JP3950075B2 - 二次元時間分解分光物質検出方法および装置 - Google Patents

二次元時間分解分光物質検出方法および装置 Download PDF

Info

Publication number
JP3950075B2
JP3950075B2 JP2003083453A JP2003083453A JP3950075B2 JP 3950075 B2 JP3950075 B2 JP 3950075B2 JP 2003083453 A JP2003083453 A JP 2003083453A JP 2003083453 A JP2003083453 A JP 2003083453A JP 3950075 B2 JP3950075 B2 JP 3950075B2
Authority
JP
Japan
Prior art keywords
light
unit
sample
spectrum
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083453A
Other languages
English (en)
Other versions
JP2004294105A (ja
Inventor
憲明 木村
恭二 土井
孝佳 弓井
卓史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003083453A priority Critical patent/JP3950075B2/ja
Publication of JP2004294105A publication Critical patent/JP2004294105A/ja
Application granted granted Critical
Publication of JP3950075B2 publication Critical patent/JP3950075B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を利用して試料中に含まれる物質を検出する方法に係り、特に励起光を照射された試料からの放射光を検出して試料中に含まれる物質を検出するのに好適な二次元時間分解分光物質検出方法および装置に関する。
【0002】
【従来の技術】
生化学や医療などのライフサイエンスまたは環境分野において、しばしば試料(検体)中に含まれる特定のDNAやタンパク質、細胞を検出して分析することが行なわれる。このような試料中のDNAやタンパク質、細胞などの物質の検出は、一般に次のようにして行なう。すなわち、まず、蛍光物質を添加したトレーサを試料に加え、検出対象物質とトレーサとを結合させる。その後、試料に紫外線などの励起光を照射し、試料から放射される蛍光の有無により検出対象物質を検出する。
【0003】
タンパク質は、20種のアミノ酸から構成されている。これらのアミノ酸のうち、芳香族側鎖を持つチロシン、フェニルアラニン、トリプトファンの3種類のアミノ酸が強い蛍光を放射する。これら3種類のアミノ酸は、タンパク質の種類ごとに存在比が異なっている。このため、タンパク質の検出、分析を行なう場合、試料に紫外線を照射して3種類のアミノ酸が放射する蛍光を検出し、蛍光の強さからチロシン、フェニルアラニン、トリプトファンの存在比を求めてタンパク質を特定するようにしている。
【0004】
図9は、従来の物質検出装置の一例を示す模式図である。図9において、物質検出装置200は、キセノンフラッシュランプなどからなる光源202を有する。光源202が放射した広帯域の光203は、フィルタ205によって所定波長の紫外線からなる励起光204にされる。この励起光204は、半透鏡(ハーフミラー)などからなるミラーユニット206によって反射され、対物レンズ208に入射する。対物レンズ208は、励起光204を集光し、マイクロプレートなどに配置してある試料210に照射する。試料210中の蛍光物質(図示せず)は、励起光204によって励起され、所定波長の蛍光を放射する。
【0005】
この試料210から放射された蛍光(放射光)と、試料210によって反射された励起光204とからなる検出光212は、対物レンズ208、ミラーユニット206を透過してフィルタ214に入射する。フィルタ214に入射した検出光212は、蛍光216のみがフィルタ214を透過してCCDカメラ218に入射し、電気信号に変換される。CCDカメラ218が出力した電気信号は、コンピュータなどの信号処理装置220によって所定の処理が行なわれ、表示装置222に表示される。
【0006】
一方、特許文献1には、DNAから放射される蛍光を時間分解して検出できる装置が開示されている。この特許文献1に記載の時間分解蛍光検出装置は、一定間隔でパルス状レーザを検査対象(DNA)に照射するとともに、レーザの照射後、所定時間を経過したときに検査対象から放射される蛍光をCCDカメラによって撮像するようになっている。
【0007】
【特許文献1】
特開2002−286639号公報
【0008】
【発明が解決しようとする課題】
ところで、蛍光物質は、物質ごとに吸収スペクトル(励起波長)と放射蛍光スペクトル(放射光波長)と放射蛍光の緩和時間とが異なっている。このため、上記した従来の物質検出装置200においては、試料210に含まれている物質を検出する場合、その物質に吸収されて物質を励起可能な波長の光を照射しなければならないとともに、その物質に特有の蛍光216を検出する必要がある。そこで、従来は、試料210に含まれる未知の物質や種々の物質を検出する場合、励起光204を生成するフィルタ205と、検出すべき放射蛍光216を透過させるフィルタ214とのそれぞれを複数種類用意し、これらを種々に組み合わせて使用する必要があった。このため、物質の検出に多くの手間と時間とを必要とする。
【0009】
また、上記の物質検出装置200は、試料210が蛍光216を放射するか否かによって物質の有無を検出するようになっているため、誤った測定結果を生じやすい。すなわち、フィルタ214を透過する蛍光216は、目的物質が放射したものばかりでなく、試料中に含まれる他の物質からの弱い蛍光などの外乱を含んでいる。このため、検出した蛍光216に対して閾値を設定し、一定の強度を有する蛍光の存在から物質を検出する場合、閾値の設定が困難なことが少なくなく、誤った結果を生ずることがある。しかも、物質によっては、他の物質の吸収スペクトルと放射光スペクトルに近似したものが存在し、正確な測定を困難にする。
【0010】
さらに、従来の蛍光の時間分解検出は、特許文献1に記載されているように、CCDカメラによって撮像するようになっている。このため、応答が遅く、ナノ秒以下の時間分解が困難である。
【0011】
本発明は、前記従来技術の欠点を解消するためになされたもので、試料中の物質を容易に検出できるようにすることを目的としている。
また、本発明は、試料中の物質を誤りなく特定できるようにすることを目的としている。
さらに、本発明は、時間分解能を向上することを目的としている。
【0012】
【課題を解決するための手段】
吸収スペクトルと放射光スペクトルとの関係は、各物質に特有のものである。従って、吸収スペクトルと放射光スペクトルとを求めることによって、物質を正確、容易に特定することができる。また、吸収スペクトルと放射光スペクトルとの関係が近似している複数の物質があったとしても、各物質から放射される放射光は、各物質に特有の緩和時間を有する。従って、吸収スペクトルと放射光スペクトルおよび放射光の緩和時間とを検出することにより、物質を特定することができる。
【0013】
本発明は、このような知見に基づいてなされたもので、本発明に係る二次元時間分解分光物質検出方法は、光源が放射した光を波長分散させて光の波長分散される方向に沿って線状の励起光を試料に照射し、前記試料からの光を前記線状励起光と交差する方向に波長分散し、前記試料の吸収スペクトルと放射光スペクトルとを時間変化ごとの2軸分光画像として求めるとともに、前記時間変化に対する放射光スペクトルの緩和過程から放射光の緩和時間を求め、前記試料に対する吸収スペクトル、放射光スペクトル及び放射光緩和時間を3軸とする空間の強度分布を得て前記試料中の物質を検出することを特徴としている。
【0014】
このようになっている本発明は、波長分散した線状励起光を試料に照射し、その試料からの光を線状励起光に交差させて波長分散しているため、一辺が励起光の波長方向を軸とし、他の辺が試料の放射光の波長方向を軸とする平面が得られる。従って、励起光に対する放射光、すなわち吸収スペクトルと放射光スペクトルとの関係を容易に求めることができ、試料中の検出対象となる物質の有無を容易、確実に検出することができる。
【0015】
また、吸収スペクトルと放射光スペクトルとが相互に近似している複数の物質が存在していたとしても、放射光の緩和時間を検出することにより、物質を確実に特定することができ、検出物質を他の物質と取り違えるような測定ミスを避けることができる。
【0016】
そして、上記の物質検出方法を実施する二次元時間分解分光物質検出装置は、光源が放射した光を波長分散する第1分光部と、この第1分光部から放射された光を波長分散する方向に沿った線状の励起光にして試料に照射する照射部と、前記試料からの光を前記線状励起光と交差させて波長分散する第2分光部と、この第2分光部からの光が入射し、電気信号を出力する受光部と、この受光部と前記試料との間の光路に配置され、前記試料の放射光を透過させるフィルタ部と、前記受光部の出力信号に基づいて、前記試料の吸収スペクトルと放射光スペクトルとを求めるスペクトル検出部と、前記光源への放射パルスを出力すると共に前記スペクトル検出部への演算命令を複数回出力し前記スペクトル検出部で前記試料からの放射光が減衰する時間的変化である緩和時間を算出させる駆動制御部と、前記スペクトル検出部の出力側に設けられ、スペクトル検出部が求めた前記吸収スペクトルと前記放射光スペクトルとに基づいて、前記試料中の物質を検出する物質識別部を有し、この物質識別部は、前記放射光の緩和時間を求めて前記試料に対する吸収スペクトル、放射光スペクトル及び放射光緩和時間を3軸とする空間の強度分布を得て前記物質を同定可能としている。これにより、吸収スペクトルと放射光スペクトルならびに緩和時間との関係を求めることができ、試料中の物質を容易、確実に検出することができる。
【0017】
受光部は、光の入射によって電子を放出する光電変換部と、この光電変換部の放出した前記電子を増幅する複数の電子増幅部からなる増幅モジュールと、前記各増幅部のそれぞれに対応して設けられ、直交変調パターンに基づいて動作する電子検出部と、を有するように形成することができる。受光部をこのように形成すると、検出信号を効率よく迅速に処理することが可能で、ナノ秒以下の高い時間分解能を実現することができる。
【0018】
また、スペクトル検出部の出力側に設けられ、スペクトル検出部が求めた前記吸収スペクトルと前記放射光スペクトルとに基づいて、前記試料中の物質を検出する物質識別部を設け、この物質識別部によって放射光の緩和時間を求めて物質を同定するようにしている。これにより、吸収スペクトルと放射光スペクトルとが相互に近似する物質が存在する場合であっても、放射光を放射した物質を容易、確実に同定(特定)することができる。
【0019】
【発明の実施の形態】
本発明に係る二次元時間分解分光物質検出方法および装置の好ましい実施の形態を、添付図面に従って詳細に説明する。
図1は、本発明に係る二次元時間分解分光物質検出装置を模式的に示した説明図である。物質検出装置10は、パルス状の紫外線を放射可能なパルス紫外線光源12を有する。パルス紫外線光源(以下、単に紫外線光源という)12の前方(下方)には、第1分光部である透過型の回折格子14が配設してある。回折格子14は、多数のスリット14aが平行して設けてあって、紫外線光源12の放射した紫外線16がスリット14aを透過することにより波長分散される。回折格子14により波長分散された分散光18は、コリメートレンズ20によって平行光22にされ、ダイクロイックフィルタ24に入射する。なお、回折格子14は、反射型であってもよい。
【0020】
このダイクロイックフィルタ24は、所定の波長以下の光を透過し、それより波長の長い光を反射するようになっていて、後述する試料から放射された蛍光を反射できるようになっている。ダイクロイックフィルタ24を透過した平行光22は、照射部を構成しているレンズユニット26に入射する。レンズユニット26は、平行光22を波長が分散された方向に沿った線状の励起光(線状励起光)28を生成し、下方に配置した試料30(30a〜30n)に照射する。試料30は、多数が図示しないマイクロプレートにマトリックス状に配置してあって、矢印32に示したように、図の左右方向にステップ状に移動可能となっているとともに、矢印32と直交した方向にもステップ状に移動できるようにしてある。
【0021】
線状励起光28が照射された試料30は、含まれている蛍光物質(図示せず)が励起されて放射光である蛍光34を放射する。この蛍光34は、試料30によって反射された励起光28とともに、レンズユニット26を介してダイクロイックフィルタ24に入射する。ダイクロイックフィルタ24は、波長の短い励起光28を透過し、波長の長い蛍光34を第2分光部である反射型の回折格子36の方向に反射する。この回折格子36は、もちろん透過型であってもよい。回折格子36は、蛍光34を波長分散させる溝36aが透過型回折格子14のスリット14aと交差する方向(実施形態においては、直交する方向)に配置してある。そして、回折格子36において波長分散され、反射された蛍光34は、レンズ38を介して詳細を後述する受光部40に入射する。この受光部40は、駆動制御部42によって動作が制御されるようになっており、蛍光34が入射すると電気信号をスペクトル検出部44に出力する。駆動制御部42は、紫外線光源12に紫外線放射パルスを与えるとともに、受光部40に駆動パルスを与え、スペクトル検出部44にサンプリングパルスを与える。
【0022】
スペクトル検出部44は、受光部40の出力信号が入力するA/D変換器46と、このA/D変換器46の出力側に設けたスペクトル演算部48とを有する。スペクトル演算部48は、詳細を後述するように、A/D変換器46の出力信号に基づいて、励起波長(吸収スペクトル)と放射光波長(蛍光スペクトル)との波長分布を求める。そして、スペクトル演算部48は、求めた波長分布(スペクトル)をスペクトル検出部44の出力側に設けた物質識別部50に出力するとともに、図示しない表示装置やプリンタ、ハードディスクなどの外部記憶装置に出力する。
【0023】
物質識別部50は、緩和時間演算部52と物質判定部54とを有している。緩和時間演算部52は、スペクトル演算部48が求めたスペクトルの時間的変化から蛍光34の緩和時間を算出し、この緩和時間と励起波長と放射蛍光波長との関係を求めて物質判定部54に入力する。そして、物質判定部54は、緩和時間演算部52の出力信号に基づいて、試料30中の蛍光34を放射した蛍光物質を同定(特定)し、表示装置やプリンタ、記憶装置などに出力する。
【0024】
受光部40は、図2に示したようになっていて、試料台60に配置した試料30の放射した蛍光34が入射する検出窓であるガラス板62を有する。また、受光部40は、図2におけるガラス板62の光電変換部64、増幅モジュールとなるマイクロチャンネルプレート66、検出モジュール68、読出し回路70を備えている。そして、光電変換部64は、蛍光34(光子72)が入射すると、電子(光電子)74を放出する。光電変換部64が放出した電子74は、マイクロチャンネルプレート66において詳細を後述するように数が104 〜107 倍程度に増幅され、増幅電子76となって検出モジュール68に入射し、検出モジュール68によって検出される。読出し回路70は、検出モジュール68の出力する電流信号を電圧パルス78に変換し、増幅してスペクトル検出部44に入力する。
【0025】
マイクロチャンネルプレート66は、複数のマイクロキャピラリー80をマトリックス状に配設した構造を有している。マイクロキャピラリー80は、電子増幅部となっていて二次電子倍増管から構成してあり、図3に示したようになっている。すなわち、マイクロキャピラリー80は、直径が6μm、長さが1mm程度の加速管82と、この加速管82の両端に設けたカソード84、アノード86からなっている。そして、マイクロキャピラリー80は、カソード84とアノード86とが直流電源88に接続され、1000〜10000Vの直流高電圧がカソード84とアノード86との間に印加される。このため、カソード84側から加速管82内に入射した電子74は、カソード84とアノード86との間に印加してある高電圧によって加速され、加速管82の内壁に衝突するたびに二次電子を生じて雪崩的に数が増幅され、増幅電子76としてアノード86側から出射される。
【0026】
検出モジュール68は、各マイクロキャピラリー80に対応して配置した電子検出部を有する。この電子検出部は、実施形態の場合、MOSトランジスタからなっている。そして、検出モジュール68は、図4に示したように、マトリックス状に配置した検出トランジスタ(電子検出部)90と、MOSトランジスタからなる複数の読出しトランジスタ92とを備えている。読出しトランジスタ92は、検出トランジスタ90の各列に対応して設けてある。そして、検出トランジスタ90は、各列ごとにゲートがゲート制御線94に接続され、これらのゲート制御線94が駆動制御部42を構成しているゲート制御回路96に接続してある。また、検出トランジスタ90は、ドレインが各行ごとにデータ線98を介して読出しトランジスタ92のソースに接続してある。さらに、検出トランジスタ90のソースには、マイクロキャピラリー80の出力側に対面して設けた検出電極102が接続してある。
【0027】
各読出しトランジスタ92は、ドレインが読出し回路70に接続してある。読出しトランジスタ92のそれぞれのゲートは、対応する読出し線100に接続してある。この読出し線100は、駆動制御部42を構成している読出しマスク制御回路104に接続してある。駆動制御部42は、ゲート制御回路96、読出しマスク制御回路104に切替制御信号を出力するマスクパターン制御部106を有する。このマスクパターン制御部106は、詳細を後述するように、2値直交変調パターン(直交変調パターン)に基づいて切替制御信号を生成し、この切替制御信号をゲート制御回路96と読出しマスク制御回路104とに与え、各検出トランジスタ90と読出しトランジスタ92とを直交変調パターンに基づいて切替動作させるようになっている。
【0028】
このように構成した実施形態に係る物質検出装置10の作用は、次のとおりである。まず、複数の試料30を図示しないマイクロプレートにセットする。そして、マイクロプレートを物質検出装置10のレンズユニット26の下方に配置する。その後、物質検出装置10を起動すると、駆動制御部42が紫外線光源12に紫外線放射パルスを出力する。これにより、紫外線光源12から所定波長の紫外線16が放射される。この紫外線16は、透過型回折格子14のスリット14aを通過して波長分散された分散光18となる。分散光18は、コリメートレンズ20によって平行光22とされたのち、ダイクロイックフィルタ24を透過してレンズユニット26に入射する。レンズユニット26は、平行光22を波長が分散方向された方向に沿った線状励起光28にして試料30に照射する。
【0029】
試料30に含まれている蛍光物質(図示せず)は、線状励起光28に励起されて所定波長の蛍光(放射光)34を放射する。この蛍光34は、試料30において反射された励起光28とともにレンズユニット26を透過し、ダイクロイックフィルタ24に入射する。ダイクロイックフィルタ24は、所定の波長より短い励起光28を透過し、それより波長の長い蛍光34を反射型回折格子36の方向に反射する。回折格子36は、溝36aが透過型回折格子14のスリット14aと直交するように配設してある。このため、回折格子36は、入射した光を回折格子14が波長分散させた方向に直交して波長分散する。この結果、回折格子36によって反射された光は、図5に示したように、回折格子36が波長分散した試料30から放射された放射光(蛍光34)の波長方向と、回折格子14が波長分散した励起光の波長方向とを2軸とする正方形または矩形の光となる。
【0030】
すなわち、回折格子36によって波長分散することにより、図5に示されているように、蛍光(放射光)34のスペクトル(放射光波長)と試料30の吸収スペクトル(励起波長)との関係が得られる。従って、吸収スペクトルと放射光スペクトルとの関係から、試料30中に含まれている蛍光物質を特定することができる。このため、既知の蛍光物質を添加したトレーサと結合した試料30中のDNAやタンパク質、細胞などが含まれていれば、これらを容易、確実に検出することができる。
【0031】
なお、図5において、より色の濃い部分は、蛍光34の輝度がより大きいことを示している。そして、図5のように、複数の蛍光34が存在する場合、各蛍光34の強さを求めることにより、これらの蛍光を放射する物質の存在比(構成比)を求めることができる。このため、タンパク質などの複数の蛍光物質が含まれている場合であっても、タンパク質の種類を容易、正確に同定することができる。
【0032】
回折格子36によって波長分散された光は、レンズ38によって集光させられ、受光部40に入射する。受光部40は、前記したように、光電変換部64が入射した蛍光34を電子74に変換し、マイクロチャンネルプレート66が電子74を増幅(増倍)して増幅電子76を出力する。この増幅電子76は、検出モジュール68を構成している検出トランジスタ90の検出電極102に入射する。この検出モジュール68は、各検出トランジスタ90が駆動制御部42によって所定のパターンに従って切替駆動される。すなわち、駆動制御部42は、紫外線光源12に紫外線放射パルス信号を出力すると、これに同期してマスクパターン制御部106がゲート制御回路96と読出しマスク制御回路104とに、2値直交変調パターンに従った切替制御信号を出力する。ゲート制御回路96と読出しマスク制御回路104とは、マスクパターン制御回路106の出力する切替制御信号に従って、受光部40の検出モジュール68を構成している検出トランジスタ90をオン、オフさせる。また、駆動制御部42は、検出モジュール68への切替制御信号に同期してスペクトル検出部44にサンプリング信号を出力する。
【0033】
マスクパターン制御部106の出力する切替制御信号は、2値直交変調パターンであるアダマール行列の各行に対応した変調パターンを構成している。アダマール行列は、要素が「+1」と「−1」とからなっていて、対角線に沿って対象位置にある要素が同じである対称行列となっている。例えば、一次のアダマール行列H(1) を具体的に書くと、
【数1】
Figure 0003950075
のようになる。また、二次、三次のアダマール行列H(2) 、H(3) は、数式2、数式3のように書くことができる。
【数2】
Figure 0003950075
【数3】
Figure 0003950075
【0034】
すなわち、アダマール行列は、一般的に次の漸化式によって定義することができる。
【数4】
Figure 0003950075
ただし、数式4において、kは次数を示す。
【0035】
そこで、実施形態においては、検出トランジスタ90または読出しトランジスタ92をオンにする場合をアダマール行列の「+1」、これらをオフにする場合を「−1」に対応させている。例えば、検出モジュール68が8×8個の検出トランジスタ90で構成されている場合、検出トランジスタ90と読出しトランジスタ92とに与える切替制御信号は、図6の符号110、112のようになる。この図8においては、斜線を施した部分が動作電圧を与えられてオンとなる「+1」に相当し、白抜きの部分がオフである「−1」に相当している。
【0036】
この変調パターンによる検出モジュール68の動作は、検出モジュール68が図6のように8×8個の検出トランジスタ90によって形成してある場合、次のようになる。例えば、ゲート制御回路96が同図に示されているように、6次の変調パターンでゲート制御線94をオン、すなわち第1列目と第2列目および第7列目と第8列目をオンし、第3列目〜第6列目までをオフにしたとする。このとき、マスクパターン制御部106は、読出しマスク制御回路104を介して、各読出しトランジスタ92を0次〜7次までの変調パターンに従って順次切り替えてオン、オフさせる。そして、マスクパターン制御部106は、読出しトランジスタ92を0次〜7次までの切り替え終わると、ゲート制御回路96に次の変調パターンを与え、読出しトランジスタ92を0次〜7次まで変調パターンに従って切り替える。そして、検出電極102に電子が入射すると、即座に読出し回路70に検出トランジスタ90の出力信号が入力し、読出し回路70から電圧パルス78に変換されて出力される。したがって、蛍光34の入射に対するタイムラグをほとんど生ずることなく検出信号が得られる。このため、アダマール行列に基づいたマスクパターン(切替パターン)によって検出トランジスタ90と読出しトランジスタ92とを切替動作させることにより、ナノ秒以下の高速サンプリングが可能となり、高速時間分解をすることができる。
【0037】
オンされた検出トランジスタ90の検出電極102に増幅電子76が入射し、読出しトランジスタ92がオンされると、データ線98に電流パルスが流れる。この電流パルスは、読出し回路70によって増幅され、図4に示した電圧パルス78に変換される。この電圧パルス78は、スペクトル検出部44のA/D変換器46に入力する。A/D変換器46は、入力したアナログ信号をディジタル信号に変換してスペクトル演算部48に送出する。スペクトル演算部48は、駆動制御部42からサンプリング信号が入力する。このサンプリング信号は、受光部40の検出モジュール68に与える切替制御信号に同期している。そして、スペクトル演算部48は、サンプリング信号に同期してA/D変換器46の出力信号を読み込み、図示しないメモリにサンプリングデータを書き込む。
【0038】
駆動制御部42は、検出モジュール68に対してすべての切替パターンについて切り替えを終了すると、スペクトル演算部48に対してスペクトル演算命令を与える。スペクトル演算部48は、メモリに記憶しているサンプリングデータを読み出し、これらのデータに対してアダマール逆変換を行なう。これにより、図5に示した2軸分光スペクトルが得られる。スペクトル演算部48は、求めた分光スペクトルを図示しない映像表示装置に出力し、2軸分光画像として表示する。
【0039】
駆動制御部42は、紫外線光源12に1つの放射パルスを与えると、検出モジュール68のトランジスタに対する上記した1群の切替駆動と、スペクトル演算部48へのスペクトル演算命令とを複数回出力する。そして、スペクトル演算部48は、その都度分光スペクトルを求めて映像表示装置に出力する。これにより、蛍光34が減衰する時間的変化、すなわち蛍光34の緩和過程が求められる。従って、図7に示したように、励起波長と放射蛍光波長および時間軸を3軸とする3次元画像を得ることができる。なお、図7に示した縦軸のt1〜t4は、紫外線光源12の紫外線放射タイミングを示す。
【0040】
スペクトル演算部48は、演算結果を映像表示装置に出力するとともに、物質識別部50の緩和時間演算部52に出力する。緩和時間演算部52は、スペクトル演算部48が時々刻々出力する分光スペクトルから、各蛍光34の緩和時間を求める。そして、緩和時間演算部52は、図8に模式的に示したように、励起(吸収)波長と放射蛍光波長および緩和時間τとを3軸とする空間分布強度を求める。この空間分布強度は、物質判定部54に出力されるとともに、映像表示装置に表示される。物質判定部54は、複数の蛍光物質に対する励起波長と放射蛍光波長と蛍光の緩和時間との関係が予め図示しない記憶部に与えられている。そして、物質判定部54は、緩和時間演算部52が求めた励起波長、放射蛍光波長、蛍光緩和時間から記憶部を検索し、対応する蛍光物質を同定して映像表示装置などの出力装置に出力する。
【0041】
このように、実施の形態においては、励起波長と放射蛍光波長との関係ばかりでなく、放射蛍光の緩和時間をも求めるようにしているため、励起波長と放射蛍光波長との関係が近似している物質が存在したとしても、緩和時間を求めることにより、蛍光物質を容易、確実に特定することができる。従って、検出の誤りをなくすことができ、分析精度の向上などを図ることができる。また、検出すべき物質が複数の蛍光物質を構成要素として含んでいる場合であっても、対応した複数の放射蛍光の強度を求めることにより、各蛍光物質の存在比(構成比)を求めることが可能となり、その物質を特定することができる。
【0042】
例えばタンパク質の場合、タンパク質を構成するチロシン、フェニルアラニン、トリプトファンの3種のアミノ酸が紫外線の励起により強い蛍光を放射する。これらのアミノ酸は、励起波長がそれぞれ異なっており、また放射する蛍光の波長も、蛍光の緩和時間のそれぞれ異なる。従って、図8から各アミノ酸の存在比を得ることができ、タンパク質を容易、確実に同定することができる。
【0043】
なお、前記実施形態においては、線状励起光28の入射方向に放射される蛍光34を検出する場合について説明したが、線状励起光28の試料30を透過方向に放射される蛍光34を検出するようにしてもよい。
【0044】
【発明の効果】
以上に述べたように、本発明によれば、光源が放射した光を波長分散させて光の波長分散される方向に沿って線状の励起光を試料に照射し、前記試料からの光を前記線状励起光と交差する方向に波長分散し、前記試料の吸収スペクトルと放射光スペクトルとを時間変化ごとの2軸分光画像として求めるとともに、前記時間変化に対する放射光スペクトルの緩和過程から放射光の緩和時間を求め、前記試料に対する吸収スペクトル、放射光スペクトル及び放射光緩和時間を3軸とする空間の強度分布を得て前記試料中の物質を検出するため、一辺が励起光の波長方向を軸とし、他の辺が試料の放射光の波長方向を軸とし、更に時間軸に沿って放射光の強度変化を表した2次元時間分解データとして得られ、励起光の波長に対する放射光の波長、すなわち吸収スペクトルと放射光スペクトルとの関係、並びにこれらと緩和時間の関係を容易に求めることができ、試料中の物質を容易、確実に検出することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態に係る二次元時間分解分光物質検出装置を模式的に示した説明図である。
【図2】 実施の形態に係る受光部の詳細を示す分解斜視図である。
【図3】 実施の形態に係るマイクロキャピラリーの詳細説明図である。
【図4】 実施の形態に係る検出モジュールの詳細説明図である。
【図5】 実施の形態に係る物質検出装置により得られる2軸分光スペクトルの一例を示す図である。
【図6】 アダマール行列に基づくトランジスタの切替制御を説明する図である。
【図7】 実施の形態により求められる励起波長と放射蛍光波長と蛍光の緩和過程との関係を示す図である。
【図8】 実施の形態により求められる励起波長と放射蛍光波長と蛍光緩和時間との関係を示す図である。
【図9】 従来の物質検出装置の説明図である。
【符号の説明】
10………物質検出装置、12………パルス紫外線光源、14………第1分光部(回折格子)、16………光(紫外線)、24………フィルタ部(ダイクロイックフィルタ)、26………照射部(レンズユニット)、28………線状励起光、30a〜30n………試料、34………光(蛍光)、36………第2分光部(回折格子)、40………受光部、42………駆動制御部、44………スペクトル検出部、48………スペクトル演算部、50………物質識別部、52………緩和時間演算部、54………物質判定部、64………光電変換部、66………増幅モジュール(マイクロチャンネルプレート)、68………検出モジュール、80………電子増幅部(マイクロキャピラリー)、90………電子検出部(検出トランジスタ)、92………読出しトランジスタ。

Claims (3)

  1. 光源が放射した光を波長分散させて光の波長分散される方向に沿って線状の励起光を試料に照射し、
    前記試料からの光を前記線状励起光と交差する方向に波長分散し、
    前記試料の吸収スペクトルと放射光スペクトルとを時間変化ごとの2軸分光画像として求めるとともに、
    前記時間変化に対する放射光スペクトルの緩和過程から放射光の緩和時間を求め、
    前記試料に対する吸収スペクトル、放射光スペクトル及び放射光緩和時間を3軸とする空間の強度分布を得て前記試料中の物質を検出する、
    ことを特徴とする二次元時間分解分光物質検出方法。
  2. 光源が放射した光を波長分散する第1分光部と、
    この第1分光部から放射された光を波長分散する方向に沿った線状の励起光にして試料に照射する照射部と、
    前記試料からの光を前記線状励起光と交差させて波長分散する第2分光部と、
    この第2分光部からの光が入射し、電気信号を出力する受光部と、
    この受光部と前記試料との間の光路に配置され、前記試料の放射光を透過させるフィルタ部と、
    前記受光部の出力信号に基づいて、前記試料の吸収スペクトルと放射光スペクトルとを求めるスペクトル検出部と、
    前記光源への放射パルスを出力すると共に前記スペクトル検出部への演算命令を複数回出力し前記スペクトル検出部で前記試料からの放射光が減衰する時間的変化である緩和時間を算出させる駆動制御部と、
    前記スペクトル検出部の出力側に設けられ、スペクトル検出部が求めた前記吸収スペクトルと前記放射光スペクトルとに基づいて、前記試料中の物質を検出する物質識別部を有し
    この物質識別部は、前記放射光の緩和時間を求めて前記試料に対する吸収スペクトル、放射光スペクトル及び放射光緩和時間を3軸とする空間の強度分布を得て前記物質を同定可能とした、
    ことを特徴とする二次元時間分解分光物質検出装置。
  3. 請求項2に記載の二次元時間分解分光物質検出装置において、
    前記受光部は、光の入射によって電子を放出する光電変換部と、この光電変換部の放出した前記電子を増幅する複数の電子増幅部からなる増幅モジュールと、前記各増幅部のそれぞれに対応して設けられ、直交変調パターンに基づいて動作する電子検出部とを有することを特徴とする二次元時間分解分光物質検出装置。
JP2003083453A 2003-03-25 2003-03-25 二次元時間分解分光物質検出方法および装置 Expired - Fee Related JP3950075B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083453A JP3950075B2 (ja) 2003-03-25 2003-03-25 二次元時間分解分光物質検出方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083453A JP3950075B2 (ja) 2003-03-25 2003-03-25 二次元時間分解分光物質検出方法および装置

Publications (2)

Publication Number Publication Date
JP2004294105A JP2004294105A (ja) 2004-10-21
JP3950075B2 true JP3950075B2 (ja) 2007-07-25

Family

ID=33398920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083453A Expired - Fee Related JP3950075B2 (ja) 2003-03-25 2003-03-25 二次元時間分解分光物質検出方法および装置

Country Status (1)

Country Link
JP (1) JP3950075B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176174A1 (ja) * 2022-03-16 2023-09-21 コニカミノルタ株式会社 解析システム、および対象物の解析方法
CN116148227B (zh) * 2023-04-23 2023-07-28 广东大湾区空天信息研究院 时间分辨光谱快速测量系统及方法

Also Published As

Publication number Publication date
JP2004294105A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
US4626684A (en) Rapid and automatic fluorescence immunoassay analyzer for multiple micro-samples
EP1228354B1 (en) Apparatus and method for calibration of a microarray scanning system
US7217573B1 (en) Method of inspecting a DNA chip
US7706419B2 (en) Optical systems for microarray scanning
KR20020011385A (ko) 신규한 고처리율의 형광 검출용 주사 분광 광도계
CN108463714B (zh) 用于测量电子激发态的平均寿命的发射寿命测量方法和设备
JP2012032183A (ja) 試料観測装置および試料観測方法
CN111926065B (zh) 一种高效的核酸检测和基因测序方法及其装置
JP2011513740A (ja) 光子混合検出器を用いた時間分解分光分析方法およびシステム
JP4899648B2 (ja) スペクトル観察方法及びスペクトル観察システム
US20170016769A1 (en) Measurement system of real-time spatially-resolved spectrum and time-resolved spectrum and measurement module thereof
CN111380848A (zh) 一种高光谱活体荧光分子成像系统及方法
JP3950075B2 (ja) 二次元時間分解分光物質検出方法および装置
JP2004212257A (ja) 時間分解二次元微弱光検出方法および装置
WO2004086010A1 (ja) 吸光度読取装置、吸光度読取装置制御方法及び吸光度算出プログラム
JP2002286639A (ja) 時間分解蛍光検出装置
JP3729043B2 (ja) 蛍光画像検出方法並びにdna検査方法及びその装置
JP3793729B2 (ja) 蛍光画像検出方法及びその装置並びにdna検査方法及びその装置
JP2520665B2 (ja) 蛍光顕微分光装置
JP2002005835A (ja) ラマン分光測定装置及びそれを用いた生体試料分析方法
JP2004184379A (ja) マイクロアレイの読取方法
US6870613B1 (en) Simultaneous recording of multispectral fluorescence signatures
JP4174003B2 (ja) 分光学的識別定量システム
KR20160014340A (ko) 형광수명 분석 시스템 및 그 분석 방법
JP4452049B2 (ja) 時間分解二次元微弱光検出方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees