JP3937692B2 - アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置 - Google Patents

アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置 Download PDF

Info

Publication number
JP3937692B2
JP3937692B2 JP2000179901A JP2000179901A JP3937692B2 JP 3937692 B2 JP3937692 B2 JP 3937692B2 JP 2000179901 A JP2000179901 A JP 2000179901A JP 2000179901 A JP2000179901 A JP 2000179901A JP 3937692 B2 JP3937692 B2 JP 3937692B2
Authority
JP
Japan
Prior art keywords
test pattern
array substrate
thin film
film transistor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179901A
Other languages
English (en)
Other versions
JP2001358189A (ja
Inventor
清貴 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000179901A priority Critical patent/JP3937692B2/ja
Publication of JP2001358189A publication Critical patent/JP2001358189A/ja
Application granted granted Critical
Publication of JP3937692B2 publication Critical patent/JP3937692B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極基板の製造方法に属し、特に、電極基板上に形成されるスイッチング素子の電気特性を測定するテストパターンのの技術分野に属する。
【0002】
【従来の技術】
電気光学装置は、一般にスイッチング素子が複数配置された電極基板から構成する。例えば、電気光学装置としての液晶装置は、電極基板であるTFTアレイ基板と対向基板との間に液晶層が挟持して構成される。
【0003】
かかるTFTアレイ基板は、一般に、基板上に互いに交差する走査線及びデータ線が配置され、各交差部毎にスイッチング素子及び画素電極が形成されている。更に、基板上には、スイッチング素子や画素電極などの電気特性を測定するために、表示領域外にテストパターンが配置されている。
【0004】
このテストパターンには、例えば、スイッチング素子特性を測定するためのパターン、画素電極に用いられる導電膜の抵抗値を測定するためのパターンやコンタクトホールにおけるコンタクト抵抗値を測定するためのパターンなどが配置されており、プローバを用いて各素子の電気特性が測定される。
【0005】
【発明が解決しようとする課題】
本発明は、上述のテストパターンを用いた測定が効率良く行われるテストパターンを有する電極基板、電極基板の製造方法並びに電気光学装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
このような課題を解決するため、本発明は以下にような構成を採用している。
【0007】
本発明のアレイ基板の検査方法は、基板上に、平行に設けられた複数の容量線及び複数の走査線と、前記走査線と交差するように設けられた複数のデータ線と、前記走査線と前記データ線の交差部に設けられた薄膜トランジスタとにより構成される表示領域と、前記表示領域に隣接して設けられた周辺駆動回路領域とを有し、前記薄膜トランジスタの下層側に遮光層が設けられ、該遮光膜と前記薄膜トランジスタとの間には絶縁膜が設けられ、前記容量線は前記絶縁膜に設けられたコンタクトホールを介して前記遮光層に接続され、前記薄膜トランジスタの電気特性を測定する第1テストパターンと第2テストパターンとを具備してなるアレイ基板の検査方法であって、前記第1テストパターンは、前記遮光膜と前記容量線とのコンタクト抵抗を測定するパターンを含み、前記第1テストパターンと前記第2テストパターンを、同一のプローブカードにてそれぞれ測定する工程を具備することを特徴とする。
また、本発明のアレイ基板の検査方法は、前記第2テストパターンが、前記絶縁膜の電気抵抗を測定するパターンを含むことを特徴とする。
【0008】
本発明のこのような構成によれば、基板上に配置される複数のテストパターンに対して、共通のプローブカードにて測定することができるため、簡易に測定することができるという効果を有する。ここで、素子とは、配線、電極、スイッチング素子、スイッチング素子を構成する半導体層やゲート電極といった各種素子、コンタクトホールなどを含む。
【0009】
また、本発明のアレイ基板の検査方法は、前記薄膜トランジスタは、N型薄膜トランジスタ及びP型薄膜トランジスタとを有し、前記第1テストパターンは、前記N型薄膜トランジスタの電気特性を測定するテストパターンであり、前記第2テストパターンは、前記P型薄膜トランジスタの電気特性を測定するテストパターンであることを特徴とする。
【0010】
また、前記第1テストパターン及び前記第2テストパターンは、それぞれ同一の配置にて配置された複数のパッド部を有し、前記プローブカードは、前記複数のパッド部に対応したプローブ針を有することを特徴とする。第1テストパターンで用いるプローブ針と第2テストパターンで用いるプローブ針を共通化することができる。
【0011】
本発明のアレイ基板の製造方法は、上述したアレイ基板の検査方法を含むことを特徴とする。
本発明のアレイ基板は、基板上に、平行に設けられた複数の容量線及び複数の走査線と、前記走査線と交差するように設けられた複数のデータ線と、前記走査線と前記データ線の交差部に設けられた薄膜トランジスタとにより構成される表示領域と、前記表示領域に隣接して設けられた周辺駆動回路領域とを有し、前記薄膜トランジスタの下層側に遮光層が設けられ、該遮光膜と前記薄膜トランジスタとの間には絶縁膜が設けられ、前記容量線は、前記絶縁膜に設けられたコンタクトホールを介して前記遮光層に接続され、前記薄膜トランジスタの電気特性を測定する第1テストパターン及び第2テストパターンとを具備してなるアレイ基板であって、前記第1テストパターンは、前記遮光膜と前記容量線とのコンタクト抵抗を測定するパターンを含み、前記第1テストパターン及び前記第2テストパターンそれぞれの前記測定に、共通のプローブカードが用いられるように、前記第1テストパターン及び前記第2テストパターンそれぞれの複数のパッド部が配置されてなることを特徴とする。
また、本発明のアレイ基板は、前記第2テストパターンが、前記絶縁膜の電気抵抗を測定するパターンを含むことを特徴とする。
【0012】
本発明のこのような構成によれば、テストパターンを測定することにより、間接的に基板上に形成される素子の特性を測定することができ、また、基板上に配置される複数のテストパターンに対して、共通のプローブカードにて測定することができるため、簡易に測定することができるという効果を有する。ここで、素子とは、配線、電極、スイッチング素子、スイッチング素子を構成する半導体層やゲート電極といった各種素子、コンタクトホールなどを含む。
【0013】
また、前記第1テストパターン及び前記第2テストパターンそれぞれの複数のパッド部の配置が同一であることを特徴とする。
【0014】
また、前記素子は、N型薄膜トランジスタ及びP型薄膜トランジスタとを有し、前記第1テストパターンは、前記N型薄膜トランジスタの電気特性を測定するテストパターンであり、前記第2テストパターンは、前記P型薄膜トランジスタの電気特性を測定するテストパターンであることを特徴とする。このように、異なる型のトランジスタを複数形成する場合においても、プローブカードを共通化することができる。
【0015】
本発明の電極基板は、上述に記載の電極基板の製造方法により製造されたことを特徴とする。このような構成によれば、テストパターンにより、間接的に実効領域の素子の特性を測定することができる。このため、例えば、実効領域中の素子に、直接プローブ針を接触させ、誤ってプローブ針により素子を傷つけることもなく、品質の高い電極基板を得ることができる。
【0016】
本発明の電気光学装置は、上述に記載のアレイ基板を有することを特徴とする。このような構成によれば、テストパターンによる測定により良品と判断された電極基板が用いられた電気光学装置を得ることができるため、表示品位の高い電気光学装置を得ることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を、電極基板としてのTFTアレイ基板が組み込まれた電気光学装置としての液晶装置を例にあげ、図面に基づいて説明する。
【0018】
まず、液晶装置の構成を図1及び図2を参照して説明する。図1は、液晶装置の表示領域を構成するマトリクス状に形成された複数の画素における各種素子及び配線等の等価回路、周辺駆動回路領域を示す図である。図2は、液晶装置の表示領域及び周辺駆動回路領域の一部を示す縦断面図である。尚、各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。
【0019】
図1に示すように、液晶装置の一部を構成する電極基板としてのTFTアレイ基板10は、表示領域とこの表示領域に隣接して配置される周辺駆動回路領域とから構成される。
【0020】
表示領域には、平行に配置された容量線3b及び走査線3と、走査線3と交差して配置されたデータ線6と、これら走査線3とデータ線6との交差部毎にマトリクス状に配置された画素電極9aと、画素電極9aを制御するためのスイッチング素子としての薄膜トランジスタ(以下、TFTと称する)30とが配置される。画像信号が供給されるデータ線6にはTFT30のソース領域が電気的に接続され、走査信号が供給される走査線3にはTFT30のゲート領域が電気的に接続している。
【0021】
周辺駆動回路領域には、走査線駆動回路104及びデータ線駆動回路101が配置されており、走査線駆動回路104は走査線信号を走査線3へ供給し、データ線駆動回路101は画像信号をデータ線6へ供給している。
【0022】
走査線駆動回路104は、外部制御回路である電源回路から供給される電源、外部制御回路である制御系回路から供給される基準クロック及びその反転クロック等に基づいて、所定タイミングで走査線3に走査信号をパルス的に線順次で印加する。
【0023】
また、データ線駆動回路101は、サンプリング回路、シフトレジスタ、プリチャージ回路からなる。サンプリング回路は、画像信号をデータ線1本ずつに書き込む働きをし、シフトレジストは、このサンプリング回路の動作タイミングをコントロールする働きをしている。プリチャージ回路は、各データ線6について画像信号の供給に先行するタイミングでプリチャージ信号を書き込むように、外部制御回路からプリチャージ回路駆動信号が供給される。サンプリング回路は、画像信号回路152から供給される画像信号が入力されると、これらをサンプリングする。即ち、サンプリング回路駆動信号が入力されると、画像信号をデータ線6に順次印加する。本実施形態では、シフトレジストの回路として、高速動作が可能な相補型トランジスタ構造を採用している。この相補型トランジスタは、P型トランジスタ及びN型トランジスタから構成される。
【0024】
そして、基板の一辺側には、走査線駆動回路104及びデータ線駆動回路101にそれぞれ配線127により電気的に接続される複数の端子部120aからなる端子群120が配置されている。この端子群120を挟むように端子群120の両側には、第1テストパターンとしてのN型トランジスタ用テストパターン130と第2テストパターンとしてのP型トランジスタ用テストパターン140とが配置されている。また、これらのテストパターンは、テストパターンを用いた測定後、基板を切断してこの部分を除去しても構わないし、そのまま残していても良い。尚、これらのテストパターン130、140については、後述する。
【0025】
図2の断面図に示すように、液晶装置200は、TFTアレイ基板10と、これに対向配置される対向基板20との間に液晶層50を備えている。尚、図2においては、周辺駆動回路領域として、シフトレジスタに用いられる相補型トランジスタの構造の部分を例にあげて説明する。
【0026】
表示領域におけるTFTアレイ基板10には、例えば石英からなる基板210上に、各画素電極9aに隣接する位置に、各画素電極9aをスイッチング制御するスイッチング素子としての薄膜トランジスタ(以下、TFT)30が設けられている。TFT30に各々対向する位置においてTFTアレイ基板10と各TFT30との間には、遮光膜11aが設けられている。遮光膜11aは、好ましくは不透明な高融点金属であるTi、Cr、W、Ta、Mo及びPbのうちの少なくとも一つを含む、金属単体、合金、金属シリサイド等から構成される。このような材料から構成すれば、TFTアレイ基板10上の遮光膜11aの形成工程の後に行われる画素スイッチング用TFT30の形成工程における高温処理により、遮光膜11aが破壊されたり溶融しないようにできる。
【0027】
更に、遮光膜11aと複数のTFT30との間には、下地絶縁膜12が設けられている。下地絶縁膜12は、TFT30を構成する半導体層1aを遮光膜11aから電気的絶縁するために設けられるものである。更に、下地絶縁膜12は、TFTアレイ基板10の全面に形成されることにより、画素スイッチング用TFT30のための下地膜としての機能をも有する。下地絶縁膜12は、例えば、NSG(ノンドープトシリケートガラス)などの高絶縁性ガラス又は、酸化シリコン膜、窒化シリコン膜等からなる。
【0028】
TFT30は、半導体層1aと、これを覆うゲート絶縁膜2と、ゲート絶縁膜2上に、半導体層1aのチャネル領域1a’に対応して配置されたゲート電極3aとを有する。TFT30は、例えばB(ボロン)イオンが不純物として半導体層に注入されて形成されたP型TFT構造を有し、また、LDD構造を有している。半導体層1aは、チャネル領域1a’と、このチャネル領域を挟むように両側に配置された不純物イオンが低濃度の低濃度ソース領域1b及び低濃度ドレイン領域1cと、更にこれらの領域を挟むように配置された不純物イオンが高濃度の高濃度ソース領域1d及び高濃度ドレイン領域1eとから構成されている。
【0029】
ゲート絶縁膜上には、ドープドポリシリコンからなる走査線3、走査線3の一部であるゲート電極3a、そして容量線3bが配置されている。そして、これら走査線3、ゲート電極3a及び容量線3bを覆うように第1層間絶縁膜81が配置され、更に、タングステンシリサイド(WSi)からなる中継層80が第1層間絶縁膜81上に配置されている。容量線3bは、下地絶縁膜12、ゲート絶縁膜2及び第1層間絶縁膜81に形成されたコンタクトホール13を介して、遮光膜11aと電気的に接続されている。
【0030】
そして、半導体層1aを高濃度ドレイン領域1eから延設した半導体層を蓄積容量電極1fとし、これに対向する容量線3bの一部を蓄積容量電極として、これらの蓄積容量電極の間にゲート絶縁膜2を介在することにより第1蓄積容量70aが形成される。更に、容量線3bと対向する前述の中継層80の一部を蓄積容量電極とし、これらの電極間に第1層間絶縁膜81を設けることにより、第2蓄積容量70bが形成されている。そして、これら第1及び第2蓄積容量70a及び70bがコンタクトホール8aを介して並列接続されて蓄積容量70が形成されている。
【0031】
更に、中継層80を覆って、第1層間絶縁膜81上に第2層間絶縁膜4が配置される。第2層間絶縁膜4上には、走査線3と交差して形成されたデータ線6が配置されている。データ線6は、Al等の低抵抗な金属膜や金属シリサイド等の合金膜などの遮光性且つ導電性の薄膜から構成され、ここではAlから構成している。データ線6は、ゲート絶縁膜2、第1層間絶縁膜81及び第2層間絶縁膜4に形成されたコンタクトホール4を介して、高濃度ソース領域1dと電気的に接続されている。データ線6を含む第2層間絶縁膜4上には、第3層間絶縁膜7が配置され、第3層間絶縁膜7上にはITO(Indium Tin Oxide)からなる画素電極9aが配置されている。
【0032】
高濃度ドレイン領域1eには、複数の画素電極9aのうちの対応する一つが中継層80を中継して接続されている。ゲート絶縁膜2及び第1層間絶縁膜81に形成されたコンタクトホール8aを介して、高濃度ドレイン領域1eは、中継層80と電気的に接続されている。更に、第2層間絶縁膜4及び第3層間絶縁膜7に形成されたコンタクトホール8bを介して、中継層80と画素電極9aとは電気的に接続されている。
【0033】
画素電極9aを含む第3層間絶縁膜上には、ポリイミドからなる配向膜16が配置されている。
【0034】
一方、周辺駆動回路領域におけるTFTアレイ基板10には、P型トランジスタ(以下、PチャネルTFT)140と、N型トランジスタ(以下、NチャネルTFT)160とからなる相補型トランジスタが配置されている。この相補型トランジスタと石英基板210との間には、表示領域中の下地絶縁膜12と同じ下地絶縁膜12が同層で配置されている。
【0035】
PチャネルTFT140は、表示領域中のTFT30と同様に、例えばBイオンが不純物として注入されて製造され、NチャネルTFT160は、例えばPイオンが不純物として注入されて製造されている。
【0036】
これらのPチャネルTFT140とNチャネルTFT160は、それぞれLDD構造を有しており、PチャネルTFT140の半導体141は、チャネル領域141aと、このチャネル領域を挟むように両側に配置された不純物イオンが低濃度の低濃度ソース領域141b及び低濃度ドレイン領域141cと、更にこれらの領域を挟むように配置された不純物イオンが高濃度の高濃度ソース領域141d及び高濃度ドレイン領域141eとから構成されている。また、NチャネルTFT160の半導体161は、チャネル領域161aと、このチャネル領域を挟むように両側に配置された不純物イオンが低濃度の低濃度ソース領域161b及び低濃度ドレイン領域161cと、更にこれらの領域を挟むように配置された不純物イオンが高濃度の高濃度ソース領域161d及び高濃度ドレイン領域161eとから構成されている。
【0037】
それぞれの半導体層のチャネル領域141a、161b上には、半導体層141及び161を覆って配置されたゲート絶縁膜2を介して、ゲート電極142、162が配置されている。これらのゲート電極142及び162は、表示領域中のTFT30のゲート電極3aと同層で形成されている。更に、これらのゲート電極142及び162を覆って、ゲート絶縁膜2上に、第1層間絶縁膜81及び第2層間絶縁膜4が配置されている。第2層間絶縁膜4上には、PチャネルTFT140に対応したソース143及びドレイン144が、表示領域中のデータ腺6と同層で形成されている。ソース143及びドレイン144は、それぞれコンタクトホール145、146を介して、高濃度ソース領域141d、高濃度ドレイン領域141eに電気的に接続されている。また、第2層間絶縁膜4上には、NチャネルTFT160に対応したソース163及びドレイン164も、表示領域中のデータ腺6と同層で形成されている。ソース163及びドレイン164は、それぞれコンタクトホール165、166を介して、高濃度ソース領域161d、高濃度ドレイン領域161eに電気的に接続されている。
【0038】
更に、これらソース143及び163、ドレイン144及び164を覆って第3層間絶縁膜7が配置されている。
【0039】
他方、対向基板20は、ガラス基板220上に、その全面に渡って対向電極21、ポリイミドからなる配向膜22が順次設けられて構成される。対向電極21は例えば、ITOなどの透明導電性薄膜からなる。また、各画素の非開口領域に、遮光膜23が設けられている。
【0040】
次に、上述した第1テストパターンとしてのN型トランジスタ用テストパターン(以下、Nチャネルテストパターン)130と第2テストパターンとしてのP型トランジスタ用テストパターン(以下、Pチャネルテストパターン)150とについて、図3〜図9を用いて説明する。
【0041】
図3はNチャネルTFTテストパターンの拡大図、図4はPチャネルTFTテストパターンの拡大図である。図5は、それぞれのテストパターンの測定時に共通して用いられるプローブカードの斜視図である。図6は図3の矩形状の点線で囲まれた領域Aの拡大図であり、図7は図4の矩形状の点線で囲まれた領域Bの拡大図である。図8は図3の矩形状の点線で囲まれた領域Dの拡大図であり、図9は図4の矩形状の点線で囲まれた領域Eの拡大図である。
【0042】
NチャネルTFTテストパターン及びPチャネルTFTテストパターンは、それぞれ、上述した表示領域中のTFTや画素電極、周辺駆動回路領域中のTFTなどの各種素子の形成と同時に形成される。
【0043】
図3に示すように、NチャネルTFTテストパターン130は複数のパッド部131〜139を有し、図4に示すように、PチャネルTFTテストパターン150は複数のパッド部151〜159を有する。図3及び図4に示すように、PチャネルTFTテストパターン及びNチャネルTFTテストパターンそれぞれの複数のパッド部の配置は同一となっており、また、パッド部131〜139、151〜159は、上述の表示領域中の画素電極と同時に形成される。尚、ここでは、構造をわかりやすくするために、パッド部を画素電極と同じITOから形成しているが、パッド自体の低抵抗化のために、データ線と同層からなるアルミニウムとITOとが絶縁膜を介して積層され、絶縁膜中に形成されたコンタクトホールによりアルミニウム層とITO層とが電気的に接続された冗長構造としても良い。更に、上述したバリア層と同層からなるタングステンシリサイド層も積層し、アルミニウム層、タングステンシリサイド層およびITO層の3層を積層し、それぞれを電気的に接続した構造のパッドとしても良い。
【0044】
また、図5は、PチャネルTFTテストパターン及びNチャネルTFTテストパターンそれぞれの測定に共通に用いられるプローブカード170の斜視図である。プローブカード170は、測定装置であるプロ−バーに取り付けられ、図5に示すように、複数のプローブ針172〜179を有しており、パッド部にプローブ針を接触させて測定が行われる。
【0045】
プローブカード170の点線で囲まれた矩形Cの領域に配置されるプローブ針171〜174は、図3のNチャネルTFTテストパターン130の点線で囲まれた矩形Aの領域に配置されるパッド部131〜134及び図4のPチャネルTFTテストパターン150の点線で囲まれた矩形Bの領域に配置されるパッド部151〜154に対応する。すなわち、測定時においては、プローブ針171はパッド部131またはパッド部151に接触し、プローブ針172はパッド部132またはパッド部152に接触し、プローブ針173はパッド部133またはパッド部153に接触し、プローブ針174はパッド部134またはパッド部154に接触する。
【0046】
プローブカード170の点線で囲まれた矩形Fの領域に配置されるプローブ針175〜179は、図3のNチャネルTFTテストパターン130の点線で囲まれた矩形Dの領域に配置されるパッド部135〜139及び図4のPチャネルTFTテストパターン150の点線で囲まれた矩形Eの領域に配置されるパッド部155〜159に対応する。すなわち、測定時においては、プローブ針175パッド部135またはパッド部155に接触し、プローブ針176はパッド部136またはパッド部156に接触し、プローブ針177はパッド部137またはパッド部157に接触し、プローブ針178はパッド部138またはパッド部158に接触し、プローブ針179はパッド部139またはパッド部159に接触する。
【0047】
次に、各NチャネルTFTテストパターン及びPチャネルTFTテストパターンの構造について、図6〜図8を用いて説明する。
【0048】
図6は、図3のNチャネルTFTテストパターン130の矩形Aに囲まれた領域の拡大図であり、図7は、図4のPチャネルTFTテストパターン150の矩形Bに囲まれた領域の拡大図である。
【0049】
図8は、図3のNチャネルTFTテストパターン130の矩形Dに囲まれた領域の拡大図であり、図7は、図4のPチャネルTFTテストパターン150の矩形Eに囲まれた領域の拡大図である。
【0050】
図6に示すように、NチャネルTFTテストパターン130の矩形Aに囲まれた領域には、表示領域中の容量線3bと遮光膜11aとのコンタクト抵抗を測定するパターンと、周辺駆動回路領域中のNチャネルTFT160の半導体層161の高濃度不純物領域161d及び161eの電気抵抗を測定するパターンと、周辺駆動回路領域中のNチャネルTFT160の半導体層161の低濃度不純物領域161b及び161cの電気抵抗を測定するパターンとが配置されている。
【0051】
表示領域中の容量線3bと遮光膜11aとのコンタクト抵抗を測定するパターンは、パッド部131、パッド部134、容量線3bと同時に同層で形成されたドープドポリシリコン配線230a及び230b、遮光膜11aと同時に同層で形成された遮光層231、ドープドポリシリコン配線230と遮光層231との間に介在したゲート絶縁膜2及び第1層間絶縁膜81とから構成される。すなわち、ドープドポリシリコン配線230a、230bは、それぞれパッド部131、パッド134に、コンタクトホール400、401を介して電気的に接続されている。更に、ドープドポリシリコン配線230a、230bは、ゲート絶縁膜2及び第1層間絶縁膜81に形成されたコンタクトホール405を介して、遮光層231と電気的に接続されている。測定では、パッド部131、134のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、間接的に表示領域中の容量線3bと遮光膜11aとのコンタクト抵抗を測定することができる。
【0052】
周辺駆動回路領域中のNチャネルTFT160の半導体層161の高濃度不純物領域161d及び161eの電気抵抗を測定するパターンは、パッド部133と、パッド部134と、半導体層161の高濃度不純物領域161d及び161eと同じ高濃度不純物が含有された半導体層232とから構成される。半導体層232は、パッド部133、134とそれぞれ、コンタクトホール402、404と電気的に接続されている。測定では、パッド部133、134のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、間接的に周辺駆動回路領域中のNチャネルTFT160の半導体層161の高濃度不純物領域161d及び161eの電気抵抗を測定することができる。
【0053】
周辺駆動回路領域中のNチャネルTFT160の半導体層161の低濃度不純物領域161b及び161cの電気抵抗を測定するパターンは、パッド部132と、パッド部134と、半導体層161の高濃度低純物領域161b及び161cと同じ低濃度不純物が含有された半導体層233とから構成される。半導体層233は半導体層232と接続しており、パッド部132及び134と重なる領域は、高濃度不純物が含有された領域(右上がりの二重斜線)で、パッド部132とパッド部134との間の半導体層233は、低濃度不純物が含有された領域(右上がりの斜線)となっている。半導体層233は、パッド部132、134とコンタクトホール403、404により電気的に接続されている。測定では、パッド部132、134のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、間接的に周辺駆動回路領域中のNチャネルTFT160の半導体層161の低濃度不純物領域161b及び161cの電気抵抗を測定することができる。
【0054】
以上4つのパッド部131〜134には、同時にプローブ針があてられ、それぞれのパッド部に順次電圧をかけ、電流を読み取って抵抗値が換算される。
【0055】
一方、図7に示すように、PチャネルTFTテストパターン150の矩形Bに囲まれた領域には、下地絶縁膜12の電気抵抗を測定するパターンと、周辺駆動回路領域中のPチャネルTFT140の半導体層141の高濃度不純物領域141d、141e及び表示領域中のTFT30の半導体層1の高濃度不純物領域1d、1eの電気抵抗を測定するパターンと、周辺駆動回路領域中のPチャネルTFT140の半導体層141の低濃度不純物領域141b、141c及び表示領域中のTFT30の半導体層1の低濃度不純物領域1b、1cの電気抵抗を測定するパターンとが配置されている。
【0056】
下地絶縁膜12の電気抵抗を測定するパターンは、パッド部151、パッド部154、下地絶縁膜12と同層の絶縁膜240とから構成される。下地絶縁膜12は、パッド部151、154とそれぞれ、コンタクトホール410、411を介して電気的に接続されている。測定では、パッド部151、154のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、下地絶縁膜12の電気抵抗を測定することができる。
【0057】
周辺駆動回路領域中のPチャネルTFT140の半導体層141の高濃度不純物領域141d、141e及び表示領域中のTFT30の半導体層1の高濃度不純物領域1d、1eの電気抵抗を測定するパターンは、パッド部153と、パッド部154と、半導体層141及び1の高濃度不純物領域141d、141e、1d及び1eと同じ高濃度不純物が含有された半導体層241とから構成される。半導体層241は、パッド部153、154とそれぞれ、コンタクトホール412、414と電気的に接続されている。測定では、パッド部153、154のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、間接的に周辺駆動回路領域中のPチャネルTFT160の高濃度不純物領域141d及び141e、表示領域中のTFT30の高濃度不純物領域1d及び1eの電気抵抗を測定することができる。
【0058】
周辺駆動回路領域中のPチャネルTFT140の半導体層141の低濃度不純物領域141b、141c及び表示領域中のTFT30の半導体層1の低濃度不純物領域1b、1cの電気抵抗を測定するパターンは、パッド部152と、パッド部154と、半導体層141の低濃度低純物領域141b及び141c、半導体層1の低濃度不純物領域1b及び1cと同じ低濃度不純物が含有された半導体層242とから構成される。半導体層242は、半導体層241と接続しており、パッド部152及び154と重なる領域は、高濃度不純物が含有された領域で、パッド部152とパッド部154との間の半導体層242は、低濃度不純物が含有された領域となっている。半導体層242は、パッド部152、154とコンタクトホール413、414により電気的に接続されている。測定では、パッド部152、154のそれぞれにプローブ針を接触させて電圧をかけ、電流を測定して、抵抗値に換算することによって、間接的に、周辺駆動回路領域中の低濃度不純物領域141b及び141c、表示領域中の低濃度不純物領域1b及び1cの電気抵抗を測定することができる。
【0059】
4つのパッド部151〜154には、同時にプローブ針があてられ、それぞれのパッド部に順次電圧をかけ、電流を読み取って抵抗値が換算される。以上、図6、図7に示すように、各テストパターンは、各テストパターンにおける測定時に用いられるプローブカードが共通となるように、テストパターン及びパッドが配置されている。
【0060】
図8に示すように、NチャネルTFTテストパターン130の矩形Dに囲まれた領域には、周辺駆動回路領域中のサンプリング回路のTFTのTFT特性を測定するパターンと、周辺駆動回路領域中のシフトレジスタのNチャネルTFT160のTFT特性を測定するパターンとが配置されている。
【0061】
周辺駆動回路領域中のサンプリング回路のTFTのTFT特性を測定するパターンは、パッド部135、パッド部136、パッド部137、サンプリング回路のTFTのゲート電極と同じ層で形成されたゲート電極253、サンプリング回路のTFTのソース電極及びドレイン電極と同じ層で形成されたソース251及びドレイン250、サンプリング回路のTFTの半導体層と同層の半導体層252と、半導体層252とゲート電極253との間に介在するゲート絶縁膜2及び第1層間絶縁膜81と、ゲート電極253とソース251及びドレイン250との間に介在する第2層間絶縁膜4とから構成される。図8に示すように、パッド部135は、ドレイン250とコンタクトホール420を介して、電気的に接続されている。パッド部136は、ソース251とコンタクトホール428を介して、電気的に接続されている。パッド部137は、ゲート電極253と電気的に接続されている。半導体層252は、チャネル領域と、チャネル領域を挟んで配置されたソース領域およびドレイン領域とからなる。半導体層252を覆うようにゲート絶縁膜2が配置され、ゲート絶縁膜2上にはゲート電極253が配置されてTFT429が形成されている。ゲート電極253と平面的に重なり合う半導体層252部分がチャネル領域として機能する。半導体層252のドレイン領域は、コンタクトホール422を介してドレイン250と電気的に接続されている。半導体層252のソース領域は、コンタクトホール423を介してソース251と電気的に接続されている。測定では、パッド部135、136、137にそれぞれにプローブ針を接触させる。パッド部137に電圧を印加することにより、TFT429のスイッチングがオンされ、パッド部135、136に電圧をかけ、電流を測定して、抵抗値に換算することによって、TFT429のTFT特性が測定できる。これにより、間接的にサンプリング回路のTFT特性を測定することができる。
【0062】
周辺駆動回路領域中のシフトレジスタのNチャネルTFT160のTFT特性を測定するパターンは、パッド部138、パッド部137、パッド部139、ゲート電極253、シフトレジストのNチャネルTFT160のソース電極及びドレイン電極と同じ層で形成されたソース255及びドレイン254、シフトレジストのTFTの半導体層と同層の半導体層256と、半導体層256とゲート電極253との間に介在するゲート絶縁膜2及び第1層間絶縁膜81と、ゲート電極253とソース255及びドレイン254との間に介在する第2層間絶縁膜4とから構成される。図8に示すように、パッド部138は、ドレイン254とコンタクトホール424を介して、電気的に接続されている。パッド部139は、ソース255とコンタクトホール425を介して、電気的に接続されている。パッド部137は、ゲート電極253と電気的に接続されている。半導体層253は、チャネル領域と、チャネル領域を挟んで配置されたソース領域およびドレイン領域とからなる。半導体層252を覆うようにゲート絶縁膜2が配置され、ゲート絶縁膜2上にはゲート電極253が配置されてTFT430が形成されている。ゲート電極253と平面的に重なり合う半導体層256部分は、チャネル領域として機能する。半導体層256のドレイン領域は、コンタクトホール426を介してドレイン254と電気的に接続されている。半導体層256のソース領域は、コンタクトホール427を介してソース255と電気的に接続されている。測定では、パッド部137、138、139にそれぞれにプローブ針を接触させる。パッド部137に電圧を印加することにより、TFT430のスイッチングがオンされる。パッド部138、139に電圧をかけ、電流を測定して、抵抗値に換算することによって、TFT430のTFT特性が測定できる。これにより、間接的にシフトレジスタのNチャネルTFT160のTFT特性を測定することができる。
【0063】
一方、図9に示すように、PチャネルTFTテストパターン150の矩形Eに囲まれた領域には、表示領域中のTFT30のTFT特性を測定するパターンと、周辺駆動回路領域中のシフトレジスタのPチャネルTFT140のTFT特性を測定するパターンとが配置されている。
【0064】
表示領域中のTFTのTFT特性を測定するパターンは、パッド部155、パッド部156、パッド部157、表示領域中のTFT30のゲート電極と同じ層で形成されたゲート電極263、表示領域中の画素電極9aと同じ層で形成されたドレイン260、表示領域中のデータ線6と同じ層で形成されたソース261、TFT30の半導体1と同じ層で形成された半導体層262と、半導体層262とゲート電極263との間に介在するゲート絶縁膜2と、ゲート電極263とドレイン260との間に介在する第1層間絶縁膜81、第2層間絶縁膜4及び第3層間絶縁膜7とから構成される。図9に示すように、ドレイン260は、パッド部155から延在した形状となっている。パッド部156は、ソース261とコンタクトホール434を介して、電気的に接続されている。パッド部157は、ゲート電極263と電気的に接続されている。半導体層262はLDD構造を有しており、チャネル領域と、チャネル領域を挟んで配置された低濃度ソース領域および低濃度ドレイン領域と、これら領域を挟んで配置された高濃度ソース領域および高濃度ドレイン領域とからなる。半導体層262を覆うようにゲート絶縁膜2が配置され、ゲート絶縁膜2上にはゲート電極263が配置されてTFT440が形成されている。ゲート電極263と平面的に重なり合う半導体層262部分がチャネル領域として機能する。半導体層262の高濃度ドレイン領域は、コンタクトホール439を介してドレイン260と電気的に接続されている。半導体層262の高濃度ソース領域は、コンタクトホール434を介してソース261と電気的に接続されている。測定では、パッド部155、156、157にそれぞれにプローブ針を接触させる。パッド部157に電圧を印加することにより、TFT440のスイッチングがオンされ、パッド部155、156に電圧をかけ、電流を測定して、抵抗値に換算することによって、TFT440のTFT特性が測定できる。これにより、間接的に表示領域中のTFT30のTFT特性を測定することができる。
【0065】
周辺駆動回路領域中のシフトレジスタのPチャネルTFT140のTFT特性を測定するパターンは、パッド部158、パッド部157、パッド部159、ゲート電極263、シフトレジストのNチャネルTFT140のソース電極及びドレイン電極と同じ層で形成されたソース265及びドレイン264、シフトレジストのTFTの半導体層と同層の半導体層266と、半導体層266とゲート電極263との間に介在するゲート絶縁膜2及び第1層間絶縁膜81と、ゲート電極263とソース265及びドレイン264との間に介在する第2層間絶縁膜4とから構成される。図9に示すように、パッド部158は、ドレイン264とコンタクトホール436を介して、電気的に接続されている。パッド部159は、ソース265とコンタクトホール435を介して、電気的に接続されている。パッド部157は、ゲート電極263とコンタクトホール431を介して電気的に接続されている。半導体層266は、チャネル領域と、チャネル領域を挟んで配置されたソース領域およびドレイン領域とからなる。半導体層266を覆うようにゲート絶縁膜2が配置され、ゲート絶縁膜2上にはゲート電極263が配置されてTFT441が形成されている。ゲート電極263と平面的に重なり合う半導体層266部分は、チャネル領域として機能する。半導体層266のドレイン領域は、コンタクトホール437を介してドレイン264と電気的に接続されている。半導体層266のソース領域は、コンタクトホール438を介してソース265と電気的に接続されている。測定では、パッド部157、158、159にそれぞれにプローブ針を接触させる。パッド部157に電圧を印加することにより、TFT441のスイッチングがオンされる。パッド部158、159に電圧をかけ、電流を測定して、抵抗値に換算することによって、TFT441のTFT特性が測定できる。これにより、間接的にシフトレジスタのPチャネルTFT140のTFT特性を測定することができる。
【0066】
以上、図8、図9に示すように、各テストパターンは、各テストパターンにおける測定時に用いられるプローブカードが共通となるように、テストパターン及びパッドが配置されている。
【0067】
以上、本実施形態においては、異なる複数のテストパターンを共通のプローブカードにて測定することができる。
【0068】
なお、テストパターンとしては、上述に記載したテストパターンに限定されるものではないということは言うまでもなく、基板上に配置される各種素子特性、この素子を構成する膜自体の電気特性などを測定するためのテストパターンを形成することができる。
【図面の簡単な説明】
【図1】実施形態における液晶装置の表示領域及び周辺駆動回路領域を示す平面図である。
【図2】液晶装置の縦断面図である。
【図3】NチャネルTFTテストパターンの平面図である。
【図4】PチャネルTFTテストパターンの平面図である。
【図5】プローバの斜視図である。
【図6】図3の点線の矩形Aで囲まれた領域のテストパターンの拡大図である。
【図7】図4の点線の矩形Bで囲まれた領域のテストパターンの拡大図である。
【図8】図3の点線の矩形Dで囲まれた領域のテストパターンの拡大図である。
【図9】図4の点線の矩形Eで囲まれた領域のテストパターンの拡大図である。
【符号の説明】
1、141、161…半導体層
10…TFTアレイ基板
30…TFT
130…NチャネルTFTテストパターン
131〜139、151〜159…パッド部
140…PチャネルTFT
150…PチャネルTFTテストパターン
160…NチャネルTFT
170…プローブカード
171〜179…プローブ針
200…液晶装置
210…基板

Claims (10)

  1. 基板上に、
    平行に設けられた複数の容量線及び複数の走査線と、前記走査線と交差するように設けられた複数のデータ線と、前記走査線と前記データ線の交差部に設けられた薄膜トランジスタとにより構成される表示領域と、前記表示領域に隣接して設けられた周辺駆動回路領域とを有し、前記薄膜トランジスタの下層側に遮光層が設けられ、該遮光膜と前記薄膜トランジスタとの間には絶縁膜が設けられ、前記容量線は前記絶縁膜に設けられたコンタクトホールを介して前記遮光層に接続され、前記薄膜トランジスタの電気特性を測定する第1テストパターンと第2テストパターンとを具備してなるアレイ基板の検査方法であって、
    前記第1テストパターンは、前記遮光膜と前記容量線とのコンタクト抵抗を測定するパターンを含み、
    前記第1テストパターンと前記第2テストパターンを、同一のプローブカードにてそれぞれ測定する工程を具備することを特徴とするアレイ基板の検査方法。
  2. 前記第2テストパターンは、前記絶縁膜の電気抵抗を測定するパターンを含むことを特徴とする請求項1に記載のアレイ基板の検査方法。
  3. 前記薄膜トランジスタは、N型薄膜トランジスタ及びP型薄膜トランジスタとを有し、
    前記第1テストパターンは、前記N型薄膜トランジスタの電気特性を測定するテストパターンであり、
    前記第2テストパターンは、前記P型薄膜トランジスタの電気特性を測定するテストパターンであることを特徴とする請求項1または2に記載のアレイ基板の検査方法。
  4. 前記第1テストパターン及び前記第2テストパターンは、それぞれ同一に配置された複数のパッド部を有し、
    前記プローブカードは、前記複数のパッド部に対応したプローブ針を有することを特徴とする請求項1ないし3のいずれか一項に記載のアレイ基板の検査方法。
  5. 請求項1から請求項4のいずれか一項に記載のアレイ基板の検査方法を含むことを特徴とするアレイ基板の製造方法。
  6. 基板上に、
    平行に設けられた複数の容量線及び複数の走査線と、前記走査線と交差するように設けられた複数のデータ線と、前記走査線と前記データ線の交差部に設けられた薄膜トランジスタとにより構成される表示領域と、前記表示領域に隣接して設けられた周辺駆動回路領域とを有し、前記薄膜トランジスタの下層側に遮光層が設けられ、該遮光膜と前記薄膜トランジスタとの間には絶縁膜が設けられ、前記容量線は、前記絶縁膜に設けられたコンタクトホールを介して前記遮光層に接続され、前記薄膜トランジスタの電気特性を測定する第1テストパターン及び第2テストパターンとを具備してなるアレイ基板であって、
    前記第1テストパターンは、前記遮光膜と前記容量線とのコンタクト抵抗を測定するパターンを含み、
    前記第1テストパターン及び前記第2テストパターンそれぞれの前記測定に、共通のプローブカードが用いられるように、前記第1テストパターン及び前記第2テストパターンそれぞれの複数のパッド部が配置されてなることを特徴とするアレイ基板。
  7. 前記第2テストパターンは、前記絶縁膜の電気抵抗を測定するパターンを含むことを特徴とする請求項6に記載のアレイ基板。
  8. 前記第1テストパターン及び前記第2テストパターンそれぞれの複数のパッド部の配置が同一であることを特徴とする請求項6または7に記載のアレイ基板。
  9. 前記素子は、N型薄膜トランジスタ及びP型薄膜トランジスタとを有し、
    前記第1テストパターンは、前記N型薄膜トランジスタの電気特性を測定するテストパターンであり、
    前記第2テストパターンは、前記P型薄膜トランジスタの電気特性を測定するテストパターンであることを特徴とする請求項6ないし8のいずれか一項に記載のアレイ基板。
  10. 請求項6から請求項9のいずれか一項に記載のアレイ基板を有することを特徴とする電気光学装置。
JP2000179901A 2000-06-15 2000-06-15 アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置 Expired - Fee Related JP3937692B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179901A JP3937692B2 (ja) 2000-06-15 2000-06-15 アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179901A JP3937692B2 (ja) 2000-06-15 2000-06-15 アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置

Publications (2)

Publication Number Publication Date
JP2001358189A JP2001358189A (ja) 2001-12-26
JP3937692B2 true JP3937692B2 (ja) 2007-06-27

Family

ID=18681087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179901A Expired - Fee Related JP3937692B2 (ja) 2000-06-15 2000-06-15 アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置

Country Status (1)

Country Link
JP (1) JP3937692B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782239A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 测量ltps显示面板的tft电性的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10227332A1 (de) 2002-06-19 2004-01-15 Akt Electron Beam Technology Gmbh Ansteuervorrichtung mit verbesserten Testeneigenschaften
JP2004341216A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp 電気光学装置用基板及びその製造方法、並びに該電気光学装置用基板を備えた電気光学装置及び電子機器
US6833717B1 (en) 2004-02-12 2004-12-21 Applied Materials, Inc. Electron beam test system with integrated substrate transfer module
US7319335B2 (en) 2004-02-12 2008-01-15 Applied Materials, Inc. Configurable prober for TFT LCD array testing
US7535238B2 (en) 2005-04-29 2009-05-19 Applied Materials, Inc. In-line electron beam test system
US7786742B2 (en) 2006-05-31 2010-08-31 Applied Materials, Inc. Prober for electronic device testing on large area substrates
BRPI0918640A2 (pt) * 2008-09-18 2015-12-01 Sharp Kk placa mãe, método de produção de placa mãe, e substrato de dispositivo.
JP5697842B2 (ja) * 2008-11-18 2015-04-08 ラピスセミコンダクタ株式会社 半導体装置の製造方法及びこれに用いるsoq基板
CN110335560B (zh) * 2019-07-23 2022-11-01 云谷(固安)科技有限公司 阵列基板、显示面板以及阵列基板的电性测试方法
CN114296278B (zh) * 2021-11-30 2023-04-25 滁州惠科光电科技有限公司 阵列基板、显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785196B2 (ja) * 1987-09-14 1995-09-13 東京エレクトロン株式会社 プローブ装置
JPH05129410A (ja) * 1991-10-31 1993-05-25 Fujitsu Ltd 半導体集積回路の製造方法及び同方法に使用されるレチクル並びにプローブ試験方法
JP3150625B2 (ja) * 1996-09-26 2001-03-26 松下電器産業株式会社 液晶表示装置の製造方法
JPH11167123A (ja) * 1997-09-30 1999-06-22 Sanyo Electric Co Ltd 表示装置
JP2001053282A (ja) * 1999-08-11 2001-02-23 Matsushita Electric Ind Co Ltd 薄膜トランジスタアレイ基板及びその検査方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782239A (zh) * 2016-12-27 2017-05-31 武汉华星光电技术有限公司 测量ltps显示面板的tft电性的方法

Also Published As

Publication number Publication date
JP2001358189A (ja) 2001-12-26

Similar Documents

Publication Publication Date Title
JP4003471B2 (ja) 電気光学装置、電子機器、および電気光学装置の製造方法
US5917563A (en) Liquid crystal display device having an insulation film made of organic material between an additional capacity and a bus line
KR100895311B1 (ko) 액정 표시 장치 및 그 검사 방법
CN103293805B (zh) 用于边缘场切换模式液晶显示装置的阵列基板
KR100900537B1 (ko) 액정 표시 장치, 그 검사 방법 및 제조 방법
KR100514509B1 (ko) 반도체 장치, 전기 광학 장치, 및 전자 기기
JPH08101397A (ja) 薄膜トランジスタ型液晶表示装置とその製造方法
JP3937692B2 (ja) アレイ基板の検査方法、アレイ基板の製造方法、アレイ基板及び電気光学装置
JP2006250985A (ja) 電気光学装置及び電子機器
JP2008209563A (ja) 液晶装置及び電子機器
KR101620527B1 (ko) 박막트랜지스터 기판 및 그 제조 방법
KR100612992B1 (ko) 액정 표시 장치용 박막 트랜지스터 기판 및 그 수리 방법
JP2003050400A (ja) アクティブマトリクス型液晶表示装置及びその製造方法
JP4198485B2 (ja) 表示装置用電極基板
JP2007093685A (ja) 電気光学装置及び電子機器
JP2009216963A (ja) 液晶表示装置
JP2001051300A (ja) 液晶表示装置
JP3488649B2 (ja) アクティブマトリクス基板
KR100973803B1 (ko) 액정 표시 장치
KR100840329B1 (ko) 액정 표시 장치
JP4236720B2 (ja) 液晶電気光学装置
CN101101913B (zh) 薄膜晶体管阵列
JPH11233778A (ja) 表示装置
KR20060089830A (ko) 박막 트랜지스터 표시판
JP2002006341A (ja) 液晶装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees