段羽口を有する竪型炉の炉上部から鉄源と固体燃料とを炉内に装入し、羽口から常温または600℃以下の酸素含有ガスを送風して還元・溶解する操業方法において、炉周辺部に金属化率が低い鉄源と細粒の固体燃料とを混合して装入するとともに、炉中心部に金属化率の高い鉄源を装入し、最下段を除く上段羽口径を縮小して、羽口風速を上げることにより、上段の羽口のみにレースウェイ部を形成させ、炉周辺部に空間部を形成して、細粒コークス内に粉状鉄源および/または含Cダスト粉を吹き込んで処理し、最下段羽口はレースウェイ部を形成させずに燃焼率を高くして、高η CO 条件とするようにしたことを特徴とする粉状廃棄物を処理する竪型炉操業方法。
- 前記竪型炉の最下段の羽口の突き出し位置を調整して燃焼効率を制御するようにしたことを特徴とする請求項1に記載の粉状物を処理する竪型炉操業方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33825397A JP4005683B2 (ja) | 1997-11-25 | 1997-11-25 | 粉状廃棄物を処理する竪型炉操業方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33825397A JP4005683B2 (ja) | 1997-11-25 | 1997-11-25 | 粉状廃棄物を処理する竪型炉操業方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11158520A JPH11158520A (ja) | 1999-06-15 |
JP4005683B2 true JP4005683B2 (ja) | 2007-11-07 |
Family
ID=18316384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33825397A Expired - Fee Related JP4005683B2 (ja) | 1997-11-25 | 1997-11-25 | 粉状廃棄物を処理する竪型炉操業方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4005683B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5747775B2 (ja) * | 2011-10-11 | 2015-07-15 | 新日鐵住金株式会社 | 竪型溶融炉 |
-
1997
- 1997-11-25 JP JP33825397A patent/JP4005683B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11158520A (ja) | 1999-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1087022A1 (en) | A direct smelting process | |
JP2008255494A (ja) | 金属酸化物から金属を製造する直接製錬法 | |
US6602321B2 (en) | Direct smelting process | |
EP1098997B1 (en) | A direct smelting process | |
EP2202324A1 (en) | Vertical furnace and method of operating the same | |
WO2002024963A1 (en) | A direct smelting process and apparatus | |
JP3814046B2 (ja) | 竪型炉の操業方法 | |
JP4005683B2 (ja) | 粉状廃棄物を処理する竪型炉操業方法 | |
JP4047422B2 (ja) | 竪型炉の操業方法 | |
JP4005682B2 (ja) | 竪型炉の操業方法 | |
EP0818543A1 (en) | Method for operating shaft furnace | |
JP2018003075A (ja) | 酸化鉄含有鉄原料の還元・溶解方法 | |
Zervas et al. | Direct smelting and alternative processes for the production of iron and steel | |
JP4394767B2 (ja) | 複合廃棄物の処理方法 | |
JP3516793B2 (ja) | 竪型炉へのダスト塊成鉱、自己還元性鉱塊、鉄屑、固体燃料等の原燃料装入方法 | |
JPH11209810A (ja) | 竪型炉の操業方法 | |
WO2023054345A1 (ja) | 溶銑製造方法 | |
JPH11158521A (ja) | 竪型炉の操業方法 | |
Carpenter | Use of coal in direct ironmaking processes | |
RU2144088C1 (ru) | Способ эксплуатации вертикальной печи | |
JPH01247535A (ja) | ステンレス鋼製造時の副生物からの有価金属回収方法 | |
JPH0310030A (ja) | ステンレス鋼製造過程副産物の処理炉 | |
JPH03107430A (ja) | ステンレス鋼製造過程副産物の処理炉および処理方法 | |
AU778743B2 (en) | A direct smelting process | |
JP4738751B2 (ja) | クロム鉱石の溶融還元製錬方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070814 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070824 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100831 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110831 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120831 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130831 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |