JP3994783B2 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP3994783B2 JP3994783B2 JP2002117175A JP2002117175A JP3994783B2 JP 3994783 B2 JP3994783 B2 JP 3994783B2 JP 2002117175 A JP2002117175 A JP 2002117175A JP 2002117175 A JP2002117175 A JP 2002117175A JP 3994783 B2 JP3994783 B2 JP 3994783B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- gas recirculation
- compression ratio
- combustion engine
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
- F02B29/0437—Liquid cooled heat exchangers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Description
【発明の属する技術分野】
この発明は、機関圧縮比を可変制御する可変圧縮比機構を備えた内燃機関の制御装置、特に、ターボ過給機を備えた内燃機関における燃費向上技術に関する。
【0002】
【従来の技術】
可変圧縮比機構とターボ過給機とを組み合わせた内燃機関が、本出願人が先に提案した特開2001−342859号公報に開示されている。この種の構成においては、一般に、吸入空気を過給する高負荷運転時には機関の圧縮比を低くしてノッキングの発生を回避し、過給しない低中負荷運転時には圧縮比を高くして燃費向上を図っている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のようなターボ過給機を用いた内燃機関においては、要求負荷に応じた量の新気をシリンダ内に供給するためにのみ過給作用が利用されており、余った排気エネルギは、排気バイパス弁を介して無駄に排出されている。換言すれば、必要な新気量以上に過給が可能な状態では、排気エネルギをターボ過給機により有効に回収することができず、燃費悪化の一因となっている。この点は、上記のように可変圧縮比機構と組み合わせた構成でも基本的に変わりがない。
【0004】
【課題を解決するための手段】
そこで、この発明は、さらに排気還流装置を組み合わせ、過給域において圧縮比をある程度高めつつ排気還流を行うことで、一層の熱効率向上を図ったものである。
【0005】
すなわち、請求項1に係る発明は、複リンク式ピストン−クランク機構を用い、そのリンク構成の一部を動かすことによりピストン上死点が変化する可変圧縮比機構と、排気タービンおよびコンプレッサを有し、排気流により駆動されて吸入空気を過給するターボ過給機と、外部排気還流として排気系から吸気系に排気の一部を還流する排気還流装置と、を備えてなる内燃機関において、
上記ターボ過給機による過給が行われる運転領域においても上記可変圧縮比機構によりノッキング限界付近もしくは熱効率最大点付近まで圧縮比を高めて燃焼を安定化させつつ上記排気還流装置により排気還流を行うことを特徴としている。
【0006】
通常、自然吸気ガソリン機関においては、排気還流が増加すると、新気吸気量が減少して出力が低下するため、排気還流を行う領域は、低速低負荷域に限られる。さらに、排気還流が増加すると燃焼が悪化するため、可能な排気還流量も制限されたものとなる。一方、ターボ過給機を備えたガソリン機関においては、自然吸気ガソリン機関よりも機械的圧縮比(幾何学的に定まる公称圧縮比)が低く設定されるため、さらに燃焼が悪化しやすく、可能な排気還流量はさらに減少する。しかしながら、本発明のように可変圧縮比機構とターボ過給機と排気還流装置とを組み合わせることにより、低速低負荷域においては高圧縮比化による燃焼改善によって排気還流量を増加することが可能になり、さらに低速低負荷以外の領域で排気エネルギを有効に利用していなかった中高速低中負荷域においても、高圧縮比化による燃焼改善を行うことで排気還流量を増大することが可能になる。このように過給域で排気還流量を増加することにより、冷却損失が低減し、燃費が向上する。高負荷域においても、還流排気を新気とともに過給しつつシリンダ内に供給することで、排気エネルギを有効に活用でき、シリンダ内に供給される作動ガスの増加および燃焼温度低下による冷却損失低下によって燃費が向上する。そして排気還流により燃焼温度が低下し、ノッキングを抑制できることから、さらに過給圧の高圧化あるいは高圧縮比化が可能となり、最大出力を向上することができる。
【0007】
より具体的な請求項2の発明では、上記排気還流装置が、上記排気タービンの上流側から上記コンプレッサの下流側へ排気を導く第1の排気還流通路と、この第1の排気還流通路の流量の制御する第1の排気還流制御手段と、上記排気タービンの下流側から上記コンプレッサの上流側へ排気を導く第2の排気還流通路と、この第2の排気還流通路の流量を制御する第2の排気還流制御手段と、を備えており、上記第1の排気還流通路および上記第2の排気還流通路の一方もしくは双方を通して、過給時の排気還流を行うようになっている。
【0008】
すなわち、上記第1の排気還流通路においては、排気タービン上流側の高温高圧の排気がコンプレッサ下流側へ還流する。また、第2の排気還流通路においては、排気タービン下流側の低温低圧となった排気がコンプレッサ上流側へ還流し、この排気は、新気とともにコンプレッサで加圧されて過給される。
【0009】
例えば、低速低負荷域から加速を開始した場合のターボ過給機の立ち上がり時においては、負荷上昇速度に対してターボ過給機の立ち上がり速度が遅く、排気タービン上流側の排圧が上昇するため、上記第1の排気還流通路を通して排気還流を行えば、排気タービン上流側の高温高圧の排気をコンプレッサ上流側に敏速に還流して排気過給することができる。その結果、作動ガスの増加および燃焼温度低下による冷却損失低下によって熱効率が向上し、燃費が向上する。また、排気タービン上流側から高温高圧の排気が還流することで、排気タービンで仕事を行う排気エネルギが減少し、新気の過給量が減少するとともに、排気還流による燃焼温度低下によってノッキングが生じにくくなるので、急加速時における高圧縮比から低圧縮比への圧縮比切換の遅れによるノッキング発生を回避できる。
【0010】
また過給が可能になる中高速領域においては、従来はターボ過給機で得られるエネルギを有効に利用していなかったが、第2の排気還流通路を通して排気還流を行えば、排気タービン下流側の低温の排気がコンプレッサ上流側へ還流し、コンプレッサによって新気とともに過給される。これにより、過給による作動ガスの増加および低温排気の還流による燃焼温度低下によって冷却損失が低下し、燃費が向上するとともに、ノッキングを抑制することができる。このような過給が可能であるのは、可変圧縮比機構により圧縮比を高めることができるためであり、高圧縮比化による燃焼改善によって多量の排気還流が可能となる。
【0011】
請求項3の発明は、請求項2に従属するものであり、高負荷側で圧縮比を低くするとともに上記第2の排気還流通路を通して排気を還流し、低負荷側で圧縮比を高くするとともに上記第1の排気還流通路を通して排気を還流することを特徴としている。
【0012】
高負荷側ではノッキングが生じやすいことから低圧縮比となるが、第2の排気還流通路を通して低温低圧の排気を還流した方が筒内の圧縮開始時の作動ガス温度が低くなるため、ノッキング限界が高くなる。また低負荷域では、燃焼が悪化しやすいので、高圧縮比化して燃焼改善を図ることになるが、第1の排気還流通路を通して高温高圧の排気を還流することで、筒内の圧縮開始時の作動ガス温度が高くなり、燃焼改善の上で有利となる。
【0013】
また請求項4の発明は、吸気弁の開閉時期を可変制御可能な可変動弁機構をさらに備えており、低速低負荷域ではこの可変動弁機構によるバルブオーバラップの拡大により内部排気還流率を高くし、かつ負荷の上昇に伴って上記バルブオーバラップによる内部排気還流率を低くするとともに上記排気還流装置による外部排気還流率を高くすることを特徴としている。
【0014】
周知のように、バルブオーバラップの存在によって、シリンダ内の排気の一部は吸気ポートに押し戻され、かつ再びシリンダ内に吸入される。この現象が、いわゆる内部排気還流と呼ばれ、一般にバルブオーバラップを大きく与えると内部排気還流も大となる。また、ここでは、排気還流率は、シリンダ内に導入される作動ガスに占める排気の割合として定義するものとし、特に、内部排気還流によるものを内部排気還流率とし、外部排気還流によるものを外部排気還流率として、それぞれ区別する。
【0015】
低速低負荷域では、過給効率が低いため、外部排気還流に依存するよりも、バルブオーバラップを拡大して内部排気還流の割合を大きくすることで、効率的に排気還流を行うことができる。また、低負荷域ではノッキングが発生しにくいため、排気温度が低くなる外部排気還流よりも高温の内部排気還流を利用する方が、燃焼を改善でき、熱効率向上効果が大きい。一方、高負荷側になるほど過給圧が上昇してくるため、高負荷側ではバルブオーバラップを縮小して過給効果を大きくし、充填効率を高める。但しバルブオーバラップを縮小すると内部排気還流が減少するので、十分な排気還流を行うように、外部排気還流の割合を大きくする。高負荷になるとノッキングが発生し易くなるが、内部排気還流よりも排気温度が低い外部排気還流を利用することによって筒内ガス温度の上昇を回避でき、ノッキング限界が向上する。
【0016】
また、請求項5に係る発明は、上記排気還流装置と内部排気還流とによる総排気還流量を、負荷の上昇に伴って増加させるとともに、上記可変圧縮比機構による圧縮比を負荷の上昇に伴って低圧縮比としている。これは、いわゆるA/R比が大きな高速型ターボ過給機を用いた場合に適したものである。このような高速型ターボ過給機では、負荷に対し必要な新気量に比べてターボ過給機の最大過給能力が上回るため、高負荷時においても還流排気を過給することが可能である。燃焼が安定している高負荷側ほど排気還流量を増加することにより、排気還流を行わない場合に比べて、高負荷側での燃費が向上し、かつノッキング限界が向上する。その結果、さらに高圧縮比化して燃費を向上したり、あるいは新気の過給圧をさらに高めて負荷を増加することができる。
【0017】
これに対し、請求項6の発明は、A/R比が小さな低速型ターボ過給機に適したものであり、上記排気還流装置と内部排気還流とによる総排気還流量を、所定の中間負荷まで負荷の上昇に伴って増加させるとともに、この中間負荷よりも高負荷側では負荷の上昇に伴って減少させることを特徴としている。
【0018】
A/R比の小さな低速型ターボ過給機においては、加速時の過給の立ち上がりが速い。そのため、緩加速途中の低速中負荷領域では新気吸入量の増加速度は遅くてもよいので、得られる過給エネルギの一部を新気吸入量の増加だけではなく排気還流量の増加にも使用することが可能である。低中負荷域では、負荷増大とともに排気還流量を増加することで冷却損失を低減して燃費を向上することができる。一方、高負荷域では、低速型ターボ過給機では、ターボ過給機の過給効率が低下して過給量に上限があるため、最大出力を確保するためには、残留ガス割合を減少させて新気吸入量を増加させる必要があり、従って、所定の中間負荷よりも高負荷側では、負荷増大とともに排気還流量を減少させていく。
【0019】
また請求項7の発明では、上記可変圧縮比機構の複リンク式ピストン−クランク機構は、上死点付近のピストン行程が、単リンク式ピストン−クランク機構に比べて単振動に近い特性を有している。
【0020】
可変圧縮比機構を構成する複リンク式ピストン−クランク機構では、そのリンクの長さや支点位置等を適宜に設定することにより、ピストンの運動を、単振動に近いものとすることができ、これにより、一般的な単リンク式ピストン−クランク機構に比べて、上死点付近でのピストン速度を低くすることが可能である。このように上死点付近でのピストン速度を遅くすることにより、高温高圧期間が長期化して燃焼が改善するため、排気還流量をさらに増加することが可能になる。特に高速領域においては、燃焼期間が短縮することが原因で燃焼が悪化する傾向にあるが、上死点付近でのピストン速度が遅い特性と排気還流とを組み合わせることにより、燃費向上効果が大きくなる。
【0021】
また請求項8に係る発明は、上記コンプレッサを通して内燃機関に供給される吸気を冷却する吸気冷却手段をさらに備えており、高負荷側で圧縮比を低くするとともに上記吸気冷却手段による吸気冷却量を大とし、低負荷側で圧縮比を高くするとともに上記吸気冷却手段による吸気冷却量を小とすることを特徴としている。高負荷時には、ノッキングが生じやすいので、吸気温度を低くすることが望ましい。また、低負荷域では、燃焼が悪化しやすいので、吸気温度を高くすることで、燃焼改善が図れる。
【0022】
【発明の効果】
この発明によれば、可変圧縮比機構とターボ過給機とを備えた内燃機関において、過給域において圧縮比をある程度高めつつ排気還流を行うことで、冷却損失が低減し、熱効率が向上する。従って、燃費が一層向上する。
【0023】
特に、請求項2のように第1の排気還流通路と第2の排気還流通路とを設けた構成によれば、第2の排気還流通路を通して低温低圧の排気をターボ過給機により新気とともに加圧して過給しつつ還流することが可能であり、例えば高負荷時に排気エネルギを有効に回収するとともにノッキングを抑制しつつ排気還流による冷却損失低減が図れる。
【0024】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0025】
図1は、この発明に係る内燃機関1の吸排気系の構成を示したものであり、図示するように、この内燃機関1は、過給機としてターボ過給機2を備えている。このターボ過給機2は、内燃機関1の排気通路3に位置する排気タービン4と吸気通路5に位置するコンプレッサ6とを同軸状に配置した構成であり、運転条件に応じて過給圧を制御するために、排気タービン4の上流側から下流側へ排気の一部をバイパスさせる排気バイパス弁7を備えている。上記吸気通路5のコンプレッサ6下流側には、該コンプレッサ6により温度上昇した吸気を冷却する吸気冷却手段として、インタークーラ8が介装されている。このインタークーラ8は、例えば水冷式として構成されており、その冷却水の循環を制御することで冷却量を調節することが可能である。
【0026】
また、排気還流装置として、第1排気還流通路11と第2排気還流通路12とが設けられている。第1排気還流通路11は、排気通路3の排気タービン4上流側から吸気通路5のコンプレッサ6下流側に接続されており、その通路途中には、第1の排気還流制御手段として、第1EGR制御弁13が介装されている。第2排気還流通路12は、排気通路3の排気タービン4下流側から吸気通路5のコンプレッサ6上流側に接続されており、その通路途中には、第2の排気還流制御手段として、第2EGR制御弁14が介装されている。
【0027】
上記内燃機関1は、4サイクルガソリン機関であり、後述する可変圧縮比機構15を備えているとともに、その吸気弁の開閉時期を可変制御可能な可変動弁機構16を備えている。
【0028】
上記可変動弁機構16は、例えば、吸気弁のリフト・作動角を変化させるリフト・作動角可変機構と、そのリフトの中心角の位相(クランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構と、を組み合わせたものとして構成されているが、公知の種々の形式のものが適用可能である。上記リフト・作動角可変機構の一例は、例えば特開平11−107725号公報などに記載されている。この可変動弁機構16では、リフト・作動角を大小変化させると同時にそのリフト全体を遅進させることにより、吸気弁の開時期および閉時期をそれぞれ独立して制御することができ、運転条件に応じた吸気弁の開閉時期を得ることが可能である。特に、吸気弁の開時期を変化させることで、バルブオーバラップを大小変化させることができ、内部排気還流の還流量を可変制御できる。
【0029】
次に図2は、上記の複リンク式ピストン−クランク機構を利用した可変圧縮比機構15のリンク構成をスケルトン図として示したものである。
【0030】
ピストン21は図示せぬシリンダ内で矢印の方向に沿って摺動可能に配設されており、このピストン21に、アッパリンク22の一端がピストンピン23を介して揺動可能に連結されている。このアッパリンク22の他端は、第1連結ピン24を介してロアリンク25の一端部に回転可能に連結されている。このロアリンク25は、その中央部においてクランクシャフト26のクランクピン27に揺動可能に取り付けられている。
【0031】
上記ロアリンク25の他端部には、コントロールリンク28の一端が第2連結ピン29を介して回転可能に連結されている。このコントロールリンク28の他端は、内燃機関本体の一部、例えばシリンダブロック等に揺動可能に支持されており、かつ、圧縮比の変更のために、その揺動支点30が、内燃機関本体に対して変位可能となっている。例えば、クランクシャフト26と平行に延びた制御軸に設けられた円形の偏心カムに、コントロールリンク28の他端が回転可能に嵌合しており、制御軸の回転に伴って、偏心カムの位置つまり揺動支点30の位置が変化するように構成されている。なお、この可変圧縮比機構のより具体的な構成は、例えば前述した特開2001−342859号公報に開示されている。
【0032】
上記のような複リンク式の可変圧縮比機構15においては、リンクの長さや支点位置等のリンク構成を適切に選定することにより、図3に示すような単振動に近いピストンストローク特性が得られる。なお、図中の仮想線は、一般的な単リンク式ピストン−クランク機構における特性である。この可変圧縮比機構における単振動に近いピストンの運動は、振動騒音の上でも有利ではあるが、特に、上死点付近(図中のクランク角90°付近)のピストン速度が、単リンク式ピストン−クランク機構に比べて、遅くなる利点を有する。この結果、高温高圧期間が長期化して燃焼が改善するため、排気還流量をさらに増加することが可能になる。特に高速領域においては、燃焼期間が短縮することが原因で燃焼が悪化する傾向にあるが、上死点付近でのピストン速度が遅い特性と排気還流とを組み合わせることにより、燃費向上効果が大きくなる。
【0033】
次に、図4は、上記の可変動弁機構16を利用したバルブオーバラップの可変制御による内部排気還流と第1,第2排気還流通路11,12による外部排気還流との関係を示した特性図である。図示するように、低負荷側では、外部排気還流はなされず、バルブオーバラップによる内部排気還流のみとなる。つまり、高温の排気ガスによる内部排気還流を利用することで、燃焼改善が行われる。負荷がある程度大きくなった状態では、内部排気還流とともに外部排気還流が利用される。そして、負荷の上昇に伴って、内部排気還流の割合が徐々に減少し、かつ外部排気還流の割合が徐々に増加する。なお、外部排気還流は、第1排気還流通路11および第2排気還流通路12の一方もしくは双方を通して行われるが、前述したように、ノッキングが問題とならない低負荷側では主に第1排気還流通路11を通して高温高圧の排気を還流し、またノッキングが生じやすい高負荷側では主に第2排気還流通路12を通して低温低圧の排気を還流することが望ましい。また可変圧縮比機構15による機械的な圧縮比εは、基本的には、低負荷側で相対的に高く、高負荷側で相対的に低くなる。
【0034】
また、図5は、ターボ過給機2の最大過給量と排気還流量との関係を示している。この図5は、請求項5の発明に対応するもので、ターボ過給機2として、A/R比の大きな高速型ターボ過給機を用いた場合に好適な排気還流量制御の特性を示している。図示するように、内部排気還流と外部排気還流との総和である総排気還流量が、負荷の上昇に伴って増加するように制御される。なお、上記可変圧縮比機構15による機械的な圧縮比εは、低負荷側で高く、負荷の上昇に伴って低くなる。前述したように、高速型ターボ過給機では、負荷に対し必要な新気量に比べてターボ過給機2の最大過給量が上回るため、高負荷時においても還流排気を過給することが可能である。燃焼が安定している高負荷側ほど排気還流量を増加することにより、排気還流を行わない場合に比べて、高負荷側での燃費が向上し、かつノッキング限界が向上する。その結果、さらに高圧縮比化して燃費を向上したり、あるいは新気の過給圧をさらに高めて負荷を増加することができる。なお、外部排気還流は、第1排気還流通路11および第2排気還流通路12の一方もしくは双方を通して行われるが、高負荷時には、主に第2排気還流通路12を通して低温低圧の排気が還流される。また、この高負荷時には、前述したように、内部排気還流は可及的に少なく制御される。
【0035】
これに対し、図6の特性図は、請求項6の発明に対応するもので、ターボ過給機2として、A/R比の小さな低速型ターボ過給機を用いた場合に好適な排気還流量制御の特性を示している。図示するように、ある中間負荷T1までは、内部排気還流と外部排気還流との総和である総排気還流量が、負荷の上昇に伴って増加するように制御される。そして、中間負荷T1を越えると、負荷の上昇に伴って総排気還流量が減少するように制御される。なお、上記可変圧縮比機構15による機械的な圧縮比εは、低負荷側で高く、負荷の上昇に伴って低くなる。上記の中間負荷T1は、図から明らかなように、排気と新気との総ガス量がターボ過給機2の最大過給量に達する点となる。このように低速型ターボ過給機2では、高負荷域において、ターボ過給機2の過給効率が低下して過給量に上限があるため、最大出力を確保するためには、排気割合を減少させて新気吸入量を増加させる必要があり、従って、所定の中間負荷T1よりも高負荷側では、負荷増大とともに排気還流量を減少させていくことが望ましい。
【図面の簡単な説明】
【図1】この発明に係る内燃機関の吸排気系の構成説明図。
【図2】可変圧縮比機構の構成説明図。
【図3】この可変圧縮比機構となる複リンク式ピストン−クランク機構のピストン行程を示す特性図。
【図4】負荷に対する内部排気還流と外部排気還流との割合の変化を示す特性図。
【図5】ターボ過給機の最大過給量と総排気還流量との関係を示す特性図。
【図6】異なる制御特性を示す図5と同様の特性図。
【符号の説明】
1…内燃機関
2…ターボ過給機
11…第1排気還流通路
12…第2排気還流通路
15…可変圧縮比機構
16…可変動弁機構
Claims (8)
- 複リンク式ピストン−クランク機構を用い、そのリンク構成の一部を動かすことによりピストン上死点が変化する可変圧縮比機構と、排気タービンおよびコンプレッサを有し、排気流により駆動されて吸入空気を過給するターボ過給機と、外部排気還流として排気系から吸気系に排気の一部を還流する排気還流装置と、を備えてなる内燃機関において、
上記ターボ過給機による過給が行われる運転領域においても上記可変圧縮比機構によりノッキング限界付近もしくは熱効率最大点付近まで圧縮比を高めて燃焼を安定化させつつ上記排気還流装置により排気還流を行うことを特徴とする内燃機関の制御装置。 - 上記排気還流装置が、上記排気タービンの上流側から上記コンプレッサの下流側へ排気を導く第1の排気還流通路と、この第1の排気還流通路の流量の制御する第1の排気還流制御手段と、上記排気タービンの下流側から上記コンプレッサの上流側へ排気を導く第2の排気還流通路と、この第2の排気還流通路の流量を制御する第2の排気還流制御手段と、を備えており、上記第1の排気還流通路および上記第2の排気還流通路の一方もしくは双方を通して、過給時の排気還流を行うことを特徴とする請求項1に記載の内燃機関の制御装置。
- 高負荷側で圧縮比を低くするとともに上記第2の排気還流通路を通して排気を還流し、低負荷側で圧縮比を高くするとともに上記第1の排気還流通路を通して排気を還流することを特徴とする請求項2に記載の内燃機関の制御装置。
- 吸気弁の開閉時期を可変制御可能な可変動弁機構をさらに備えており、
低速低負荷域ではこの可変動弁機構によるバルブオーバラップの拡大により内部排気還流率を高くし、かつ負荷の上昇に伴って上記バルブオーバラップによる内部排気還流率を低くするとともに上記排気還流装置による外部排気還流率を高くすることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。 - 上記排気還流装置と内部排気還流とによる総排気還流量を、負荷の上昇に伴って増加させるとともに、上記可変圧縮比機構による圧縮比を負荷の上昇に伴って低圧縮比とすることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。
- 上記排気還流装置と内部排気還流とによる総排気還流量を、所定の中間負荷まで負荷の上昇に伴って増加させるとともに、この中間負荷よりも高負荷側では負荷の上昇に伴って減少させることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。
- 上記可変圧縮比機構の複リンク式ピストン−クランク機構は、上死点付近のピストン行程が、単リンク式ピストン−クランク機構に比べて単振動に近い特性を有していることを特徴とする請求項1〜6のいずれかに記載の内燃機関の制御装置。
- 上記コンプレッサを通して内燃機関に供給される吸気を冷却する吸気冷却手段をさらに備えており、高負荷側で圧縮比を低くするとともに上記吸気冷却手段による吸気冷却量を大とし、低負荷側で圧縮比を高くするとともに上記吸気冷却手段による吸気冷却量を小とすることを特徴とする請求項1〜7のいずれかに記載の内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002117175A JP3994783B2 (ja) | 2002-04-19 | 2002-04-19 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002117175A JP3994783B2 (ja) | 2002-04-19 | 2002-04-19 | 内燃機関の制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003314318A JP2003314318A (ja) | 2003-11-06 |
JP3994783B2 true JP3994783B2 (ja) | 2007-10-24 |
Family
ID=29534465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002117175A Expired - Lifetime JP3994783B2 (ja) | 2002-04-19 | 2002-04-19 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3994783B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6948482B2 (en) * | 2003-12-09 | 2005-09-27 | Caterpillar Inc. | Engine cylinder temperature control |
DE102005026503A1 (de) * | 2005-06-09 | 2006-12-14 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
DE102005043130A1 (de) * | 2005-09-10 | 2007-03-15 | Daimlerchrysler Ag | Brennkraftmaschine |
JP2007146704A (ja) * | 2005-11-25 | 2007-06-14 | Nissan Motor Co Ltd | 副室式エンジン |
JP4677935B2 (ja) * | 2006-03-14 | 2011-04-27 | 日産自動車株式会社 | NOx排出低減装置 |
JP2007315230A (ja) * | 2006-05-24 | 2007-12-06 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2007327466A (ja) * | 2006-06-09 | 2007-12-20 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2010007533A (ja) * | 2008-06-26 | 2010-01-14 | Nissan Motor Co Ltd | 内燃機関 |
JP6390543B2 (ja) * | 2015-07-29 | 2018-09-19 | トヨタ自動車株式会社 | 内燃機関の運転制御装置 |
JP6583313B2 (ja) | 2017-02-28 | 2019-10-02 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
CN110730861B (zh) * | 2017-06-28 | 2022-09-23 | 日产自动车株式会社 | 内燃机的控制方法及控制装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3301273B2 (ja) * | 1995-06-08 | 2002-07-15 | トヨタ自動車株式会社 | 内燃機関のノッキング制御装置 |
JP2001098963A (ja) * | 1999-09-30 | 2001-04-10 | Toyota Motor Corp | 内燃機関のバルブ特性制御方法及び制御装置 |
JP3968957B2 (ja) * | 2000-06-02 | 2007-08-29 | 日産自動車株式会社 | 内燃機関 |
-
2002
- 2002-04-19 JP JP2002117175A patent/JP3994783B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003314318A (ja) | 2003-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3325598B2 (ja) | 機械式過給機付エンジンの制御装置 | |
JP3968957B2 (ja) | 内燃機関 | |
US8065988B2 (en) | Four-cycle engine | |
JPWO2008096774A1 (ja) | 4サイクルエンジン | |
JP4032398B2 (ja) | ターボ過給機付エンジン及びターボ過給機付エンジン搭載車のパワーユニット | |
JP4973541B2 (ja) | 過給機付エンジンシステム | |
JP3994783B2 (ja) | 内燃機関の制御装置 | |
WO2008013157A1 (fr) | système de recirculation des gaz d'échappement pour moteur à combustion interne | |
JP2007537388A (ja) | 内燃機関を運転する方法およびその方法を実施する内燃機関 | |
JP2007132217A (ja) | 圧縮自着火エンジンの燃焼制御装置 | |
JP2005009314A (ja) | エンジンの過給装置 | |
WO2013124532A1 (en) | Method for operating internal combustion engine | |
JP3719611B2 (ja) | 排気還流装置 | |
JP5227265B2 (ja) | 排気過給機を備える内燃機関 | |
JP6544363B2 (ja) | 内燃機関の制御装置 | |
JP2008038606A (ja) | 過給機付きエンジン | |
JP6432668B1 (ja) | 過給機付エンジン | |
JP2014114789A (ja) | ターボ過給エンジン | |
JPS60166717A (ja) | 排気過給機付内燃機関 | |
JP2566232B2 (ja) | 過給機付エンジンのバルブタイミング制御装置 | |
JP6809253B2 (ja) | エンジン | |
JP3183560B2 (ja) | 過給機付エンジンの制御装置 | |
JP3165242B2 (ja) | 過給機付エンジンの吸気制御装置 | |
JP6406420B1 (ja) | 過給機付エンジン | |
JPS60116823A (ja) | 過給機付内燃機関の吸気弁作動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070723 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3994783 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140810 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |