JP3946132B2 - 位置測定用ミラーおよびミラー用部材 - Google Patents

位置測定用ミラーおよびミラー用部材 Download PDF

Info

Publication number
JP3946132B2
JP3946132B2 JP2002345838A JP2002345838A JP3946132B2 JP 3946132 B2 JP3946132 B2 JP 3946132B2 JP 2002345838 A JP2002345838 A JP 2002345838A JP 2002345838 A JP2002345838 A JP 2002345838A JP 3946132 B2 JP3946132 B2 JP 3946132B2
Authority
JP
Japan
Prior art keywords
thermal expansion
mirror
low thermal
bonding
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002345838A
Other languages
English (en)
Other versions
JP2004177331A5 (ja
JP2004177331A (ja
Inventor
基宏 梅津
昌子 片岡
真仁 井口
中村  浩章
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002345838A priority Critical patent/JP3946132B2/ja
Publication of JP2004177331A publication Critical patent/JP2004177331A/ja
Publication of JP2004177331A5 publication Critical patent/JP2004177331A5/ja
Application granted granted Critical
Publication of JP3946132B2 publication Critical patent/JP3946132B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、露光装置のステージ等の試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得て精密位置合わせを行う位置測定用ミラーおよびミラー用部材に関する。
【0002】
【従来技術】
近年、半導体回路は益々精細化、高集積化する傾向にあり、それにともなって、露光装置に対してはより高い精度が要求され、露光の際の位置合わせ誤差が製品の品質向上や歩留まり向上を左右しており、露光の際にいかに高精度で位置合わせを行うかが課題となっている。
【0003】
この露光の際の位置合わせのための位置測定は、レーザー光をミラーで反射させて位置測定用の反射光を得ることによって行っているため、その際の測定精度は、このような位置測定用のミラーに負うところが大きく、このミラーの材料として金属よりも熱膨張係数が小さいアルミナや窒化珪素などが用いられてきた。
【0004】
しかしながら、近時における半導体回路の飛躍的な微細化にともない、ミラー用材料としてアルミナや窒化珪素では、熱膨張係数が十分とはいえず所要の精度を得難くなってきつつある。
【0005】
これに対して、特許文献1には、ステージ位置測定ミラーとして適用可能な材料としてコージェライトを主体とする低熱膨張セラミックスが開示されている。コージェライトを主体とする低熱膨張セラミックスは熱膨張係数を安定して1×10−6/℃以下とすることができ、ガラスよりも高い剛性を示すので、より優れたミラー特性を得ることができる。
【0006】
【特許文献1】
特開平11−209171号公報
【0007】
【発明が解決しようとする課題】
しかしながら、半導体ウエハ、マスク材の大型化による露光装置の大型化にともない、装置部品の重量増加が問題となっており、特に、位置測定用ミラーは長尺状であって長さが500〜1200mmにもなり、その重量によりステージが移動・停止したときの位置決め精度が低下するため、さらなる軽量化が求められている。
【0008】
位置測定ミラーの軽量化の方法としては、その内部を中空構造にすることが考えられるが、セラミックスを機械加工で中空構造にすることは、非常に困難である。また、溝を設けた部材に蓋部材をガラスにより接合する方法も考えられるが、長尺形状の場合、母材と接合層との熱膨張差による残留応力により反射面の平面度に経時変化が生じてしまい、測定精度が経時的に低下してしまう。また、ガラスは剛性が低いため、接合後の部材全体の剛性が低下し、高速移動時の歪みが生産性低下をもたらす。
【0009】
また、ミラーの反射部を軽量な基台に接着または機械固定することにより軽量化する方法も考えられるが、軽量基台とミラー反射部との熱膨張差により高い測定精度が得られない。
【0010】
本発明はかかる事情に鑑みてなされたものであって、困難性や特性の劣化をもたらすことなく軽量化を図ることができ、測定精度の高い位置測定用ミラーおよびミラー用部材を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、▲1▼低熱膨張セラミックスで溝部を有する部材およびその溝部を塞ぐ部材を構成し、これら部材をこれらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体またはミラー部材として用いることにより、また、▲2▼低熱膨張セラミックスで多孔質の部材および反射膜が形成される面を有する緻密質の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合することにより、機械加工の困難性や、熱膨張率差および低剛性の問題が生じることなく軽量化を図ることができることを見出した。
【0012】
本発明はこのような知見に基づいて完成されたものであり、以下の(1)〜()を提供する。
(1)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、ミラー本体と、その表面に設けられた反射膜とを有し、前記ミラー本体は、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
)上記(1)において、前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする位置測定用ミラー。
)上記(1)、(2)において、前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする位置測定用ミラー。
)上記(1)〜()において、母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする位置測定用ミラー。
)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
)上記(5)において、前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とするミラー用部材。
)上記(5)、(6)において、前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とするミラー用部材。
(8)上記()〜()において、母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とするミラー用部材。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について具体的に説明する。
図1は、本発明の位置測定用ミラーが搭載された露光装置用ステージ機構を示す平面図である。この露光装置用ステージ機構は半導体ウエハ10を載置するステージ本体1と、ステージ本体1をX方向に移動させるX方向モータ2と、ステージ本体1をY方向に移動させるY方向モータ3と、ステージ本体1の端部に固定されY方向に延材する角柱状をなすX方向位置測定用のミラー4と、このX方向位置測定用のミラー4と直交するようにステージ本体1の端部に設けられた角柱状をなすY方向位置測定用のミラー5と、X方向位置測定用のミラー4にレーザー光を照射するX方向位置測定用レーザー干渉計6と、Y方向位置測定用のミラー5にレーザー光を照射してするY方向位置測定用レーザー干渉計7とを有している。
【0014】
X方向位置測定用およびY方向位置測定用のミラー4、5は、図2の側面図に示すように、ミラー本体11と、ミラー本体11のレーザー光が照射される表面に形成された反射膜12とを有している。
【0015】
第1の実施形態では、ミラー本体11は、図3の(a)の部分断面斜視図に示すように、低熱膨張セラミックスで構成された溝部14を有する第1の部材13と、同様の低熱膨張セラミックスで構成された溝部14を塞ぐ蓋として機能する第2の部材15とが、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材16で接合してなっており、外形が角柱状をなし内部に中空部を有している。また、図3の(b)の部分断面斜視図に示すように、蓋として機能する第2の部材15ではなく、第1の部材と同様に溝部14′を有する第2の部材15′を用いて、溝部14および14′が中空部を構成するようにしてもよい。なお、この例では、第1の部材13の表面に反射層12が形成されているが、第2の部材15,15′の表面に反射層を形成してもよい。
【0016】
このように接合材16として被接合材である第1の部材13および第2の部材15,15′よりも溶融温度の低い低熱膨張セラミックスを用いることにより、接合に際して接合材16の溶融温度よりも高く、第1の部材13および第2の部材15の溶融温度よりも低い温度で加熱することにより、接合材16のみが溶融して第1の部材13と第2の部材15,15′とを接合することができる。これにより、内部に中空部を有する接合体が形成され、中実材の場合よりも40%程度も軽量化することができる。
【0017】
この場合に、第1の部材13、または第1の部材13および第2の部材15′に先に溝部14または溝部14,14′を形成してから接合すればよいから、溝部の加工を容易に行うことができ、困難性をともなうことなく軽量化を図ることができる。また、接合材16が低熱膨張セラミックスであるから、第1および第2の部材13,15,15′と同程度の熱膨張係数とすることができ、熱膨張差による測定精度の経時変化が生じ難い。また、接合部に残留する応力が小さく、接合部の剛性が高いため部材全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きい。
【0018】
また、第2の実施形態では、ミラー本体11は、図4の部分断面斜視図に示すように、低熱膨張セラミックスで構成された多孔質の第1の部材23および同様の低熱膨張セラミックスで構成された反射膜12が形成される面を有する緻密質の第2の部材24とが、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材25で接合してなっており、外形が角柱状をなしている。
【0019】
このように接合材25として被接合材である第1の部材23および第2の部材24よりも溶融温度の低い低熱膨張セラミックスを用いることにより、接合に際して接合材25の溶融温度よりも高く、第1の部材23および第2の部材24の溶融温度よりも低い温度で加熱することにより、接合材25のみが溶融して第1の部材23と第2の部材24とを接合することができる。多孔質の第1の部材23の存在により、中実材の場合よりも30%程度も軽量化することができる。
【0020】
この場合に、多孔質は良好な表面粗さが得られないが、緻密質の第2の部材24を接合してその面を反射面とするので良好なミラー特性を得ることができる。また、溝部の加工が不要であるから困難性をともなうことなく軽量化を図ることができる。また、接合材25が低熱膨張セラミックスであるから、第1および第2の部材23,24と同程度の熱膨張係数とすることができ、熱膨張差による測定精度の経時変化が生じ難い。また、接合部に残留する応力が小さく、接合部の剛性が高いため部材全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きい。
【0021】
ここで、第1および第2の実施形態ともミラー本体11の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることが好ましい。熱膨張係数が1×10-6/℃よりも大きい、あるいは−1×10-6/℃よりも小さいと、僅かな雰囲気温度の変化で100nm以上の変形が生じる結果、位置測定精度が低下してしまう。また、第1および第2の実施形態とも、第1および第2の部材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることが好ましい。熱膨張係数の差がこの範囲を超えると、接合のための熱処理後、冷却過程で内部応力がたまり、強度低下を招くおそれがある。
【0022】
被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する低熱膨張セラミックスは、いずれも2種以上の材料からなる複合材料であることが好ましい。このように被接合材を構成する材料の配合割合を変化させれば、要求される種々の熱膨張に対応することが可能であるし、接合材は被接合材に適合した熱膨張になるように構成材料の配合を変化させることができるから、所望の低熱膨張を有するミラー本体11を容易に得ることができ、しかも自由度が高い適用が可能である。
【0023】
被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する複合材料としては、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とからなるものが好適である。これら構成材料のうち第1の材料は熱膨張が極めて小さく、第2の材料は熱膨張係数は第1の材料よりも大きいがヤング率が高く、これらを複合化することにより、所望の低熱膨張および高剛性を兼備した材料とすることができる。
【0024】
上記第1の材料としては、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましい。また、その中でもβ−ユークリプタイトはマイナスの熱膨張を示すので、プラスの熱膨張を示す第2の材料と組み合わせることにより、極めて低い熱膨張係数を得ることが可能であるし、また、配合を調節することにより熱膨張係数をマイナスからプラスの広い範囲で調節することが可能となる。なお、β−ユークリプタイトやスポジューメンに代表されるリチウムアルミノシリケートは、Ca、Mg、Fe、K、Ti、Zn等の他の成分と固溶体を形成するが、本発明ではこのような固溶体も適用可能である。
【0025】
一方、第2の材料は、接合材16,25の溶融温度が被接合材である第1の部材13,23および第2の部材15,15′,24の溶融温度よりも低くなるように上記材料の中から適宜選択される。
【0026】
接合材16,25を構成する複合材料としては、具体的には、βーユークリプタイトと窒化珪素とからなるものが好ましい。この複合材料は、低熱膨張であり、剛性も高く、溶融温度が1300〜1360℃と比較的低い。本発明において、接合材はその溶融温度よりも高い温度で焼結する低熱膨張セラミックスからなる母材を接合することが可能であるから、このような比較的低温で溶融する接合材は適用範囲が広い。また、上述したようにβ−ユークリプタイトは負の熱膨張係数を有しており、窒化珪素は正の熱膨張係数を有することから、これらの配合比を変えることで、マイナス膨張からプラス膨張まで、任意に熱膨張係数を変化させることが可能であり、したがって、被接合材の熱膨張係数に応じてこれらの配合比を適宜選択することにより、どのような材質の母材も接合部に応力を生じさせずに良好に接合することができる。
【0027】
なお、被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する複合材料において、実質的な化学的反応が生じなければ、第1の材料として複数の材料を組み合わせて用いることも可能である。また、第2の材料も同様に、実質的な化学的反応が生じなければ、複数の材料を組み合わせて用いることも可能である。
【0028】
このように被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する低熱膨張セラミックスがいずれも複合材料である場合に、被接合材を構成する複合材料の構成材料のうち1種以上が、接合材を構成する複合材料の構成材料と共通であることが好ましい。これにより、共通の構成材料が拡散しやすく強固に接合することができるとともに、接合面がきれいである。
【0029】
被接合材である第1の部材13,23および第2の部材15,15′,24および接合材16,25がいずれも複合材料である場合の具体的材料の組み合わせは、接合材の溶融温度が被接合材の溶融温度よりも低い低熱膨張セラミックスであれば任意であり、種々の組み合わせを採用することができる。その中でも、被接合材としてβ−ユークリプタイトと炭化珪素との複合材料を用い、接合材として上述のβ−ユークリプタイトと窒化珪素との複合材料を用いたものが好適である。β−ユークリプタイトと炭化珪素との複合材料からなる被接合体は、溶融温度が1370〜1430℃と、接合材を構成するβ−ユークリプタイトと窒化珪素との複合材料の溶融温度である1300〜1360℃よりも高く、接合材を溶融させて接合する際に、被接合材母材を溶融させるおそれがない。しかも、母材と接合材にβ−ユークリプタイトが共通に含まれているから接合が強固であり、さらにこれらはいずれも低熱膨張であり組成を調整することによりほぼ同等の熱膨張係数とすることができ、かつ母材も接合材もともに剛性が高い。この場合に、母材の組成としてはβ−ユークリプタイト50〜95質量%と炭化珪素5〜50質量%であり、接合材の組成としてはβ−ユークリプタイト40〜85質量%と窒化珪素15〜60質量%であることが好ましい。
【0030】
なお、必ずしも被接合材である第1の部材13,23および第2の部材15,24、ならびに接合材16,25の両方が複合材料である必要はなく、接合材16,25のみが複合材料であってもよい。接合材16,25を構成する低熱膨張セラミックスとして複合材料を用いることにより、被接合材に適合した熱膨張になるように構成材料の配合を変化させることができ、適用の自由度を極めて高くすることができる。
【0031】
ミラー本体11の反射膜12が形成される表面の表面粗さはRaで10nm以下とする。これにより反射膜12形成した後に高い反射率が得られる。好ましくは6nm以下である。例えば、入射光が波長633nmのレーザーの場合の反射率は、表面粗さRaが10nmのとき反射率80%以上、さらに表面粗さ6nmのとき反射率85%以上の高反射率が得られる。
【0032】
このようなミラー本体11は、接合材粉末を適宜のバインダーとともに混練して粘糊性のあるペーストとし、このペーストを介して第1の部材13,23および第2の部材15,15′、24を接着させ、接合材16,25は溶融するけれども第1の部材13,23および第2の部材15,15′,24は溶融しない温度で熱処理する。これにより、接合材16,25が溶融し、一部は第1の部材13,23および/または第2の部材15,15′、24に拡散してこれら部材を接合する。
【0033】
この際の熱処理雰囲気は、材料が全て酸化物系のものであれば、大気雰囲気を用いることができるが、非酸化物系の材料が含まれている場合には、非酸化雰囲気を用いることが好ましい。
【0034】
また、第1の実施形態の緻密質の第1の部材13および第2の部材15、15′、および第2の実施形態の緻密質の第2の部材24は、原料粉末、例えば、低熱膨張セラミックス粉末と高ヤング率セラミックス粉末とを所定の割合で混合し、混合粉末をプレス成形等で成形体とし、所定の温度で焼成して焼結体とし、加工することにより製造することができる。焼成条件は、酸化物系材料またはそれに準ずる材料の場合には酸化性雰囲気で焼成すればよいが、非酸化物セラミックスが含まれている場合には、非酸化性雰囲気で焼成することが好ましい。焼結後、反射膜12が形成される反射面の表面粗さが上述のようにRaで10nm以下になるように鏡面加工され、ミラー面とされる。
【0035】
また、第2の実施形態における多孔質の第1の部材23は、どのような形態であってもよいが、主な形態としてフォーム状やフィルタ状が挙げられる。フォーム状の多孔質体を形成する場合には、ボールミルで粉砕・混合したスラリーにカルボキシメチルセルロースやヒドロキシエチルセルロース等のチクソトロピー性を付与可能で形状保持能のあるバインダーを添加し、そのスラリーを粉砕軟質ウレタンフォーム等のフォームに含浸させ、乾燥して焼成する。これにより、フォームが消失した部分が気孔となる多孔質体が形成される。フィルタ状の多孔質体を形成する場合には、セラミックスラリーに気孔の基となる粒子として加熱で分解する有機物、例えば樹脂ビーズ、カーボンビーズ等を混合し、押出、鋳込み、プレス等の適宜の方法で成形し、焼成する。これにより、粒子が消失した部分が気孔となる多孔質体が形成される。
【0036】
反射膜12は、ミラー本体11の表面粗さがRaで10nm以下に鏡面加工されたミラー面に厚さ0.1〜1nm程度に形成される。具体的には、Al、Ag、Pt等の金属膜を下地として蒸着した後、SiO、TiO等の誘電体薄膜と金属膜とを交互に蒸着し、多層構造の反射膜12を形成する。例えば、Al−SiO積層膜の場合には、ミラー本体11の表面粗さRaが10nm以下でレーザー周波数633nmにおいて80%以上の反射率が得られる。また、Al−Ti−TiO積層膜で構成される増反射膜を反射膜12として形成することにより、特定周波数範囲でAl−SiO積層膜等の通常の反射膜と比較して、約5%の反射率の向上が見込まれ、約85%以上の極めて高い反射率が得られる。
【0037】
また、上記複合材料からなるミラー本体11の上に形成された反射膜の面精度としては、平面度でλ/20を得ることが可能である。ここで、平面度は、一般的に可視光線の波長である360〜700nmの光による干渉縞から算出され、このような平面度評価に使用されるレーザー干渉計は、レーザー源にHe−Neレーザー(λ=633nm)が用いられ、この波長λ=633nmを基準として平面度が示される。通常、反射鏡として要求される平面度はλ/4〜λ/10程度であるから、λ/20は極めて高い平面度である。
【0038】
以上のように、ミラー本体11に反射膜12を蒸着等により成膜して位置測定用のミラーが完成されるが、焼成後に焼結体を加工して反射面を10nm以下に仕上げたものをミラー用部材として作成し、ユーザー側で反射膜を蒸着するようにしてもよい。
【0039】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
β−ユークリプタイト粉末と炭化珪素粉末とを表1のNo.1〜3に示す割合でポットミル混合して乾燥させ、原料混合粉末を作製した。この混合粉末を120MPaの圧力でCIP成形して(A)40mm×35mm×620mm、(B)40mm×11mm×620mmの2種類の成形体を作製し、(A)の成形体内部を各壁面から8mm残すようにくり抜いた。各成形体を500℃で脱脂した後、窒素雰囲気において1370℃で焼成し、β−ユークリプタイトと炭化珪素とが複合されたセラミックス焼結体を得た。得られた焼結体は、(A)32mm×27mm×500mm、(B)32mm×8mm×500mmに機械仕上げ加工を施した。
【0040】
次に、β−ユークリプタイトと窒化珪素を表1に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末を無機分が30vol%となるようにエチルセルロースの15%α−テルピネオール溶液と混合し、三本ロールを用いてペースト状にし、接合材ペーストを作製した。
【0041】
上記(A)の成形体の壁面端部および(B)の成形体の片面の対応する部分に、上記接合材ペーストをスクリーンマスクを用いて厚さ30μmに印刷して接合材とした。500℃で脱脂した後、印刷面同士を接着して1.5g/mmの荷重をかけた。引き続き、窒素雰囲気で1300〜1350℃の温度で熱処理し、接合材を溶融させて焼結体(A)、(B)の間に接合材が介在された接合体を得た。
【0042】
焼結体(A)の一つの長面を鏡面加工して表面粗さRaを10nm以下とした。したがって、このようにして得られた接合体はミラー本体として機能する。
【0043】
このミラー本体の鏡面加工した面に、金属膜および誘電体薄膜を交互に蒸着して反射膜を形成した。反射膜としてはAl−SiO積層膜を用いた。
【0044】
これとは別に、上記焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、接合材については、同じ組成の焼結体を作製して同様にして熱膨張係数を測定した。これらの結果を表1に示す。
【0045】
また、上記鏡面加工した面の表面粗さを触針式表面粗さ測定機TALYSURF(Taylor−Hobson社製)により測定した。さらに、反射膜を形成後の反射率は、波長633nmのHe−Neレーザー光をミラー面に対して垂直に照射し、反射光強度および面精度を測定し、面精度の経時変化を測定した。さらにまた、ミラーの重量も計測した。これらの結果を表2に示す。
【0046】
(実施例2)
β−ユークリプタイト粉末:56質量部(D50=5μm)、炭化珪素粉末:18質量部(D50=0.7μm)を水媒体でボールミルにて粉砕混合した後、樹脂(球状アクリルビーズ):24質量部、バインダ(ポリビニルアルコール):2質量部を添加し混合してスラリーとした後、スプレー乾燥で顆粒化した。この顆粒を120MPaの圧力でCIP成形し、加工してて40mm×35mm×620mmの成形体を作製し、成形体を500℃で脱脂した後、窒素雰囲気において1350℃で焼成し、β−ユークリプタイトと炭化珪素とが複合された気孔率40%の多孔質セラミックス焼結体を得た。得られた焼結体は、32mm×27mm×500mm機械仕上げ加工を施した。
【0047】
一方、実施例1と同様にして、32mm×8mm×500mmの緻密質のβ−ユークリプタイトと炭化珪素とが複合された焼結体を得、実施例1と同様の接合材および同様の接合方法を用いて上記多孔質焼結体とこの緻密質焼結体を接合し、接合体を得た。
【0048】
緻密質焼結体の一つの長面を鏡面加工して表面粗さRaを10nm以下とした。したがって、このようにして得られた接合体はミラー本体として機能する。
【0049】
このミラー本体の鏡面加工した面に、金属膜および誘電体薄膜を交互に蒸着して反射膜を形成した。反射膜としてはAl−SiO積層膜を用いた。
【0050】
これとは別に、上記焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX-1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、接合材については、同じ組成の焼結体を作製して同様にして熱膨張係数を測定した。これらの結果を表1に示す。
【0051】
また、上記鏡面加工した面の表面粗さを触針式表面粗さ測定機TALYSURF(Taylor−Hobson社製)により測定した。さらに、反射膜を形成後の反射率は、波長633nmのHe−Neレーザー光をミラー面に対して垂直に照射し、反射光強度および面精度を測定し、面精度の経時変化を測定した。さらにまた、ミラーの重量も計測した。これらの結果を表2に示す。
【0052】
(比較例)
表1に示すように、実施例1の焼結体と同様の組成および同様の条件で焼結させた中実の複合材料(No.5)、実施例1と同様の接合体ではあるが接合材としてガラスを用いたもの(No.6)、実施例2と同様の接合体ではあるが接合材としてガラスを用いたもの(No.7)、実施例1と同様の接合体ではあるが、反射面の表面粗さが大きいもの(No.8)でミラー本体を製造したものについて同様に評価した。その結果も表1および表2に示す。
【0053】
表1および表2に示すように、実施例1、2は、同じ材料の中実材である比較例のNo.5よりも、それぞれ40%および30%程度軽量化することができ、また、いずれも熱膨張係数が1.0×10-6/℃以下と小さく、表面粗さRaが10nm以下であるから反射膜の反射率が80%以上と十分な値を示し、面精度λ/20が実現された。また、面精度の経時変化もほとんど生じなかった。
【0054】
これに対して、同じ複合材料ではあるが中実のNo.5は、上述したように重量が大きく、またガラスを用いて接合したNo.6,7では、面精度が悪く、また面精度の経時変化も生じた。また、反射面の表面粗さが大きいNo.8では、反射率が70%と低い結果となった。
【0055】
【表1】
Figure 0003946132
【0056】
【表2】
Figure 0003946132
【0057】
【発明の効果】
以上説明したように、本発明によれば、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体を形成し、または、低熱膨張セラミックスからなる、多孔質の第1の部材および前記反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体を形成し、かつ前記反射膜が形成される面の表面粗さがRaで10nm以下としたので、十分なミラー特性を確保しつつ、困難性や特性の劣化をもたらすことなく軽量化を図ることができ、測定精度の高い位置測定用ミラーを得ることができる。
【図面の簡単な説明】
【図1】本発明の位置測定用ミラーが搭載された露光装置用ステージ機構を示す平面図。
【図2】本発明の位置測定用ミラーを示す側面図。
【図3】本発明の第1の実施形態に係る位置測定用ミラーを示す部分断面斜視図。
【図4】本発明の第2の実施形態に係る位置測定用ミラーを示す部分断面斜視図。
【符号の説明】
1;ステージ
2;X方向モータ
3;Y方向モータ
4,5;ミラー
6;X方向位置測定用レーザー干渉計
7;Y方向位置測定用レーザー干渉計
10;半導体ウエハ
11;ミラー本体
12;反射膜
13,23;第1の部材
15,15′,24;第2の部材
16,25;接合材

Claims (8)

  1. 試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、
    ミラー本体と、その表面に設けられた反射膜とを有し、
    前記ミラー本体は、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
  2. 前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする請求項に記載の位置測定用ミラー。
  3. 前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする請求項1または請求項2に記載の位置測定用ミラー。
  4. 母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする請求項1から請求項のいずれか1項に記載の位置測定用ミラー。
  5. 試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、
    低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
  6. 前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする請求項に記載のミラー用部材。
  7. 前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする請求項5または請求項6に記載のミラー用部材。
  8. 母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする請求項から請求項のいずれか1項に記載のミラー用部材。
JP2002345838A 2002-11-28 2002-11-28 位置測定用ミラーおよびミラー用部材 Expired - Lifetime JP3946132B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345838A JP3946132B2 (ja) 2002-11-28 2002-11-28 位置測定用ミラーおよびミラー用部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345838A JP3946132B2 (ja) 2002-11-28 2002-11-28 位置測定用ミラーおよびミラー用部材

Publications (3)

Publication Number Publication Date
JP2004177331A JP2004177331A (ja) 2004-06-24
JP2004177331A5 JP2004177331A5 (ja) 2005-09-02
JP3946132B2 true JP3946132B2 (ja) 2007-07-18

Family

ID=32706924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345838A Expired - Lifetime JP3946132B2 (ja) 2002-11-28 2002-11-28 位置測定用ミラーおよびミラー用部材

Country Status (1)

Country Link
JP (1) JP3946132B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053312A1 (ja) 2010-10-21 2012-04-26 黒崎播磨株式会社 コーディエライト質焼結体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236043B1 (ko) * 2006-07-14 2013-02-21 가부시키가이샤 니콘 스테이지 장치, 노광 장치 및 디바이스 제조 방법
JP7261298B2 (ja) * 2019-06-28 2023-04-19 京セラ株式会社 ミラー装着部材、これを使用した位置計測用ミラー、および露光装置
KR102219163B1 (ko) * 2019-08-20 2021-02-22 김순훈 반도체 및 디스플레이 패널 제조 설비의 스테이지 구조, 상기 반도체 및 디스플레이 패널 제조 설비의 스테이지 구조에 적용되는 반도체 및 디스플레이 패널 제조 설비의 스테이지용 미러 필름 및 반도체 및 디스플레이 제조 설비용 합지 장치
JP7321366B2 (ja) * 2020-04-24 2023-08-04 京セラ株式会社 ミラー装着部材、これを用いた位置計測用ミラー、露光装置および荷電粒子線装置
WO2022145470A1 (ja) * 2020-12-28 2022-07-07 京セラ株式会社 構造体、これを使用した位置計測用ミラーおよび露光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053312A1 (ja) 2010-10-21 2012-04-26 黒崎播磨株式会社 コーディエライト質焼結体

Also Published As

Publication number Publication date
JP2004177331A (ja) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3133302B2 (ja) 黒色低熱膨張セラミックス焼結体及びその製造方法
JP5700631B2 (ja) コーディエライト質焼結体
JP3946132B2 (ja) 位置測定用ミラーおよびミラー用部材
EP3075719B1 (en) Porous material and heat insulating film
JP4460325B2 (ja) 天体望遠鏡用ミラー
JPH11343168A (ja) 低熱膨張黒色セラミックス及びその製造方法、並びに半導体製造装置用部材
JP2002121085A (ja) コージェライトハニカム構造体及びその製造方法
JP4103385B2 (ja) 真空チャック
JPH11209171A (ja) 緻密質低熱膨張セラミックス及びその製造方法、並びに半導体製造装置用部材
JP4429288B2 (ja) 低熱膨張性セラミックスおよびそれを用いた半導体製造装置用部材
JP4870455B2 (ja) 中空構造を有する低熱膨張セラミックス接合体
JP4446611B2 (ja) 黒色低熱膨張セラミックスおよび露光装置用部材
JP3805119B2 (ja) 低熱膨張性セラミックスの製造方法
JP2004059402A (ja) 低熱膨張セラミックス接合体
JP2004179353A (ja) ステージ部材
JP3147977B2 (ja) 炭化珪素焼結体製反射ミラー用基板とその製造方法
JP4761948B2 (ja) 炭化珪素質焼結及びそれを用いた半導体製造装置用部品
JP2005234338A (ja) 位置測定用ミラー
JP2004177587A (ja) 低熱膨張ミラーおよびその製造方法
EP1577279B1 (en) Method for producing ceramic structure
CN113994267A (zh) 镜装配构件、使用它的位置计测用镜和曝光装置
WO1993007516A1 (en) Ceramic mirror and method of manufacturing the same
JP2004186400A (ja) 半導体製造装置用真空チャック
JP2012015300A (ja) 真空吸着装置及びその製造方法
JP4417189B2 (ja) ハニカム構造体

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Ref document number: 3946132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250