JP3969321B2 - High frequency transmitter / receiver module - Google Patents

High frequency transmitter / receiver module Download PDF

Info

Publication number
JP3969321B2
JP3969321B2 JP2003042156A JP2003042156A JP3969321B2 JP 3969321 B2 JP3969321 B2 JP 3969321B2 JP 2003042156 A JP2003042156 A JP 2003042156A JP 2003042156 A JP2003042156 A JP 2003042156A JP 3969321 B2 JP3969321 B2 JP 3969321B2
Authority
JP
Japan
Prior art keywords
waveguide
terminal
substrate
terminals
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003042156A
Other languages
Japanese (ja)
Other versions
JP2004254068A (en
Inventor
努 田牧
浩一 松尾
実 藤田
康夫 河嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003042156A priority Critical patent/JP3969321B2/en
Publication of JP2004254068A publication Critical patent/JP2004254068A/en
Application granted granted Critical
Publication of JP3969321B2 publication Critical patent/JP3969321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Transceivers (AREA)
  • Combinations Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、導波管を使用してマイクロ波またはミリ波帯の高周波信号を送受信する、高周波送受信モジュールに関するものである。
【0002】
【従来の技術】
従来、導波管を使用した高周波送受信モジュールは、パッケージに収納した、マイクロ波またはミリ波帯等の高周波帯で動作する半導体にバイアス電圧を印可するため、パッケージに金属製のリードをロー付けし、そのリードを、バイアスを供給する樹脂基板等に半田付けしている。また、そのパッケージ及び樹脂基板等は、筐体の導波管端子に位置合わせしてネジ止めする等を行なっていた。(例えば、特許文献1)
【0003】
【特許文献1】
特開平5−343904号公報(第2−4頁、第1図)
【0004】
【発明が解決しようとする課題】
従来の高周波送受信モジュールは、以上のように、パッケージにバイアス印加用リードをロー付けし、また、そのパッケージ及び樹脂基板等を、筐体の導波管端子に位置決めしてネジ止めする等、パッケージの高コスト化、モジュールの製造工程複雑化等を招き、最終的にモジュールの高コスト化につながるという問題を持っていた。
【0005】
この発明は、上記のような問題点を解決するためになされたもので、導波管端子、信号端子、制御信号端子、接地端子及びバイアス端子等の接続にかかる製造コストを大幅に低減させ、それに合わせて、パッケージのリードレス化を図り、パッケージコストも低減させることを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、この発明に関わる高周波送受信モジュールは、パッケージを構成する多層誘電体基板の下面に導波管端子、信号端子、制御信号端子、接地端子およびバイアス端子を配し、また、このパッケージに対応して樹脂基板の上面に導波管端子、信号端子、制御信号端子、接地端子およびバイアス端子を配し、おのおの対応した端子間を全て球状の半田を溶融して接続することで搭載し、さらに、このパッケージが搭載された樹脂基板を導波管回路に搭載した。
【0007】
【発明の実施の形態】
実施の形態1.
図1は、実施の形態1による高周波送受信モジュールの構成を示している。
【0008】
図1において、パッケージ1は、多層誘電体基板2の上に気密溶接用枠体3を半田付けまたはロー付け等により配置し、その上にカバー4をのせて溶接し、気密を確保している。パッケージ1の内部の構成は図5に示し、その中にて半導体18を実装している(詳細は後述する)。また、多層誘電体基板2の下面には、導波管端子6、信号、制御信号、接地及びバイアス端子7、高周波信号端子9等が配されているが、図1では省略している。樹脂基板5は、多層誘電体基板2の下面に配された導波管端子6、信号、制御信号、接地及びバイアス端子7、高周波信号端子9に対応して、基板上面に各々の端子を配し、また、パッケージ1との信号及びバイアスの授受を行なうための周辺回路10を配している。パッケージ1、樹脂基板5における各々対応した端子は、球状の半田8を溶融する(いわゆるバンプ接続)ことで、接続を確保される。このパッケージ1を搭載した樹脂基板5は、この導波管端子6に対応した導波管12を設けた導波管回路11にネジ止めされる。このとき、樹脂基板5の導波管端子6と導波管12を隙間なく接触させるため、樹脂に導電性塗料を含浸させた導電性樹脂26を導波管回路11の導波管12の開口部周辺の極力開口端に近い位置に塗布し、樹脂基板5との間で挟み込んでいる。
【0009】
次に、動作について説明する。図1のように、パッケージ1は樹脂基板5との間で、信号、制御信号、接地及びバイアス端子7、高周波信号端子9、導波管端子6を通して、それぞれに対応した電圧及び信号を授受し、内部に収納した半導体18を動作させる。また、樹脂基板5は、パッケージ1との間での電圧及び信号の授受の他、球状の半田8を信号、制御信号、接地及びバイアス端子7、高周波信号端子9、導波管端子6に溶融することにより、パッケージ1を樹脂基板5上に固定する。導波管回路11は、パッケージ1を搭載した樹脂基板5をネジ止めなどにより固定し、内部に設けた導波管12をもって、外部回路(例えばアンテナ等である。図1では省略)との間で、マイクロ波またはミリ波帯の高周波信号を授受する。その際、導電性樹脂26は、樹脂基板5の導波管端子6と導波管回路12の導波管11が隙間なく接続されるように塗布され、接続部における信号の電力損失を低減させている。
【0010】
このときの導波管端子6を接続する球状の半田8の配置(図1のA部)を図2(a)に示す。また、図2(b)は、導波管接続部における信号の損失を示すグラフであり、導波管端子6の電界面(導波管端子6の短辺)に平行に、導波管端子6を挟んで配置した球状の半田8列間の距離をL1、導波管端子6の磁界面(導波管端子6の長辺)に平行に、導波管端子6を挟んで配置した球状の半田8列と導波管端子6端までの距離をL2としたときに、L1を固定し、L2を変化させた場合の、通過損失を示している。
このように、L2の長さの最適化により、通過損失を低減させることが可能となる。また、図2(c)は、図1のように導波管端子6が隣接した場合の、導波管端子6の周辺に設ける球状の半田8の列数による、隣接した導波管端子との信号の結合度を示す。曲線aは列数を1列とした場合、曲線bは列数を2列とした場合、曲線cは2列の球状の半田8の間隔を導波管端子6を通過する信号の波長の1/4±30%とした場合の特性を示す。このように、複数列配置し、かつ、その間隔を導波管端子6を通過する信号の波長の1/4±30%とした場合、もっとも、隣接する導波管端子との結合を低減できる。
【0011】
本実施例では、図2(a)において、上記の距離L1、L2の関係が、導波管端子6を通過する信号の波長をλとすると、λ×(0.7〜1.3)=2/(1/L1+1/L21/2となるように設定している。この場合、図2(b)のような、最適なL2の特性を得る事ができ、導波管接続部における信号の損失を小さくすることが可能となる。また、球状の半田8列を複数列配し、かつその間隔を、導波管端子6を通過する信号の波長の1/4±30%としたことにより、隣接導波管との結合を、より低減している。
【0012】
次に、マイクロ波帯等の高周波信号を授受するための、球状の半田8の配置(図1のB部)を図3に示す。高周波信号端子9は、略中心に信号端子14を、そこからある距離だけ離れた同心円上に接地端子15を複数配する事により構成している。これは、一般に高周波信号を伝達させるために使用される同軸ケーブルと同様に、信号端子14と接地端子15の間のインピーダンスを一定にするためである。これらの各端子も、パッケージ1の下面に配した端子と、樹脂基板5の上面に配した端子との間で、それぞれに対応して、球状の半田8を溶融することにより、他の端子と一括で接続可能である。
【0013】
次に、パッケージ1及びその下面に配した球状の半田8の機械的強度について、図4にて説明する。一般に、球状の半田8による接続(いわゆるバンプ接続)は、リード端子を用いた接続に比べて、機械的強度が弱い。それは、例えばセラミック等のように薄く、かつ硬い基板を使用したパッケージを完全に固定するため、熱応力などが加わった場合、欠け、割れ等が発生しやすいためである。そのため、例えばエポキシなどの樹脂をベースとしたアンダーフィル材16をパッケージ1及び樹脂基板5の間の半田接合部に注入することにより、パッケージ1及び球状の半田8にかかる応力を緩和する事ができる。
ただし、導波管端子部には注入されないよう、注意する必要がある。信号通過部に、ある誘電率をもつアンダーフィル材が入り込む事で、そこのインピーダンスが変化し、通過特性を劣化させるためである。図1及び図4では、C部、つまり、パッケージ1の4隅に、アンダーフィル材16を注入している。一般に割れ、欠けは、パッケージ1の4隅から発生しやすいため、このアンダーフィル材16をパッケージ1の4隅のみに注入しても効果は大きい。もちろん、導波管端子6部分を除く全域に注入した場合、さらに機械的強度が向上する。
【0014】
次に、パッケージ1の構成を図5に示す。図5(a)は、パッケージ1の内部を示しており、多層誘電体基板2はその上面に2つのキャビティ17a及び17bを有し、その中に、マイクロ波またはミリ波帯で動作する半導体18a及び18bをそれぞれ配している。多層誘電体基板2及び半導体18a及び18bは、例えばAu等の金属ワイヤ19で接続され、半導体18a及び18bに授受される高周波信号は、金属ワイヤ19が接続されたマイクロストリップ線路−導波管変換器20にて導波管モードに変換されるか、あるいは高周波信号端子9に接続される。
また、多層誘電体基板2の上には、気密用金属枠体3が配され、その上にカバー4を溶接する事により、パッケージ1内を気密にする。図5(b)は、図5(a)のパッケージにカバー4を溶接した場合の外観を示す。図のように、溶接する事で、パッケージ1の内部を気密にすることが可能となる。図5(c)は、多層誘電体基板2上に気密用金属枠体3を設けず、少なくとも半導体18a及び18b及び金属ワイヤ19の上面を除く、多層誘電体基板2の上面に接触するよう、金属板を成形した成形カバー21を、多層誘電体基板2の上面に半田または導電性接着剤などを使用して固定しており、パッケージ1の内部を気密にする事が可能となる。図5(d)は、多層誘電体基板2に配した半導体18a及び18bと金属ワイヤ19の上に封止用樹脂ペースト22を塗布し、半導体の気密を確保する事を可能とした。
【0015】
上記では、パッケージ1の下面に設けた各端子と樹脂基板5の上面に設けた各端子の接続に、球状の半田8を溶融させることで行なっているが、図6のように、球状の半田8を配置し、その上下をパッケージ1及び樹脂基板5で挟んだ状態で、例えば、熱硬化によって、球状の半田8と各端子の電気的接続を行なう、異方性導電性樹脂を注入する方法もある。これによっても、上記と同様の効果を得る事ができる。
【0016】
次に、製造方法について説明する。上記のように、樹脂基板5上に球状の半田8を使用してパッケージ1を接続する場合、樹脂基板5上の周辺回路10に使用する他の部品と同時に、例えばリフローのような一括半田付けが可能となり、従来、パッケージのみネジ止めしていた作業が簡略化される。また、一般に、上記のような球状の半田8を使用した場合、その接続される端子位置が自ら補正される、いわゆるセルフアライメント効果が得られるため、従来行なっていたパッケージ1と導波管回路11との位置決め作業が不要になる。
【0017】
次に、価格について説明する。従来の多層誘電体基板2を使用したパッケージ1では、原材料費としては、誘電体基板2、気密用金属枠体3、ネジ止めするために誘電体基板2の下面に配する金属キャリヤ等があげられる。また、その場合、金属キャリヤと多層誘電体基板2及び気密用金属枠体3のロー付け等の作業が必要となる。本発明によるパッケージ1は、金属キャリヤが不要なため、そのロー付けも不要となり、低価格化が可能である。また、上記のように、パッケージ1の固定に、位置決め/ネジ止め作業が不要となる等、製造工程の簡略化も図れる。
【0018】
このように、本実施例の場合、樹脂基板5上の周辺回路10の部品などと、一括してパッケージ1の接続が可能であり、導波管回路11との位置決め作業が不要になる。また、パッケージ1の金属キャリヤ等を不要とするため、価格が低減できる。さらに、電気特性の面では、導波管端子6の周囲の球状の半田8の配置位置、間隔及び列数の最適化により、導波管端子6接続部の通過損失を低減できる。また、アンダーフィル材16の注入により、パッケージ1及び球状の半田8の強度を改善できる。また、カバー4の溶接、または封止用樹脂ペースト22の塗布等により、パッケージ1内の気密化が可能となる。
【0019】
実施の形態2.
図7は、実施の形態2による高周波送受信モジュールの構成を示している。
【0020】
図7において、2〜10は、実施の形態1と同様の構成及び動作をする。金属ベース24は、樹脂基板5に樹脂性の接着剤などで接着され、金属ベース基板25を構成する。この場合、樹脂基板5に設けた導波管端子6に接続されるよう、金属ベース24にも導波管端子を設けている(図では省略している)。
【0021】
これにより、樹脂基板5での発熱を効率よく熱伝導させる事ができ、また、金属ベース24に導波管端子6を設ける事により、実施の形態1における導波管回路11を不要とするため、価格の低減が可能となる。
【0022】
実施の形態3.
図8は、実施の形態3による高周波送受信モジュールに使用する樹脂基板の裏面の構成を示している。
【0023】
図8において、樹脂基板5は、その裏面に、導波管端子6を通じて、その先にアンテナ素子27を基板上に設けている。図8では省略しているが、表面には、図1のようにパッケージ1、周辺回路10などが配されている。
【0024】
このように、樹脂基板5の裏面にアンテナ素子27を配する事により、導波管回路11を不要とし、また、金属ベース基板25のような金属ベース24も不要となるため、価格の低減が可能となる。また、金属部品が不要な事から、軽量化も可能となる。
【0025】
【発明の効果】
この発明によれば、樹脂基板上の周辺回路の部品などと、一括してパッケージの接続及び固定が可能となり、また、従来の位置決め作業が不要になるため、製造工程が単純化でき、製造コストの低減が可能となる。また、パッケージの金属キャリヤ等を不要とするため、原材料費等も低減できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による高周波送受信モジュールの構成を示す図である。
【図2】 この発明の実施の形態1における導波管端子周辺の球状の半田の配置及び導波管接続部の特性を示す図である。
【図3】 この発明の実施の形態1における高周波信号端子の構成を示す図である。
【図4】 この発明の実施の形態1におけるパッケージ及び球状の半田の機械的強度を示す図である。
【図5】 この発明の実施の形態1におけるパッケージの構成を示す図である。
【図6】 この発明の実施の形態1ににて、異方性導電性樹脂を使用した場合を示す図である。
【図7】 この発明の実施の形態2による高周波送受信モジュールの構成を示す図である。
【図8】 この発明の実施の形態3による高周波送受信モジュールに使用する樹脂基板の裏面の構成を示す図である。
【符号の説明】
1 パッケージ、2 多層誘電体基板、3 気密封止用枠体、4 カバー、5樹脂基板、6 導波管端子、7 信号、制御信号、接地及びバイアス端子、8球状の半田、9 高周波信号端子、10 周辺回路、11 導波管回路、12導波管、14 信号端子、15 接地端子、16 アンダーフィル材、17 キャビティ、18 半導体、19 金属ワイヤ、20 マイクロストリップ線路−導波管変換器、21 成形カバー、22 樹脂ペースト、23 異方性導電性樹脂、24 金属ベース、25 金属ベース基板、26 導電性樹脂、27 アンテナ素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency transmission / reception module that transmits and receives a microwave or millimeter-wave band high-frequency signal using a waveguide.
[0002]
[Prior art]
Conventionally, a high-frequency transceiver module using a waveguide has a metal lead brazed to the package in order to apply a bias voltage to a semiconductor that operates in a high-frequency band such as a microwave or millimeter-wave band. The lead is soldered to a resin substrate or the like that supplies a bias. Further, the package, the resin substrate, and the like are screwed in alignment with the waveguide terminal of the housing. (For example, Patent Document 1)
[0003]
[Patent Document 1]
JP-A-5-343904 (page 2-4, FIG. 1)
[0004]
[Problems to be solved by the invention]
As described above, the conventional high-frequency transmission / reception module has a package in which a bias applying lead is brazed to the package, and the package and the resin substrate are positioned and screwed to the waveguide terminal of the housing. The cost of the module and the manufacturing process of the module are complicated, which ultimately leads to a high module cost.
[0005]
The present invention was made to solve the above-described problems, and greatly reduces the manufacturing cost for connection of a waveguide terminal, a signal terminal, a control signal terminal, a ground terminal, a bias terminal, and the like, In accordance with this, the object is to lead the package and reduce the package cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a high-frequency transmission / reception module according to the present invention includes a waveguide terminal, a signal terminal, a control signal terminal, a ground terminal, and a bias terminal on the lower surface of a multilayer dielectric substrate that constitutes a package. Corresponding to this package, waveguide terminals, signal terminals, control signal terminals, ground terminals and bias terminals are arranged on the top surface of the resin substrate, and the corresponding terminals are all melted and connected with spherical solder. In addition, the resin substrate on which this package was mounted was mounted on a waveguide circuit.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 shows a configuration of a high-frequency transceiver module according to the first embodiment.
[0008]
In FIG. 1, a package 1 has an airtight welding frame 3 placed on a multilayer dielectric substrate 2 by soldering or brazing, etc., and a cover 4 is placed thereon and welded to ensure airtightness. . The internal configuration of the package 1 is shown in FIG. 5, in which a semiconductor 18 is mounted (details will be described later). Further, on the lower surface of the multilayer dielectric substrate 2, a waveguide terminal 6, a signal, a control signal, a ground and bias terminal 7, a high-frequency signal terminal 9, and the like are arranged, but are omitted in FIG. The resin substrate 5 is arranged on the upper surface of the substrate corresponding to the waveguide terminal 6, signal, control signal, ground and bias terminal 7, and high-frequency signal terminal 9 disposed on the lower surface of the multilayer dielectric substrate 2. In addition, a peripheral circuit 10 is provided for exchanging signals and biases with the package 1. The terminals corresponding to each of the package 1 and the resin substrate 5 are secured by melting the spherical solder 8 (so-called bump connection). The resin substrate 5 on which the package 1 is mounted is screwed to a waveguide circuit 11 provided with a waveguide 12 corresponding to the waveguide terminal 6. At this time, in order to bring the waveguide terminal 6 of the resin substrate 5 and the waveguide 12 into contact with each other without a gap, a conductive resin 26 impregnated with a conductive paint is used as the opening of the waveguide 12 of the waveguide circuit 11. It is applied to a position as close to the opening end as possible around the part and sandwiched between the resin substrate 5.
[0009]
Next, the operation will be described. As shown in FIG. 1, the package 1 exchanges voltages and signals with the resin substrate 5 through signals, control signals, ground and bias terminals 7, high frequency signal terminals 9, and waveguide terminals 6. Then, the semiconductor 18 housed inside is operated. In addition, the resin substrate 5 melts the spherical solder 8 into a signal, a control signal, a ground and bias terminal 7, a high frequency signal terminal 9, and a waveguide terminal 6 in addition to the voltage and signal exchange with the package 1. As a result, the package 1 is fixed on the resin substrate 5. The waveguide circuit 11 is fixed to the external circuit (for example, an antenna or the like, omitted in FIG. 1) by fixing the resin substrate 5 on which the package 1 is mounted by screwing or the like and having the waveguide 12 provided inside. Then, high-frequency signals in the microwave or millimeter wave band are exchanged. At that time, the conductive resin 26 is applied so that the waveguide terminal 6 of the resin substrate 5 and the waveguide 11 of the waveguide circuit 12 are connected without a gap, thereby reducing the power loss of the signal at the connection portion. ing.
[0010]
FIG. 2A shows the arrangement of the spherical solder 8 connecting the waveguide terminals 6 at this time (part A in FIG. 1). FIG. 2B is a graph showing signal loss at the waveguide connection portion, and is parallel to the electric field surface of the waveguide terminal 6 (short side of the waveguide terminal 6). The distance between the eight rows of spherical solders arranged across 6 is L1, the spherical shape arranged across the waveguide terminals 6 parallel to the magnetic field surface of the waveguide terminals 6 (long side of the waveguide terminals 6) When the distance between the solder 8 rows and the end of the waveguide terminal 6 is L2, L1 is fixed and L2 is changed.
Thus, the passage loss can be reduced by optimizing the length of L2. FIG. 2 (c) shows the adjacent waveguide terminals according to the number of rows of spherical solders 8 provided around the waveguide terminals 6 when the waveguide terminals 6 are adjacent as shown in FIG. The degree of signal coupling is shown. When the number of rows is one for the curve a, the number of rows is 2 for the curve b, the curve c is 1 of the wavelength of the signal passing through the waveguide terminal 6 through the space between the two spherical solders 8. Characteristics when / 4 ± 30% are shown. As described above, when a plurality of rows are arranged and the interval is set to 1/4 ± 30% of the wavelength of the signal passing through the waveguide terminal 6, the coupling with the adjacent waveguide terminals can be reduced. .
[0011]
In this embodiment, in FIG. 2A, when the relationship between the distances L1 and L2 is λ as the wavelength of the signal passing through the waveguide terminal 6, λ × (0.7 to 1.3) = 2 / (1 / L1 2 + 1 / L2 2 ) 1/2 is set. In this case, optimum L2 characteristics as shown in FIG. 2B can be obtained, and signal loss at the waveguide connection portion can be reduced. Further, by arranging a plurality of rows of spherical solder 8 rows and the interval thereof being 1/4 ± 30% of the wavelength of the signal passing through the waveguide terminal 6, the coupling with the adjacent waveguide can be achieved. It is more reduced.
[0012]
Next, FIG. 3 shows the arrangement of the spherical solder 8 (B portion in FIG. 1) for transmitting and receiving a high frequency signal such as a microwave band. The high-frequency signal terminal 9 is constituted by arranging a plurality of signal terminals 14 at substantially the center and a plurality of ground terminals 15 on concentric circles separated by a certain distance therefrom. This is to make the impedance between the signal terminal 14 and the ground terminal 15 constant, as in the coaxial cable generally used for transmitting a high-frequency signal. Each of these terminals is also connected to the other terminals by melting the spherical solder 8 correspondingly between the terminals disposed on the lower surface of the package 1 and the terminals disposed on the upper surface of the resin substrate 5. Connection is possible in a lump.
[0013]
Next, the mechanical strength of the package 1 and the spherical solder 8 disposed on the lower surface thereof will be described with reference to FIG. In general, the connection using the spherical solder 8 (so-called bump connection) has lower mechanical strength than the connection using the lead terminal. This is because, for example, a chip using a thin and hard substrate such as ceramic is completely fixed, so that when thermal stress or the like is applied, chipping or cracking is likely to occur. Therefore, the stress applied to the package 1 and the spherical solder 8 can be relieved by injecting an underfill material 16 based on a resin such as epoxy into the solder joint between the package 1 and the resin substrate 5. .
However, care must be taken not to inject into the waveguide terminal portion. This is because when an underfill material having a certain dielectric constant enters the signal passing portion, the impedance changes and the passing characteristics are deteriorated. In FIGS. 1 and 4, the underfill material 16 is injected into part C, that is, the four corners of the package 1. In general, since cracks and chips are likely to occur from the four corners of the package 1, even if this underfill material 16 is injected only into the four corners of the package 1, the effect is great. Needless to say, the mechanical strength is further improved when the injection is made in the entire region except the waveguide terminal 6 portion.
[0014]
Next, the structure of the package 1 is shown in FIG. FIG. 5A shows the inside of the package 1, and the multilayer dielectric substrate 2 has two cavities 17a and 17b on its upper surface, and a semiconductor 18a that operates in the microwave or millimeter wave band. And 18b, respectively. The multilayer dielectric substrate 2 and the semiconductors 18a and 18b are connected by a metal wire 19 such as Au, for example, and a high-frequency signal transferred to the semiconductors 18a and 18b is converted into a microstrip line-waveguide conversion to which the metal wire 19 is connected. The signal is converted into the waveguide mode by the device 20 or connected to the high-frequency signal terminal 9.
An airtight metal frame 3 is disposed on the multilayer dielectric substrate 2, and a cover 4 is welded onto the metal frame 3 to make the inside of the package 1 airtight. FIG. 5B shows an external appearance when the cover 4 is welded to the package of FIG. As shown in the figure, the inside of the package 1 can be hermetically sealed by welding. In FIG. 5C, the airtight metal frame 3 is not provided on the multilayer dielectric substrate 2, and at least the upper surfaces of the semiconductors 18a and 18b and the metal wire 19 are contacted with the upper surface of the multilayer dielectric substrate 2. A molded cover 21 formed of a metal plate is fixed to the upper surface of the multilayer dielectric substrate 2 using solder or a conductive adhesive, so that the inside of the package 1 can be hermetically sealed. In FIG. 5D, the sealing resin paste 22 is applied on the semiconductors 18a and 18b and the metal wire 19 disposed on the multilayer dielectric substrate 2, thereby making it possible to ensure the airtightness of the semiconductor.
[0015]
In the above description, the spherical solder 8 is melted to connect each terminal provided on the lower surface of the package 1 and each terminal provided on the upper surface of the resin substrate 5, but as shown in FIG. A method of injecting an anisotropic conductive resin in which a spherical solder 8 is electrically connected to each terminal by, for example, thermosetting in a state where the upper and lower sides are disposed between the package 1 and the resin substrate 5. There is also. Also by this, the same effect as described above can be obtained.
[0016]
Next, a manufacturing method will be described. As described above, when the package 1 is connected using the spherical solder 8 on the resin substrate 5, simultaneous soldering such as reflow is performed simultaneously with other components used for the peripheral circuit 10 on the resin substrate 5. This makes it possible to simplify the work of screwing only the package. In general, when the spherical solder 8 as described above is used, a so-called self-alignment effect is obtained in which the terminal position to be connected is corrected by itself. Therefore, the package 1 and the waveguide circuit 11 which have been conventionally performed are obtained. No positioning work is required.
[0017]
Next, the price will be described. In the package 1 using the conventional multilayer dielectric substrate 2, the raw material costs include the dielectric substrate 2, the airtight metal frame 3, the metal carrier disposed on the lower surface of the dielectric substrate 2 for screwing, and the like. It is done. In that case, work such as brazing of the metal carrier, the multilayer dielectric substrate 2 and the airtight metal frame 3 is required. Since the package 1 according to the present invention does not require a metal carrier, it is not necessary to braze it, and the cost can be reduced. Further, as described above, the manufacturing process can be simplified, for example, positioning / screwing work is not required for fixing the package 1.
[0018]
Thus, in the case of the present embodiment, the package 1 can be connected together with the components of the peripheral circuit 10 on the resin substrate 5 and the positioning work with the waveguide circuit 11 becomes unnecessary. Further, since the metal carrier or the like of the package 1 is unnecessary, the price can be reduced. Further, in terms of electrical characteristics, the passage loss of the connection portion of the waveguide terminal 6 can be reduced by optimizing the arrangement position, interval, and number of rows of the spherical solder 8 around the waveguide terminal 6. Further, the strength of the package 1 and the spherical solder 8 can be improved by injecting the underfill material 16. Further, the package 1 can be hermetically sealed by welding the cover 4 or applying the sealing resin paste 22.
[0019]
Embodiment 2. FIG.
FIG. 7 shows the configuration of the high-frequency transceiver module according to the second embodiment.
[0020]
In FIG. 7, 2 to 10 have the same configuration and operation as in the first embodiment. The metal base 24 is bonded to the resin substrate 5 with a resinous adhesive or the like to constitute a metal base substrate 25. In this case, a waveguide terminal is also provided on the metal base 24 so as to be connected to the waveguide terminal 6 provided on the resin substrate 5 (not shown in the figure).
[0021]
As a result, the heat generated in the resin substrate 5 can be efficiently conducted, and the waveguide terminal 11 in the first embodiment is not required by providing the waveguide terminal 6 on the metal base 24. The price can be reduced.
[0022]
Embodiment 3 FIG.
FIG. 8 shows the configuration of the back surface of the resin substrate used in the high-frequency transceiver module according to the third embodiment.
[0023]
In FIG. 8, the resin substrate 5 is provided with an antenna element 27 on the back surface of the resin substrate 5 through the waveguide terminal 6 on the back surface. Although omitted in FIG. 8, the package 1, the peripheral circuit 10 and the like are arranged on the surface as shown in FIG.
[0024]
Thus, by arranging the antenna element 27 on the back surface of the resin substrate 5, the waveguide circuit 11 is not required, and the metal base 24 such as the metal base substrate 25 is not required, so that the cost can be reduced. It becomes possible. Moreover, since metal parts are unnecessary, weight reduction is also possible.
[0025]
【The invention's effect】
According to the present invention, it is possible to connect and fix the package together with peripheral circuit components on the resin substrate, and the conventional positioning operation becomes unnecessary, so that the manufacturing process can be simplified and the manufacturing cost can be simplified. Can be reduced. In addition, since the metal carrier of the package is not required, raw material costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a high-frequency transceiver module according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing the arrangement of spherical solder around the waveguide terminal and the characteristics of the waveguide connection portion in the first embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a high-frequency signal terminal according to Embodiment 1 of the present invention.
FIG. 4 is a diagram showing the mechanical strength of a package and spherical solder according to Embodiment 1 of the present invention.
FIG. 5 is a diagram showing a configuration of a package in Embodiment 1 of the present invention.
FIG. 6 is a diagram showing a case where an anisotropic conductive resin is used in Embodiment 1 of the present invention.
FIG. 7 is a diagram showing a configuration of a high-frequency transceiver module according to Embodiment 2 of the present invention.
FIG. 8 is a diagram showing a configuration of a back surface of a resin substrate used in a high frequency transmission / reception module according to Embodiment 3 of the present invention.
[Explanation of symbols]
1 package, 2 multilayer dielectric substrate, 3 airtight sealing frame, 4 cover, 5 resin substrate, 6 waveguide terminal, 7 signal, control signal, ground and bias terminal, 8 spherical solder, 9 high frequency signal terminal DESCRIPTION OF SYMBOLS 10 Peripheral circuit, 11 Waveguide circuit, 12 Waveguide, 14 Signal terminal, 15 Ground terminal, 16 Underfill material, 17 Cavity, 18 Semiconductor, 19 Metal wire, 20 Microstrip line-waveguide converter, 21 Molded cover, 22 Resin paste, 23 Anisotropic conductive resin, 24 Metal base, 25 Metal base substrate, 26 Conductive resin, 27 Antenna element

Claims (8)

1つまたは2つ以上の導波管端子を有し、ミリ波帯の高周波信号を送受信する高周波送受信モジュールにおいて、
1種類または2種類以上の誘電体材料を積層した多層誘電体基板にて構成され、1つまたは2つ以上の導波管端子、制御信号端子、接地端子およびバイアス端子を上記誘電体基板の下面に配し、上記誘電体基板の上面に、ミリ波帯にて動作する半導体素子を収納し、上記半導体素子と上記導波管端子の間を、高周波信号を伝送するマイクロストリップ線路−導波管変換器にて接続した、1つまたは2つ以上のパッケージと、
1つまたは2つ以上の導波管端子、制御信号端子、接地端子、およびバイアス端子を上記パッケージの各端子に対応して基板上面に配し、基板上面に周辺回路を載置し、上記パッケージと上記周辺回路との間でバイアス電圧および信号等を授受するとともに、上記パッケージの下面が基板上面に接続された単層または多層の樹脂基板と、
1つまたは2つ以上の導波管端子を有し、金属または樹脂に金属めっきを施して、内部に上記樹脂基板における基板面の平行方向及び垂直方向に配向された複数の導波管が形成されるとともに、上記樹脂基板の下面に上面の当該導波管端子が接続され、アンテナとの間で高周波信号を伝送する板状の導波管回路と、
を具備し、
上記パッケージおよび樹脂基板に設けた上記制御信号端子、接地端子およびバイアス端子は、夫々対応する端子間が複数の球状の半田を溶融して接続され、
上記パッケージの導波管端子と上記樹脂基板の導波管端子は、双方の開口部周囲を取り囲むように配列された複数の球状の半田を溶融して接続され、
上記パッケージおよび上記樹脂基板に設けた導波管端子、制御信号端子、接地端子およびバイアス端子にて、夫々対応する端子間を接続した球状の半田のうち、導波管端子の開口部を除いた少なくとも上記パッケージの隅に配された球状の半田部分にアンダーフィル材を充填したことを特徴とする高周波送受信モジュール。
In a high-frequency transmission / reception module having one or more waveguide terminals and transmitting / receiving a millimeter-wave band high-frequency signal,
It is composed of a multilayer dielectric substrate in which one type or two or more types of dielectric materials are laminated, and one or more waveguide terminals, a control signal terminal, a ground terminal, and a bias terminal are provided on the lower surface of the dielectric substrate. A microstrip line-waveguide for accommodating a semiconductor element operating in a millimeter wave band on the upper surface of the dielectric substrate and transmitting a high-frequency signal between the semiconductor element and the waveguide terminal One or more packages connected by a converter;
One or two or more waveguide terminals, a control signal terminal, a ground terminal, and a bias terminal are arranged on the upper surface of the substrate corresponding to each terminal of the package, and a peripheral circuit is mounted on the upper surface of the substrate. A single-layer or multi-layer resin substrate having a lower surface of the package connected to the upper surface of the substrate,
One or two or more waveguide terminals are provided, and metal or metal is plated with metal to form a plurality of waveguides that are oriented in the parallel and vertical directions of the substrate surface in the resin substrate. In addition, the waveguide terminal on the upper surface is connected to the lower surface of the resin substrate, and a plate-like waveguide circuit that transmits a high-frequency signal to and from the antenna;
Comprising
The control signal terminal, the ground terminal and the bias terminal provided on the package and the resin substrate are connected by melting a plurality of spherical solders between corresponding terminals,
The waveguide terminal of the package and the waveguide terminal of the resin substrate are connected by melting a plurality of spherical solders arranged so as to surround the periphery of both openings,
The package and the waveguide terminals provided on the resin substrate, a control signal terminal, at the ground terminal and the bias terminal, among the solder sphere connected between respective corresponding terminals were divided opening of the waveguide terminal A high-frequency transmission / reception module characterized in that an underfill material is filled in at least a spherical solder portion disposed in a corner of the package.
複数の導波管端子を有し、ミリ波帯の高周波信号を送受信する高周波送受信モジュールにおいて、
誘電体材料を積層した多層誘電体基板にて構成され、複数の導波管端子、制御信号端子、接地端子およびバイアス端子を上記誘電体基板の下面に配し、上記誘電体基板の上面に、マイクロストリップ線路および当該各端子に電気的に接続されミリ波帯にて動作する半導体素子を収納し、上記半導体素子を上記マイクロストリップ線路に接続し、かつ上記半導体素子と上記導波管端子の間を、高周波信号を導波管モードに変換するマイクロストリップ線路−導波管変換器にて接続して成るパッケージと、
複数の導波管端子、制御信号端子、接地端子、およびバイアス端子を上記パッケージの各端子に対応して基板上面に配し、当該各端子と電気的に接続され当該各端子の配置領域外における基板上面に周辺回路を載置し、上記パッケージの下面を基板上面に載置するとともに、上記パッケージと上記周辺回路との間でバイアス電圧および信号等を授受する多層の樹脂基板と、
複数の導波管端子を有し、金属の内部に上記樹脂基板における基板面の平行方向及び垂直方向に配向された複数の導波管が形成され、当該導波管端子が当該垂直方向に配向された樹脂基板側の導波管に接続され、当該樹脂基板側の導波管が当該平行方向に配向された導波管の一端側に接続され、当該平行方向に配向された導波管の他端側が当該垂直方向に配向されたアンテナ側の導波管に接続されるとともに、上記樹脂基板の下面に上面の当該導波管端子が接続され、アンテナとの間で高周波信号を伝送する板状の導波管回路と、
を具備し、
上記パッケージの導波管端子と上記樹脂基板の導波管端子は、双方の開口部周囲を取り囲むように配列された複数の球状の半田を溶融し双方の間に隙を有して接続され、
上記パッケージおよび樹脂基板に設けた上記制御信号端子、接地端子およびバイアス端子は、夫々対応する双方の端子間が複数の球状の半田を溶融して接続されるとともに、当該複数の球状の半田が上記パッケージおよび上記樹脂基板の導波管端子間を接続する球状の半田の周囲に配置されたことを特徴とする高周波送受信モジュール。
In a high-frequency transceiver module that has a plurality of waveguide terminals and transmits and receives millimeter-wave high-frequency signals,
It is composed of a multilayer dielectric substrate in which dielectric materials are laminated, and a plurality of waveguide terminals, control signal terminals, ground terminals and bias terminals are arranged on the lower surface of the dielectric substrate, and on the upper surface of the dielectric substrate, A microstrip line and a semiconductor element that is electrically connected to each terminal and operates in the millimeter wave band are housed, the semiconductor element is connected to the microstrip line, and between the semiconductor element and the waveguide terminal A package formed by connecting a high-frequency signal to a waveguide mode using a microstrip line-waveguide converter;
A plurality of waveguide terminals, control signal terminals, ground terminals, and bias terminals are arranged on the upper surface of the substrate corresponding to the terminals of the package, and are electrically connected to the terminals and outside the arrangement area of the terminals. A peripheral circuit is placed on the upper surface of the substrate, and the lower surface of the package is placed on the upper surface of the substrate, and a multilayer resin substrate that exchanges a bias voltage and a signal between the package and the peripheral circuit;
A plurality of waveguide terminals are provided, and a plurality of waveguides oriented in the parallel direction and the vertical direction of the substrate surface in the resin substrate are formed inside the metal, and the waveguide terminals are oriented in the vertical direction. Connected to the waveguide on the resin substrate side, the waveguide on the resin substrate side is connected to one end side of the waveguide oriented in the parallel direction, and the waveguide oriented in the parallel direction the other end is connected to the waveguide of the antenna side oriented in the vertical direction Rutotomoni, the waveguide terminal of the upper surface to the lower surface of the resin substrate are connected, a plate for transmitting a high frequency signal between the antenna Shaped waveguide circuit;
Comprising
Waveguide terminal of the waveguide terminal and the resin substrate of the package is to melt the solder of a plurality of spherical arranged to surround the opening surround both connected with a air gap between both ,
The control signal terminal, the ground terminal, and the bias terminal provided on the package and the resin substrate are connected by melting a plurality of spherical solders between the corresponding terminals, and the plurality of spherical solders are connected to each other. A high-frequency transmission / reception module, characterized in that it is arranged around a spherical solder connecting between a package and waveguide terminals of the resin substrate.
上記多層基板にて構成したパッケージ内に、複数の半導体を実装するための複数のキャビティを有したことを特徴とする請求項1または請求項2に記載の高周波送受信モジュール。  The high-frequency transmitting / receiving module according to claim 1, wherein a plurality of cavities for mounting a plurality of semiconductors are provided in a package constituted by the multilayer substrate. 上記多層誘電体基板にて構成したパッケージにおいて、上記多層誘電体基板上に金属製の枠体を搭載し、この枠体上に金属製のカバーを乗せて溶接するか、あるいは誘電体基板を半田または導電性接着剤などにて固定しパッケージ内を気密状態にすることを特徴とする請求項1乃至3のいずれか1項に記載の高周波送受信モジュール。  In the package constituted by the multilayer dielectric substrate, a metal frame is mounted on the multilayer dielectric substrate, and a metal cover is placed on the frame and welded, or the dielectric substrate is soldered. 4. The high-frequency transmission / reception module according to claim 1, wherein the package is hermetically sealed by fixing with a conductive adhesive or the like. 上記多層誘電体基板にて構成したパッケージにおいて、金属を成形した成形カバーを、半田にて上記多層誘電体基板上面に固定したことを特徴とする請求項1乃至4のいずれか1項に記載の高周波送受信モジュール。  5. The package of the multilayer dielectric substrate according to claim 1, wherein a molded cover formed of a metal is fixed to the upper surface of the multilayer dielectric substrate with solder. 6. High frequency transmission / reception module. 上記多層誘電体基板にて構成したパッケージにて、収納する半導体素子上に、樹脂ペーストを塗布して上記半導体を気密状態にすることを特徴とする請求項1乃至5のいずれか1項に記載の高周波送受信モジュール。  6. The semiconductor device according to claim 1, wherein a resin paste is applied on a semiconductor element to be housed in a package composed of the multilayer dielectric substrate to make the semiconductor airtight. High frequency transceiver module. 上記樹脂基板は、基板の裏面に金属板を配した金属ベース基板であり、この金属板に導波管端子を配したことを特徴とする請求項1乃至6のいずれか1項に記載の高周波送受信モジュール。  7. The high frequency device according to claim 1, wherein the resin substrate is a metal base substrate having a metal plate disposed on a back surface of the substrate, and a waveguide terminal is disposed on the metal plate. Transmit / receive module. 上記導波管回路と上記樹脂基板の導波管端子の周囲に、樹脂に導電性塗料を含浸させた導電性樹脂を塗布し、上記導波管回路と上記樹脂基板間で挟み込むことにより、上記導波管端子を接続することを特徴とする請求項1乃至7のいずれか1項に記載の高周波送受信モジュール。  By applying a conductive resin obtained by impregnating a resin with a conductive paint around the waveguide circuit and the waveguide terminal of the resin substrate, and sandwiching between the waveguide circuit and the resin substrate, The high-frequency transmission / reception module according to claim 1, wherein a waveguide terminal is connected.
JP2003042156A 2003-02-20 2003-02-20 High frequency transmitter / receiver module Expired - Lifetime JP3969321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042156A JP3969321B2 (en) 2003-02-20 2003-02-20 High frequency transmitter / receiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042156A JP3969321B2 (en) 2003-02-20 2003-02-20 High frequency transmitter / receiver module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006140239A Division JP2006287962A (en) 2006-05-19 2006-05-19 High frequency transmitting/receiving module

Publications (2)

Publication Number Publication Date
JP2004254068A JP2004254068A (en) 2004-09-09
JP3969321B2 true JP3969321B2 (en) 2007-09-05

Family

ID=33025511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042156A Expired - Lifetime JP3969321B2 (en) 2003-02-20 2003-02-20 High frequency transmitter / receiver module

Country Status (1)

Country Link
JP (1) JP3969321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029446A (en) * 2009-07-27 2011-02-10 Nec Corp High-frequency module and method of manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253953A (en) * 2005-03-09 2006-09-21 Fujitsu Ltd High frequency module for communication and its manufacturing method
JP4624172B2 (en) * 2005-04-28 2011-02-02 三菱電機株式会社 High frequency circuit module
JP4519102B2 (en) * 2006-05-11 2010-08-04 三菱電機株式会社 Waveguide connection structure and manufacturing method thereof
JP4786579B2 (en) * 2007-03-29 2011-10-05 三菱電機株式会社 High frequency module
WO2009123233A1 (en) 2008-03-31 2009-10-08 京セラ株式会社 High-frequency module and manufacturing method thereof and transmitter, receiver, transceiver and radar device equipped with said high-frequency module
JP5179570B2 (en) 2008-03-31 2013-04-10 京セラ株式会社 High frequency module, method for manufacturing the same, transmitter, receiver, transmitter / receiver, and radar apparatus including the high frequency module
WO2010026990A1 (en) 2008-09-05 2010-03-11 三菱電機株式会社 High-frequency circuit package, and sensor module
DE112010001453B4 (en) 2009-03-31 2017-06-22 Kyocera Corp. Circuit board, waveguide structure, high frequency module and radar device
JP5414364B2 (en) * 2009-05-28 2014-02-12 京セラ株式会社 High frequency substrate and high frequency module
JP4947129B2 (en) * 2009-11-26 2012-06-06 三菱電機株式会社 Substrate bonding structure
KR101245847B1 (en) * 2011-03-29 2013-03-21 전자부품연구원 Semiconductor substarte and semiconductor package
JP6135485B2 (en) * 2013-12-05 2017-05-31 三菱電機株式会社 High frequency module
JP5728102B1 (en) * 2014-02-13 2015-06-03 日本電信電話株式会社 MMIC integrated circuit module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029446A (en) * 2009-07-27 2011-02-10 Nec Corp High-frequency module and method of manufacturing the same

Also Published As

Publication number Publication date
JP2004254068A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US7236070B2 (en) Electronic component module and manufacturing method thereof
US5138436A (en) Interconnect package having means for waveguide transmission of rf signals
US7084723B2 (en) Waveguide coupler
JP3969321B2 (en) High frequency transmitter / receiver module
JP2006287962A (en) High frequency transmitting/receiving module
JP2003258142A (en) Semiconductor device
JP4605887B2 (en) Mounting circuit board and mounting structure of semiconductor device
JP2003179181A (en) Resin wiring board
JP3810276B2 (en) Optical semiconductor element storage package
JP2538072B2 (en) Semiconductor device
JP4820798B2 (en) Semiconductor device
JP3673491B2 (en) I / O terminal and semiconductor element storage package
JP3314163B2 (en) Package for storing semiconductor elements
JP4127589B2 (en) High frequency semiconductor device package and high frequency semiconductor device
JP4850056B2 (en) Semiconductor device
JP3670574B2 (en) I / O terminal and semiconductor element storage package
JP4139165B2 (en) Input / output terminal for semiconductor element storage package, semiconductor element storage package, and semiconductor device
JP4045110B2 (en) Package for storing semiconductor elements
JP2000022043A (en) Mounting structure of high-frequency element-mounting board and high-frequency module structure
JP3720694B2 (en) Package for storing semiconductor elements
JP2010141366A (en) Semiconductor device
JP2004095598A (en) Package for housing high-frequency device
JP2003078065A (en) Substrate for packaging semiconductor device and package for housing optical semiconductor device
JP2004140188A (en) Package for storing semiconductor element
JP2004152826A (en) Package for housing semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R151 Written notification of patent or utility model registration

Ref document number: 3969321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term