JP3988961B2 - 窒化ガリウム系化合物半導体発光素子及びその製造方法 - Google Patents

窒化ガリウム系化合物半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP3988961B2
JP3988961B2 JP19762797A JP19762797A JP3988961B2 JP 3988961 B2 JP3988961 B2 JP 3988961B2 JP 19762797 A JP19762797 A JP 19762797A JP 19762797 A JP19762797 A JP 19762797A JP 3988961 B2 JP3988961 B2 JP 3988961B2
Authority
JP
Japan
Prior art keywords
layer
gallium nitride
compound semiconductor
semiconductor light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19762797A
Other languages
English (en)
Other versions
JPH1093199A (ja
Inventor
俊雄 幡
和彦 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19762797A priority Critical patent/JP3988961B2/ja
Publication of JPH1093199A publication Critical patent/JPH1093199A/ja
Application granted granted Critical
Publication of JP3988961B2 publication Critical patent/JP3988961B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、青色領域から紫外領域で発光可能な窒化ガリウム系化合物半導体発光素子及びその製造方法に関する。
【0002】
【従来の技術】
窒化ガリウム(GaN)は、バンドギャップが3.4eVと大きいIII-V族化合物半導体である。このため、窒化ガリウム系半導体は、青色領域から紫外光領域で発光可能な発光素子の材料として積極的に研究されている。
【0003】
図7を参照しながら、従来の窒化ガリウム系化合物半導体レーザを説明する。この半導体レーザは、n型3C‐SiC基板51上に、n型GaNバッファ層52、n型AlGaNクラッド層53、GaN活性層54と、p型AlGaNクラッド層58、n型GaN内部電流阻止層57、およびp型GaNコンタクト層59を順次積層した構造を備えている。p型GaNコンタクト層59の上にはp側電極60が形成され、基板51の裏面にはn側電極61が形成されている。
【0004】
n型GaN内部電流阻止層57は、エッチングによって形成されたストライプ状開口部(ストライプ溝)を有している。p側電極60からn側電極61へ流れる電流は、n型GaN内部電流阻止層57の開口部内を縦に流れるようにn型GaN内部電流阻止層57によって狭窄される。
【0005】
このような窒化ガリウム系化合物半導体レーザは、例えば、特開平7−249820号公報に記載されている。
【0006】
【発明が解決しようとする課題】
窒化ガリウム系化合物半導体をエッチングする場合、選択性に優れたエッチングが行えないという問題があった。このため、上記内部電流狭窄層57にストライプ状開口部(ストライプ溝)を形成するためのエッチングを行う場合、内部電流狭窄層57の下に位置するクラッド層58の表面までもエッチングされるおそれがあり、エッチング条件を厳しく調整しない限り、再現性のよい形状制御が実現しなかった。
【0007】
また、エッチング装置によって内部電流狭窄層57にストライプ状開口部を形成した後、その開口部を埋め込むように半導体層(クラッド層59)を再成長させるまでの間に、再成長層の下地表面(クラッド層59の表面)が大気にさらされることになる。大気に露出した半導体表面は酸化され、また、その部分に汚染物が付着する。このような露出表面上に再成長層を形成したとしても、良好な結晶品質を持った再成長界面が得られなかった。
【0008】
本発明は、上記事情を鑑みてなされたものであり、その目的とするところは、内部電流狭窄層(内部電流阻止層)の形状が再現性良く制御され、かつ、品質の高い再成長界面を持つ、信頼性の高い窒化ガリウム系化合物半導体発光素子およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の窒化ガリウム系化合物半導体発光素子は、基板と、該基板上に設けられた積層構造体とを備えた窒化ガリウム系化合物半導体発光素子であって、該積層構造体は、In Ga 1−y N(0≦y≦1、x=0のときy>0)活性層と、該活性層を挟む一対のAl Ga 1−x N(0≦x<1)クラッド層と、該一対のクラッド層のうち前記基板から遠い方のクラッド層上に設けられており、該活性層の選択された領域に電流を狭窄するための開口部が形成されたIn Ga 1−z N(z≠0)再蒸発層と、該再蒸発層の上に設けられ、前記活性層の前記選択された領域に電流を狭窄するための開口部が形成されたAl Ga 1−w N(0≦w≦1)内部電流狭窄層と、該内部電流狭窄層の開口部を覆う再成長層とを備え、前記再蒸発層は過飽和吸収体であることを特徴とする
【0010】
好ましくは、前記再蒸発層は、前記内部電流狭窄層に前記開口部を形成する工程においてエッチストップ層として機能する
【0011】
好ましくは、前記再蒸発層のIn組成zは、0.32以上1.0以下である。
好ましくは、前記再蒸発層の層厚が10Å以上100Åよりも薄い。
好ましくは、前記再蒸発層のIn混晶比zは、前記活性層のIn混晶比yと同一、またはそれより高い。
【0012】
また、本発明は、前記窒化ガリウム系化合物半導体発光素子の製造方法であって、基板上に、In Ga 1−y N(0≦y≦1、x=0のときy>0)活性層と、該活性層を挟む一対のAl Ga 1−x N(0≦x<1)クラッド層と、前記基板から遠い方のクラッド層上に過飽和吸収体として機能するIn Ga 1−z N(z≠0)再蒸発層を形成する工程と、該再蒸発層上にAl Ga 1−w N(0≦w≦1)内部電流狭窄層を形成する工程と、該内部電流狭窄層の一部をエッチングして開口部を形成し、前記再蒸発層の表面を部分的に露出させるエッチング工程と、露出された該再蒸発層を蒸発させる工程と、前記内部電流狭窄層の前記開口部を埋めるように成長層を形成する工程と、を包含している
【0013】
好ましくは、前記エッチング工程は、前記内部電流狭窄層に対するエッチングレートよりも前記再蒸発層に対するエッチングレートが低くなるようにしてエッチングされる
【0014】
好ましい実施形態では、前記再蒸発層の露出部分を蒸発させる工程において、500から750℃の範囲の温度で熱処理を行う。
【0015】
【発明の実施の形態】
以下に、本発明を説明する。なお、本願明細書において、「窒化ガリウム系半導体」とは、窒化ガリウム(GaN)のGaが部分的に他のIII族元素に置き換えられた半導体、例えば、GasAltIn1-s-tN(0<s≦1、0≦t<1、0<s+t≦1)を含み、各構成原子の一部がドーパント原子等に置き換えられた半導体や、他の不純物が添加された半導体をも含むものとする。
【0016】
また、本明細書では、「半導体発光素子」は、発光ダイオードや半導体レーザを含む。
【0017】
(実施例1)
図1を参照しながら、本発明による窒化ガリウム系化合物半導体発光素子の第1の実施例として、窒化ガリウム系化合物半導体レーザ素子を説明する。
【0018】
図1は、本実施例の窒化ガリウム系化合物半導体レーザ素子の断面を模式的に示している。この半導体レーザ素子は、図1に示されるように、n型SiC基板1と、基板1上に設けられた半導体積層構造100と、発光に必要な電流(駆動電流)を供給するための一対の電極10および11とを備えている。
【0019】
以下に、半導体積層構造100の構成を詳細に説明する。
【0020】
この半導体積層構造100は、基板1に近い側から順番に、n型GaNバッファ層(厚さ0.5〜1μm程度)2、n型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)3、ノンドープIn0.32Ga0.68N活性層(厚さ30〜800Å)4、Mgドープp型Al0.1Ga0.9Nクラッド層(厚さ0.1〜0.3μm程度)5、MgドープInN再蒸発層(厚さ30Å)6、n型GaN内部電流狭窄層(厚さ0.3〜0.5μm)7、Mgドープp型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)8、およびMgドープp型GaNコンタクト層(厚さ0.5〜1μm)9を含んでいる。
【0021】
n型GaN内部電流狭窄層7は、ノンドープIn0.32Ga0.68N活性層4の選択された領域(本実施例では、共振器長方向に延びるストライプ状の領域)に電流を狭窄するための開口部を持っている。このストライプ状開口部の幅は、レーザ発振の横モードを調整するように決定される。
【0022】
MgドープInN再蒸発層6のうち、n型GaN内部電流狭窄層7の開口部に対応する部分は製造工程中に蒸発している。このため、Mgドープp型Al0.1Ga0.9Nクラッド層8は、前記開口部を介して、Mgドープp型Al0.1Ga0. 9Nクラッド層5に接触している。
【0023】
Mgドープp型GaNコンタクト層9の上面にはp側電極10が形成され、基板1の裏面にはn側電極11が形成されている。不図示の電流供給回路から電極10および11に電圧が与えられ、半導体積層構造体100の中をp側電極10からn側電極11へと電流が流れる。このとき、電流はn型GaN内部電流狭窄層7によってブロックされるので、電流は狭窄されながらn型GaN内部電流狭窄層7の開口部を上から下へ流れる。こうして、横モードの制御されたレーザ発振が生じ、波長が青色領域から紫外領域にあるレーザ光が得られる。
【0024】
以下に、図4(a)〜(g)を参照しながら、図1の半導体レーザの製造方法を説明する。
【0025】
なお、本実施例では、窒化ガリウム系半導体層の形成に有機金属化合物気相成長法(MOCVD法)を用いる。詳細には、V族原料としてアンモニア(NH3)を用い、III族原料としてトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、またはトリメチルインジウム(TMIn)を用いる。キャリヤガスとして、H2およびN2を用いる。P型ドーパントとしては、ビスシクロベンタデイエニルマグネシウム(Cp2Mg)、N型ドーパントとしては、モノシラン(SiH4)を用いる。
【0026】
上記MOCVD法によって、1回目の結晶成長を行うため、n型SiC基板1を不図示のMOCVD装置のサセプタ上に配置した後、基板温度を1200℃程度にまで昇温することによって、基板1の表面に対して清浄化処理を施す。
【0027】
次に、n型SiC基板1の温度を1000℃程度まで降温した後、n型SiC基板1の上に、n型GaNバッファ層(厚さ0.5〜1μm程度)2、n型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)3を成長させる。その後、基板温度を800〜850℃程度に降温し、ノンドープIn0.32Ga0.68N活性層(厚さ50〜800Å)4を成長させる。次に、基板温度を1000℃程度まで昇温し、MgドープAl0.1Ga0.9Nクラッド層(厚さ0.1〜0.3μm程度)5を成長させる。基板温度を800〜850℃程度に降温した後、MgドープInN再蒸発層6を30Åの厚さに成長させる。次に、基板温度を1000℃程度まで昇温した後、n型GaN内部電流狭窄層(厚さ0.3〜0.5μm)7を成長させる。こうして、図4(a)に示す構造が得られる。
【0028】
これらの半導体層の成長は、基板1をMOCVD装置の成長室から取り出すことなく連続的に行われる。
【0029】
次に、一旦、上記半導体層の積層された基板1を成長室から取り出した後、通常のフォトリソグラフィ技術(およびエッチング技術)によって、図4(b)に示すようなマスク12をn型GaN内部電流狭窄層7上に形成する。このマスクは、SiOxまたSiNx(xは1から2程度の整数)、あるいはフォトレジストから形成される。このマスク12は、ストライプ状の開口部13を有している。
【0030】
次に、ドライエッチング技術によって、図4(c)に示されるように、n型GaN内部電流狭窄層7のうち、マスク12で覆われていない部分を選択的にエッチングする。エッチングに際して、下地のMgドープInN再蒸発層6がエッチストップ層として機能する。このため、MgドープInN再蒸発層6の表面14が露出した時点で、エッチングをストップさせることが容易に再現性良く行える。エッチストップ層としての機能を充分に果たすためには、MgドープInN再蒸発層6の厚さは、約10Å以上は必要である。ただし、あまり厚くしすぎると、レーザ光の吸収が急増し、発光効率が悪化するという問題が生じるので、約100Åよりも薄くすることが好ましい。
【0031】
上記エッチングは、例えば、 ECR‐RlBE(電子サイクロトロン共鳴を利用した反応性イオンビームエッチング)、 RlBE、またはRIE(反応性イオンエッチング)によって、BCl3/Ar又はCCl22/Ar等のガスを用いて、MgドープInN再蒸発層6の表面が露出するまで行う。この後、フッ酸系エッチング液又は有機溶剤によってマスク12を除去する(図4(d))。
【0032】
2回目の結晶成長(再成長)のため、再び、基板1をMOCVD装置のサセプタ上にセットする。N2およびNH3雰囲気で、基板温度約550℃で、MgドープInN層6の露出部分15を再蒸発させ、図4(e)に示すように、MgドープAl0.1Ga0.9Nクラッド層5の表面を露出させる。
【0033】
本発明の重要な点は、再蒸発層6を蒸気圧の高いInzGa1-zN(0<z≦1)から構成している点にある。このため、再蒸発のために高温アニール(例えば、1000℃以上のアニール)は不要となり、約500〜750℃程度と十分に低い基板温度で再蒸発が実現する。例えば、厚さ30ÅのInN層を再蒸発層として用いる場合、約550℃の温度ならば、約5分の熱処理で下地を露出させることができる。
【0034】
このような比較的に低い温度では、下地のAl0.1Ga0.9Nクラッド層の蒸発は生じないので、Al0.1Ga0.9Nクラッド層の表面モフォロジーや結晶品質を劣化することはない。また、特別のエッチング液を用いることなく、単なる熱処理によって再蒸発層6の露出部分を選択的に除去できるので、下地表面などを汚染することもない。
【0035】
更に、上記再蒸発工程はMOCVD装置内で簡単に行えるので、Al0.1Ga0.9Nクラッド層の露出表面は大気による酸化等の影響を受けることなく、MOCVD装置内で良好な状態の清浄表面を維持する。
【0036】
MOCVD装置内において、上記再蒸発工程にひきつつぎ、2回目の結晶成長を行う。より詳細には、基板温度を1000℃程度まで昇温した後、図4(f)に示すように、MgドープAl0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)8およびMgドープGaNコンタクト層(厚さ0.5〜1μm程度)9を成長させる。この再成長は、前述の良好な状態の清浄表面の上に行われるので、結晶性に優れた良好な再成長層が形成される。
【0037】
基板1をMOCVD装置から取り出した後、N2雰囲気で、800℃の熱アニーリングを行い、それによってMgドープ層をp型に変化させる。この後、図4(g)に示すように、p型GaNコンタクト層9上にp側電極10を形成し、n型SiC基板1の裏面にn側電極11を形成する。
【0038】
(実施例2)
図2を参照しながら、本発明の窒化ガリウム系化合物半導体発光素子の第2の実施例として、他の窒化ガリウム系化合物半導体レーザ素子を説明する。
【0039】
図2は、本実施例の窒化ガリウム系化合物半導体レーザ素子の断面を模式的に示している。この半導体レーザ素子は、図2に示されるように、サファイア基板21と、基板21上に設けられた半導体積層構造200と、発光に必要な電流を供給するための一対の電極30および31とを備えている。
【0040】
以下に、半導体積層構造200の構成を説明する。
【0041】
この半導体積層構造200は、基板21に接する部分に、GaN又はAIN又はAl0.1Ga0.9Nバッファ層(500Å〜2μm程度)22aを有している。この第1のバッファ層22aの上には、基板1に近い側から順番に、n型GaNバッファ層(厚さ0.5〜1μm程度)22b、n型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)23、ノンドープIn0.32Ga0.68N活性層(厚さ30〜800Å)24、Mgドープp型Al0.1Ga0.9Nクラッド層(厚さ0.1〜0.3μm程度)25、MgドープInN再蒸発層(厚さ30Å)26、n型Al0.1Ga0.9N内部電流狭窄層(厚さ0.3〜0.5μm)27、Mgドープp型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)28、およびMgドープp型GaNコンタクト層(厚さ0.5〜1μm)29が形成されている。
【0042】
n型Al0.1Ga0.9N内部電流狭窄層27は、ノンドープIn0.32Ga0.68N活性層24の選択された領域(本実施例では、共振器長方向に延びるストライプ状の領域)に電流を狭窄するための開口部を持っている。このストライプ状開口部の幅は、レーザ発振の横モードを調整するように決定される。
【0043】
前述の実施例1と同様に、MgドープInN再蒸発層26のうち、n型Al0.1Ga0.9N内部電流狭窄層27の開口部に対応する部分は製造工程中に蒸発している。このため、Mgドープp型Al0.1Ga0.9Nクラッド層28の一部は、前記開口部を介して、Mgドープp型Al0.1Ga0.9Nクラッド層25に接触している。
【0044】
なお、Mgドープp型GaNコンタクト層29の上面にはp側電極30が形成され、n型GaNバッファ層22bの一部露出部分上にn側電極31が形成されている。不図示の電流供給回路から電極30および31に電圧が与えられ、上記積層構造体の中をp側電極30からn側電極31へと電流が流れる。このとき、電流はn型Al0.1Ga0.9N内部電流狭窄層27によってブロックされるので、電流はn型Al0.1Ga0.9N内部電流狭窄層27の開口部を上から下へ流れる。
【0045】
以下に、図5(a)〜(g)を参照しながら、図2の半導体レーザ素子の製造方法を説明する。
【0046】
実施例1で用いたMOCVD法と同様のMOCVD法によって、1回目の結晶成長を行うため、サファイア基板21をMOCVD装置のサセプタ上に配置した後、N2またはH2ガスの雰囲気中で、基板温度を1200℃程度まで昇温することによって、基板21の表面に対して清浄化処理を施す。
【0047】
次に、基板21の温度を500℃〜650℃程度まで降温し、GaN、AlN、またはAl0.1Ga0.9Nバッファ層22aを成長させる。基板温度を1000℃程度に昇温した後、バッファ層22a上にn型GaNバッファ層(厚さ0.5〜1μm程度)22b、およびn型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)23を成長させる。その後、基板温度を800〜850℃程度に降温し、ノンドープIn0.32Ga0.68N活性層(厚さ30〜800Å)24を成長させる。次に、基板温度を1000℃程度まで昇温し、MgドープAl0.1Ga0.9Nクラッド層(厚さ0.1〜0.3μm程度)25を成長させる。基板温度を800〜850℃程度に降温した後、MgドープInN再蒸発層26を30Åの厚さに成長させる。次に、基板温度を1000℃程度まで昇温した後、n型Al0.1Ga0.9N内部電流狭窄層(厚さ0.3〜0.5μm)27を成長させる。こうして、図5(a)に示す構造が得られる。
【0048】
これらの半導体層の成長は、基板21をMOCVD装置の成長室から取り出すことなく連続的に行われる。
【0049】
次に、一旦、上記半導体層の積層された基板21を成長室から取り出した後、通常のフォトリソグラフィ技術によって、図5(b)に示すようなマスク32をn型Al0.1Ga0.9N内部電流狭窄層27上に形成する。このマスク32は、SiOxまたはSiNx(xは1から2程度の整数)、あるいはフォトレジストから形成される。マスク32は、ストライプ状の開口部33を有している。
【0050】
次に、ドライエッチング技術によって、図5(c)に示されるように、n型Al0.1Ga0.9N内部電流狭窄層27のうち、マスク32で覆われていない部分を選択的にエッチングする。エッチングに際して、MgドープInN再蒸発層26はエッチストップ層として機能する。このため、MgドープInN再蒸発層26の表面34が露出した時点で、エッチングをストップさせることが容易に再現性よく行える。
【0051】
上記エッチングは、例えば、 ECR‐RlBE(電子サイクロトロン共鳴を利用した反応性イオンビームエッチング)、 RlBE、またはRIE(反応性イオンエッチング)によって、BCl3/Ar又はCCl22/Ar等のガスを用いて、MgドープInN再蒸発層26の表面が露出するまで行う。この後、フッ酸系エッチング液又は有機溶剤によってマスク32を除去する。
【0052】
2回目の結晶成長(再成長)のため、再び、基板21をMOCVD装置のサセプタ上にセットする。N2およびNH3雰囲気で、基板温度約550℃で、MgドープInN層26の露出部分35を再蒸発させ、図5(d)に示すように、MgドープAl0.1Ga0.9Nクラッド層25の表面を露出させる。
【0053】
上記再蒸発工程に続いて、2回目の結晶成長を行う。基板温度を1000℃程度まで昇温した後、図5(e)に示すように、MgドープAl0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)28およびMgドープGaNコンタクト層(厚さ0.5〜1μm程度)29を成長させる。この再成長は、前述の良好な状態の清浄表面の上に行われるので、結晶性に優れた良好な再成長層が形成される。
【0054】
基板21をMOCVD装置から取り出した後、N2雰囲気で、800℃の熱アニーリングを行い、それによってMgドープ層をp型に変化させる。この後、図5(f)に示すように、n型GaNバッファ層22bの一部が露出するまで、上記積層構造を部分的にエッチングする。
【0055】
次に、図5(g)に示すように、p型GaNコンタクト層29上にp側電極30を形成し、n型GaNバッファ層22bの一部露出部分上にn側電極31を形成する。
【0056】
このように、本発明の製造方法によれば、比較的に低温の熱処理で容易に除去できる再蒸発層をエッチストップ層として用いるため、内部電流狭窄層の加工が再現性良く行うことができる。
【0057】
(実施例3)
図3を参照しながら、本発明の窒化ガリウム系化合物半導体発光素子の第3の実施例として、さらに他の半導体レーザ素子を説明する。
【0058】
図3は、本実施例の窒化ガリウム系化合物半導体レーザ素子の断面を模式的に示している。この半導体レーザ素子は、図3に示されるように、サファイア基板21と、基板21上に設けられた半導体積層構造300と、発光に必要な電流(駆動電流)を供給するための一対の電極30および31とを備えている。
【0059】
以下に、半導体積層構造300の構成を説明する。
【0060】
この半導体積層構造300は、基板21に接する部分に、GaN又はAIN又はAl0.1Ga0.9Nバッファ層(厚さ500Å〜2μm程度)22aを有している。この第1のバッファ層22aの上には、基板21に近い側から順番に、n型GaNバッファ層(厚さ0.5〜1μm程度)22b、n型Al0.1Ga0.9Nクラッド層(厚さ0.7〜1μm程度)23、ノンドープIn0.32Ga0.68N活性層(厚さ30〜800Å)24、Mgドープp型Al0.1Ga0.9Nクラッド層(厚さ0.1〜0.3μm程度)25、MgドープIn0.32Ga0.68N再蒸発層(厚さ100Å程度)36、n型GaN内部電流狭窄層(厚さ0.3〜0.5μm程度)37、Mgドープp型Al0.1Ga0.9Nクラッド層28、およびMgドープp型GaNコンタクト層29が形成される。
【0061】
なお、Mgドープp型GaNコンタクト層29の上面にはp側電極30が形成され、n型GaNバッファ層22bの一部露出部分上にn側電極31が形成されている。不図示の電流供給回路から電極30および31に電圧が与えられ、上記積層構造体の中をp側電極30からn側電極31へと電流が流れる。
【0062】
本実施例において、Mgドープp型Al0.1Ga0.9Nクラッド層25と、n型GaN内部電流狭窄層37と、の間に形成されているMgドープIn0.32Ga0.68N再蒸発層36は、過飽和吸収体としても機能する。過飽和吸収体として機能するためには、MgドープInmGa1-mN再蒸発層36のInの混晶比mを、活性層24のInの混晶比と同一、またはそれより高く設定することが重要である。このような構成によると、自励発振を起こすレーザが得られ、低雑音の窒化ガリウム系化合物半導体レーザが得られる。
【0063】
上記半導体レーザの製造は、例えば、上記実施例2で説明した方法を利用できる。以下に、図6(a)〜(g)を参照しながら、その製造方法を説明する。
【0064】
まず、1回目の結晶成長を行うために、サファイア基板21をMOCVD装置のサセプタ上に配置した後、N2またはH2ガスの雰囲気中で、基板温度を1200℃程度まで昇温することによって、基板21の表面に対して清浄化処理を施す。
【0065】
次に、基板21の温度を500℃〜650℃程度まで降温し、GaN、AlN、またはAl0.1Ga0.9Nバッファ層22aを成長させる。基板温度を1000℃程度に昇温した後、バッファ層22a上にn型GaNバッファ層22b、およびn型Al0.1Ga0.9Nクラッド層23を成長させる。その後、基板温度を800〜850℃程度に降温し、ノンドープIn0.32Ga0.68N活性層24を成長させる。次に、基板温度を1000℃程度まで昇温し、MgドープAl0.1Ga0.9Nクラッド層25を成長させる。基板温度を800〜850℃程度に降温した後、Mgドープ In0.32Ga0.68N再蒸発層36を成長させる。次に、基板温度を1000℃程度まで昇温した後、n型GaN内部電流狭窄層37を成長させる。こうして、図6(a)に示す構造が得られる。
【0066】
これらの半導体層の成長は、基板21をMOCVD装置の成長室から取り出すことなく連続的に行われる。
【0067】
次に、一旦、上記半導体層の積層された基板21を成長室から取り出した後、通常のフォトリソグラフィ技術によって、図6(b)に示すようなマスク32をn型GaN内部電流狭窄層37上に形成する。このマスク32は、SiOxまたはSiNx(xは1から2程度の整数)、あるいはフォトレジストから形成される。マスク32は、ストライプ状の開口部33を有している。
【0068】
次に、ドライエッチング技術によって、図6(c)に示されるように、n型GaN内部電流狭窄層37のうち、マスク32で覆われていない部分を選択的にエッチングする。エッチングに際して、Mgドープ In0.32Ga0.68N再蒸発層36はエッチストップ層として機能する。このため、Mgドープ In0.32Ga0.68N再蒸発層36の表面34が露出した時点で、エッチングをストップさせることが容易に再現性よく行える。
【0069】
上記エッチングは、例えば、 ECR‐RlBE(電子サイクロトロン共鳴を利用した反応性イオンビームエッチング)、 RlBE、またはRIE(反応性イオンエッチング)によって、BCl3/Ar又はCCl22/Ar等のガスを用いて、Mgドープ In0.32Ga0.68N再蒸発層36の表面が露出するまで行う。この後、フッ酸系エッチング液又は有機溶剤によってマスク32を除去する。
【0070】
2回目の結晶成長(再成長)のため、再び、基板21をMOCVD装置のサセプタ上にセットする。N2およびNH3雰囲気で、基板温度約550℃で、Mgドープ In0.32Ga0.68N再蒸発層36の露出部分35を再蒸発させ、図6(d)に示すように、MgドープAl0.1Ga0.9Nクラッド層25の表面を露出させる。
【0071】
上記再蒸発工程に続いて、2回目の結晶成長を行う。基板温度を1000℃程度まで昇温した後、図6(e)に示すように、MgドープAl0.1Ga0.9Nクラッド層28およびMgドープGaNコンタクト層29を成長させる。この再成長は、前述の良好な状態の清浄表面の上に行われるので、結晶性に優れた良好な再成長層が形成される。
【0072】
基板21をMOCVD装置から取り出した後、N2雰囲気で、800℃の熱アニーリングを行い、それによってMgドープ層をp型に変化させる。この後、図6(f)に示すように、n型GaNバッファ層22bの一部が露出するまで、上記積層構造を部分的にエッチングする。
【0073】
次に、図6(g)に示すように、p型GaNコンタクト層29上にp側電極30を形成し、n型GaNバッファ層22bの一部露出部分上にn側電極31を形成する。
【0074】
なお、上記何れの実施例でも、再蒸発層として、InN層を用いているが、InzGa1-zN(0<z≦1)であれば、ほぼ同様の効果が得られる。ただし、再蒸発のしやすさを考慮した場合、InzGa1-zN(0<z≦1)のIn組成zの好ましい範囲は、0.5以上1.0以下である。また、エッチストップの機能を重視した場合、In組成zの好ましい範囲は、0.5以上1.0以下となる。総合的に考えた場合、In組成zの好ましい範囲は、0.32以上1.0以下となる。
【0075】
【発明の効果】
本発明によれば、エッチストップ層として機能する再蒸発層を内部電流狭窄層の下に配置しているため、内部電流狭窄層の一部を選択的に除去する工程において、下地のクラッド層に損傷を与えることなく、再現性の良い形状制御が可能となる。特に、再蒸発層を蒸気圧の高いInzGal-zN(0<z≦1)から形成することによって、エッチストップ層としての機能を果たし終えた後には、再蒸発層の露出部分を低い基板温度で再蒸発させ、それによって、再蒸発層の下に位置するクラッド層の表面を部分的に露出させることができる。このため、再蒸発層の下に位置するクラッド層の表面を、特別のエッチング液を用いることなく、制御性および再現性に優れた方法で露出させることができる。
【0076】
また、再蒸発層の蒸発によってクラッド層の表面を露出させる工程は、MOCVD装置等の半導体薄膜成長装置内で行うことができるため、その工程に引き続いて、再成長層の形成が行える。このため、クラッド層の露出表面は、大気による酸化等の影響を受けることがなく、清浄で欠陥の無い状態に維持されるので、その上には良好な再成長層が形成される。
【0077】
さらに、MgドープInGaN再蒸発層は過飽和吸収体としても機能するため、低雑音の窒化ガリウム系化合物半導体レーザが得られる。
【0078】
以上のように、本発明によれば、信頼性に優れた内部電流狭窄型の窒化ガリウム系半導体発光素子が提供される。
【図面の簡単な説明】
【図1】本発明による窒化ガリウム系化合物半導体レーザの断面模式図
【図2】本発明による他の窒化ガリウム系化合物半導体レーザの断面模式図
【図3】本発明によるさらに他の窒化ガリウム系化合物半導体レーザの断面模式図
【図4】(a)から(g)は、図1の窒化ガリウム系化合物半導体レーザの製造方法を示す工程断面図
【図5】(a)から(g)は、図2の窒化ガリウム系化合物半導体レーザの製造方法を示す工程断面図
【図6】(a)から(g)は、図3の窒化ガリウム系化合物半導体レーザの製造方法を示す工程断面図
【図7】従来の窒化ガリウム系化合物半導体レーザの断面模式図
【符号の説明】
1 n型SiC基板
21 Sapphire基板
51 n型3C‐SiC基板
22a GaN、AlN、AlGaNバッファ層
2、22b n型GaNバッファ層
3、23 n型AlGaNクラッド層
4、24 ノンドープInGaN活性層
54 GaN活性層
5、8、25、28 p型AlGaNクラッド層
6、26 p型InN再蒸発層
36 p型InGaN再蒸発層(過飽和吸収体)
7 n型GaN内部電流狭窄層
27 n型Al0.1Ga0.9N内部電流狭窄層
37 n型GaN内部電流狭窄層
9、29 p型GaNコンタクト層
10、30 p側電極
11、31 n側電極
12、32 エッチングマスク
13、33 エッチングマスクの開口部
14、34 p型InN再蒸発層の表面
15、35 p型InN再蒸発層のうちの再蒸発する部分

Claims (8)

  1. 基板と、該基板上に設けられた積層構造体とを備えた窒化ガリウム系化合物半導体発光素子であって、
    該積層構造体は、
    In Ga 1−y N(0≦y≦1、x=0のときy>0)活性層と、
    該活性層を挟む一対のAl Ga 1−x N(0≦x<1)クラッド層と、
    該一対のクラッド層のうち前記基板から遠い方のクラッド層上に設けられており、該活性層の選択された領域に電流を狭窄するための開口部が形成されたIn Ga 1−z N(z≠0)再蒸発層と、
    再蒸発層の上に設けられ、前記活性層の前記選択された領域に電流を狭窄するための開口部が形成されたAl Ga 1−w N(0≦w≦1)内部電流狭窄層と、
    該内部電流狭窄層の開口部を覆う再成長層とを備え、
    前記再蒸発層は過飽和吸収体であることを特徴とする窒化ガリウム系化合物半導体発光素子。
  2. 前記再蒸発層は、前記内部電流狭窄層に前記開口部を形成する工程においてエッチストップ層として機能する、請求項1に記載の窒化ガリウム系化合物半導体発光素子。
  3. 前記再蒸発層のIn組成zは、0.32以上1.0以下である、請求項2に記載の窒化ガリウム系化合物半導体発光素子。
  4. 前記再蒸発層の層厚が10Å以上100Åよりも薄い、請求項2に記載の窒化ガリウム系化合物半導体発光素子。
  5. 前記再蒸発層のIn混晶比zは、前記活性層のIn混晶比yと同一、またはそれより高い、請求項1に記載の窒化ガリウム系化合物半導体発光素子。
  6. 請求項1に記載の窒化ガリウム系化合物半導体発光素子の製造方法であって、
    基板上に、In Ga 1−y N(0≦y≦1、x=0のときy>0)活性層と、該活性層を挟む一対のAl Ga 1−x N(0≦x<1)クラッド層と、前記基板から遠い方のクラッド層上に過飽和吸収体として機能するIn Ga 1−z N(z≠0)再蒸発層を形成する工程と、
    該再蒸発層上にAl Ga 1−w N(0≦w≦1)内部電流狭窄層を形成する工程と、
    該内部電流狭窄層の一部をエッチングして開口部を形成し、前記再蒸発層の表面を部分的に露出させるエッチング工程と、
    露出された該再蒸発層を蒸発させる工程と、
    前記内部電流狭窄層の前記開口部を埋めるように成長層を形成する工程と、
    を包含している、窒化ガリウム系化合物半導体発光素子の製造方法。
  7. 前記エッチング工程は、前記内部電流狭窄層に対するエッチングレートよりも前記再蒸発層に対するエッチングレートが低くなるようにしてエッチングされる、請求項6に記載の窒化ガリウム系化合物半導体発光素子の製造方法。
  8. 前記再蒸発層の露出部分を蒸発させる工程において、500から750℃の範囲の温度で熱処理を行う請求項6に記載の窒化ガリウム系化合物半導体発光素子の製造方法。
JP19762797A 1996-07-25 1997-07-23 窒化ガリウム系化合物半導体発光素子及びその製造方法 Expired - Fee Related JP3988961B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19762797A JP3988961B2 (ja) 1996-07-25 1997-07-23 窒化ガリウム系化合物半導体発光素子及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19670796 1996-07-25
JP8-196707 1996-07-25
JP19762797A JP3988961B2 (ja) 1996-07-25 1997-07-23 窒化ガリウム系化合物半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JPH1093199A JPH1093199A (ja) 1998-04-10
JP3988961B2 true JP3988961B2 (ja) 2007-10-10

Family

ID=26509921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19762797A Expired - Fee Related JP3988961B2 (ja) 1996-07-25 1997-07-23 窒化ガリウム系化合物半導体発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP3988961B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459607B2 (ja) * 1999-03-24 2003-10-20 三洋電機株式会社 半導体レーザ素子およびその製造方法
DE602004011146T2 (de) 2003-06-27 2008-12-24 Nichia Corp., Anan Nitrid-Halbleiterlaser mit Stromsperrschichten und Herstellungsverfahren hierfür
JP4534435B2 (ja) * 2003-06-27 2010-09-01 日亜化学工業株式会社 窒化物半導体レーザ素子及びその製造方法
JP4534444B2 (ja) * 2003-07-10 2010-09-01 日亜化学工業株式会社 窒化物半導体レーザ及びその製造方法
JP2007234796A (ja) 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd 窒化物半導体レーザ装置およびその製造方法
JP4821390B2 (ja) * 2006-03-17 2011-11-24 日本電気株式会社 自励発振型半導体レーザ
JP4954691B2 (ja) * 2006-12-13 2012-06-20 パナソニック株式会社 窒化物半導体レーザ装置の製造方法及び窒化物半導体レーザ装置

Also Published As

Publication number Publication date
JPH1093199A (ja) 1998-04-10

Similar Documents

Publication Publication Date Title
JP3594826B2 (ja) 窒化物半導体発光素子及びその製造方法
JP3988018B2 (ja) 結晶膜、結晶基板および半導体装置
JP3688843B2 (ja) 窒化物系半導体素子の製造方法
JP4977931B2 (ja) GaN系半導体レーザの製造方法
JP3470623B2 (ja) 窒化物系iii−v族化合物半導体の成長方法、半導体装置の製造方法および半導体装置
JP3957359B2 (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
JPH10294531A (ja) 窒化物化合物半導体発光素子
JPH11135770A (ja) 3−5族化合物半導体とその製造方法および半導体素子
US6801559B2 (en) Group III nitride compound semiconductor laser
JP4015865B2 (ja) 半導体装置の製造方法
JP3898798B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法
JP2001068786A (ja) 窒化物系化合物半導体発光素子およびその製造方法
JP3988961B2 (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
JP3735638B2 (ja) 半導体レーザおよびその製造方法
JP3963233B2 (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
JP2000164989A (ja) 窒化物系iii−v族化合物半導体の成長方法および半導体装置
JP2007184644A (ja) 半導体装置及びその製造方法
JP3792041B2 (ja) 半導体素子及びその製造方法
JP3562478B2 (ja) 窒化物半導体の成長方法及びそれを用いた素子
JP3717255B2 (ja) 3族窒化物半導体レーザ素子
JP4104234B2 (ja) 半導体発光素子およびその製造方法
JPH09289352A (ja) 半導体レーザ装置およびその製造方法
JPH1117277A (ja) 窒化物系半導体レーザ装置およびその製造方法
JP2009212343A (ja) 窒化物半導体素子および窒化物半導体素子の製造方法
JPH10150219A (ja) 3族窒化物半導体レーザ素子

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees