JP3985602B2 - 内燃機関用噴射率制御装置 - Google Patents

内燃機関用噴射率制御装置 Download PDF

Info

Publication number
JP3985602B2
JP3985602B2 JP2002184420A JP2002184420A JP3985602B2 JP 3985602 B2 JP3985602 B2 JP 3985602B2 JP 2002184420 A JP2002184420 A JP 2002184420A JP 2002184420 A JP2002184420 A JP 2002184420A JP 3985602 B2 JP3985602 B2 JP 3985602B2
Authority
JP
Japan
Prior art keywords
injection
pilot
injections
amount
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184420A
Other languages
English (en)
Other versions
JP2004027939A (ja
Inventor
豪進 山本
克彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002184420A priority Critical patent/JP3985602B2/ja
Publication of JP2004027939A publication Critical patent/JP2004027939A/ja
Application granted granted Critical
Publication of JP3985602B2 publication Critical patent/JP3985602B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の各気筒毎に対応して搭載されたインジェクタの電磁弁の駆動を、内燃機関の1燃焼行程中に複数回実施することで、メイン噴射の前に2回以上のパイロット噴射を行なう内燃機関用噴射率制御装置に関するもので、特に多段噴射における1噴射当たりの噴射回数が3回以上の時に、インターバル依存性の補正パラメータとして、直前噴射の更に前の先行噴射の噴射量および先行噴射と直前噴射との間のインターバルをも考慮して当該噴射の噴射開始時期補正または噴射期間補正を実施する内燃機関用噴射率制御装置に係わる。
【0002】
【従来の技術】
従来より、ディーゼルエンジン用の燃料噴射装置として、コモンレールに蓄圧した高圧燃料をエンジンの各気筒内に噴射供給する蓄圧式燃料噴射システムが知られている。このような蓄圧式燃料噴射システムにおいては、主噴射の開始時から安定した燃焼を行なって燃焼騒音やエンジン振動の低減、更には排気ガス性能の向上を目的として、エンジントルクと成り得る主噴射(メイン噴射)に先立って複数回の微少の先立ち噴射(パイロット噴射)を行なうようにしている。ここで、通常、エンジンの各気筒への噴射量制御は、エンジンの運転状態または運転条件によって設定される指令噴射量とセンサ等によって検出されるコモンレール圧力とから算出される指令噴射期間に応じて、インジェクタの電磁弁に印加される噴射量指令値を決定することで実施される。
【0003】
ここで、上記のようなパイロット噴射を行なう多段噴射においては、パイロット噴射により生じるコモンレール内の圧力脈動と当該インジェクタ間の高圧配管(噴射鋼管)内の圧力脈動によって、パイロット噴射とメイン噴射との無噴射間隔(インターバル)に依存してメイン噴射量が脈動するという課題がある(図15参照)。このような課題に対し、特開平6−101552号公報や特開平10−266888号公報等には、パイロット噴射とメイン噴射との間の噴射インターバル(パイロットインターバル)に応じてメイン噴射量を補正するようにしたインジェクタ噴射量制御方法が提案されている。
【0004】
【発明が解決しようとする課題】
ところが、第2パイロット噴射−第1パイロット噴射−メイン噴射のような3回噴射時には、メイン噴射時の高圧配管内の圧力脈動が、第1パイロット噴射よりも前に先行して実施される第2パイロット噴射の影響を受けて、第1パイロット噴射−メイン噴射のような2回噴射時とは異なる脈動(周期、振幅の変化)となる。そのため、3回噴射時において、精度良くメイン噴射量を補正するためには、メイン噴射の直前に先行して実施される第1パイロット噴射の影響だけでなく、第1パイロット噴射の更に前の第2パイロット噴射、あるいはその前の前…の噴射量および噴射インターバルの影響を考慮してメイン噴射開始時期およびメイン噴射期間を補正することが望ましいことが分かった(図16参照)。
【0005】
【発明の目的】
本発明の目的は、多段噴射における噴射回数が3回以上の時に、直前噴射の前に先行して実施される先行噴射の噴射量、および直前噴射と先行噴射との間の無噴射間隔をも考慮して、当該噴射の噴射開始時期補正または当該噴射の噴射期間補正を実施することにより、当該インジェクタ内および高圧配管内の圧力脈動の影響による当該噴射の噴射量脈動を防止することのできる内燃機関用噴射率制御装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載の発明によれば、多段噴射における噴射回数が3回以上の時に、当該噴射の直前に先行して実施される直前噴射の噴射量、および当該噴射と直前噴射との間の無噴射間隔だけでなく、直前噴射の前に先行して実施される先行噴射の噴射量、および直前噴射と先行噴射との間の無噴射間隔をも使用するとともに先行噴射と当該噴射との間の噴射インターバルをも使用することで、直前噴射および先行噴射にてそれぞれ生じるコモンレール内の圧力脈動の当該噴射への影響を考慮して、当該噴射の噴射開始時期補正または当該噴射の噴射期間補正を実施することにより、当該インジェクタ内および高圧配管内の圧力脈動の影響による当該噴射の噴射量脈動を防止することができる
【0007】
請求項に記載の発明によれば、多段噴射として、メイン噴射の前に2回以上のパイロット噴射を行なうマルチ噴射を用いても良く、あるいはメイン噴射の後に2回以上のアフター噴射を行なうマルチ噴射を用いても良く、あるいはメイン噴射の前に1回以上のパイロット噴射を行ない、更にメイン噴射の後に1回以上のアフター噴射を行なうマルチ噴射を用いても良い。
請求項に記載の発明によれば、多段噴射における噴射回数が3回に設定された3回噴射時に、当該噴射をメイン噴射とすると、直前噴射は第1パイロット噴射となり、先行噴射は第2パイロット噴射となることを特徴としている。また、請求項に記載の発明によれば、多段噴射における噴射回数が4回に設定された4回噴射時に、当該噴射をメイン噴射とすると、直前噴射は第1パイロット噴射となり、先行噴射は第3、第2パイロット噴射となることを特徴としている。
【0008】
請求項に記載の発明によれば、メイン噴射の直前に先行して実施される第1パイロット噴射の噴射量、およびメイン噴射と第1パイロット噴射との間の無噴射間隔だけでなく、多段噴射における噴射回数、内燃機関の気筒内に噴射される燃料の噴射圧力、および第3パイロット噴射の噴射量、前記第2パイロット噴射の噴射量、第2パイロット噴射と第1パイロット噴射との間の無噴射間隔、第3パイロット噴射と第2パイロット噴射との間の無噴射間隔、第3パイロット噴射と第1パイロット噴射との間の無噴射間隔、第2パイロット噴射とメイン噴射との間の無噴射間隔、第3パイロット噴射とメイン噴射との間の無噴射間隔のうちのいずれか少なくとも1個をも考慮して、メイン噴射の噴射開始時期補正またはメイン噴射の噴射期間補正を実施することにより、当該インジェクタ内および高圧配管内の圧力脈動の影響によるメイン噴射の噴射量脈動を防止することができる。
【0009】
【発明の実施の形態】
発明の実施の形態を実施例に基づき図面を参照して説明する。
[第1実施例の構成]
図1ないし図10は本発明の第1実施例を示したもので、図2はコモンレール式燃料噴射システムの全体構成を示した図である。
【0010】
本実施例のコモンレール式燃料噴射システムは、4気筒ディーゼルエンジン等の内燃機関(以下エンジンと言う)1の各気筒に噴射供給する燃料噴射圧力に相当する高圧燃料を蓄圧する蓄圧容器としてのコモンレール2と、吸入した燃料を加圧してコモンレール2内に圧送する燃料供給ポンプとしてのサプライポンプ3と、コモンレール2内に蓄圧された高圧燃料をエンジン1の各気筒内に噴射供給する複数個(本例では4個)のインジェクタ4と、サプライポンプ3および複数個のインジェクタ4を電子制御する電子制御ユニット(以下ECUと呼ぶ)10とを備えている。
【0011】
エンジン1の各気筒(シリンダ)の吸気ポートは、吸気弁(インテークバルブ)11により開閉され、排気ポートは、排気弁(エキゾーストバルブ)12により開閉される。また、各シリンダ内には、連接棒を介してクランクシャフト(図示せず)に連結されたピストン13が摺動自在に配設されている。そして、エンジン1を収容するエンジンルーム(図示せず)内の走行風を受け易い場所には、ラジエータ14が配設されている。ラジエータ14には、エンジン1を冷却する冷却水の温度(冷却水温)を検出する冷却水温センサ37が設置されている。
【0012】
ここで、エンジン1の運転中に、シリンダ内で燃焼した排気ガスは、排気管15を通り、バリアブル・ジアメトリ・ターボ(VGT)16のタービンの駆動源となった後に、触媒(図示せず)、マフラー(図示せず)を経て排出される。上記のVGT16の制御は、吸気圧センサと過給圧力センサ44とVGTポジションセンサ47の信号とに基づいて行なわれる。過給(圧縮)され高温になった吸入空気は、インタクーラ18で冷却された後に、エンジン1の吸気ポートを経てシリンダ内へ導入される。
【0013】
そして、吸気管17の途中には、吸気管17内の吸気通路を開閉してエンジン1に供給する吸入空気量(吸気量)を調整するための吸気絞り弁(スロットルバルブ)19が配設され、このスロットルバルブ19の弁開度は、ECU10からの信号により作動するアクチュエータ20によって調節される。なお、アクチュエータ20内には、スロットルバルブ19の弁開度を検出するスロットルポジションセンサ(図示せず)が装備されている。スロットルポジションセンサとしては、スロットルバルブ19の弁開度を全閉のアイドリング時と全開に近い高負荷時に分けて感知し、ECU10へ送信するセンサを用いても良い。また、吸気管17の吸気ポート近傍には、ECU10からの信号により作動する渦流制御弁(スワールコントロールバルブ:以下SCVと言う)21が配設されている。そのSCV21は、吸気温センサ45を設置した吸気通路22を迂回するバイパス路23内に設置され、低負荷時に通電停止(OFF)されて閉弁し、高負荷時に通電(ON)されて開弁する。
【0014】
また、本実施例の吸気管17には、排気管15を流れる排気ガスの一部の排気ガス(排気再循環ガス:EGRガス)を吸気管17へ導く排気ガス還流管24が接続されている。そして、吸気管17と排気ガス還流管24との合流部には、排気ガス再循環装置用バルブ(EGRバルブ)25が設置されている。したがって、シリンダ内に吸い込まれる吸入空気は、窒素酸化物(NOx)の生成量を少なくする目的で、エンジン1の運転状態毎に設定された排気ガス還流量になるようにEGRバルブ25の弁開度を制御し、排気管15からの排気ガスとミキシングされることになる。なお、排気ガス還流量(EGR量)は、吸入空気量センサ43と吸気温センサ45と排気O2 センサ48とEGRポジションセンサ46からの信号で、所定値を保持できるようにフィードバック制御している。
【0015】
コモンレール2には、連続的に燃料の噴射圧力に相当する高圧燃料が蓄圧される必要があり、そのためにコモンレール2に蓄圧される高圧燃料は、高圧配管26を介してサプライポンプ3から供給されている。なお、コモンレール2から燃料タンクへ燃料をリリーフするリリーフ配管(図示せず)には、燃料噴射圧力が限界設定圧を越えることがないように、圧力を逃がすためのプレッシャリミッタ27が取り付けられている。また、燃料の噴射圧力に相当するコモンレール2内に蓄圧された燃料圧力(コモンレール圧力とも言う)は、燃料圧力センサ30等の燃料圧力検出手段によって測定される。
【0016】
サプライポンプ3は、図示しない燃料タンクから燃料を汲み上げるフィードポンプ(図示せず)、およびコモンレール2への高圧燃料の圧送量(吐出量)を調整するための電磁弁(例えば吸入調量弁)等のアクチュエータ(図示せず)を内蔵する高圧供給ポンプである。このサプライポンプ3内には、燃料タンクから吸入される燃料の温度を検出する燃料温度センサ36が設置されている。
【0017】
複数のインジェクタ4は、エンジン1のシリンダブロックに(各気筒#1〜#4に個別に対応して)取り付けられ、コモンレール2より分岐する複数の噴射鋼管(以下高圧配管と呼ぶ)29の下流端に接続されている。これらのインジェクタ4は、各気筒毎内に高圧燃料を噴射する複数個の噴射孔を有する燃料噴射ノズル、この燃料噴射ノズル内に摺動自在に収容されたノズルニードルを開弁方向に駆動する電磁弁等の駆動手段(アクチュエータ)、およびノズルニードルを閉弁方向に付勢するスプリング等の付勢手段などから構成された電磁式燃料噴射弁である。なお、電磁弁の閉弁時には、ノズルニードルの後端部に連結したコマンドピストンの背圧を制御するための背圧制御室内の圧力が高まり、ノズルニードルが弁座に着座する。また、電磁弁の開弁時には、背圧制御室内の圧力が低くなり、ノズルニードルが弁座より離間(リフト)する。
【0018】
したがって、各気筒毎のインジェクタ4からエンジン1の各気筒内への燃料噴射は、例えば電磁弁が開弁している間、コモンレール2に蓄圧された高圧燃料がエンジン1の各気筒内に噴射供給されることで成される。ここで、インジェクタ4からのリーク燃料またはノズルニードルの背圧制御室からの排出燃料(リターン燃料)は、燃料還流路を経て燃料タンクに還流するように構成されている。なお、インジェクタ4のノズルニードルの開弁時間(燃料の噴射期間)が長い程、エンジン1の各気筒内に噴射される実際の噴射量が多くなる。
【0019】
ECU10には、制御処理、演算処理を行なうCPU、各種プログラムおよびデータを保存する記憶装置(ROM、スタンバイRAMまたはEEPROM、RAM等のメモリ)、入力回路、出力回路、電源回路、インジェクタ駆動回路およびポンプ駆動回路等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。そして、燃料圧力センサ30からの電圧信号や、その他の各種センサからのセンサ信号は、A/D変換器でA/D変換された後に、ECU10に内蔵されたマイクロコンピュータに入力されるように構成されている。また、ECU10は、エンジン1をクランキングさせた後にエンジンキーをIG位置に戻して、図示しないイグニッションスイッチがオン(ON)すると、メモリ内に格納された制御プログラムに基づいて、例えばサプライポンプ3の電磁弁やインジェクタ4の電磁弁等の各制御部品のアクチュエータを電子制御するように構成されている。
【0020】
ここで、本実施例の気筒判別手段は、エンジン1のカムシャフトに対応して回転するシグナルロータ(例えばクランクシャフトが2回転する間に1回転する回転体)31と、このシグナルロータ31の外周に設けられた各気筒に対応した気筒歯(突起部)と、これらの気筒歯の接近と離間によって気筒判別信号パルス(G)を発生する気筒判別センサ(電磁ピックアップ)32とから構成されている。また、本実施例の回転速度検出手段は、エンジン1のクランクシャフトに対応して回転するシグナルロータ(例えばクランクシャフトが1回転する間に1回転する回転体)33と、このシグナルロータ33の外周に多数形成されたクランク角度検出用の歯(突起部)と、これらの歯の接近と離間によってNE信号パルスを発生するクランク角度センサ(電磁ピックアップ)34とから構成されている。このクランク角度センサ34は、シグナルロータ33が1回転(クランクシャフトが1回転)する間に複数のNE信号パルスを出力する。なお、特定のNE信号パルスは、各#1〜#4気筒のピストンの上死点(TDC)の位置に対応している。そして、ECU10は、NE信号パルスの間隔時間を計測することによってエンジン回転速度(NE)を検出する。
【0021】
そして、ECU10は、エンジン1の運転状態または運転条件に応じた最適な燃料の噴射圧力(以下コモンレール圧力と言う)を演算し、ポンプ駆動回路を介してサプライポンプ3の電磁弁を駆動する吐出量制御手段を有している。すなわち、ECU10は、通常のエンジン運転時に、エンジン回転速度(NE)と指令噴射量(QFIN)とに応じて目標燃料圧力(PFIN)を算出し、この目標燃料圧力(PFIN)を達成するために、サプライポンプ3の電磁弁へのポンプ駆動信号(駆動電流値)を調整して、サプライポンプ3より吐出される燃料の圧送量(ポンプ吐出量・ポンプ圧送量)を制御するように構成されている。
【0022】
さらに、より好ましくは、燃料噴射量の制御精度を向上させる目的で、燃料圧力センサ30によって検出されるコモンレール2内の燃料圧力(コモンレール圧力:Pc)がエンジン1の運転状態または運転条件に応じて設定される目標燃料圧力(PFIN)と略一致するように、サプライポンプ3の電磁弁へのポンプ駆動信号をフィードバック制御することが望ましい。なお、サプライポンプ3の電磁弁への駆動電流値の調整は、デューティ(DUTY)制御により行なうことが望ましい。すなわち、コモンレール圧力(Pc)と目標燃料圧力(PFIN)との圧力偏差に応じて単位時間当たりのポンプ駆動信号のオン/オフの割合(通電時間割合・DUTY比)を調整して、サプライポンプ3の電磁弁の開度を変化させるデューティ制御を用いることで、高精度なデジタル制御が可能になる。
【0023】
また、ECU10は、本発明の噴射量補正手段を構成するものであり、エンジン回転速度(NE)とアクセル開度(ACCP)と予め実験等により測定して作成した特性マップ(図示せず)とによって最適な指令噴射時期(TFIN)を算出する噴射時期決定手段と、エンジン回転速度(NE)とアクセル開度(ACCP)と予め実験等により測定して作成した特性マップ(図示せず)とによって最適な基本噴射量(Q)を算出する基本噴射量決定手段と、上記のようにエンジン1の運転状態または運転条件に応じて決定される基本噴射量(Q)に、燃料温度センサ36によって検出された燃料温度(THF)および冷却水温センサ37によって検出された冷却水温(THW)等を考慮した噴射量補正量を加味して指令噴射量(QFIN)を算出する指令噴射量決定手段と、コモンレール圧力(Pc)と指令噴射量(QFIN)と予め実験等により測定して作成した特性マップ(図示せず)とによって最適な指令噴射期間(噴射指令パルス時間:TQ)を算出する噴射期間決定手段と、インジェクタ駆動回路(EDU)を介してエンジン1の各気筒のインジェクタ4の電磁弁を駆動するインジェクタ駆動手段とから構成されている。なお、インジェクタ駆動回路(EDU)は、図7および図8の説明図に示したように、インジェクタ駆動手段より出力されるインジェクタ駆動指令(噴射量指令値、TQパルス)がONされてからOFFされるまでの間、エンジン1の各気筒のインジェクタ4の電磁弁にパルス状のインジェクタ駆動電流(インジェクタ噴射指令パルス)を印加する。
【0024】
ここで、本実施例では、エンジン1の運転状態または運転条件を検出する運転状態検出手段として、クランク角度センサ34等の回転速度検出手段およびアクセル開度センサ35を用いて基本噴射量(Q)、指令噴射時期(TFIN)、目標燃料圧力(PFIN)を演算するようにしているが、燃料圧力センサ30によって検出されるコモンレール圧力(Pc)、あるいは運転状態検出手段としてのその他のセンサ類(例えば燃料温度センサ36、冷却水温センサ37、燃料リーク温度センサ38、油温センサ39、アイドルアクセル位置センサ40、大気圧センサ41、大気温(外気温)センサ42、吸入空気量センサ43、過給圧力センサ44、吸気温センサ45、EGRポジションセンサ46、VGTポジションセンサ47、排気O2 センサ48、排気温センサ49、排気圧センサ50、スロットルポジションセンサ、吸気圧センサ、噴射時期センサ等)からの検出信号(エンジン運転情報)を加味して基本噴射量(Q)または指令噴射量(QFIN)、指令噴射時期(TFIN)および目標燃料圧力(PFIN)を補正するようにしても良い。
【0025】
そして、ECU10には、エンジンキーをシリンダ内に差し込んでST位置まで回すと、スタータスイッチがオン(ON)してスタータを通電するスタータ通電回路が接続されている。また、ECU10には、エンジン1により駆動されるトランスミッションのギアポジションを示す信号、運転者(ドライバー)がクラッチペダルを踏んだことを検出する信号、スタータへの通電信号、車速センサからの車速信号、エアコン用電磁クラッチ、エアコンのコンデンサ用電動ファン、エアコンの室内送風用ファン、ラジエータ用電動ファンやヘッドライト等の電気負荷、エアコン用コンプレッサやパワーステアリングやオイルポンプ等の駆動負荷等の車両情報を検出する信号が入力するように構成されている。
【0026】
ここで、本実施例のコモンレール式燃料噴射システムにおいては、エンジン1の特定気筒(k気筒)のインジェクタ4においてエンジン1の1周期(1行程:吸気行程−圧縮行程−膨張行程(爆発行程)−排気行程)中、つまりエンジン1のクランクシャフトが2回転(720°CA)する間、特にエンジン1の各気筒の1燃焼行程中に燃料を複数回に分けて噴射する多段噴射を行なうことが可能である。例えばエンジン1の圧縮行程中、膨張行程中にインジェクタ4の電磁弁の駆動を複数回実施することで、メイン噴射の前に複数回のパイロット噴射を行なうマルチ噴射、あるいはメイン噴射の後に複数回のアフター噴射を行なうマルチ噴射、あるいはメイン噴射の前に1回以上のパイロット噴射を行なうと共に、メイン噴射の後に1回以上のアフター噴射を行なうマルチ噴射が可能である。
【0027】
なお、本実施例では、マルチ噴射回数が4回に設定された4回噴射時でのメイン噴射期間補正およびメイン噴射開始時期補正を一例として説明する。なお、先行噴射としての第3、第2パイロット噴射(P3,P2)の次に実施される次噴射としての第2、第1パイロット噴射(P2,P1)、あるいは先行噴射としてのパイロット噴射の次に実施される次噴射としてのプレ噴射、あるいは先行噴射としてのメイン噴射(Ma)の次に実施される次噴射としてのアフター噴射、あるいは先行噴射としてのアフター噴射の次に実施される次噴射としてのポスト噴射における噴射量補正(噴射期間または噴射開始時期のうちの少なくとも一方)も同様である。
【0028】
ここで、図1に示したように、エンジントルクと成り得るメイン噴射(4回噴射時第4段目噴射:本発明の当該噴射に相当する)をMaとし、このメイン噴射(Ma)の直前に先行して実施される第1パイロット噴射(4回噴射時第3段目噴射:本発明の直前噴射に相当する)をP1とし、この第1パイロット噴射(P1)の前に先行して実施される第2パイロット噴射(4回噴射時第2段目噴射:本発明の先行噴射に相当する)をP2とし、この第2パイロット噴射(P2)の前に先行して実施される第3パイロット噴射(4回噴射時第1段目噴射:本発明の先行噴射に相当する)をP3とする。
【0029】
また、図1に示したように、第3パイロット噴射(P3)におけるパイロット噴射量をQp3とし、第2パイロット噴射(P2)におけるパイロット噴射量をQp2とし、第1パイロット噴射(P1)におけるパイロット噴射量をQp1とし、メイン噴射(Ma)におけるメイン噴射量をQmとする。また、第3パイロット噴射(P3)と第2パイロット噴射(P2)との間の噴射インターバルをINTP2とし、第2パイロット噴射(P2)と第1パイロット噴射(P1)との間の噴射インターバルをINTP1とし、第1パイロット噴射(P1)とメイン噴射(Ma)との間の噴射インターバルをINTQMとする。また、図1に示したように、第3パイロット噴射(P3)と第1パイロット噴射(P1)との間の噴射インターバルをINTP31とし、第2パイロット噴射(P2)とメイン噴射(Ma)との間の噴射インターバルをINTP2Ma、第3パイロット噴射(P3)とメイン噴射(Ma)との間の噴射インターバルをINTP3Maとする。また、このときのコモンレール圧力をPc、指令噴射時期(TFIN)に対応したメイン噴射時期をTmとする。
【0030】
そして、ECU10は、エンジン1の運転状態または運転条件に応じて、マルチ噴射における各噴射量、各噴射期間、各噴射開始時期、各噴射インターバルを算出する。具体的には、エンジン回転速度(NE)と指令噴射量(QFIN)に対応した要求トータル噴射量(Qf)と予め実験等により測定して作成した特性マップ(図示せず)とからパイロット噴射量(Qp3,Qp2,Qp1)を算出するパイロット噴射量決定手段と、要求トータル噴射量(Qf)から全てのパイロット噴射量(Qp3+Qp2+Qp1)を減算してメイン噴射量(Qm)を算出するメイン噴射量決定手段と、エンジン回転速度(NE)と要求トータル噴射量(Qf)と予め実験等により測定して作成した特性マップ(図示せず)とによって最適なメイン噴射時期(Tm)を算出するメイン噴射開始時期決定手段と、エンジン回転速度(NE)と要求トータル噴射量(Qf)と予め実験等により測定して作成した特性マップ(図示せず)とによって最適なパイロット噴射開始時期を算出するパイロット噴射開始時期決定手段と、パイロット噴射量(Qp3,Qp2,Qp1)とコモンレール圧力(Pc)と予め実験等により測定して作成した特性マップ(図示せず)とから各パイロット噴射期間(TQP3,TQP2,TQP1)を算出するパイロット噴射期間決定手段と、メイン噴射量(Qm)とコモンレール圧力(Pc)と予め実験等により測定して作成した特性マップ(図示せず)とからメイン噴射期間(TQM)を算出するメイン噴射期間決定手段とを有している。
【0031】
さらに、エンジン回転速度(NE)とパイロット噴射量(Qp3,Qp2,Qp1)およびメイン噴射時期(Tm)と予め実験等により測定して作成した特性マップ(図示せず)とからマルチ噴射における第3パイロット噴射(P3)とメイン噴射(Ma)との間の無噴射間隔(噴射インターバル)、第2パイロット噴射(P2)とメイン噴射(Ma)との間の無噴射間隔(噴射インターバル)、第1パイロット噴射(P1)とメイン噴射(Ma)との間の無噴射間隔(噴射インターバル)を算出する無噴射間隔決定手段と、エンジン回転速度(NE)とパイロット噴射量(Qp3,Qp2,Qp1)と予め実験等により測定して作成した特性マップ(図示せず)とからマルチ噴射における第3パイロット噴射(P3)と第2パイロット噴射(P2)との間の無噴射間隔(噴射インターバル)、第2パイロット噴射(P2)と第1パイロット噴射(P1)との間の無噴射間隔(噴射インターバル)、第3パイロット噴射(P3)と第1パイロット噴射(P1)との間の無噴射間隔(噴射インターバル)等を算出する無噴射間隔決定手段とを有している。
【0032】
[第1実施例の制御方法]
次に、本実施例のインジェクタ4のメイン噴射量制御方法を図1ないし図10に基づいて簡単に説明する。ここで、図3ないし図5はインジェクタ4のメイン噴射量制御方法を示したフローチャートである。この図3ないし図5の制御ルーチンは、イグニッションスイッチがONとなった後に、所定のタイミング毎に繰り返される。
【0033】
なお、エンジン1のk気筒(例えば#1気筒)に搭載されたインジェクタ4のメイン噴射量の演算処理は、前回サイクルでのk気筒のインジェクタ4の噴射終了後に開始しても良いし、今回サイクルでのk気筒の直前噴射気筒(k気筒が#1気筒の場合は#2気筒、k気筒が#3気筒の場合は#1気筒、k気筒が#4気筒の場合は#3気筒、k気筒が#2気筒の場合は#4気筒)の噴射終了直後に開始しても良いし、k気筒のメイン噴射の直前のパイロット噴射終了直後に開始しても良い。
【0034】
図3ないし図5の制御ルーチンに進入するタイミングになると、先ず、エンジン1のクランク角度がエンジン1のk気筒(例えば#1気筒)に搭載されたインジェクタ4のメイン噴射量の演算処理を開始する制御基準位置にあるか否かを判定する(ステップS1)。この判定結果がNOの場合には、制御基準位置に到達するまで待機する。また、ステップS1の判定結果がYESの場合には、インジェクタ4のメイン噴射量の演算処理に必要な各種センサ信号等のエンジンパラメータを取り込む。例えばクランク角度センサ34より出力されたNE信号パルスの間隔時間を計測してエンジン回転速度(NE)を取り込み、アクセル開度センサ35の検出信号に基づいてアクセル開度(ACCP)を取り込む(ステップS2)。
【0035】
次に、エンジン回転速度(NE)とアクセル開度(ACCP)とを用いて指定された特性マップ等により基本噴射量(Q)を算出する(ステップS3)。次に、基本噴射量(Q)に、各種温度(例えば燃料温度、冷却水温、大気温等)を考慮した噴射量補正量を加味して指令噴射量(QFIN)を算出する(ステップS4)。次に、指令噴射量(QFIN)からマルチ噴射時の要求トータル噴射量(Qf)を算出する(ステップS5)。次に、エンジン回転速度(NE)と要求トータル噴射量(Qf)と各種温度(例えば燃料温度、冷却水温、大気温等)を用いて指定された特性マップ等によりマルチ噴射における1噴射当たりに必要なマルチ噴射回数(N:本例ではN=4回)を算出する(ステップS6)。
【0036】
次に、エンジン回転速度(NE)と要求トータル噴射量(Qf)と各種温度(例えば燃料温度、冷却水温、大気温等)を用いて指定された特性マップ等により第3〜第1パイロット噴射量(Qp3,Qp2,Qp1)を算出する(ステップS7)。次に、要求トータル噴射量(Qf)から全パイロット噴射量(Qp3+Qp2+Qp1)を減算してメイン噴射量(Qm)を算出する(ステップS8)。次に、エンジン回転速度(NE)と要求トータル噴射量(Qf)と各種温度(例えば燃料温度、冷却水温、大気温等)を用いて指定された特性マップ等により第3〜第1パイロット噴射開始時期(Tp3,Tp2,Tp1)およびメイン噴射時期(Tm)を算出する(ステップS9)。
【0037】
次に、エンジン回転速度(NE)と要求トータル噴射量(Qf)と各種温度(例えば燃料温度、冷却水温、大気温等)を用いて指定された特性マップ等によりP3−P2間の噴射インターバル(INTP2)、P2−P1間の噴射インターバル(INTP1)、P1−Ma間の噴射インターバル(INTQM)を算出する(ステップS10)。次に、各噴射インターバル(INTP2,INTP1,INTQM)から、P3−P1間の噴射インターバル(INTP31)、P3−Ma間の噴射インターバル(INTP3Ma)、P2−Ma間の噴射インターバル(INTP2Ma)を算出する(ステップS11)。
【0038】
次に、燃料圧力センサ30の検出信号に基づいてコモンレール圧力(Pc)を取り込む(ステップS12)。次に、コモンレール圧力(Pc)とP1−Ma間の噴射インターバル(INTQM)とから、メイン噴射(Ma)の噴射開始遅れ時間補正量(2回噴射時ベース噴射開始遅れ時間補正量:TDM)を算出する(ステップS13)。この場合、パイロット噴射量(Qp1)、メイン噴射量(Qm)をも考慮して2回噴射時ベース噴射開始遅れ時間補正量(TDM)を算出するようにしても良い。
【0039】
なお、噴射開始遅れ時間補正量(TDM)は、図8に示したように、インジェクタ4の電磁弁への通電を開始してから実際に燃料が噴射されるまでの時間である。インジェクタ4は、供給される燃料圧力の作用を受けてノズルニードルがリフトして開弁する構成のものであるので、燃料圧力に応じて噴射開始遅れ時間が異なる。このため、コモンレール圧力(Pc)とP1−Ma間の噴射インターバル(INTQM)と噴射開始遅れ時間補正量(TDM)との関係を予め実験等により求めて、特性マップを作成することが望ましい。
【0040】
次に、コモンレール圧力(Pc)とP1−Ma間の噴射インターバル(INTQM)とから、メイン噴射期間補正量(2回噴射時ベース噴射期間補正量:TQDM)を算出する(ステップS14)。
この場合、パイロット噴射量(Qp1)、メイン噴射量(Qm)をも考慮して2回噴射時ベース噴射期間補正量(TQDM)を算出しても良い。
【0041】
次に、コモンレール圧力(Pc)と第3〜第1パイロット噴射量(Qp3,Qp2,Qp1)、メイン噴射量(Qm)、マルチ噴射回数のうちのいずれか少なくとも1個と上記の各噴射インターバル(INTP2,INTP1,INTP31,INTP3Ma,INTP2Ma)のうちのいずれか少なくとも1個とP1−Ma間の噴射インターバル(INTQM)および各種温度(燃料温度、冷却水温、大気温等)を用いて4回噴射時用補正係数K(Ktdm,Ktqdm)を算出する(ステップS15)。
【0042】
この場合、各パイロット噴射量(Qp3,Qp2,Qp1)、各噴射インターバル(INTP2,INTP1,INTP31,INTP3Ma,INTP2Ma)のメイン噴射(Qm)への寄与度K(Ktdm,Ktqdm)は、予め実験等により測定して作成した適合値を4回噴射時用補正係数マップ(図6参照)または演算式の形でメモリ等に記憶しておき、その4回噴射時用補正係数マップまたは演算式を参照して算出する(但し、補正係数マップ、演算式は理論値であっても良い)。
【0043】
次に、4回噴射時メイン噴射開始遅れ時間補正量(TDM4)を、下記の数1または数2の演算式により求める(ステップS16)。
【数1】
Figure 0003985602
【数2】
Figure 0003985602
但し、TDMはメイン噴射開始遅れ時間補正量(2回噴射時ベース噴射開始遅れ時間補正量)で、K(Ktdm)は4回噴射時用補正係数である。なお、K(Ktdm)は4回噴射時用噴射開始遅れ時間補正係数または4回噴射時用噴射開始遅れ時間補正量であっても良い。
【0044】
次に、4回噴射時メイン噴射期間補正量(TQDM4)を、下記の数3または数4の演算式により求める(ステップS17)。
【数3】
Figure 0003985602
【数4】
Figure 0003985602
但し、TQDMはメイン噴射期間補正量(2回噴射時ベース噴射期間補正量)で、K(Ktqdm)は4回噴射時用補正係数である。なお、K(Ktqdm)は4回噴射時用噴射期間補正係数または4回噴射時用噴射期間補正量であっても良い。
【0045】
次に、コモンレール圧力(Pc)とメイン噴射量(Qm)とを用いて指定された特性マップによりメイン噴射(Ma)用のインジェクタ4の電磁弁への通電時間であるメイン噴射期間(メイン噴射指令パルス時間:TQM)を算出する(ステップS18)。次に、図7に示したように、算出されたメイン噴射期間(TQM)にメイン噴射期間補正量(TQDM4)を加算または減算して補正後メイン噴射期間(TQMF)を算出する(ステップS19)。
【0046】
次に、メイン噴射時期(Tm)とエンジン回転速度(NE)とコモンレール圧力(Pc)とを用いてメイン噴射開始時期(TTM)を算出する(ステップS20)。次に、図8に示したように、実噴射時期をメイン噴射時期(Tm)とするために算出されたメイン噴射開始時期(TTM)に対し、噴射開始遅れ時間補正量(TDM4)を加算または減算して補正後メイン噴射時期(TTMF)を算出する(ステップS21)。
【0047】
次に、制御基準位置からの、クランク角度センサ34より出力されたNE信号パルスのパルス数をカウントし、カウントしたパルス数がメイン噴射時期パルス数(CNECAMF)となったか否かを判定する(ステップS22)。この判定結果がNOの場合には、カウントしたパルス数がメイン噴射時期パルス数(CNECAMF)となるまで待機する。
【0048】
また、ステップS22の判定結果がYESの場合には、カウントしたパルス数がメイン噴射時期パルス数(CNECAMF)となってから補正後メイン噴射時期(TTMF)が経過したか否かを判定する(ステップS23)。この判定結果がNOの場合には、補正後メイン噴射時期(TTMF)となるまで待機する。
また、ステップS23の判定結果がYESの場合には、インジェクタ4の電磁弁への通電を開始(インジェクタ駆動指令をON)する(ステップS24)。なお、噴射開始時期は必ずしもパルス基準でなくても良い。TTMFは、クランクシャフトの絶対角度(例えばBTDC=10°CA等)であっても良い。この場合、CNECAMFは考慮することなく、クランク角度または時間TTMF経過後に噴射開始するようにすれば良い。
【0049】
これにより、インジェクタ4の電磁弁への通電開始時刻、つまりパルス状のインジェクタ駆動電流(TQパルス)の立ち上がり時刻から所定の噴射開始遅れ時間(TDM=TDM4)が経過した後に、インジェクタ4のノズルニードルが燃料圧力を受けて開弁方向にリフトする。よって、インジェクタ4の先端に形成された複数個の噴射孔が開放されるため、エンジン1のk気筒(例えば#1気筒)内への燃料噴射が開始される。つまりエンジン1のk気筒(例えば#1気筒)のメイン噴射が開始される。
【0050】
次に、インジェクタ4の電磁弁への通電を開始してから補正後メイン噴射期間(TQMF)が経過したか否かを判定する(ステップS25)。この判定結果がNOの場合には、補正後メイン噴射期間(TQMF)が経過するまで待機する。
また、ステップS25の判定結果がYESの場合には、インジェクタ4の電磁弁への通電を終了(インジェクタ駆動指令をOFF)する(ステップS26)。その後に、図3ないし図5の制御ルーチンを抜ける。
【0051】
これにより、インジェクタ4の電磁弁への通電を終了してから所定の噴射終了遅れ時間経過後に、インジェクタ4のノズルニードルがスプリング等の付勢手段の付勢力を受けて閉弁方向に移動して弁座に着座する。よって、インジェクタ4の先端に形成された複数個の噴射孔が閉塞されるため、エンジン1のk気筒(例えば#1気筒)内への燃料噴射が終了する。つまりエンジン1のk気筒(例えば#1気筒)のメイン噴射が終了する。
【0052】
[第1実施例の特徴]
次に、本実施例のインジェクタ4のメイン噴射量制御方法を図1ないし図10に基づいて簡単に説明する。
【0053】
今回、インターバル依存性の補正パラメータとして、メイン噴射(Ma)の直前に先行して実施される第1パイロット噴射(P1)のパイロット噴射量(Qp1)、およびP1−Ma間の噴射インターバル(INTQM)だけでなく、第1パイロット噴射(P1)の前に先行して実施される第2パイロット噴射量(P2)のパイロット噴射量(Qp2)、およびP2−P1間の噴射インターバル(INTP1)、更にはその前の前の第3パイロット噴射(P3)のパイロット噴射量(Qp3)、およびP3−P2間の噴射インターバル(INTP2)等をも考慮すると言うことは下記の通りである。なお、図9の説明図中の高圧配管内圧力とは、インジェクタ4の電磁弁のバルブ近傍の燃料圧力を表している。
【0054】
図9の説明図に示したように、例えば4回噴射時(メイン噴射前にパイロット噴射3回)のメイン噴射を考えると、従来の2回噴射時(メイン噴射前にパイロット噴射1回)の高圧配管29内の圧力脈動に対し、4回噴射時の高圧配管29内の圧力脈動は、第1パイロット噴射よりも前の2回のパイロット噴射(第3パイロット噴射、第2パイロット噴射)の影響を受けて、周期(B−B’)、振幅(A−A’)が変化する。ここで、近似的に2回噴射時の高圧配管29内の圧力脈動は、下記の数5の演算式で表される。
【数5】
Figure 0003985602
但し、A=振幅で、ω=(2π/周期)、B=位相ズレ量である。
【0055】
次に、4回噴射時の高圧配管29内圧力の挙動を簡易的に表すと、下記の数6の演算式となる。
【数6】
Figure 0003985602
但し、A’=A×αまたはA’=A+α,B’=B×βまたはB’=B+βである。
なお、α、βはコモンレール圧力(Pc)と各パイロット噴射量(Qp3,Qp2)のうちいずれか少なくとも1個とパイロット噴射量(Qp1)、メイン噴射量(Qm)、各噴射インターバル(INTP2,INTP31,INTP3Ma,INTP2Ma)のうちいずれか少なくとも1個とに関連して求まる値である。
【0056】
すなわち、図10の説明図に示したように、指令噴射量(目標噴射量:QFIN)に対する噴射量のずれ(Qd4)が求めるべき補正値となり、2回噴射時の補正値(Qd2)に対し、Qd4=f(Qd2)となり、更なる補正が必要となる。但し、関数f(Qd2)は、上記の数6の演算式を応用した理論式だけでなく、予め実験等により測定して作成した実際の適合値でも十分である。
【0057】
[第1実施例の効果]
ここで、3回以上の多段噴射(第2パイロット噴射−第1パイロット噴射−メイン噴射または第3パイロット噴射−第2パイロット噴射−第1パイロット噴射−メイン噴射)を行なう場合、従来技術では、当該噴射の直前に先行して実施される直前噴射と当該噴射との間の噴射インターバル(例えば第2パイロット噴射と第1パイロット噴射との間の噴射インターバル、第1パイロット噴射とメイン噴射との間の噴射インターバル)とその時のコモンレール圧力(Pc)、直前噴射(第1パイロット噴射に対する第2パイロット噴射、メイン噴射に対する第1パイロット噴射等)の噴射量を補正パラメータとしてインターバルの依存性を補正していた。
【0058】
しかし、本実施例のコモンレール式燃料噴射システムでは、更にインターバル依存性の補正パラメータとしてメイン噴射(Ma)の前の第1パイロット噴射(P1)のパイロット噴射量(Qp1)および噴射インターバル(INTQM)だけでなく、第1パイロット噴射(P1)の更に前(例えばメイン噴射に対する第2パイロット噴射や第3パイロット噴射等)のパイロット噴射量(Qp3,Qp2)および各噴射インターバル(INTP31,INTP3Ma,INTP2Ma,INTP2,INTP1)をも補正パラメータとして持つようにしている。
【0059】
すなわち、メイン噴射(Ma)の直前に先行して1回のパイロット噴射を実施する、通常の2回噴射時のメイン噴射開始時期補正および通常の2回噴射時のメイン噴射期間補正に対して、メイン噴射(Ma)の直前に先行して実施される第1パイロット噴射(P1)のパイロット噴射量(Qp1)および噴射インターバル(INTQM)だけでなく、その第1パイロット噴射(P1)の前に先行して実施される第2パイロット噴射(P2)のパイロット噴射量(Qp2)および各噴射インターバル(INTP1,INTP2Ma)、更にその第2パイロット噴射(P2)の前に先行して実施される第3パイロット噴射(P3)のパイロット噴射量(Qp3)および各噴射インターバル(INTP2,INTP3Ma)をも考慮したメイン噴射開始時期補正およびメイン噴射期間補正を実施することで、3回以上のマルチ噴射時(本例では4回噴射時)のコモンレール2と当該インジェクタ4間の高圧配管29内の圧力脈動の影響による当該噴射(例えばメイン噴射)の噴射量脈動を防止することができる。
【0060】
[第2実施例]
図11ないし図14は本発明の第2実施例を示したもので、図11はインジェクタ4のメイン噴射量制御方法を示したフローチャートである。ここで、図11の制御ルーチンは、図3の制御ルーチンのステップS11の演算処理が終了した後に実行され、各種の演算処理や制御処理を実施した後に、図5の制御ルーチンのステップS22の処理に進む。なお、図3および図5の制御ルーチンは、第1実施例と同一処理のため、説明を省略する。
【0061】
図3の制御ルーチンのステップS11の演算処理を実行した後に、燃料圧力センサ30の検出信号に基づいてコモンレール圧力(Pc)を取り込む(ステップS31)。次に、コモンレール圧力(Pc)とP1−Ma間の噴射インターバル(INTQM)と予め設定された4回噴射時用補正係数または補正量マップを検索して、メイン噴射(Qm)の噴射開始遅れ時間補正量(TDM)を算出する(ステップS32)。
【0062】
この場合、検索する4回噴射時用補正係数または補正量マップは、4回噴射時第4段目噴射用補正係数または補正量マップ(図12参照)であり、別途3回噴射時第3段目噴射用補正係数または補正量マップまたは2回噴射時第2段目噴射用補正係数または補正量マップも準備しておく。また、第2パイロット噴射(P2)や第1パイロット噴射(P1)の噴射開始遅れ時間補正量(TDM)を算出するために、別途4回噴射時第2段目噴射用補正係数または補正量マップ、4回噴射時第3段目噴射用補正係数または補正量マップ、または3回噴射時第2段目噴射用補正係数または補正量マップも準備しておくことが望ましい(図13参照)。
【0063】
但し、これらの補正係数または補正量マップは、各パイロット噴射量(Qp3,Qp2,Qp1)、メイン噴射量(Qm)、各噴射インターバル(INTP1,INTP31,INTP3Ma,INTP2Ma)の影響を考慮して予め適合を行なう必要がある(図13参照)。なお、噴射インターバル(INTP2)、各種温度(燃料温度、冷却水温、大気温等)も考慮して、メイン噴射(Ma)の噴射開始遅れ時間補正量(TDM)を算出するようにしても良い。
【0064】
次に、コモンレール圧力(Pc)と第1パイロット噴射(P1)とメイン噴射(Ma)との間の噴射インターバル(INTQM)と予め設定された4回噴射時用補正係数または補正量マップを検索して、メイン噴射期間補正量(TQDM)を算出する(ステップS33)。
【0065】
この場合、検索する4回噴射時用補正係数または補正量マップは、図12に示したような4回噴射時第4段目噴射用補正係数または補正量マップであり、別途3回噴射時第3段目噴射用補正係数または補正量マップまたは2回噴射時第2段目噴射用補正係数または補正量マップも準備しておく。また、第2パイロット噴射(P2)や第1パイロット噴射(P1)の噴射開始遅れ時間補正量(TDM)を算出するために、別途4回噴射時第2段目噴射用補正係数または補正量マップ、4回噴射時第3段目噴射用補正係数または補正量マップ、または3回噴射時第2段目噴射用補正係数または補正量マップも準備しておくことが望ましい。
【0066】
但し、これらの補正係数または補正量マップは、各パイロット噴射量(Qp3,Qp2,Qp1)、メイン噴射量(Qm)、各噴射インターバル(INTP1,INTP31,INTP3Ma,INTP2Ma)の影響を考慮して予め適合を行なう必要がある。なお、噴射インターバル(INTP2)、各種温度(燃料温度、冷却水温、大気温等)も考慮して、メイン噴射期間補正量(TQDM)を算出するようにしても良い。
【0067】
次に、コモンレール圧力(Pc)とメイン噴射量(Qm)とを用いて指定された特性マップによりメイン噴射(Ma)用のインジェクタ4の電磁弁への通電時間であるメイン噴射期間(メイン噴射指令パルス時間:TQM)を算出する(ステップS34)。次に、算出されたメイン噴射期間(TQM)にメイン噴射期間補正量(TQDM)を加算または減算して補正後メイン噴射期間(TQMF)を算出する(ステップS35)。
【0068】
次に、メイン噴射時期(Tm)とエンジン回転速度(NE)とコモンレール圧力(Pc)とを用いてメイン噴射開始時期(TTM)を算出する(ステップS36)。次に、実噴射時期をメイン噴射時期(Tm)とするために算出されたメイン噴射開始時期(TTM)に対し、噴射開始遅れ時間補正量(TDM)を加算または減算して補正後メイン噴射時期(TTMF)を算出する(ステップS37)。その後に、図5の制御ルーチンのステップS22以降の制御処理を実行する。
【0069】
また、例えばエンジン1の運転状態または運転条件が変更されることによって、マルチ噴射回数が4回噴射から3回噴射に切り替わった場合には、図14に示したように、それまでの4回噴射時に第2パイロット噴射(P2)の噴射開始遅れ時間補正および噴射期間補正に用いていた4回噴射時用補正係数または補正量マップまたは噴射インターバル(INTP2)を、3回噴射時の第1パイロット噴射(P1)の噴射開始遅れ時間補正および噴射期間補正に転用しても構わない。
【0070】
これは、4回噴射の場合、第2パイロット噴射(P2)が先頭から2段目の噴射であり、3回噴射の場合、第1パイロット噴射(P1)が先頭から2段目の噴射となり、且つパイロット噴射量(Qp2)とパイロット噴射量(Qp1)とは共に微少噴射量であり、その影響は同等と考えられるためである。また、4回噴射時に第1パイロット噴射(P1)の噴射開始遅れ時間補正および噴射期間補正に用いていた4回噴射時用補正係数または補正量マップを、3回噴射時にメイン噴射(Ma)の噴射開始遅れ時間補正および噴射期間補正に用いる3回噴射時用補正係数または補正量マップに転用しても良い。
【0071】
[変形例]
本実施例では、本発明をパイロット学習制御装置に適用した例を示したが、本発明をコモンレールを備えず、電子制御方式の分配型燃料噴射ポンプまたは電子制御方式の列型燃料噴射ポンプ等を備えた内燃機関用噴射量制御装置に適用しても良い。また、本実施例では、電磁式燃料噴射弁よりなるインジェクタ4を用いた例を説明したが、圧電方式の燃料噴射弁よりなるインジェクタを用いても良い。また、メイン噴射の前に先行して実施されるパイロット噴射(プレ噴射とも言う)の回数は、1回以上任意に設定しても良く、また、メイン噴射の後に実施されるアフター噴射(ポスト噴射とも言う)の回数も、0回または1回以上任意に設定しても良い。
【0072】
本実施例では、図1に示したように、各噴射インターバル(INTP2,INTP1,INTQM,INTP31,INTP2Ma,INTP3Ma)を、パイロット噴射開始時期とメイン噴射開始時期とのスタートtoスタートとしたが、各噴射インターバル(INTP2,INTP1,INTQM,INTP31,INTP2Ma,INTP3Ma)を、パイロット噴射終了時期とメイン噴射開始時期とのエンドtoスタートとパイロット噴射期間とに分離しても良い。
【図面の簡単な説明】
【図1】各噴射インターバルを算出するための図である(第1実施例)。
【図2】コモンレール式燃料噴射システムの全体構成を示した概略図である(第1実施例)。
【図3】インジェクタのメイン噴射量制御方法を示したフローチャートである(第1実施例)。
【図4】インジェクタのメイン噴射量制御方法を示したフローチャートである(第1実施例)。
【図5】インジェクタのメイン噴射量制御方法を示したフローチャートである(第1実施例)。
【図6】4回噴射時用補正係数マップを示した図である(第1実施例)。
【図7】補正後メイン噴射期間を算出するための図である(第1実施例)。
【図8】補正後メイン噴射時期を算出するための図である(第1実施例)。
【図9】4回噴射時の高圧配管内の圧力脈動を示した説明図である(第1実施例)。
【図10】指令噴射量に対する噴射量のずれが補正値であることを示した説明図である(第1実施例)。
【図11】インジェクタのメイン噴射量制御方法を示したフローチャートである(第2実施例)。
【図12】4回噴射時用補正係数または補正量マップを示した図である(第2実施例)。
【図13】(a)は4回噴射時用補正係数または補正量マップを示した説明図で、(b)は3回噴射時用補正係数または補正量マップを示した説明図で、(c)は2回噴射時用補正係数または補正量マップを示した説明図である(第2実施例)。
【図14】(a)は4回噴射時用補正係数または補正量マップを示した説明図で、(b)は3回噴射時用補正係数または補正量マップとして(a)を転用した場合を示した説明図である(第2実施例)。
【図15】インターバルに対する高圧配管内の圧力脈動とメイン噴射量特性を示した説明図である(従来の技術)。
【図16】3回噴射時の高圧配管内の圧力脈動を示した説明図である(従来の技術)。
【符号の説明】
1 エンジン(内燃機関)
2 コモンレール(蓄圧容器)
3 サプライポンプ(燃料供給ポンプ)
4 インジェクタ(電磁式燃料噴射弁)
10 ECU(噴射量補正手段)
29 高圧配管(噴射鋼管)

Claims (5)

  1. 内燃機関の1燃焼行程中に、前記内燃機関の各気筒毎に対応して搭載され、コモンレール内に蓄圧された高圧燃料を前記内燃機関の各気筒内に噴射供給するインジェクタを複数回駆動して、燃料を複数回に分割して噴射する多段噴射を行なう内燃機関用噴射率制御装置において、
    前記多段噴射における噴射回数が3回以上の時に、
    当該噴射の直前に先行して実施される直前噴射の噴射量、および前記当該噴射と前記直前噴射との間の無噴射間隔だけでなく、
    前記直前噴射の前に先行して実施される先行噴射の噴射量、および前記直前噴射と前記先行噴射との間の無噴射間隔をも使用するとともに前記先行噴射と前記当該噴射との間の噴射インターバルをも使用することで、前記直前噴射および前記先行噴射にてそれぞれ生じる前記コモンレール内の圧力脈動の前記当該噴射への影響を考慮して、前記当該噴射の噴射開始時期補正または前記当該噴射の噴射期間補正を実施する噴射量補正手段を備えたことを特徴とする内燃機関用噴射率制御装置。
  2. 請求項1に記載の内燃機関用噴射率制御装置において、
    前記多段噴射とは、メイン噴射の前に2回以上のパイロット噴射を行なうマルチ噴射であるか、あるいはメイン噴射の後に2回以上のアフター噴射を行なうマルチ噴射であるか、あるいはメイン噴射の前に1回以上のパイロット噴射を行ない、且つメイン噴射の後に1回以上のアフター噴射を行なうマルチ噴射であることを特徴とする内燃機関用噴射率制御装置。
  3. 請求項1または請求項2に記載の内燃機関用噴射率制御装置において、
    前記多段噴射における噴射回数が3回に設定された3回噴射時に、前記当該噴射をメイン噴射とすると、前記直前噴射は第1パイロット噴射となり、前記先行噴射は第2パイロット噴射となることを特徴とする内燃機関用噴射率制御装置。
  4. 請求項1ないし請求項3のいずれか一つに記載の内燃機関用噴射率制御装置において、
    前記多段噴射における噴射回数が4回に設定された4回噴射時に、前記当該噴射をメイン噴射とすると、前記直前噴射は第1パイロット噴射となり、前記先行噴射は第3、第2パイロット噴射となることを特徴とする内燃機関用噴射率制御装置。
  5. 請求項4に記載の内燃機関用噴射率制御装置において、
    前記噴射量補正手段は、前記メイン噴射の直前に先行して実施される前記第1パイロット噴射の噴射量、および前記メイン噴射と前記第1パイロット噴射との間の無噴射間隔だけでなく、
    前記多段噴射における噴射回数、前記内燃機関の気筒内に噴射される燃料の噴射圧力、および前記第3パイロット噴射の噴射量、前記第2パイロット噴射の噴射量、前記第2パイロット噴射と前記第1パイロット噴射との間の無噴射間隔、前記第3パイロット噴射と前記第2パイロット噴射との間の無噴射間隔、前記第3パイロット噴射と前記第1パイロット噴射との間の無噴射間隔、前記第2パイロット噴射と前記メイン噴射との間の無噴射間隔、前記第3パイロット噴射と前記メイン噴射との間の無噴射間隔のうちのいずれか少なくとも1個をも考慮して、前記メイン噴射の噴射開始時期補正または前記メイン噴射の噴射期間補正を実施することを特徴とする内燃機関用噴射率制御装置。
JP2002184420A 2002-06-25 2002-06-25 内燃機関用噴射率制御装置 Expired - Fee Related JP3985602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184420A JP3985602B2 (ja) 2002-06-25 2002-06-25 内燃機関用噴射率制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184420A JP3985602B2 (ja) 2002-06-25 2002-06-25 内燃機関用噴射率制御装置

Publications (2)

Publication Number Publication Date
JP2004027939A JP2004027939A (ja) 2004-01-29
JP3985602B2 true JP3985602B2 (ja) 2007-10-03

Family

ID=31180344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184420A Expired - Fee Related JP3985602B2 (ja) 2002-06-25 2002-06-25 内燃機関用噴射率制御装置

Country Status (1)

Country Link
JP (1) JP3985602B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485389B2 (ja) * 2005-03-10 2010-06-23 トヨタ自動車株式会社 ディーゼル機関の燃料噴射制御装置
JP4029893B2 (ja) 2005-07-15 2008-01-09 いすゞ自動車株式会社 燃料噴射制御装置
FR2909135B1 (fr) 2006-11-28 2009-02-13 Peugeot Citroen Automobiles Sa Systeme d'alimentation multi-injection pour maitrise des hydrocarbures imbrules.
EP1990528B1 (en) 2007-05-08 2020-05-06 Denso Corporation Injection characteristic detection apparatus, control system, and method for the same
JP4315218B2 (ja) 2007-06-12 2009-08-19 トヨタ自動車株式会社 燃料噴射制御装置
JP4428427B2 (ja) 2007-08-31 2010-03-10 株式会社デンソー 燃料噴射特性検出装置及び燃料噴射指令補正装置
JP5022336B2 (ja) * 2008-10-23 2012-09-12 本田技研工業株式会社 燃料噴射装置
DE102008040227A1 (de) * 2008-07-07 2010-01-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Druckwellenkompensation bei zeitlich aufeinander folgenden Einspritzungen in einem Einspritzsystem einer Brennkraftmaschine
JP5505139B2 (ja) * 2010-07-05 2014-05-28 トヨタ自動車株式会社 内燃機関の制御装置
JP5754407B2 (ja) * 2012-04-11 2015-07-29 株式会社日本自動車部品総合研究所 燃料噴射制御装置
DE102014017124A1 (de) 2014-11-20 2016-05-25 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zum Betreiben eines Motors
CN106150737B (zh) * 2015-04-28 2019-08-16 长城汽车股份有限公司 一种多次喷射油量补偿方法及装置
JP6642403B2 (ja) * 2016-12-13 2020-02-05 株式会社デンソー 燃料噴射制御装置
CN112879174B (zh) * 2021-01-27 2022-12-27 东风汽车集团股份有限公司 汽油机喷射模式切换燃油补偿控制方法、系统及存储介质

Also Published As

Publication number Publication date
JP2004027939A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3966096B2 (ja) 内燃機関用噴射量制御装置
JP4096924B2 (ja) 内燃機関用噴射量制御装置
JP4089244B2 (ja) 内燃機関用噴射量制御装置
US6748920B2 (en) Injection ratio control system for internal combustion engine
US6722345B2 (en) Fuel injection system for internal combustion engine
JP4525729B2 (ja) Egr分配ばらつき検出装置
US6814059B2 (en) Accumulation type fuel injection system
JP4509171B2 (ja) 内燃機関用噴射量制御装置
JP3985602B2 (ja) 内燃機関用噴射率制御装置
JP3861550B2 (ja) 多気筒内燃機関の異常気筒検出装置
JP2005171931A (ja) 燃料噴射制御装置
JP4737320B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP2001263131A (ja) エンジンの燃料噴射制御装置
JP2003343328A (ja) 内燃機関用燃料噴射制御装置
JP3876766B2 (ja) 内燃機関用噴射率制御装置
JP3695411B2 (ja) 内燃機関用燃料噴射制御装置
JP2003227393A (ja) 燃料噴射装置
JP2004019539A (ja) 内燃機関用燃料噴射制御装置
EP1447546A2 (en) Engine control unit including phase advance compensator
JP5392241B2 (ja) 多気筒内燃機関
JP2003314338A (ja) 内燃機関用噴射量制御装置
JP4232426B2 (ja) 内燃機関用噴射量制御装置
JP3027893B2 (ja) 燃料系内環境判定装置
JP2004027948A (ja) 内燃機関用噴射率制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Ref document number: 3985602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees