JP3991409B2 - 半導体レーザ - Google Patents
半導体レーザ Download PDFInfo
- Publication number
- JP3991409B2 JP3991409B2 JP35720897A JP35720897A JP3991409B2 JP 3991409 B2 JP3991409 B2 JP 3991409B2 JP 35720897 A JP35720897 A JP 35720897A JP 35720897 A JP35720897 A JP 35720897A JP 3991409 B2 JP3991409 B2 JP 3991409B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- semiconductor laser
- current confinement
- algainp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
この発明は半導体レーザに関し、特に、埋め込みリッジ型のAlGaInP系半導体レーザに関する。
【0002】
【従来の技術】
従来より、AlGaInP系半導体レーザは赤色発光の半導体レーザとして注目されており、すでに実用化されている。このAlGaInP系半導体レーザとしては、埋め込みリッジ型のものが主流である。図10に、従来の埋め込みリッジ型AlGaInP系半導体レーザの一例を示す。この従来の埋め込みリッジ型AlGaInP系半導体レーザは、実屈折率導波型のものである。
【0003】
図10に示すように、この従来の埋め込みリッジ型AlGaInP系半導体レーザにおいては、(001)面方位のn型GaAs基板101上に、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層102、アンドープのGaInPからなる活性層103、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層104、p型GaInPエッチング停止層105、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層106、p型GaInP中間層107およびp型GaAsキャップ層108が順次積層されている。
【0004】
ここで、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層102、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層104およびp型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層106におけるx1は、例えば0.6≦x1≦1.0を満たすものであり、一例を挙げるとx1=0.6である。また、p型GaInPエッチング停止層105は、活性層103からの光を吸収しない組成を有するものである。
【0005】
p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層106、p型GaInP中間層107およびp型GaAsキャップ層108は、[1−10]方向に延びる所定幅のリッジストライプ形状を有する。このリッジストライプ部の両側の部分にはn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109が埋め込まれ、これによって電流狭窄構造が形成されている。ここで、このn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109におけるx2は、例えば0.6≦x2≦1.0を満たすものであり、一例を挙げるとx2=0.7である。なお、このn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109は、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層102、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層104およびp型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層106よりバンドギャップが大きく、低屈折率である。
【0006】
p型GaAsキャップ層108およびn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109の上には、例えばTi/Pt/Au電極のようなp側電極110が設けられている。一方、n型GaAs基板101の裏面には、例えばIn電極のようなn側電極111が設けられている。
【0007】
上述のように構成された従来の埋め込みリッジ型AlGaInP系半導体レーザにおいて、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層102およびn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109には、それぞれn型不純物として例えばSiがドープされ、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層104、p型GaInPエッチング停止層105、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層106、p型GaInP中間層107およびp型GaAsキャップ層108には、それぞれp型不純物として例えばZnがドープされている。
【0008】
【発明が解決しようとする課題】
しかしながら、本発明者の知見によれば、上述の従来の埋め込みリッジ型AlGaInP系半導体レーザにおいては、図11に示すように、リッジストライプ部の両側に設けられたn型(Alx2Ga1-x2)0.516 In0.484 P電流狭窄層109に、リッジストライプ部およびその両側のp型半導体層に導入されたp型不純物であるZnが拡散してしまい、実際の電流通路の幅がリッジストライプ部の幅より大きくなり、横方向への電流の広がりが設計値よりも大きくなってしまうため、設計通りの静特性が得られないという問題がある。具体的には、動作電流が設計値に比べて上昇したり、あるいは、発光領域が広がるために、遠視野像(FFP)における水平方向のビーム広がり角θ//が、設計値に比べて小さくなったりするという問題がある。また、従来の埋め込みリッジ型AlGaInP系半導体レーザにおいては、このように設計通りの静特性が得られないために、製造歩留まりの向上が妨げられていた。
【0009】
したがって、この発明の目的は、ストライプ部に導入されたp型不純物のn型電流狭窄層への拡散を抑制することにより、静特性の悪化の防止および製造歩留まりの向上を図ることができる半導体レーザを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、この発明は、
基板と、
基板上のn型AlGaInPクラッド層と、
n型AlGaInPクラッド層上の活性層と、
活性層上のp型AlGaInPクラッド層とを有し、
p型AlGaInPクラッド層に設けられたストライプ部の両側の部分にn型電流狭窄層が埋め込まれた電流狭窄構造を有する半導体レーザにおいて、
n型電流狭窄層のうち、少なくともp型AlGaInPクラッド層のストライプ部と接する部分が圧縮歪を有する
ことを特徴とするものである。
【0011】
この発明において、n型電流狭窄層のうち圧縮歪を有する部分は、例えば、基板に対して1×10-3以上2×10-3以下の格子不整合を有する。ここで、この格子不整合は、基板の格子定数をa1 、n型電流狭窄層のうち圧縮歪を有する部分の格子定数をa2 としたとき、(a2 −a1 )/a1 で表される。
【0012】
この発明において、基板としては典型的にはGaAs基板が用いられ、より典型的にはn型GaAs基板が用いられる。
【0013】
この発明において、n型電流狭窄層のうち圧縮歪を有する部分の厚さは、p型不純物の拡散を有効に抑制する観点および結晶性を良好にする観点から、好適には例えば10nm以上200nm以下、より好適には例えば100nm以上200nm以下に選ばれる。
【0014】
この発明において、n型電流狭窄層のうち圧縮歪を有する部分は、例えばn型(Alx Ga1-x )1-y Iny P層である。この場合、このn型(Alx Ga1-x )1-y Iny P層におけるxは、0≦x≦1.0を満たすものであり、yは、基板に対する格子不整合が1×10-3以上2×10-3以下となるように選ばれる。ここで、(Alx Ga1-x )1-y Iny Pにおける基板に対する格子不整合の大きさとyとの関係について、基板としてGaAs基板を用いた場合を例に説明する。なお、ここでは、説明の単純化のため(Alx Ga1-x )1-y Iny Pにおいてx=0とした場合、したがって、Ga1-y Iny Pの場合について説明する。
【0015】
すなわち、GaPの格子間隔は5.4512Å、InPの格子間隔は5.8688Åであるから、GaAs(格子定数5.6533Å)と格子整合するGa1-y Iny Pの組成は、
5.4512+0.4176×y=5.6533
より、y=0.484であるから、Ga0.516 In0.484 Pとなる。
【0016】
一方、このGa1-y Iny PがGaAs基板に対して1×10-3の格子不整合を有する場合の組成は、
5.4512+0.4176×y=5.6533×1.001
より、y=0.497であるから、Ga0.503 In0.497 Pとなる。また、このGa1-y Iny PがGaAs基板に対して2×10-3の格子不整合を有する場合の組成は、
5.4512+0.4176×y=5.6533×1.002
より、y=0.511であるから、Ga0.489 In0.511 Pとなる。
【0017】
以上と同様なことが、(Alx Ga1-x )1-y Iny Pにおいて、0≦x≦1.0としたときに言える。以上より、n型(Alx Ga1-x )1-y Iny Pが、GaAs基板に対して1×10-3以上2×10-3以下の格子不整合を有する場合、このn型(Alx Ga1-x )1-y Iny Pにおけるyは、0.497≦y≦0.511を満たすものである。
【0018】
なお、n型電流狭窄層の圧縮歪を有する部分の材料は、上述の条件を満たした上で、必要に応じてn型AlGaInP層(ただし、n型AlInP層を含む)やn型GaInP層とすることが可能である。例えば、n型電流狭窄層の圧縮歪を有する部分を、p型AlGaInPクラッド層のバンドギャップより大きいかまたは同等のバンドギャップを有するn型AlGaInP層とし、n型電流狭窄層の圧縮歪を有する部分以外の部分を、基板と格子整合するn型AlGaInP層とすることによって、実屈折率導波型半導体レーザを実現することも可能である。この場合、n型電流狭窄層を構成するn型AlGaInP層において、AlGaのうちのAlの比率は、例えば0.6以上1.0以下に選ばれる。また、この場合、n型電流狭窄層のうち、圧縮歪みを有する部分以外の部分は、互いに異なる材料系からなる層が2層以上積層されていてもよく、具体的には、例えば、n型AlGaInP層上にn型GaAs層が積層されていてもよい。
【0019】
また、この発明において、n型電流狭窄層は、圧縮歪みを有する部分とそれ以外の部分とが、互いに異なる材料系により構成されていてもよい。例えば、n型電流狭窄層の圧縮歪を有する部分を活性層からの光を吸収する組成のn型GaInP層とし、n型電流狭窄層の圧縮歪を有する部分以外の部分をn型GaAs層とすることによって、自励発振型半導体レーザを実現することも可能である。
【0020】
上述のように構成されたこの発明によれば、n型電流狭窄層のうち、少なくともp型AlGaInPクラッド層のストライプ部と接する部分が圧縮歪を有することにより、ストライプ部に導入されたp型不純物が、n型電流狭窄層に拡散することを抑制することができるため、横方向への電流の広がりが設計値に比べて大きくなることを防止することができる。
【0021】
【発明の実施の形態】
以下、この発明の実施形態について図面を参照しながら説明する。なお、実施形態の全図において、同一または対応する部分には同一の符号を付す。
【0022】
図1は、この発明の第1の実施形態による埋め込みリッジ型AlGaInP系半導体レーザの断面図である。この埋め込みリッジ型AlGaInP系半導体レーザは実屈折率導波型半導体レーザである。
【0023】
図1に示すように、この第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザにおいては、(001)面方位のn型GaAs基板1上に、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2、アンドープのGaInPからなる活性層3、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4、p型GaInPエッチング停止層5、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8が順次積層されている。
【0024】
ここで、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4およびp型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6におけるx1は、例えば0.6≦x1≦1.0を満たすものであり、一例を挙げるとx1=0.6である。また、p型GaInPエッチング停止層5は、活性層3からの光を吸収しない組成を有するものである。
【0025】
p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8は、[1−10]方向に延びる所定幅のリッジストライプ形状を有する。このリッジストライプ部の両側の部分にはn型電流狭窄層9が埋め込まれ、これによって電流狭窄構造が形成されている。このn型電流狭窄層9は、リッジストライプ部の側面およびその両側の部分におけるp型GaInPエッチング停止層5と接するn型(Alx2Ga1-x2)0.489 In0.511 P層9aと、この上のn型(Alx2Ga1-x2)0.516 In0.484 P層9bとからなる。
【0026】
このn型電流狭窄層9を構成するn型(Alx2Ga1-x2)0.489 In0.511 P層9aおよびn型(Alx2Ga1-x2)0.516 In0.484 P層9bにおけるx2は、例えば0.6≦x2≦1.0を満たすものであり、一例を挙げるとx2=0.7である。n型(Alx2Ga1-x2)0.489 In0.511 P層9aは、n型GaAs基板1に対して約2×10-3の格子不整合を有し、したがって、圧縮歪を有する。また、n型(Alx2Ga1-x2)0.516 In0.484 P層9bはn型GaAs基板1と格子整合している。なお、これらのn型(Alx2Ga1-x2)0.489 In0.511 P層9aおよびn型(Alx2Ga1-x2)0.516 In0.484 P層9bは、ともに、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4およびp型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6よりバンドギャップが大きく、低屈折率である。
【0027】
ここで、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2、n型(Alx2Ga1-x2)0.489 In0.511 P層9aおよびn型(Alx2Ga1-x2)0.516 In0.484 P層9bには、n型不純物として例えばSiがドープされている。また、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4、p型GaInPエッチング停止層5、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8には、p型不純物として例えばZnがドープされている。
【0028】
また、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2の厚さは例えば1μm、活性層3の厚さは例えば10nm、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4の厚さは例えば0.3μm、p型GaInPエッチング停止層5の厚さは例えば10nm、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6の厚さは例えば0.7μm、p型GaInP中間層7の厚さは例えば50nm、p型GaAsキャップ層8の厚さは例えば0.3μmである。また、n型電流狭窄層9の全体の厚さは例えば1μmであり、このうち、n型(Alx2Ga1-x2)0.489 In0.511 P層9aの厚さは例えば200nmである。
【0029】
p型GaAsキャップ層8およびn型電流狭窄層9の上には、例えばTi/Pt/Au電極のようなp側電極10が設けられている。一方、n型GaAs基板1の裏面には、例えばIn電極のようなn側電極11が設けられている。
【0030】
次に、上述のように構成されたこの第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法について説明する。
【0031】
まず、図2に示すように、n型GaAs基板1上に、例えば有機金属化学気相成長(MOCVD)法または分子線エピタキシー(MBE)法により、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2、活性層3、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4、p型GaInPエッチング停止層5、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8を順次成長させる。
【0032】
次に、図3に示すように、p型GaAsキャップ層8の全面に例えばCVD法法により例えばSiO2 膜やSiNx 膜を形成した後、これをエッチングによりパターニングして[1−10]方向に延びるストライプ形状のマスク12を形成する。
【0033】
次に、図4に示すように、マスク12をエッチングマスクとして用いて、ウエットエッチング法により、p型GaInPエッチング停止層5が露出するまでエッチングする。これによって、p型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層6、p型GaInP中間層7およびp型GaAsキャップ層8が[1−10]方向に延びるリッジストライプ形状にパターニングされる。
【0034】
次に、図5に示すように、マスク12を成長マスクとして用いて、例えばMOCVD法やMBE法により、リッジストライプ部の両側の部分に、このリッジストライプ部の側面を覆うように、n型GaAs基板1に対して約2×10-3の格子不整合を有するn型(Alx2Ga1-x2)0.489 In0.511 P層9aを成長させる。なお、このn型(Alx2Ga1-x2)0.489 In0.511 P層9aの格子不整合は、このn型(Alx2Ga1-x2)0.489 In0.511 P層9aを成長させる際に、例えばIn原料の流量を調節することによって与えられる。
【0035】
次に、図6に示すように、マスク12を成長マスクとして用いて、例えばMOCVD法やMBE法により、n型(Alx2Ga1-x2)0.489 In0.511 P層9a上に、n型GaAs基板1と格子整合するn型(Alx2Ga1-x2)0.516 In0.484 P層9bを成長させる。これにより、n型(Alx2Ga1-x2)0.489 In0.511 P層9aおよびn型(Alx2Ga1-x2)0.516 In0.484 P層9bからなるn型電流狭窄層9が形成される。
【0036】
次に、図7に示すように、マスク12を除去した後、n型電流狭窄層9の表面を平坦化する。
【0037】
この後、図1に示すように、例えば真空蒸着法やスパッタリング法により、p型GaAsキャップ層8およびn型電流狭窄層9の全面にp側電極10を形成するとともに、n型GaAs基板1の裏面にn側電極11を形成する。
【0038】
以上により、目的とする埋め込みリッジ型AlGaInP系半導体レーザが製造される。
【0039】
以上のように、この第1の実施形態によれば、n型電流狭窄層9のうちリッジストライプ部と接する部分が、n型GaAs基板1に対して約2×10-3の格子不整合を有する、したがって、圧縮歪を有するn型(Alx2Ga1-x2)0.489 In0.511 P層9aからなることにより、リッジストライプ部に導入されたp型不純物であるZnがn型電流狭窄層9に拡散することを抑制することができ、横方向への電流の広がりが設計値よりも大きくなることを防止することができる。これによって、動作電流が設計値に比べて上昇したり、遠視野像(FFP)における水平方向のビーム広がり角θ//が設計値に比べて小さくなることが防止され、この埋め込みリッジ型AlGaInP系半導体レーザの静特性の悪化の防止および製造歩留まりの安定化を図ることができる。また、n型電流狭窄層9においては、圧縮歪を有するn型(Alx2Ga1-x2)0.489 In0.511 P層9aの厚さが200nmと小さく、この上のn型(Alx2Ga1-x2)0.516 In0.484 P層9bがn型GaAs基板1と格子整合しているため、欠陥の発生が抑制されている。
【0040】
次に、この発明の第2の実施形態について説明する。図8は、この発明の第2の実施形態による埋め込みリッジ型AlGaInP系半導体レーザの断面図である。この埋め込みリッジ型AlGaInP系半導体レーザは実屈折率導波型半導体レーザである。
【0041】
図8に示すように、この第2の実施形態による埋め込みリッジ型AlGaInP系半導体レーザにおいては、n型電流狭窄層9が、リッジストライプ部の側面およびその両側の部分におけるp型GaInPエッチング停止層5と接するn型(Alx2Ga1-x2)0.489 In0.511 P層9aと、この上のn型(Alx2Ga1-x2)0.516 In0.484 P層9bと、この上のn型GaAs層9cとからなる。
【0042】
n型(Alx2Ga1-x2)0.489 In0.511 P層9aは、n型GaAs基板1に対して約2×10-3の格子不整合を有し、n型(Alx2Ga1-x2)0.516 In0.484 P層9bおよびn型GaAs層9cは、それぞれ、n型GaAs基板1と格子整合している。この場合、n型(Alx2Ga1-x2)0.489 In0.511 P層9aおよびn型(Alx2Ga1-x2)0.516 In0.484 P層9bの合計の厚さは、n型GaAs層9cによって活性層3からの光が吸収されないように、十分に大きく選ばれている。具体的には、この場合、n型(Alx2Ga1-x2)0.489 In0.511 P層9aの厚さは例えば0.2μm、n型(Alx2Ga1-x2)0.516 In0.484 P層9bの厚さは例えば0.7μm、n型GaAs層9cの厚さは例えば0.1μmである。
【0043】
この実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザのその他の構成は、第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザと同様であるので、説明を省略する。
【0044】
この第2の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法は、第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法と同様であるので、説明を省略する。
【0045】
この第2の実施形態によれば、第1の実施形態と同様の利点を得ることができる。また、この第2の実施形態によれば、n型電流狭窄層9の最上層がn型GaAs層9cとなっており、酸化されやすいAlを含んだ層がほとんど露出しないため、半導体レーザの特性および品質の安定化を図ることができる。
【0046】
次に、この発明の第3の実施形態について説明する。図9は、この発明の第3の実施形態による埋め込みリッジ型AlGaInP系半導体レーザの断面図である。この埋め込みリッジ型AlGaInP系半導体レーザは、実屈折率導波型半導体レーザであり、SCH構造(Separate Confienment Heterostructure)を有し、活性層は多重量子井戸(MQW)構造を有するものである。
【0047】
図9に示すように、この第3の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザにおいては、n型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層2と活性層3との間に、n型(Alx3Ga1-x3)0.516 In0.484 P光導波層13が挿入され、活性層3とp型(Alx1Ga1-x1)0.516 In0.484 Pクラッド層4との間に、p型(Alx3Ga1-x3)0.516 In0.484 P光導波層14が挿入されている。また、活性層3は、GaInP層を量子井戸層、(Alx3Ga1-x3)0.516 In0.484 P層を障壁層とするMQW構造を有する。ここで、n型(Alx3Ga1-x3)0.516 In0.484 P光導波層13、p型(Alx3Ga1-x3)0.516 In0.484 P光導波層14および活性層3の(Alx3Ga1-x3)0.516 In0.484 P障壁層におけるx3の一例を挙げると、x3=0.4である。
【0048】
n型(Alx3Ga1-x3)0.516 In0.484 P光導波層13およびp型(Alx3Ga1-x3)0.516 In0.484 P光導波層14の厚さは、それぞれ例えば50nmであり、活性層3のGaInP量子井戸層および(Alx3Ga1-x3)0.516 In0.484 P障壁層の厚さは、それぞれ、例えば5nmである。また、活性層3はGaInP量子井戸層を、例えば5層程度有する。
【0049】
この実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザのその他の構成は、第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザと同様であるので、説明を省略する。
【0050】
この第3の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法は、第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法と同様であるので、説明を省略する。
【0051】
この第3の実施形態によれば、第1の実施形態と同様の利点を得ることができる。
【0052】
以上この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
【0053】
例えば、実施形態において挙げた数値、材料などはあくまで例に過ぎず、必要に応じてこれと異なる数値や材料を用いることも可能である。具体的には、例えば、上述の第1〜第3の実施形態におけるp型不純物としては、Znに代えて、例えばMgを用いてもよく、また、n型不純物としては、Siに代えて例えばSeを用いてもよい。
【0054】
また、上述の第1〜第3の実施形態においては、この発明を実屈折率導波型半導体レーザに適用した場合について説明したが、この発明は、例えば自励発振型半導体レーザに適用することも可能である。この場合、例えば、n型電流狭窄層9のうち、リッジストライプ部と接する部分を、例えば活性層3からの光を吸収し、かつ、n型GaAs基板1に対して1×10-3以上2×10-3以下の格子不整合を有する(圧縮歪を有する)n型GaInP層とし、それ以外の部分を例えばn型GaAs層とする。
【0055】
【発明の効果】
以上説明したように、この発明によれば、n型電流狭窄層のうち、少なくともp型AlGaInPクラッド層のストライプ部と接する部分が圧縮歪を有することにより、ストライプ部に導入されたp型不純物がn型電流狭窄層に拡散することを抑制することができ、横方向への電流の広がりが設計値に比べて大きくなることを防止することができるため、半導体レーザの静特性の悪化の防止および製造歩留まりの向上を図ることができる。
【図面の簡単な説明】
【図1】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの断面図である。
【図2】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図3】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図4】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図5】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図6】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図7】 この発明の第1の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの製造方法を説明するための断面図である。
【図8】 この発明の第2の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの断面図である。
【図9】 この発明の第3の実施形態による実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの断面図である。
【図10】 従来の実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザの断面図である。
【図11】 従来の実屈折率導波型の埋め込みリッジ型AlGaInP系半導体レーザにおける問題点を説明するための断面図である。
【符号の説明】
1・・・n型GaAs基板、2・・・n型(Alx1Ga1-x1)0.516 In0.484 Pラッド層、3・・・活性層、4,6・・・p型(Alx1Ga1-x1)0.516 In0.484 Pラッド層、5・・・p型GaInPエッチング停止層、7・・・p型GaInP中間層、8・・・p型GaAsキャップ層、9・・・n型電流狭窄層、9a・・・n型(Alx2Ga1-x2)0.489 In0.511 P層、9b・・・n型(Alx2Ga1-x2)0.516 In0.484 P層、9c・・・n型GaAs層
Claims (7)
- 基板と、
上記基板上のn型AlGaInPクラッド層と、
上記n型AlGaInPクラッド層上の活性層と、
上記活性層上のp型AlGaInPクラッド層とを有し、
上記p型AlGaInPクラッド層に設けられたストライプ部の両側の部分にn型電流狭窄層が埋め込まれた電流狭窄構造を有する半導体レーザにおいて、
上記n型電流狭窄層のうち、少なくとも上記p型AlGaInPクラッド層の上記ストライプ部と接する部分が圧縮歪を有する
ことを特徴とする半導体レーザ。 - 上記n型電流狭窄層のうち上記圧縮歪を有する部分が、上記基板に対して1×10-3以上2×10-3以下の格子不整合を有することを特徴とする請求項1記載の半導体レーザ。
- 上記基板がGaAs基板であることを特徴とする請求項1記載の半導体レーザ。
- 上記n型電流狭窄層のうち上記圧縮歪を有する部分の厚さが10nm以上200nm以下であることを特徴とする請求項1記載の半導体レーザ。
- 上記n型電流狭窄層のうち上記圧縮歪を有する部分が、n型AlGaInP層であることを特徴とする請求項1記載の半導体レーザ。
- 上記n型電流狭窄層のうち上記圧縮歪を有する部分が、上記p型AlGaInPクラッド層のバンドギャップより大きいかまたは同等のバンドギャップを有するn型AlGaInP層であることを特徴とする請求項1記載の半導体レーザ。
- 上記n型電流狭窄層のうち上記圧縮歪を有する部分が、n型GaInP層であることを特徴とする請求項1記載の半導体レーザ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35720897A JP3991409B2 (ja) | 1997-12-25 | 1997-12-25 | 半導体レーザ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35720897A JP3991409B2 (ja) | 1997-12-25 | 1997-12-25 | 半導体レーザ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11186655A JPH11186655A (ja) | 1999-07-09 |
JP3991409B2 true JP3991409B2 (ja) | 2007-10-17 |
Family
ID=18452941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35720897A Expired - Fee Related JP3991409B2 (ja) | 1997-12-25 | 1997-12-25 | 半導体レーザ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3991409B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4090768B2 (ja) * | 2002-03-20 | 2008-05-28 | 株式会社日立製作所 | 半導体レーザ素子 |
KR100495220B1 (ko) * | 2003-06-25 | 2005-06-14 | 삼성전기주식회사 | 고차모드 흡수층을 갖는 반도체 레이저 다이오드 |
JP4262549B2 (ja) * | 2003-07-22 | 2009-05-13 | シャープ株式会社 | 半導体レーザ素子およびその製造方法 |
JP2007103790A (ja) * | 2005-10-06 | 2007-04-19 | Rohm Co Ltd | 高出力赤色半導体レーザ |
-
1997
- 1997-12-25 JP JP35720897A patent/JP3991409B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11186655A (ja) | 1999-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8537870B2 (en) | Laser diode and semiconductor light-emitting device producing visible-wavelength radiation | |
JP3753216B2 (ja) | 半導体レーザ装置 | |
US5963572A (en) | Semiconductor laser device and manufacturing method thereof | |
JP3317335B2 (ja) | 半導体レーザ装置 | |
JP3859839B2 (ja) | 屈折率導波型半導体レーザ装置 | |
JP3991409B2 (ja) | 半導体レーザ | |
JP4028158B2 (ja) | 半導体光デバイス装置 | |
JP2001057459A (ja) | 半導体レーザ | |
US20030039289A1 (en) | Semiconductor laser device | |
JP2002111136A (ja) | 半導体レーザ装置 | |
JP4033930B2 (ja) | 半導体レーザ | |
JP3246148B2 (ja) | 半導体レーザおよびその製造方法 | |
JP3572157B2 (ja) | 半導体レーザ素子 | |
JP2001057458A (ja) | 半導体発光装置 | |
JP2502835B2 (ja) | 半導体レ―ザおよびその製造方法 | |
JP3850303B2 (ja) | 半導体レーザ素子およびその製造方法 | |
JP3654315B2 (ja) | 半導体レーザ | |
JPH09135055A (ja) | 半導体レーザー | |
JP3601151B2 (ja) | 半導体レーザーおよびその製造方法 | |
JP2002134838A (ja) | 半導体レーザ装置及びその製造方法 | |
JPH1131865A (ja) | 半導体レーザおよびその製造方法 | |
JPH07297481A (ja) | 半導体レーザ装置 | |
JP2002217495A (ja) | 半導体レーザ | |
JPH11284276A (ja) | 半導体レーザ装置及びその製造方法 | |
JP3189900B2 (ja) | 半導体レーザ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040421 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050117 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |