JP4947129B2 - Substrate bonding structure - Google Patents

Substrate bonding structure Download PDF

Info

Publication number
JP4947129B2
JP4947129B2 JP2009268841A JP2009268841A JP4947129B2 JP 4947129 B2 JP4947129 B2 JP 4947129B2 JP 2009268841 A JP2009268841 A JP 2009268841A JP 2009268841 A JP2009268841 A JP 2009268841A JP 4947129 B2 JP4947129 B2 JP 4947129B2
Authority
JP
Japan
Prior art keywords
substrate
ceramic substrate
bumps
waveguide
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009268841A
Other languages
Japanese (ja)
Other versions
JP2010093278A (en
Inventor
和宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009268841A priority Critical patent/JP4947129B2/en
Publication of JP2010093278A publication Critical patent/JP2010093278A/en
Application granted granted Critical
Publication of JP4947129B2 publication Critical patent/JP4947129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Description

この発明は、セラミック基板と樹脂基板をバンプで接続する接合構造に関する。   The present invention relates to a bonding structure in which a ceramic substrate and a resin substrate are connected by bumps.

従来、信号バンプの断面積と同一またはそれよりも大きい断面積を有した補強バンプを、BGA(Ball Grid Array;ボールグリッドアレイ)の四角形頂点付近のコーナ部に配置することで、アンダーフィル補強を行うことなく、パッケージの機械的強度を増加させる技術が知られている。   Conventionally, reinforcing bumps having a cross-sectional area equal to or larger than the cross-sectional area of signal bumps are arranged at corners near the quadrangle of a BGA (Ball Grid Array), thereby reinforcing underfill reinforcement. Techniques are known that increase the mechanical strength of the package without doing so.

特開2001−68594号公報(第13〜第14段落)JP 2001-68594 A (13th to 14th paragraphs)

しかしながら、セラミック基板と樹脂基板をBGA接続する場合は、両者の線膨張差が10PPM以上の差となるので、基板に70〜100℃程度の温度変化が生じた場合に、四角形状に配列された最外縁のバンプを結ぶ4辺に沿って、応力集中が発生する。
この応力集中によって、最外縁のバンプ周辺で、セラミック基板やバンプ自体にクラックを生じる。このクラックは目視では確認のできないミクロサイズの破損であることが多く、クラックの進行によって、長期的にBGAの信号断線を引き起こしてしまう。これによって、機器の長期信頼性が損なわれるという問題があった。
However, when the ceramic substrate and the resin substrate are BGA-connected, the difference in linear expansion between the two becomes 10 PPM or more, so when the temperature change of about 70 to 100 ° C. occurs in the substrate, the substrates are arranged in a square shape. Stress concentration occurs along the four sides connecting the outermost bumps.
This stress concentration causes cracks in the ceramic substrate and the bumps themselves around the outermost bumps. This crack is often a micro-sized breakage that cannot be visually confirmed, and the progress of the crack causes a signal breakage of the BGA in the long term. As a result, there is a problem that the long-term reliability of the device is impaired.

この発明によるセラミック基板と樹脂基板の接合構造は、応力集中によってバンプやセラミック基板にクラックが生じても、機器の長期信頼性を維持する、接合構造を得ることを目的とする。   The bonding structure of the ceramic substrate and the resin substrate according to the present invention aims to obtain a bonding structure that maintains the long-term reliability of a device even if a crack occurs in a bump or a ceramic substrate due to stress concentration.

この発明によるセラミック基板と樹脂基板の接合構造は、
複数の導体パッドからなるランドが配列され、複数の擬似導波管の形成されたセラミック基板と、
複数の導体パッドからなるランドが配列され、複数の擬似導波管の形成された樹脂基板と、
前記樹脂基板のランドと前記セラミック基板のランドの間にそれぞれ接合され、ボールグリッドアレイを構成する複数のバンプと、
を備え、
前記バンプのうち前記セラミック基板の中央部に配置された一部の複数のバンプは、前記樹脂基板のランドと前記セラミック基板のランドとを電気的に接続する信号接続領域を形成し、
前記バンプのうち前記信号接続領域よりも基板の外縁側に配置された他の一部の複数のバンプは、前記セラミック基板の擬似導波管と樹脂基板の擬似導波管の接続部の周囲に配列されて接地面に接続されるとともに、導波管接続部を形成する、ものである。
The bonded structure of the ceramic substrate and the resin substrate according to the present invention is as follows:
A ceramic substrate in which lands composed of a plurality of conductor pads are arranged and a plurality of pseudo waveguides are formed;
A resin substrate in which lands composed of a plurality of conductor pads are arranged and a plurality of pseudo waveguides are formed;
A plurality of bumps that are bonded between the land of the resin substrate and the land of the ceramic substrate, respectively , and constitute a ball grid array,
With
Among the bumps , some of the plurality of bumps arranged at the center of the ceramic substrate form a signal connection region that electrically connects the land of the resin substrate and the land of the ceramic substrate ,
Among the bumps, some other plurality of bumps arranged on the outer edge side of the substrate with respect to the signal connection region are around the connection portion of the pseudo waveguide of the ceramic substrate and the pseudo waveguide of the resin substrate. It is arranged and connected to the ground plane and forms a waveguide connection .

この発明によれば、セラミック基板の所定領域に位置するバンプに熱応力が作用しても、接続部のクラックによって故障を起こす期間を延伸することができ、長寿命化することができる。   According to the present invention, even if thermal stress acts on the bumps located in a predetermined region of the ceramic substrate, it is possible to extend the period during which the failure occurs due to the cracks in the connection portion, thereby extending the life.

この実施の形態1によるセラミック基板と樹脂基板の接続構造の斜視図である。It is a perspective view of the connection structure of the ceramic substrate and resin substrate by this Embodiment 1. FIG. この実施の形態1によるセラミック基板と樹脂基板の接続構造の断面図を示す。Sectional drawing of the connection structure of the ceramic substrate and resin substrate by this Embodiment 1 is shown. この実施の形態1による、(a)セラミック基板の下面図、および(b)樹脂基板の上面図を示す。(A) A bottom view of a ceramic substrate and (b) a top view of a resin substrate according to the first embodiment. この実施の形態2によるセラミック基板と樹脂基板の接続構造の断面図を示す。Sectional drawing of the connection structure of the ceramic substrate and resin substrate by this Embodiment 2 is shown. この実施の形態2による、(a)セラミック基板の下面図、および(b)樹脂基板の上面図を示すAccording to the second embodiment, (a) a bottom view of a ceramic substrate and (b) a top view of a resin substrate are shown. この実施の形態2による擬似導波管部の斜視図を示す。The perspective view of the pseudo waveguide part by this Embodiment 2 is shown.

実施の形態1.
図1は、この発明の実施の形態1によるセラミック基板と樹脂基板の接続構造を示す斜視図である。図2は、図1のA方向矢視図である。図3は各ランドの配置例を示す図である。図3(a)はセラミック基板2の裏面視図である。図3(b)は樹脂基板5の上面視図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a connection structure between a ceramic substrate and a resin substrate according to Embodiment 1 of the present invention. FIG. 2 is a view in the direction of arrow A in FIG. FIG. 3 is a diagram illustrating an arrangement example of each land. FIG. 3A is a rear view of the ceramic substrate 2. FIG. 3B is a top view of the resin substrate 5.

図1、2において、半導体パッケージ1は、セラミック基板2の上部カバー3の内部に、半導体素子が内蔵されて構成される。セラミック基板2の裏面には、複数のランド6が配列されている。樹脂基板5はガラスエポキシ樹脂やBTレジンなどの樹脂を素材として構成され、樹脂基板5の上面には複数のランド7が配列されている。ランド6、ランド7は複数の導体パッドから構成され、四角形状や丸形、繭形などの形状を成している。   1 and 2, a semiconductor package 1 is configured by incorporating a semiconductor element inside an upper cover 3 of a ceramic substrate 2. A plurality of lands 6 are arranged on the back surface of the ceramic substrate 2. The resin substrate 5 is made of a resin such as glass epoxy resin or BT resin, and a plurality of lands 7 are arranged on the upper surface of the resin substrate 5. The lands 6 and 7 are composed of a plurality of conductor pads and have a quadrangular shape, a round shape, a bowl shape, or the like.

セラミック基板2のランド6は、規則的に配列された複数のバンプ4を介在して、樹脂基板5のランド7に接合され、BGA8を構成するBGA実装構造が成されている。
BGA実装構造は、基板同士の電気的接続を、基板面対基板面で接合する方法であり、基板面には格子状にボールまたはバンプと呼ぶ突起形状の電極を、矩形状に平面的に並べることから、BGAと称されている。BGA実装構造は、半導体素子を内蔵する半導体基板を、マザーボード(基板)に最小面積で実装でき、また全接合点が一括同時接合できる。ボールまたはバンプには、半田、導体膜で覆われた樹脂、メッキ積上げ、金属ボール、等各種有り、用途、目的により使い分けられている。ここでは、これらを総てバンプと称する。
The lands 6 of the ceramic substrate 2 are joined to the lands 7 of the resin substrate 5 through a plurality of regularly arranged bumps 4 to form a BGA mounting structure constituting the BGA 8.
The BGA mounting structure is a method in which electrical connection between substrates is bonded on a substrate surface-to-substrate surface. Projected electrodes called balls or bumps are arranged in a lattice shape on the substrate surface in a rectangular shape in a plane. Therefore, it is called BGA. In the BGA mounting structure, a semiconductor substrate incorporating a semiconductor element can be mounted on a mother board (substrate) with a minimum area, and all junction points can be bonded simultaneously. There are various types of balls or bumps, such as solder, resin covered with a conductor film, stacked plating, metal balls, and the like, and they are properly used depending on applications and purposes. Here, these are all called bumps.

図2に示すように、最外縁に位置する各バンプ4は、隣接する2個以上の他のバンプ4との間を並列に接続している。すなわち、図3(a)に示すように、セラミック基板2の最外縁に位置するランド6は、隣接する2個以上の他のランド6と、導体パターン11で接続され、並列回路を構成している。また、図3(b)に示すように、樹脂基板5の最外縁に位置するランド7は、隣接する2個以上の他のランド7と、内層の導体パターン12で接続され、並列回路を構成している。   As shown in FIG. 2, each bump 4 located at the outermost edge is connected in parallel between two or more other bumps 4 adjacent to each other. That is, as shown in FIG. 3A, the land 6 located at the outermost edge of the ceramic substrate 2 is connected to two or more other adjacent lands 6 by the conductor pattern 11 to form a parallel circuit. Yes. Further, as shown in FIG. 3B, the land 7 positioned at the outermost edge of the resin substrate 5 is connected to two or more other adjacent lands 7 by an inner conductor pattern 12 to form a parallel circuit. is doing.

セラミック基板2と樹脂基板5をバンプ接合した場合、最外縁のバンプ4の接続部は、使用環境の温度変化による熱応力を受ける。セラミック基板2の線膨張係数は、5〜7PPM程度に対し、樹脂基板5の線膨張係数は16PPM前後と、その差は2倍以上ある。このため、樹脂基板5は大きく伸展し、セラミック基板2は伸びが小さいことから、実装固定後に常温に戻った際には、バンプの各接合部にセラミック基板2の中心方向に向かう引張り力が残留応力として残る。この残留応力は、セラミック基板2の外縁部ほど大きく、中心部ほど小さい。また、セラミック基板2の大きさが大きいほど、外縁部の残留応力は増大する。各基板が晒される実使用環境では、70〜100℃程度の温度変化幅のヒートサイクルが加わる。したがって残留応力が残ったまま、さらに伸び縮みによる繰り返し応力が加わることとなる。   When the ceramic substrate 2 and the resin substrate 5 are bump-bonded, the connection portion of the outermost bump 4 is subjected to thermal stress due to temperature change in the use environment. The linear expansion coefficient of the ceramic substrate 2 is about 5 to 7 PPM, while the linear expansion coefficient of the resin substrate 5 is around 16 PPM, which is more than twice the difference. For this reason, since the resin substrate 5 is greatly expanded and the ceramic substrate 2 is small in elongation, when returning to room temperature after mounting and fixing, a tensile force toward the center of the ceramic substrate 2 remains at each joint portion of the bump. It remains as stress. This residual stress is larger at the outer edge of the ceramic substrate 2 and smaller at the center. In addition, the larger the size of the ceramic substrate 2, the more the residual stress at the outer edge portion increases. In an actual use environment where each substrate is exposed, a heat cycle with a temperature change width of about 70 to 100 ° C. is applied. Therefore, repeated stress due to expansion and contraction is applied while the residual stress remains.

使用環境の温度変化による熱応力を受けると、4隅の位置から除々に接続点の構造劣化が進む。これによって、セラミック基板2の外縁部にあるバンプ4と接合されるランド6を起点とし、図2に示すように、セラミック基板2やバンプ4に対して、それぞれクラック9やクラック10を生じる。
この構造劣化は、最終的には断裂となり、セラミック基板2と樹脂基板5との電気的接続を絶つ故障に至る。また、4隅の位置のバンプ4の接続部に次いで、その隣のボール接続部に応力集中点が移動していく。
セラミック基板1の応力が高い外縁部ほど、またさらに端点(角)に近いほど熱応力が高く、ヒートサイクルに対しての接続信頼性が低いため、少なくとも最外縁部のボール接続点は1回路につき2個以上のボールを並列接続し、1箇所のボール接続が破損しても、回路接続が断たれない冗長接続を形成する。
When subjected to thermal stress due to temperature changes in the use environment, the structure of the connection point gradually deteriorates from the four corner positions. As a result, starting from the lands 6 bonded to the bumps 4 on the outer edge of the ceramic substrate 2, cracks 9 and 10 are generated in the ceramic substrate 2 and the bumps 4, respectively, as shown in FIG.
This structural deterioration eventually breaks, leading to a failure that breaks the electrical connection between the ceramic substrate 2 and the resin substrate 5. Further, the stress concentration point moves to the adjacent ball connection portion next to the connection portion of the bump 4 at the four corner positions.
As the outer edge portion where the stress of the ceramic substrate 1 is higher and further closer to the end point (corner), the thermal stress is higher and the connection reliability to the heat cycle is lower. Therefore, at least one ball connection point at the outermost edge portion per circuit Two or more balls are connected in parallel to form a redundant connection that does not break the circuit connection even if one ball connection is broken.

図2に示す例では、セラミック基板2は、BGA8が形成される面に、導体パターン11を形成し、2個以上のバンプ4を接続している。樹脂基板5も同様にして、BGA8が形成される面に導体パターン12を形成し、2個以上のバンプ4を接続している。セラミック基板2が多層基板であるならば、内層の導体パターンで2個以上のバンプ4が接続されるようになっていれば良い。樹脂基板5の側も全く同様であり、表面で2個以上のランド7を接続しても、樹脂基板5の内層で接続しても良い。   In the example shown in FIG. 2, the ceramic substrate 2 has a conductor pattern 11 formed on the surface on which the BGA 8 is formed, and two or more bumps 4 are connected. Similarly, the resin substrate 5 is formed with a conductor pattern 12 on the surface on which the BGA 8 is formed, and two or more bumps 4 are connected. If the ceramic substrate 2 is a multilayer substrate, it suffices if two or more bumps 4 are connected by the inner conductor pattern. The resin substrate 5 side is exactly the same, and two or more lands 7 may be connected on the surface or may be connected on the inner layer of the resin substrate 5.

また、外縁部のバンプ4に印加される熱応力は、セラミック基板2の外形寸法が大きいほど大きくなり、熱応力によるバンプ4の接続部の破損箇所は、外縁の端点(角)から辺に沿って除々に進展して行く。このため、セラミック基板2の外形寸法が大きくなるほど、1回路に充てるバンプ4の接続数を増やし、接続信頼性を保つ。また、最外縁のバンプ4同士で冗長接続するのでは無く、最外縁のバンプ4とそれよりセラミック基板2の中央に近い位置にあるバンプ4とで冗長接続してもよい。特に、端点にあるバンプ4は破損し易いため、セラミック基板2の中央に近い位置にあるバンプ4と接続するのが好適である。   Further, the thermal stress applied to the bump 4 at the outer edge portion increases as the outer dimension of the ceramic substrate 2 increases, and the damaged portion of the connecting portion of the bump 4 due to the thermal stress extends from the end point (corner) of the outer edge along the side. And gradually progress. For this reason, the larger the external dimension of the ceramic substrate 2 is, the more the number of bumps 4 connected to one circuit is increased and the connection reliability is maintained. In addition, the outermost bumps 4 may not be redundantly connected but may be redundantly connected by the outermost bumps 4 and the bumps 4 located closer to the center of the ceramic substrate 2 than that. In particular, since the bumps 4 at the end points are easily damaged, it is preferable to connect the bumps 4 located near the center of the ceramic substrate 2.

以上により、この実施の形態によるセラミック基板と樹脂基板のBGA型実装構造では、セラミック基板2に作用する熱応力で接続を破壊され易い部分は、必ず冗長以上の接続を持つことが出来る。このため、セラミック基板2のクラック9、樹脂基板5のクラック10の発生地点が、除々に増えても、セラミック基板2のBGAが機能する寿命時間を大きく延ばすことが出来る。また、何ら補強や固定を行わないことから、組立て工程は最小限で済み、セラミック基板2の交換も容易なため、半導体パッケージの低コスト化に有効である。   As described above, in the BGA type mounting structure of the ceramic substrate and the resin substrate according to this embodiment, a portion where the connection is easily broken by the thermal stress acting on the ceramic substrate 2 can always have a redundant connection or more. For this reason, even if the generation | occurrence | production point of the crack 9 of the ceramic substrate 2 and the crack 10 of the resin substrate 5 increases gradually, the lifetime in which BGA of the ceramic substrate 2 functions can be extended greatly. Further, since no reinforcement or fixing is performed, the assembly process is minimal, and the ceramic substrate 2 can be easily replaced. This is effective for reducing the cost of the semiconductor package.

実施の形態2.
図4は実施の形態2によるセラミック基板2と樹脂基板5との接続構造を示す断面図である。
図において、半導体パッケージ1は、セラミック基板20の上部カバー3の内部に、半導体素子が内蔵されて構成される。セラミック基板20は裏面と連通する擬似導波管部13が構成されている。
Embodiment 2. FIG.
FIG. 4 is a sectional view showing a connection structure between the ceramic substrate 2 and the resin substrate 5 according to the second embodiment.
In the figure, the semiconductor package 1 is configured by incorporating a semiconductor element inside an upper cover 3 of a ceramic substrate 20. The ceramic substrate 20 includes a pseudo waveguide portion 13 communicating with the back surface.

擬似導波管部13は基板内の接地面(図示せず)に接続されたスルーホール14を、4分のλ(基板内伝播波長)以下の間隔で矩形状に配列して構成される。擬似導波管部13は、さらに同電位に保たれたバンプ16を方形配置した囲いが導波管として機能し、内部空間に電波を伝播させることができる。   The pseudo-waveguide portion 13 is configured by arranging through holes 14 connected to a ground plane (not shown) in the substrate in a rectangular shape at intervals equal to or less than λ (propagation wavelength in the substrate). In the pseudo-waveguide portion 13, an enclosure in which bumps 16 kept at the same potential are arranged in a square shape functions as a waveguide, and can propagate radio waves to the internal space.

樹脂基板50は、ガラスエポキシ樹脂やBTレジンなどの樹脂を素材として構成される。樹脂基板50は擬似導波管部15が構成されている。擬似導波管部15は、樹脂基板50に設けられた開口穴15bで構成される。この開口穴15bの側面は接地導体がメタライズされている。   The resin substrate 50 is made of a resin such as glass epoxy resin or BT resin. The resin substrate 50 includes a pseudo waveguide portion 15. The pseudo waveguide portion 15 is configured by an opening hole 15 b provided in the resin substrate 50. The side surface of the opening hole 15b is metallized with a ground conductor.

図5は各基板の接合面を示す図であり、図5(a)はセラミック基板20の裏面視図、図5(b)は樹脂基板50の上面視図である。
図5(a)に示すように、擬似導波管部13の周囲に、一列もしくは複数列のランド6が配列されている。また、図3(b)に示すように、擬似導波管部15の周囲に、少なくとも二列のランド7が配列されている。擬似導波管部15の外縁部では、ランド7は擬似導波管部15を取り囲む導体に接続されている。
5A and 5B are diagrams showing the bonding surfaces of the respective substrates. FIG. 5A is a back view of the ceramic substrate 20 and FIG. 5B is a top view of the resin substrate 50.
As shown in FIG. 5A, one or more rows of lands 6 are arranged around the pseudo waveguide section 13. Further, as shown in FIG. 3B, at least two rows of lands 7 are arranged around the pseudo waveguide portion 15. At the outer edge portion of the pseudo waveguide portion 15, the land 7 is connected to a conductor surrounding the pseudo waveguide portion 15.

図6は、導波管接続部13、15と、バンプ16で構成される導波管接続部13の一部形状例を示す斜視図である。図6(a)に示すように、導波管接続部13、15は矩形状を成す。導波管接続部13と導波管接続部15を接続するバンプ16は、図6(b)に示すように、矩形状に配列されて導波管として機能する。   FIG. 6 is a perspective view illustrating an example of a partial shape of the waveguide connection portion 13 including the waveguide connection portions 13 and 15 and the bumps 16. As shown in FIG. 6A, the waveguide connecting portions 13 and 15 have a rectangular shape. As shown in FIG. 6B, the bumps 16 connecting the waveguide connection portion 13 and the waveguide connection portion 15 are arranged in a rectangular shape and function as a waveguide.

樹脂基板50の上面には、複数のランド7が配列されている。セラミック基板20の裏面には、複数のランド6が配列されている。ランド6、ランド7は、複数の四角形状や丸形状などの導体パッドから構成される。セラミック基板20のランド6は、擬似導波管部13の周囲に規則的に配列される。樹脂基板50のランド7は、擬似導波管部15の周囲に規則的に配列される。   A plurality of lands 7 are arranged on the upper surface of the resin substrate 50. A plurality of lands 6 are arranged on the back surface of the ceramic substrate 20. The land 6 and the land 7 are composed of a plurality of conductive pads having a quadrangular shape or a round shape. The lands 6 of the ceramic substrate 20 are regularly arranged around the pseudo waveguide portion 13. The lands 7 of the resin substrate 50 are regularly arranged around the pseudo waveguide portion 15.

セラミック基板20は複数のバンプ16を介在して、樹脂基板50のランド7に接合され、BGAを構成するBGA型実装が成されている。すなわち、バンプ16は、擬似導波管部20および擬似導波管部50の周囲に、一列もしくは複数列配列される。特に、擬似導波管部20および擬似導波管部50の周囲では、隣接するバンプ16の間隔が4分のλ(基板内伝播波長)以下となるように配置する。   The ceramic substrate 20 is bonded to the land 7 of the resin substrate 50 with a plurality of bumps 16 interposed therebetween, so that the BGA type mounting constituting the BGA is achieved. That is, the bumps 16 are arranged in one or more rows around the pseudo waveguide portion 20 and the pseudo waveguide portion 50. In particular, around the pseudo-waveguide part 20 and the pseudo-waveguide part 50, the interval between the adjacent bumps 16 is arranged to be equal to or less than λ (propagation wavelength in the substrate).

なお、バンプ16を複数列配置する場合は、各擬似導波管部の周囲に配置された奇数列と偶数列のバンプ16の位置を交互にずらすことによって、各バンプ16を所謂千鳥状に配列しても良い。これにより、各擬似導波管部から漏れて、バンプ16の間隙を通過する漏れ信号をより抑制することができ、より損失の少ない擬似導波管部を得ることができる。   When a plurality of bumps 16 are arranged, the bumps 16 are arranged in a so-called zigzag pattern by alternately shifting the positions of the odd-numbered and even-numbered bumps 16 arranged around each pseudo waveguide section. You may do it. As a result, leakage signals leaking from the respective pseudo waveguide portions and passing through the gaps of the bumps 16 can be further suppressed, and a pseudo waveguide portion with less loss can be obtained.

バンプ16の接合部では、セラミック基板20の外縁部に近いほど熱応力が高くなる。このため、バンプ接続部にクラック損傷が起き易い地点をあえて選んで、バンプ16を複数配置しても良い。この際、実施の形態1で説明したような、並列回路を構成する冗長構成のバンプ4、導体パターン11、12を用いても良い。   In the joint portion of the bump 16, the closer to the outer edge portion of the ceramic substrate 20, the higher the thermal stress. Therefore, a plurality of bumps 16 may be arranged by selecting a point where crack damage is likely to occur in the bump connection part. At this time, the redundant bumps 4 and the conductor patterns 11 and 12 constituting the parallel circuit as described in the first embodiment may be used.

疑似導波管部13の一部を構成するバンプ16は、導波管を囲うシールドを疑似的に構成する機能を有したものであって、信号接続に用いられるものでは無い。したがって、ごく一部のバンプ16が破損しても、導波管性能は維持することができる。極端なことを言えば、ボール1個が欠落した場合、導波管特性に歪みは生じるものの、全く機能しなくなるということは無い。   The bumps 16 constituting a part of the pseudo waveguide portion 13 have a function of constructing a shield surrounding the waveguide in a pseudo manner, and are not used for signal connection. Therefore, the waveguide performance can be maintained even if only a small part of the bumps 16 are damaged. In extreme terms, if one ball is missing, the waveguide characteristics will be distorted but will not fail at all.

また、先述の通り、熱応力により発生するクラックは、ヘアークラックのようなミクロサイズであり、このような微少欠陥では電波漏れは生じないので、シールド効果は維持される。このことからも、導波管性能としてはほとんど影響を受けないと言える。   Further, as described above, cracks generated by thermal stress are micro-sized like hair cracks, and such a minute defect does not cause radio wave leakage, so that the shielding effect is maintained. From this, it can be said that the waveguide performance is hardly affected.

したがって、疑似導波管部13は、熱応力が高く、バンプ接続の破断が発生し易いセラミック基板20の外縁部に沿って配置するのが好ましい。セラミック基板20の内側領域は、確実に電気的接続しなければらない信号接続領域として空けることにより、耐ヒートサイクル信頼性の高い導波管接続構造を得られる。また、導波管接続構造の性能劣化を抑えることによって、機器の長寿命化を図ることができる。   Therefore, it is preferable that the pseudo waveguide portion 13 is disposed along the outer edge portion of the ceramic substrate 20 that has high thermal stress and easily breaks the bump connection. By vacating the inner region of the ceramic substrate 20 as a signal connection region that must be surely electrically connected, a waveguide connection structure with high heat cycle resistance can be obtained. In addition, the life of the device can be extended by suppressing the performance deterioration of the waveguide connection structure.

また、熱応力が高く、信号接続用ボールを配置できないセラミック基板2外縁部の面積を有効に使えることから、セラミック基板20のサイズを最少限度に抑えられ、機器の小型化に有効である。   Further, since the area of the outer edge portion of the ceramic substrate 2 where the thermal stress is high and the signal connection balls cannot be disposed can be used effectively, the size of the ceramic substrate 20 can be suppressed to the minimum, and it is effective for downsizing the device.

セラミック基板2と樹脂基板5を接合した場合、最外縁のバンプ4を接合する接続部は、使用環境の温度変化による熱応力を受ける。セラミック基板2の線膨張係数は、5〜7PPM程度に対し、樹脂基板5の線膨張係数は16PPM前後と、その差は2倍以上ある。
このため、樹脂基板5は大きく伸展し、セラミック基板2は伸びが小さいことから、実装固定後に常温に戻った際には、バンプの各接合部にセラミック基板2の中心方向に向かう引張り力が残留応力として残る。
When the ceramic substrate 2 and the resin substrate 5 are joined, the connection portion that joins the outermost bumps 4 receives thermal stress due to a temperature change in the use environment. The linear expansion coefficient of the ceramic substrate 2 is about 5 to 7 PPM, while the linear expansion coefficient of the resin substrate 5 is around 16 PPM, which is more than twice the difference.
For this reason, since the resin substrate 5 is greatly expanded and the ceramic substrate 2 is small in elongation, when returning to room temperature after mounting and fixing, a tensile force toward the center of the ceramic substrate 2 remains at each joint portion of the bump. It remains as stress.

この残留応力は、セラミック基板2の外縁部ほど大きく中心部ほど小さい。また、セラミック基板2の大きさが大きいほど、外縁部の残留応力は増大する。各基板が晒される実使用環境では、70〜100℃程度の温度変化幅のヒートサイクルが加わる。残留応力が残ったまま、さらに伸び縮みによる繰り返し応力が加わることとなる。   This residual stress is larger at the outer edge of the ceramic substrate 2 and smaller at the center. In addition, the larger the size of the ceramic substrate 2, the more the residual stress at the outer edge portion increases. In an actual use environment where each substrate is exposed, a heat cycle having a temperature change width of about 70 to 100 ° C. is applied. While the residual stress remains, repeated stress due to expansion and contraction is further applied.

以上により、この実施の形態によるセラミック基板と樹脂基板のBGA型実装構造は、セラミック基板20の外周部周辺のように、敢えて応力が高い位置に疑似導波管を配置し、疑似導波管の周囲をバンプで接合することによって、セラミック基板20の全面積を有効に使うことができる。この際、セラミック基板外縁部での熱応力によるクラックが生じても、導波管性能への影響はほとんど無い。   As described above, in the BGA type mounting structure of the ceramic substrate and the resin substrate according to this embodiment, the pseudo waveguide is intentionally arranged at a position where the stress is high like the periphery of the outer periphery of the ceramic substrate 20. By bonding the periphery with bumps, the entire area of the ceramic substrate 20 can be used effectively. At this time, even if cracks due to thermal stress occur at the outer edge of the ceramic substrate, there is almost no influence on the waveguide performance.

これによって、導波管接続部間の中央部(例えば、図5(a)の一点鎖線領域200)を、断裂が許されない信号接続領域として利用することができる。
また、セラミック基板20を最小化することによって、機器の小型化にも寄与することができる。
さらに、より耐ヒートサイクル信頼性が高いセラミックBGA実装構造を得ることができ、機器の長寿命化に有効である。
As a result, the central portion (for example, the one-dot chain line region 200 in FIG. 5A) between the waveguide connection portions can be used as a signal connection region where tearing is not allowed.
In addition, minimizing the ceramic substrate 20 can contribute to downsizing of the device.
Furthermore, a ceramic BGA mounting structure with higher heat cycle reliability can be obtained, which is effective for extending the life of the device.

なお、セラミック基板における導波管接続部の配置領域外において、セラミック基板20の外周部周辺(例えば、図5(a)の四角破線外側の一点鎖線領域201)を、信号接続領域として利用する場合には、実施の形態1で説明したように、複数のバンプを導体パターン11、12で接続し、冗長構成の並列回路を構成しても良い。
In the case where the periphery of the ceramic substrate 20 (for example, the one-dot chain line region 201 outside the rectangular broken line in FIG. 5A) is used as a signal connection region outside the region where the waveguide connection portion is disposed on the ceramic substrate. As described in the first embodiment, a plurality of bumps may be connected by the conductor patterns 11 and 12 to form a redundant parallel circuit.
.

1 半導体パッケージ、2 セラミック基板、4 バンプ、5 樹脂基板、7 ランド、8 BGA、11、12 導体パターン、13 擬似導波管部、15 擬似導波管部。   DESCRIPTION OF SYMBOLS 1 Semiconductor package, 2 Ceramic substrate, 4 Bump, 5 Resin substrate, 7 land, 8 BGA, 11, 12 Conductor pattern, 13 Pseudo waveguide part, 15 Pseudo waveguide part.

Claims (3)

複数の導体パッドからなるランドが配列され、複数の擬似導波管の形成されたセラミック基板と、
複数の導体パッドからなるランドが配列され、複数の擬似導波管の形成された樹脂基板と、
前記樹脂基板のランドと前記セラミック基板のランドの間にそれぞれ接合され、ボールグリッドアレイを構成する複数のバンプと、
を備え、
前記バンプのうち前記セラミック基板の中央部に配置された一部の複数のバンプは、前記樹脂基板のランドと前記セラミック基板のランドとを電気的に接続する信号接続領域を形成し、
前記バンプのうち前記信号接続領域よりも基板の外縁側に配置された他の一部の複数のバンプは、前記セラミック基板の擬似導波管と樹脂基板の擬似導波管の接続部の周囲に配列されて接地面に接続されるとともに、導波管接続部を形成する、
ことを特徴とする基板接合構造。
A ceramic substrate in which lands composed of a plurality of conductor pads are arranged and a plurality of pseudo waveguides are formed;
A resin substrate in which lands composed of a plurality of conductor pads are arranged and a plurality of pseudo waveguides are formed;
A plurality of bumps that are bonded between the land of the resin substrate and the land of the ceramic substrate, respectively , and constitute a ball grid array,
With
Among the bumps , some of the plurality of bumps arranged at the center of the ceramic substrate form a signal connection region that electrically connects the land of the resin substrate and the land of the ceramic substrate ,
Among the bumps, some other plurality of bumps arranged on the outer edge side of the substrate with respect to the signal connection region are around the connection portion of the pseudo waveguide of the ceramic substrate and the pseudo waveguide of the resin substrate. Arrayed and connected to the ground plane and forming a waveguide connection,
A substrate bonding structure characterized by that.
前記信号接続領域は、電気的接続の破断が許容されない領域であることを特徴とする請求項1記載の基板接続構造。   2. The substrate connection structure according to claim 1, wherein the signal connection region is a region where breakage of electrical connection is not allowed. 前記セラミック基板の擬似導波管は複数のスルーホール配列によって形成され、前記樹脂基板の擬似導波管は開口穴によって形成されることを特徴とした請求項1または請求項2記載の基板接合構造。   3. The substrate bonding structure according to claim 1, wherein the pseudo waveguide of the ceramic substrate is formed by a plurality of through-hole arrays, and the pseudo waveguide of the resin substrate is formed by an opening hole. .
JP2009268841A 2009-11-26 2009-11-26 Substrate bonding structure Active JP4947129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268841A JP4947129B2 (en) 2009-11-26 2009-11-26 Substrate bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268841A JP4947129B2 (en) 2009-11-26 2009-11-26 Substrate bonding structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005074576A Division JP4442480B2 (en) 2005-03-16 2005-03-16 Substrate bonding structure

Publications (2)

Publication Number Publication Date
JP2010093278A JP2010093278A (en) 2010-04-22
JP4947129B2 true JP4947129B2 (en) 2012-06-06

Family

ID=42255648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268841A Active JP4947129B2 (en) 2009-11-26 2009-11-26 Substrate bonding structure

Country Status (1)

Country Link
JP (1) JP4947129B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3763361B2 (en) * 2000-10-06 2006-04-05 三菱電機株式会社 Waveguide connection
JP2002164465A (en) * 2000-11-28 2002-06-07 Kyocera Corp Wiring board, wiring board, their mounted board, and multi-chip module
JP4623850B2 (en) * 2001-03-27 2011-02-02 京セラ株式会社 High frequency semiconductor element storage package and its mounting structure
JP2003068930A (en) * 2001-08-27 2003-03-07 Mitsubishi Electric Corp Junction structure of substrate and its manufacturing method
JP3969321B2 (en) * 2003-02-20 2007-09-05 三菱電機株式会社 High frequency transmitter / receiver module

Also Published As

Publication number Publication date
JP2010093278A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
TWI529908B (en) Semiconductor device
JP5265183B2 (en) Semiconductor device
WO2012157584A1 (en) Semiconductor device and manufacturing method thereof
JP6199601B2 (en) Semiconductor device
JP6750872B2 (en) Printed wiring boards, printed circuit boards and electronic equipment
JP4671814B2 (en) Semiconductor device
US7659623B2 (en) Semiconductor device having improved wiring
JP6311836B2 (en) Electronic components
JP4947129B2 (en) Substrate bonding structure
JP4442480B2 (en) Substrate bonding structure
JP4738996B2 (en) Semiconductor device
US20170178985A1 (en) Semiconductor device
JP5893351B2 (en) Printed circuit board
JP4889406B2 (en) Folded chip planar stack type package
JP4976767B2 (en) Multilayer semiconductor device
JP4830609B2 (en) Semiconductor device
JP2005243975A (en) Semiconductor device
JP5000621B2 (en) Semiconductor device
JP5708489B2 (en) Semiconductor device having metallic power supply side and ground side reinforcing members insulated from each other
JP2014135372A (en) Package for housing semiconductor element
JP7459610B2 (en) electronic equipment
JP2000244106A (en) Board for mounting electronic components
KR20100024888A (en) Semiconductor device and circuit board assembly
JP2011159840A (en) Packaging connection structure of electronic component
JP2011066459A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4947129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250