JP3931438B2 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- JP3931438B2 JP3931438B2 JP19877298A JP19877298A JP3931438B2 JP 3931438 B2 JP3931438 B2 JP 3931438B2 JP 19877298 A JP19877298 A JP 19877298A JP 19877298 A JP19877298 A JP 19877298A JP 3931438 B2 JP3931438 B2 JP 3931438B2
- Authority
- JP
- Japan
- Prior art keywords
- mode
- temperature
- air
- cooling
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
【発明の属する技術分野】
本発明は、DEFスイッチを押すと確実に短時間で窓の曇りを晴らすことが可能な電気自動車用ヒートポンプ式エアコンシステム等の車両用空調装置に関するものである。
【0002】
【従来の技術】
従来より、特開平9−286225号公報においては、DEFモードにて暖房ぎみ除湿(基本動作:暖房)と冷房ぎみ除湿(基本動作:冷房)の運転条件の区別をDEFスイッチのON時の外気温度により一義的に選択するようにした電気自動車用空調装置が記載されている。すなわち、外気温度が切替温度(例えば18℃)以上の高温の場合には、冷房ぎみ除湿モードを選択して車室内を冷房ぎみ除湿し、外気温度が切替温度よりも低温の場合には、暖房ぎみ除湿モードを選択して車室内を暖房ぎみ除湿している。
【0003】
【発明が解決しようとする課題】
ところが、上記の電気自動車用空調装置の制御方法では、図9のタイムチャートに示したように、A/CスイッチをONしてコンプレッサを起動し、運転モードが暖房モードの場合に、フロント窓ガラスが曇ると、車両乗員がDEFスイッチをONして車室内の除湿を希望する(DEF制御に移行する)。すると、DEF制御時の運転モードによっては、つまり冷房ぎみ除湿モードが選択されることにより、冷凍サイクル中の冷媒の流れを切り替える電磁弁がON、OFFする際にかなり大きな冷媒音(騒音)が発生する可能性があり、商品性を低下させるという問題が生じている。
ここで、図9中のTAOは演算結果により算出された目標吹出温度で、NCはコンプレッサの回転速度で、Pdはコンプレッサの吐出圧力で、TAは実際の吹出温度で、TEはエバ後温度である。
【0004】
そこで、暖房モードからDEF制御に移行する際の冷媒音対策としてコンプレッサを一旦停止、もしくはコンプレッサの回転速度を低回転速度(例えば500rpm)以下に落として冷凍サイクルの高圧圧力を下げてから電磁弁をOFFまたはONするように制御している。
それによって、除湿の効果が発揮される回転速度まで到達するのに少なくとも30秒間〜1分間の時間が余計に必要となる。そのため、DEFスイッチをONして急速にフロント窓ガラスの曇りを晴らしたい場合でも、暖房モードからDEF制御に移行する際に長時間の切替待機時間を必要とするので、その時間分はフロント窓ガラスの曇りを晴らす時間が遅れてしまい、ドライバーの運転視界を十分に得ることができないという問題が生じる。
【0005】
また、外気温度により一義的にモードを決定することで、例えば車室内を暖房したい時でも、運転モードが冷房ぎみ除湿モードに切り替えられるケースも起こり得るので、車両乗員の意図しない運転モードおよび吹出温度を作り出してしまう。それによって、車両乗員が希望する車室内の空調環境の快適性を損ねてしまい、車両乗員が希望する暖房感を得ることができず、車両乗員が故障したと誤解する可能性もあった。
【0006】
【発明の目的】
本発明の目的は、除湿モード設定手段が操作されると、短時間で窓の曇りを確実に晴らすことができ、車両乗員が希望する運転モードを得ることのできる車両用空調装置を提供することにある。また、車両乗員に違和感を与えない快適な吹出温度を作り出して車室内を除湿することのできる車両用空調装置を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明によれば、除湿モード設定手段により車室内の除湿が希望された際に、除湿モード設定手段により車室内の除湿を希望する前の運転モードが冷房モード用循環回路の場合には、冷房ぎみ除湿モード用循環回路に切り替えるか、あるいは除湿モード設定手段により車室内の除湿を希望する前の運転モードが暖房モード用循環回路の場合には、暖房ぎみ除湿モード用循環回路に切り替えるように循環回路切替手段を制御することにより、除湿モード設定手段により車室内の除湿を希望する前の基本動作モードが維持される。
それによって、長時間の切替待機時間を必要とすることなく、冷房ぎみ除湿モードまたは暖房ぎみ除湿モードのうちのいずれかの運転モードにて車室内の除湿が成されるので、短時間で窓の曇りを確実に晴らすことができる。
また、請求項2に記載の発明によれば、除湿モード設定手段により車室内の除湿が希望された際には、外気温度と目標吹出温度との温度差に基づいて、冷房モード、冷房ぎみ除湿モードまたは暖房ぎみ除湿モードのうちのいずれかの運転モードが選択される。そして、この選択した運転モードとなるように循環回路切替手段を制御することにより、除湿モード設定手段により車室内の除湿を希望する前の基本動作モードが維持される。
そして、除湿モード設定手段により車室内の除湿が希望された際に、除湿モード設定手段により車室内の除湿を希望する前の運転モードが冷房モード用循環回路の場合、冷房ぎみ除湿モード用循環回路に切り替えることにより、低めに設定される目標吹出温度を作り易くなる。また、除湿モード設定手段により車室内の除湿が希望された際に、除湿モード設定手段により車室内の除湿を希望する前の運転モードが暖房モード用循環回路の場合、暖房ぎみ除湿モード用循環回路に切り替えることにより、高めに設定される目標吹出温度を作り易くなる。
【0008】
それによって、長時間の切替待機時間を必要とすることなく、冷房モード、冷房ぎみ除湿モードまたは暖房ぎみ除湿モードのうちのいずれかの運転モードにて車室内の除湿が成されるので、短時間で窓の曇りを確実に晴らすことができる。また、車両乗員に違和感を与えない快適な吹出温度を作り出すことができ、且つ車両乗員が希望する運転モードで車室内を冷房ぎみ除湿または暖房ぎみ除湿することができる。
【0009】
請求項3に記載の発明によれば、除湿モード設定手段により車室内の除湿を希望する前の運転モードが冷房モード用循環回路の場合に、外気温度の関数が目標吹出温度よりも小さい時には、冷房ぎみ除湿モード用循環回路に切り替えるように循環回路切替手段を制御することにより、除湿モード設定手段により車室内の除湿を希望する前の基本動作モードが維持される。それによって、請求項2に記載の発明と同様な効果を達成することができる。
【0010】
請求項4に記載の発明によれば、除湿モード設定手段により車室内の除湿を希望する前の運転モードが冷房モード用循環回路の場合に、目標吹出温度が外気温度の関数以下の時または所定の吹出温度以下の時、冷房モード用循環回路を維持するように循環回路切替手段を制御することにより、除湿モード設定手段により車室内の除湿を希望する前の基本動作モードが維持される。それによって、請求項2に記載の発明と同様な効果を達成することができる。
【0012】
【発明の実施の形態】
〔実施例の構成〕
発明の実施の形態を実施例に基づき図面を参照して説明する。ここで、図1は電気自動車用空調装置の全体構成を示した図で、図2は電気自動車用空調装置の制御系を示した図である。
【0013】
電気自動車用空調装置は、走行用モータMを搭載する電気自動車(車両)の車室内を空調するエアコンユニット(空調ユニット)1における各空調機器(アクチュエータ)を、エアコン制御装置(以下エアコンECUと呼ぶ)10によって制御するように構成された電気自動車用ヒートポンプ式エアコンシステムである。
【0014】
エアコンユニット1は、内部に電気自動車の車室内に空調空気を導く空気通路を形成する空調ダクト2、この空調ダクト2内において空気流を発生させる遠心式送風機、空調ダクト2内を流れる空気を加熱して車室内を暖房するためのブラインサイクル、および空調ダクト2内を流れる空気を冷却除湿して車室内を除湿するための冷凍サイクル等から構成されている。
【0015】
空調ダクト2は、電気自動車の車室内の前方側に配設されている。その空調ダクト2の最も上流側(風上側)は、内外気切替箱を構成する部分で、車室内空気(以下内気と言う)を取り入れる内気吸込口3、および車室外空気(以下外気と言う)を取り入れる外気吸込口4を有している。さらに、内気吸込口3および外気吸込口4の内側には、内外気切替ダンパ5が回転自在に支持されている。この内外気切替ダンパ5は、サーボモータ等のアクチュエータ(図示せず)により駆動されて、吸込口モードを内気循環モード、外気導入モード等に切り替える。なお、内外気切替ダンパ5は、内外気切替箱と共に内外気切替手段を構成する。
【0016】
また、空調ダクト2の下流側(風下側)は、吹出口切替箱を構成する部分で、電気自動車のフロント窓ガラスの内面に向かって主に温風を吹き出すデフロスタ(DEF)吹出口11、車両乗員の頭胸部に向かって主に冷風を吹き出すフェイス(FACE)吹出口12、および車両乗員の足元部に向かって主に温風を吹き出すフット(FOOT)吹出口13を有している。
【0017】
さらに、各吹出口の内側には、デフロスタ(DEF)ダンパ14、フェイス(FACE)ダンパ15およびフット(FOOT)ダンパ16が回転自在に支持されている。DEF、FACE、FOOTダンパ14〜16よりなる吹出口切替ドアは、サーボモータ等のアクチュエータ(図示せず)により駆動されて、吹出口モードをフェイス(FACE)モード、バイレベル(B/L)モード、フット(FOOT)モード、フットデフ(F/D)モードまたはデフロスタ(DEF)モードに切り替える。
【0018】
遠心式送風機は、空調ダクト2と一体的に構成されたスクロールケースに回転自在に収容された遠心式ファン17、およびこの遠心式ファン17を駆動するブロワモータ18を有し、ブロワ駆動回路(図示せず)を介して印加されるブロワモータ端子電圧(ブロワ電圧)に基づいてブロワ風量(ブロワモータ18の回転速度)が制御される。
【0019】
ブラインサイクルは、温水式ヒータ6、ブライン冷媒熱交換器7、ウォータポンプ8、燃焼式ヒータ9、およびこれらを環状に接続する温水配管(ブライン配管)等から構成されている。なお、本実施例では、ブラインサイクル内を循環する温水(熱媒体、ブライン)として不凍液(例えばエチレングリコール水溶液)やLLC(ロングライフクーラント)を使用している。
【0020】
温水式ヒータ6は、本発明の加熱用室内熱交換器に相当するもので、空調ダクト2内に設置され、内部を流れる温水との熱交換によって通過する空気を加熱する室内空気加熱器である。温水式ヒータ6の空気の入口部および出口部には、2個のエアミックス(A/M)ダンパ19が回転自在に支持されている。これらのA/Mダンパ19は、温水式ヒータ6を通過する空気量(温風量)と温水式ヒータ6を迂回する空気量(冷風量)とを調節して車室内へ吹き出す空気の吹出温度を調整する。そして、2個のA/Mダンパ19は、ステッピングモータやサーボモータ等のアクチュエータ(図示せず)により開度が変更されて温水式ヒータ6内に流入した温水による空調ダクト2内の空気の加熱量を調節する加熱量調節手段である。
【0021】
ブライン冷媒熱交換器7は、本発明の加熱用室内熱交換器に相当するもので、アルミニウム合金等の熱伝導性に優れる金属パイプよりなる二重管構造を成し、内周側に温水通路、外周側に冷媒通路が形成されている。このブライン冷媒熱交換器7は、車室外に設置され、温水通路内を流れる低温の温水(ブライン:熱媒体)と冷媒通路内を流れる高温高圧のガス冷媒とを熱交換させることにより、温水を加熱する温水加熱器として運転されると共に、冷凍サイクルの凝縮器として運転される。
【0022】
ウォータポンプ8は、通電を受けて起動することによりブラインサイクル内に温水の循環流を発生するウォータポンプである。燃焼式ヒータ9は、図示しない燃料ポンプから圧送された燃料を燃焼用空気と混合して燃焼し、その燃焼時に生成される燃焼ガスとの熱交換によって温水を加熱する。温水との熱交換を終えた燃焼ガスは、大気に排出される。但し、この燃焼式ヒータ9は、外気温度が低い(例えば4℃以下の)時に、ブライン冷媒熱交換器7だけでは十分に温水を加熱できない時に切り替えて単独で使用される。なお、燃焼式ヒータ9は、燃料ポンプから圧送される燃料供給量および燃焼用空気量を調節することにより、燃焼量(発熱量)を100〜40%の間で無段階に切り替えて使用することができる。
【0023】
冷凍サイクルは、ヒートポンプサイクルでもあり、冷媒圧縮機(以下コンプレッサと言う)20、ブライン冷媒熱交換器7、後記する減圧手段、室外熱交換器23、エバポレータ24、アキュームレータ25、後記する循環回路切替手段、およびこれらを環状に接続する冷媒配管等から構成されて、各運転モードに基づいて冷媒の循環方向が変わる。
【0024】
なお、本実施例の通常AUTO状態(通常の冷暖房モード、温度コントロール状態)の時の運転モードとしては、車室内を冷房する冷房モード、ヒートポンプのみで車室内を暖房する(ヒートポンプ)暖房モード、燃焼式ヒータ9のみで車室内を暖房する燃焼暖房モード等が設定されている。また、本実施例のDEF制御(除湿モード、DEFモード)の時の運転モードとしては、フロント窓ガラスの防曇を行う外気導入冷房モード、車室内を冷房しながら除湿する冷房ぎみ除湿モード、車室内を暖房しながら除湿する暖房ぎみ除湿モード、フロント窓ガラスの防曇とエバポレータ24のフロスト防止を行う外気導入暖房モード、燃焼式ヒータ9のみで車室内を暖房ぎみ除湿する燃焼暖房モード等が設定されている。
【0025】
コンプレッサ20は、吸入したガス冷媒を圧縮する電動式の冷媒圧縮機であって、エアコンECU10の出力信号に基づいてコンプレッサ20の駆動モータ(図示せず)の回転速度を制御する回転速度制御手段としてのエアコン用インバータ30を備えている。そして、駆動モータは、エアコン用インバータ30によって車載電源Vから印加される電力が連続的あるいは段階的に可変制御される。したがって、コンプレッサ20は、印加電力の変化による駆動モータの回転速度の変化によって、冷媒吐出容量を変化させて冷凍サイクル内を循環する冷媒の流量を調節することによりブライン冷媒熱交換器7(温水式ヒータ6)の加熱能力やエバポレータ24の冷却能力(除湿能力)が制御される。
【0026】
本実施例では、本発明の減圧手段に相当する部品として2個の第1、第2減圧手段21、22を備えている。第1減圧手段21は、暖房モード時および除湿モード時にブライン冷媒熱交換器7より流入した冷媒を減圧するキャピラリチューブである。第2減圧手段22は、冷房モードおよび除湿モード時に室外熱交換器23より流入した冷媒を減圧するキャピラリチューブである。
【0027】
室外熱交換器23は、電気自動車が走行する際に生じる走行風を受け易い車室外(例えば電気自動車の前部)に設置されて、内部を流れる冷媒と電動ファン26により送風される外気とを熱交換する。なお、室外熱交換器23は、暖房モード時および除湿モード時には、第1減圧手段21で減圧された低温低圧の冷媒を外気との熱交換により蒸発気化させる蒸発器として運転され、冷房モードおよび除湿モード時には、ブライン冷媒熱交換器7より流入した冷媒を外気との熱交換により凝縮液化させる凝縮器として運転される。
【0028】
エバポレータ24は、本発明の冷却用室内熱交換器に相当するもので、空調ダクト2内において温水式ヒータ6よりも下流側(風下側)に設置され、冷房モード時および除湿モード時に第2減圧手段22および第1減圧手段21で減圧された低温低圧の冷媒を空調ダクト2内の空気との熱交換により蒸発気化させる蒸発器として運転される。これにより、エバポレータ24の内部を流れる冷媒がエバポレータ24を通過する空気から蒸発潜熱を奪って(吸熱して)蒸発することで、エバポレータ24を通過する空気が冷却除湿される。
アキュームレータ25は、内部に流入した冷媒を液冷媒とガス冷媒とに気液分離して液冷媒を貯溜し、ガス冷媒のみをコンプレッサ20へ供給する気液分離器として運転される。
【0029】
循環回路切替手段は、冷凍サイクル中の冷媒の循環方向を冷房サイクル(図1において矢印Cの経路)、暖房サイクル(図1において矢印Hの経路)、除湿サイクル(図1において矢印Dの経路)等のいずれかのサイクルに切り替えるものである。ここで、冷房サイクルは本発明の冷房ぎみ除湿モード用循環回路および冷房モード用循環回路に相当し、暖房サイクルは本発明の暖房モード用循環回路に相当し、除湿サイクルは本発明の暖房ぎみ除湿モード用循環回路に相当する。本実施例では、循環回路切替手段として、通電(ON、オン)されると開弁し、通電が停止(OFF、オフ)されると閉弁する3個の電磁式開閉弁(以下電磁弁と略す)VC、VH、VDが使用されている。
【0030】
電磁弁VCは、第1減圧手段21を迂回し、ブライン冷媒熱交換器7と室外熱交換器23とを結ぶ冷房用冷媒流路に設置されている。そして、電磁弁VCは、冷房サイクル時に、コンプレッサ20より吐出された冷媒を、ブライン冷媒熱交換器7→室外熱交換器23→第2減圧手段22→エバポレータ24→アキュームレータ25→コンプレッサ20の順に流す第3冷媒流路を開く冷房用開閉手段である。
【0031】
電磁弁VHは、第2減圧手段22およびエバポレータ24を迂回し、室外熱交換器23とアキュームレータ25とを結ぶ暖房用冷媒流路に設置されている。そして、電磁弁VHは、暖房サイクル時に、コンプレッサ20より吐出された冷媒を、ブライン冷媒熱交換器7→第1減圧手段21→室外熱交換器23→アキュームレータ25→コンプレッサ20の順に流す第1冷媒流路を開く暖房用開閉手段である。
【0032】
電磁弁VDは、第2減圧手段22を迂回し、第1減圧手段21とエバポレータ24とを結ぶ除湿用冷媒流路に設置されている。そして、電磁弁VDは、除湿サイクル時および暖房ぎみ除湿サイクル時に、コンプレッサ20より吐出された冷媒を、ブライン冷媒熱交換器7→第1減圧手段21→エバポレータ24→アキュームレータ25→コンプレッサ20の順に流す第2冷媒流路を開く除湿用開閉手段である。
【0033】
エアコンECU10は、本発明の空調制御手段、目標吹出温度決定手段に相当するもので、中央演算処理装置(以下CPUと言う)31、ROM32、RAM33、A/D変換器34、インターフェイス35、36等を持ち、それ自体は周知のものである。また、エアコンECU10は、走行用モータMの回転速度を制御する走行用インバータIにも接続するジャンクションボックスJを介して車載電源Vより電力が供給されて作動する。
【0034】
そして、エアコンECU10は、内気温センサ41、外気温センサ42、日射センサ43、冷媒圧力センサ44、エバ後温度センサ45、水温センサ46、除霜センサ47、水温センサ48および操作パネル50より入力される入力信号と予めインプットされた制御プログラムに基づいて、各空調機器を制御する。すなわち、エアコンECU10は、各センサの検出値(検出信号)および操作パネル50の操作値(操作信号)などの入力信号と予めインプットされた制御プログラムに基づいて、各冷凍機器(アクチュエータ)の運転状態を制御する。
【0035】
内気温センサ41は、例えばサーミスタ等の感温素子よりなり、車室内の空気温度(内気温度)を検出する内気温度検出手段である。外気温センサ42は、例えばサーミスタ等の感温素子よりなり、車室外の空気温度(外気温度)を検出する外気温度検出手段である。日射センサ43は、車室内への日射量を検出する日射量検出手段である。冷媒圧力センサ44は、コンプレッサ20の吐出圧力である冷凍サイクルの高圧圧力を検出する冷媒圧力検出手段である。
【0036】
エバ後温度センサ45は、例えばサーミスタ等の感温素子よりなり、エバポレータ24を通過した直後の空気温度(以下エバ後温度と言う)を検出する蒸発器温度検出手段(エバ後温度検出手段)である。水温センサ46は、例えばサーミスタ等の感温素子よりなり、温水式ヒータ6の入口水温を検出する熱媒体温度検出手段である。除霜センサ47は、例えばサーミスタ等の感温素子よりなり、暖房モード時および暖房ぎみ除湿モード時に室外熱交換器23の入口部の冷媒温度を検出する冷媒温度検出手段である。水温センサ48は、例えばサーミスタ等の感温素子よりなり、燃焼式ヒータ9の出口水温を検出する。
【0037】
操作パネル50には、図3に示したように、温度設定スイッチ51、ブロワオフスイッチ52、オートスイッチ53、風量設定スイッチ54、モード設定スイッチ55、液晶表示器56、内気循環設定スイッチ57、フロントデフロスタスイッチ(以下DEFスイッチと言う)58、リヤデフォッガスイッチ59、エアコン(A/C)スイッチ60、燃焼式ヒータ切替スイッチ61および燃焼式ヒータオフスイッチ62が配置されている。
【0038】
このうち、温度設定スイッチ51は、本発明の吹出温度設定手段に相当するもので、コンプレッサ20の回転速度の設定、またはA/Mダンパ19の開度設定を行って車室内へ吹き出す空気の吹出温度を設定するスイッチである。オートスイッチ53は、各アクチュエータを各センサ信号に応じて自動コントロールするように指令するスイッチである。モード設定スイッチ55は、DEF、FACE、FOOTダンパ14〜16を開閉制御することによって、吹出口モードを、フェイス(FACE)モード、バイレベル(B/L)モード、フット(FOOT)モードまたはフットデフ(F/D)モードのうちのいずれかに設定するように指令するスイッチである。
【0039】
内気循環設定スイッチ57は、内外気切替ダンパ5を開閉制御することによって吸込口モードを内気循環モードに設定するスイッチである。DEFスイッチ58は、本発明の除湿モード設定手段に相当するもので、通常AUTO状態の時に押すと吹出口モードをデフロスタ(DEF、除湿)モードに設定するように指令し、次に再度押すと除湿モードを解除するように指令する吹出口モード切替指令手段である。
【0040】
〔第1実施例の作用〕
次に、本実施例の電気自動車用空調装置の作動を図1ないし図7に基づいて説明する。先ず、本実施例のエアコンECU10の制御処理を図1ないし図4に基づいて説明する。ここで、図4はエアコンECU10による主要な制御処理を示したフローチャートである。
【0041】
先ず、エアコンECU10に車載電源Vから電力が供給されると、図4のルーチンが起動され、各イニシャライズおよび初期設定を行う(ステップS1)。
次に、温度設定スイッチ51で設定された設定吹出温度Tsetを読み込む(吹出温度設定手段:ステップS2)。
【0042】
次に、操作パネル50からの各操作信号(例えば風量設定スイッチ54で設定される遠心式送風機のブロワ風量信号、モード設定スイッチ55で設定される吹出口モード信号、DEFスイッチ58で設定されるDEFモード信号、内気循環設定スイッチ57で設定される内気循環モード信号)を読み込む(除湿モード設定手段:ステップS3)。
【0043】
次に、内気温センサ41で検出した内気温度TR、外気温センサ42で検出した外気温度TAM、日射センサ43で検出した日射量TS、エバ後温度センサ45で検出したエバ後温度TE、水温センサ46で検出した温水温度TW等の各種センサから各センサ信号を読み込む(内気温度検出手段、外気温度検出手段、蒸発器温度検出手段:ステップS4)。
【0044】
次に、予めROM32に記憶された下記の数1の式に基づいて、電気自動車の車室内に吹き出す空気の目標吹出温度TAOを算出する(目標吹出温度決定手段:ステップS5)。
【数1】
TAO=Kset×Tset−KR×TR−KAM×TAM−KS×TS+C
【0045】
なお、Tsetは温度設定スイッチ51で設定された設定吹出温度、TRは内気温センサ41で検出した内気温度、TAMは外気温センサ42で検出した外気温度、TSは日射センサ43で検出した日射量である。また、Kset、KR、KAMおよびKSはゲインで、Cは補正用の定数である。
【0046】
次に、予めROM32に記憶された図示しない特性図(マップ)から、目標吹出温度(TAO)に対応するブロワ電圧(ブロワモータ18に印加する電圧)を決定する(ステップS6)。
【0047】
次に、予めROM32に記憶された図示しない特性図(マップ)から、目標吹出温度(TAO)に対応する吹出口モードを決定する(ステップS7)。なお、DEFスイッチ58が押された場合には、DEFダンパ14を図1の一点鎖線位置、FACEダンパ15を図1の一点鎖線位置およびFOOTダンパ16を図1の実線位置に設定して、空調風をフロント窓ガラスの内面に吹き出すDEFモードに設定される。また、モード設定スイッチ55を車両乗員が操作した場合には、その操作に対応した吹出口モードに決定される。
【0048】
ここで、吹出口モードの決定においては、目標吹出温度(TAO)または目標温水温度(TWO)が低い温度から高い温度にかけて、FACEモード、B/Lモード、FOOTモードおよびF/Dモードとなるように決定される。
なお、FACEモードとは、DEFダンパ14を図1の実線位置、FACEダンパ15を図1の実線位置およびFOOTダンパ16を図1の一点鎖線位置に設定して、空調風を車室内の車両乗員の頭胸部に向けて吹き出す吹出口モードである。B/Lモードとは、DEFダンパ14を図1の実線位置、FACEダンパ15を図1の実線位置およびFOOTダンパ16を図1の一点鎖線位置に設定して、空調風を車室内の車両乗員の頭胸部および足元部に向けて吹き出す吹出口モードである。
【0049】
FOOTモードとは、DEFダンパ14を若干量開く位置、FACEダンパ15を図1の一点鎖線位置およびFOOTダンパ16を図1の一点鎖線位置に設定して、空調風の約8割を車両乗員の足元部に向けて吹き出し、空調風の約2割をフロント窓ガラスの内面に向けて吹き出す吹出口モードである。F/Dモードとは、DEFダンパ14を図1の一点鎖線位置、FACEダンパ15を図1の一点鎖線位置およびFOOTダンパ16を図1の一点鎖線位置に設定して、空調風を車両乗員の足元部とフロント窓ガラスの内面に同量ずつ吹き出す吹出口モードである。
【0050】
次に、予めROM32に記憶された図示しない特性図(マップ)から、目標吹出温度(TAO)に対応する吸込口モードを決定する(ステップS8)。ここで、吸込口モードの決定においては、内気循環設定スイッチ57が押された場合には吸込口モードが内気循環モードに設定される。なお、DEFスイッチ58が押された場合には、内気循環設定スイッチ57が押されていても外気導入モードに設定されるが、その後に内気循環設定スイッチ57が押された場合には吸込口モードが内気循環モードに設定される。
【0051】
なお、内気循環モードとは、内外気切替ダンパ5を図1の一点鎖線位置に設定して、内気吸込口3を開き、外気吸込口4を閉じて空調ダクト2内に100%内気を導入する吸込口モードである。また、外気導入モードとは、内外気切替ダンパ5を図1の実線位置に設定して、内気吸込口3を閉じ、外気吸込口4を開いて空調ダクト2内に100%外気を導入する吸込口モードである。また、内外気切替ダンパ5を中立位置に設定して、内気吸込口3および外気吸込口4の両方とも開いて空調ダクト2内に内気および外気を導入する内外気モードを設定しても良い。
【0052】
次に、図5に示すサブルーチンがコールされ、図4のフローチャートのステップS5で算出された目標吹出温度TAOおよび外気温センサ42で検出した外気温度TAM等に応じて、車室内を空調する運転モードを決定する(ステップS9)。
次に、図6に示すサブルーチンがコールされ、コンプレッサ20の目標回転速度を決定して、車室内に吹き出す空気の吹出温度制御を行う(回転速度制御手段:ステップS10)。
【0053】
次に、各ステップS5〜ステップS8にて算出または決定した各制御状態が得られるように、内外気切替ダンパ5、ウォータポンプ8、燃焼式ヒータ9、DEF、FACE、FOOTダンパ14〜16、ブロワモータ18、エアコン用インバータ30、電動ファン26、電磁弁VC、VH、VDおよびA/Mダンパ19等の各アクチュエータに対して制御信号を出力する(ステップS11)。そして、ステップS12で、制御サイクル時間であるτ(例えば0.5秒間〜2.5秒間の経過を待ってステップS2の処理に戻る。
【0054】
〔第1実施例の運転モード決定制御〕
次に、本実施例のエアコンECU10による通常AUTO状態(温度コントロール状態)からDEF制御に移行するときの運転モード決定制御を図1ないし図5に基づいて説明する。ここで、図5はエアコンECU10による運転モード決定制御を示したサブルーチンである。
【0055】
先ず、通常AUTO状態の途中でDEFスイッチ58がON(押)されたか否かを判断する(ステップS21)。この判断結果がNOの場合には、通常AUTO状態(温度コントロール状態)の時の運転モード決定制御を行う。例えば図4のフローチャートのステップS5で算出された目標吹出温度TAOと外気温センサ42で検出した外気温度TAMに応じて運転モードが選択される(ステップS22)。その後に、図5のサブルーチンを抜ける。
【0056】
具体的には、目標吹出温度TAOが高温側の場合には、室外熱交換器23のみを蒸発器として単独運転する暖房モード(図1の暖房サイクルH)が選択される。また、目標吹出温度TAOが低温側の場合には、ウォータポンプ8をOFFし、室外熱交換器23のみを凝縮器として単独運転し、エバポレータ24のみを蒸発器として単独運転する冷房モード(図1の冷房サイクルC)が選択される。そして、外気温度TAMが4℃以下の場合には、コンプレッサ20をOFFし、燃焼式ヒータ9を燃焼能力を可変して運転する燃焼暖房モードが選択される。これら以外に、冷房モードと暖房モードとの間に、ウォータポンプ8およびコンプレッサ20をOFFし、遠心式送風機のみを運転する送風モードを選択するようにしても良い。
【0057】
また、ステップS21の判断結果がYESの場合には、すなわち、通常AUTO状態からDEF制御に移行する場合には、図4のステップS5で算出された目標吹出温度TAOおよび外気温度TAMに応じたDEF制御の時の運転モード決定制御を行う。すなわち、DEF制御に移行する前の運転モードが冷房モードであるか否かを判断する(ステップS23)。この判断結果がYESの場合には、図4のステップS5で算出された目標吹出温度TAOが(外気温度TAM−15℃)以下の低温、または目標吹出温度TAOが3℃以下の低温であるか否かを判断する(ステップS24)。
【0058】
このステップS24の判断結果がYESの場合には、除湿モードとして外気導入冷房モードを選択する(ステップS25)。その後に、図5のサブルーチンを抜ける。
また、ステップS24の判断結果がNOの場合には、除湿モードとして冷房ぎみ除湿モードを選択する(ステップS26)。その後に、図5のサブルーチンを抜ける。
【0059】
ここで、エアコンユニット1のOFF状態のときにDEFスイッチ58をONすると、エアコンECU10は下記の表1に示したDEF制御を行う。また、エアコンユニット1の通常AUTO状態のときにDEFスイッチ58をONすると、エアコンECU10は下記の表1に示したDEF制御を行う。表1はDEF(除湿モード)制御時の運転モードの選択状況を示す。
【表1】
【0060】
なお、DEF制御開始前に仮にマニュアル操作で内気循環設定スイッチ57が押されて内気循環モードが指令されていたとしても100%外気導入モードに固定してDEF制御を開始する。但し、DEF制御の外気導入冷房モード時はオートエアコンの場合に必ず100%外気導入モードに固定するが、マニュアル操作で内気循環設定スイッチ57が押されて内気循環モードが指令されたらこれを受け付ける。
【0061】
すなわち、予めROM32に記憶された下記の数2の式または数3の式に示された関係を満足する場合には、ウォータポンプ8をOFFし、冷凍サイクルを冷房サイクルに切り替える外気導入冷房モードを選択する。この外気導入冷房モード時には、2個のA/Mダンパ19はMAX・COOL位置に固定される。なお、(TAM−α℃)が(3℃)よりも高温の場合には数2の式を採用し、(TAM−α℃)が(3℃)よりも低温の場合には数3の式を採用する。
【0062】
【数2】
TAO≦TAM−15(℃)
【数3】
TAO≦3(℃)
【0063】
また、予めROM32に記憶された下記の数4の式に示された関係を満足する場合には、ウォータポンプ8をONし、冷凍サイクルを冷房サイクルに切り替える冷房ぎみ除湿モードを選択する。この冷房ぎみ除湿モード時には、2個のA/Mダンパ19は、目標吹出温度TAOやエバ後温度TE等に応じてMAX・COOL位置〜MAX・HOT位置間で可変される。
【数4】
TAM−15(℃)<TAO≦TAM
【0064】
また、ステップS23の判断結果がNOの場合には、DEF制御に移行する前の運転モードが暖房モードであるか否かを判断する(ステップS27)。この判断結果がYESの場合には(すなわち、TAO>TAMの場合には)、ウォータポンプ8をONし、冷凍サイクルを除湿サイクルに切り替える暖房ぎみ除湿モードを選択する(ステップS28)。その後に、図5のサブルーチンを抜ける。
【0065】
また、ステップS27の判断結果がNOの場合には、DEF制御に移行する前の運転モードが燃焼暖房モードであり、コンプレッサ20のOFF状態を継続するため、燃焼暖房モードを選択する(ステップS29)。その後に、図5のサブルーチンを抜ける。
【0066】
〔第1実施例のDEF制御時の吹出温度制御〕
次に、本実施例のエアコンECU10によるDEF制御時の吹出温度制御を図1ないし図6に基づいて説明する。ここで、図6はエアコンECU10によるDEF制御時の吹出温度制御(冷媒圧縮機の回転速度制御)を示したサブルーチンである。
【0067】
先ず、DEFスイッチ58が押されたか否かを判断する(ステップS31)。この判断結果がNOの場合には、図6のサブルーチンを抜ける。
また、ステップS31の判断結果がYESの場合には、運転モードとして暖房ぎみ除湿モードが選択されているか否かを判断する(ステップS32)。この判断結果がYESの場合には、温水式ヒータ6を通過する空気のブロワ風量V(m3 /h)から温度効率φを決定する(温度効率決定手段:ステップS33)。ここでは、遠心式送風機の運転状態によって求めた遠心式送風機のブロワ風量Vと温度効率φとの特性図(図示せず)に基づいて温度効率φを算出する。
【0068】
次に、目標温水温度TWOを後述の方法で決定する(目標熱媒体温度決定手段:ステップS34)。すなわち、エバ後温度センサ45で検出したエバ後温度TE、図4のフローチャートのステップS5で決定した目標吹出温度TAO、およびステップS21で決定した温度効率φから目標温水温度TWOを下記の数5の式に基づいて算出する。
【数5】
TWO=(TAO−TE)/φ+TE
【0069】
次に、目標温水温度TWOと水温センサ46で検出した温水式ヒータ6の入口水温(以下温水温度と言う)TWとの温度偏差に基づいて、コンプレッサ20の目標回転速度を決定する(目標回転速度決定手段:ステップS35)。その後に、図6のサブルーチンを抜ける。そして、図4のフローチャートのステップS11では、エバ後温度センサ45で検出したエバ後温度TEを凍結限界温度(着霜限界温度、例えば2℃)に保ちながら、車室内に吹き出す実際の吹出温度TAが目標吹出温度TAOになるように、コンプレッサ20の回転速度が、目標温水温度TWOと温水温度TWとの温度偏差に応じて制御される(TWO制御)。
【0070】
ここで、図6のサブルーチンのステップS34で決定される目標温水温度TWOを、例えばDEF吹出口11よりフロント窓ガラスの内面に向けて吹き出す空気の吹出温度と関連させておけば、温度設定スイッチ51等により車両乗員が希望する吹出温度を設定するのみで、フロント窓ガラスの内面へ吹き出す空気の吹出温度が車両乗員の希望に合った温度に到達する。
【0071】
また、ステップS32の判断結果がNOの場合には、運転モードとして冷房ぎみ除湿モードが選択されているか否かを判断する(ステップS36)。この判断結果がYESの場合には、MAX・COOLであるか否かを判断する。すなわち、A/Mダンパ19の目標ダンパ開度(SW)が0(%)であるか否かを判断する(ステップS37)。この判断結果がNOの場合には、前述の方法で、温水式ヒータ6を通過する空気のブロワ風量V(m3 /h)から温度効率φを決定する(温度効率決定手段:ステップS38)。
【0072】
次に、下記の数6の式に基づいて2個のA/Mダンパ19の目標ダンパ開度(SW)を算出する(ステップS39)。
【数6】
SW={(TAO−TE)/φ(TW−TE)}×100(%)
ここで、SWはMAX・COOL(全閉)を0(%)とし、MAX・HOT(全開)を100(%)とする。
【0073】
次に、エバ後温度センサ45で検出したエバ後温度TEが凍結限界温度(例えば2℃)付近に接近するようにコンプレッサ20の目標回転速度を決定する(ステップS40)。その後に、図6のサブルーチンを抜ける。そして、図4のフローチャートのステップS11では、エバ後温度センサ45で検出したエバ後温度TEを凍結限界温度(例えば2℃)に保ちながらコンプレッサ20の回転速度が制御されると共に、車室内に吹き出す実際の吹出温度TAが目標吹出温度TAOになるように、A/Mダンパ19の目標ダンパ開度(SW)が、目標吹出温度TAOとエバ後温度TEと温水温度TWに応じて制御される(A/Mダンパ制御)。
【0074】
また、ステップS36の判断結果がNOの場合、ステップS37の判断結果がYESの場合には、運転モードとして外気導入冷房モードが選択されているので、エバ後温度センサ45で検出するエバ後温度TEが目標吹出温度TAOに一致(TE=TAO)するように、コンプレッサ20の目標回転速度を決定する(ステップS41)。その後に、図6のサブルーチンを抜ける。そして、図4のフローチャートのステップS11では、エバ後温度センサ45で検出するエバ後温度TEが目標吹出温度TAOに一致するように、コンプレッサ20の回転速度が、目標吹出温度TAOに応じて制御される(TE=TAO制御)。
【0075】
〔第1実施例のDEF制御〕
次に、本実施例のエアコンECU10によるエアコンユニット1の通常AUTO状態(温度コントロール状態)からDEF制御に移行する時の各アクチュエータの作動を図1ないし図6に基づいて説明する。
【0076】
イ)外気導入冷房モード
通常AUTO状態の時に運転モードが車両乗員がDEFスイッチ58を押してフロント窓ガラスの曇りの除去を希望した時に、目標吹出温度TAOが(外気温度TAM−15℃)以下の低温の場合、または目標吹出温度TAOが3℃以下の低温の場合には、除湿モードとして外気導入冷房モードが選択される。この場合には、ウォータポンプ8がOFFされ、コンプレッサ20がONされ、2個のA/Mダンパ19がMAX・COOLに固定され、電磁弁VCがONされ、電磁弁VH、VDがOFFされる。このとき、吸込口モードは外気導入モードに設定され、吹出口モードはDEFモードに設定される。
【0077】
したがって、コンプレッサ20の吐出口より吐出された冷媒は、冷房サイクル(矢印C方向)を流れ、コンプレッサ20→ブライン冷媒熱交換器7(単に冷媒通路として使用)→電磁弁VC→室外熱交換器23→第2減圧手段22→エバポレータ24→アキュームレータ25→コンプレッサ20のように循環する。
【0078】
このとき、外気吸込口4から空調ダクト2内に吸い込まれた外気は、エバポレータ24を通過する際に冷却除湿されて低湿度の空気となって、温水式ヒータ6を迂回した後に、DEF吹出口11よりフロント窓ガラスの内面に向けて吹き出される。これにより、フロント窓ガラスの防曇性能も十分得られると共に、電動式のウォータポンプ8の作動を止めることができるので省動力および省消費電力となり、電気自動車の走行距離も延びる。
【0079】
ロ)冷房ぎみ除湿モード
車両乗員がDEFスイッチ58を押してフロント窓ガラスの曇りの除去を希望した時に、目標吹出温度TAOが(外気温度TAM−15℃)よりも高温の場合には、除湿モードとして冷房ぎみ除湿モードが選択される。この場合には、ウォータポンプ8およびコンプレッサ20がONされ、目標吹出温度TAOやエバ後温度TE等に応じて2個のA/Mダンパ19がMAX・HOT〜MAX・COOL間で可変され、電磁弁VCがONされ、電磁弁VH、VDがOFFされる。このときも、吸込口モードは外気導入モードに固定され、吹出口モードはDEFモードに固定される。
【0080】
したがって、コンプレッサ20の吐出口より吐出された冷媒は、冷房サイクル(矢印C方向)を流れ、ブライン冷媒熱交換器7→電磁弁VC→室外熱交換器23→第2減圧手段22→エバポレータ24→アキュームレータ25→コンプレッサ20のように循環する。一方、ブライン冷媒熱交換器7で冷媒の凝縮熱によって加熱された温水は、同様に温水式ヒータ6に循環される。
【0081】
このとき、外気吸込口4から空調ダクト2内に吸い込まれた外気は、エバポレータ24を通過する際に冷却除湿されて低湿度の空気となる。そして、エバポレータ24を通過した空気は、A/Mダンパ19の開度に応じて温水式ヒータ6を通過し再加熱された後に、DEF吹出口11よりフロント窓ガラスの内面に向けて吹き出される。これにより、フロント窓ガラスの曇りが除去される。
【0082】
ここで、冷房ぎみ除湿モード時には室外熱交換器23が凝縮器として運転される。また、同様に、電気自動車が走行中であれば走行風も室外熱交換器23に吹き付けられるので、ブライン冷媒熱交換器7での冷媒の放熱量よりも室外熱交換器23での冷媒の放熱量が多くなり、ブライン冷媒熱交換器7での冷媒から温水に与えられる熱量が少なくなる。
【0083】
したがって、空調ダクト2内に吸い込まれた外気はエバポレータ24で冷却除湿された後に温水式ヒータ6を通過する際に再加熱される量が小さくなる。このため、暖房ぎみ除湿モードの目標吹出温度TAOよりも低い温度が算出されるので、冷房ぎみ除湿モード時の目標吹出温度TAOを作り易くなり、車室内が冷房ぎみ除湿される。
【0084】
イ)暖房ぎみ除湿モード
車両乗員がDEFスイッチ58を押してフロント窓ガラスの曇りの除去を希望した時に、除湿モードとして暖房ぎみ除湿モードが選択された場合には、ウォータポンプ8およびコンプレッサ20がONされ、2個のA/Mダンパ19がMAX・HOTに固定され、電磁弁VCがOFFされ、電磁弁VH、VDがエバ後温度TEに応じてON−OFF制御される。このとき、吸込口モードは外気導入モードに固定され、吹出口モードはDEFモードに固定される。
【0085】
1)第1暖房ぎみ除湿モード
そして、エバ後温度TEが凍結限界温度(例えば2℃)よりも高温の第1所定温度(例えば2.5℃)以上の場合には、電磁弁VHがOFFされ、電磁弁VDがONされることによって、エバポレータ24を蒸発器として単独運転する第1暖房ぎみ除湿モードに設定される。
【0086】
したがって、コンプレッサ20の吐出口より吐出された冷媒は、除湿サイクル(矢印D方向)を流れ、ブライン冷媒熱交換器7→第1減圧手段21→電磁弁VD→エバポレータ24→アキュームレータ25→コンプレッサ20のように循環する。一方、ブライン冷媒熱交換器7を通過する際に冷媒の凝縮熱によって加熱された温水は、エバポレータ24の風下側に配置された温水式ヒータ6に循環される。
【0087】
このとき、外気吸込口4から空調ダクト2内に吸い込まれた外気は、エバポレータ24を通過する際に冷却除湿されて低湿度の空気となる。そして、エバポレータ24を通過した全ての空気は、温水式ヒータ6を通過する際に再加熱された後に、DEF吹出口11よりフロント窓ガラスの内面に向けて吹き出される。これによりフロント窓ガラスの曇りが除去されると共に、車室内が暖房ぎみ除湿される。さらに、室外熱交換器23を蒸発器として運転しないため、室外熱交換器23の除霜を行うこともできる。
【0088】
2)第2暖房ぎみ除湿モード
また、エバ後温度TEが第1所定温度と第2所定温度との間の温度(例えば1.5℃〜2.5℃)の場合には、電磁弁VH、VDが共にONされることによって、室外熱交換器23とエバポレータ24とを並列して蒸発器として運転する第2暖房ぎみ除湿モードに設定される。
【0089】
したがって、コンプレッサ20の吐出口より吐出された冷媒は、暖房ぎみ除湿サイクル(図1において矢印H・Dの経路)を冷媒が流れ、ブライン冷媒熱交換器7→第1減圧手段21を通過した後に、室外熱交換器23→電磁弁VHを通るものと、電磁弁VD→エバポレータ24を通るものとに分かれる。一方、ブライン冷媒熱交換器7で冷媒の凝縮熱によって加熱された温水は温水式ヒータ6に循環される。
【0090】
このとき、外気吸込口4から空調ダクト2内に吸い込まれた外気は、エバポレータ24を通過する際に冷却除湿されて低湿度の空気となる。そして、エバポレータ24を通過した全ての空気は、温水式ヒータ6を通過する際に再加熱された後に、DEF吹出口11よりフロント窓ガラスの内面に向けて吹き出される。これにより、フロント窓ガラスの曇りが除去されると共に、車室内が暖房ぎみ除湿される。
【0091】
ここで、上述したように、第2暖房ぎみ除湿モードでは、室外熱交換器23がエバポレータ24と並列して蒸発器として運転される。また、電気自動車が走行中であれば走行風も室外熱交換器23に吹き付けられるので、エバポレータ24よりも室外熱交換器23の吸熱量が多くなることにより、空調ダクト2内に吸い込まれた外気からのエバポレータ24内を通過する冷媒の吸熱量は少なくなる。さらに、ブライン冷媒熱交換器7での冷媒から温水に与えられる熱量は、エバポレータ24を蒸発器として単独運転する第1暖房ぎみ除湿モードと比較して、室外熱交換器23を蒸発器として運転することによる吸熱量の増加分だけ上昇する。これにより、車室内の暖房能力が向上するので目標吹出温度TAOを作り易くなる。
【0092】
3)第3暖房ぎみ除湿モード(外気導入暖房モード)
さらに、エバ後温度TEが凍結限界温度(例えば2℃)よりも低温の第2所定温度(例えば1.5℃)以下の場合には、電磁弁VHがONされ、電磁弁VDがOFFされることによって、室外熱交換器23を蒸発器として単独運転する第3暖房ぎみ除湿モード(外気導入暖房モード)に設定される。
【0093】
したがって、コンプレッサ20の吐出口より吐出された冷媒は、暖房サイクル(矢印H方向)を流れ、ブライン冷媒熱交換器7→第1減圧手段21→室外熱交換器23→電磁弁VH→アキュームレータ25→コンプレッサ20のように循環する。一方、ブライン冷媒熱交換器7で冷媒の凝縮熱によって加熱された温水が温水式ヒータ6に循環する。
【0094】
そして、外気吸込口4から空調ダクト2内に吸い込まれた外気は、エバポレータ24を通過する際にエバポレータ24の表面に付着した霜を解かして、温水式ヒータ6を通過する際に加熱された後に、DEF吹出口11よりフロント窓ガラスの内面に向けて吹き出される。これにより、フロント窓ガラスの曇りが除去されると共に、外気温度TAMが低温でもエバポレータ24の着霜(フロスト)を抑えられ、且つ車室内を外気導入暖房できる。ここで、外気温度TAMが例えば4℃以下に低下した場合には、コンプレッサ20をOFFして燃焼式ヒータ9を能力可変運転制御する。
【0095】
〔第1実施例の効果〕
以上のことから、本実施例では、通常AUTO状態の途中からDEF制御に移行する時に、DEF制御に移行する前の運転モードが冷房モードの場合には、冷房ぎみ除湿モードが選択される。このとき、電磁弁VCはON(開弁)状態を継続し、電磁弁VH、VDはOFF(閉弁)状態を継続することになるため、冷房モード時も冷房ぎみ除湿モード時も共に室外熱交換器23は凝縮器として運転される。
【0096】
これにより、通常AUTO状態の途中からDEF制御に移行する時に、電磁弁VCをONからOFFすることにより、室外熱交換器23の前後を高圧圧力から低圧圧力に切り替える必要はない。これにより、冷房モード時に冷凍サイクルの高圧側に配される電磁弁VCを開閉弁(ON−OFF)することにより発生する冷媒音も出ない。
【0097】
また、通常AUTO状態の途中からDEF制御に移行する時に、DEF制御に移行する前の運転モードが暖房モードの場合には、暖房ぎみ除湿モードが選択される。このとき、電磁弁VCはOFF(閉弁)状態を継続し、電磁弁VH、VDはON−OFF制御されることになるため、暖房モード時も暖房ぎみ除湿モード時も共に、室外熱交換器23が蒸発器として運転される。
【0098】
これにより、通常AUTO状態の途中からDEF制御に移行する時に、電磁弁VCをOFFからONすることにより、室外熱交換器23の前後を低圧圧力から高圧圧力に切り替える必要はない。これにより、暖房モード時に冷凍サイクルの低圧側に配される電磁弁VCを開閉弁(OFF−ON)することにより発生する冷媒音も出ない。
【0099】
したがって、通常AUTO状態の途中でフロント窓ガラスが曇ってしまい、DEFスイッチ58を押して通常AUTO状態からDEF制御に移行する際に長時間の切替待機時間を必要とすることなく、すなわち、タイムラグなく、直ちにDEF制御に移行することができる。このため、直ちに車室内を除湿することができるので、フロント窓ガラスの曇りを除去でき、車両乗員が故障したと誤解することもない。これによって、電気自動車用空調装置としての商品性を向上できる。
【0100】
また、DEF制御に移行する前の運転モードが冷房モードで、しかも目標吹出温度TAOが(TAM−15℃)以下に低下している時、あるいは目標吹出温度TAOが3℃以下に低下している時には、冷房ぎみ除湿モードの代わりに外気導入冷房モードを選択することにより、ブラインサイクルの電動式のウォータポンプ8の作動を停止できる。このため、省動力および省消費電力となると共に、フロント窓ガラスやサイド窓ガラスの防曇性能も十分得られる。
【0101】
本実施例では、DEF制御に移行する前の運転モードが冷房モードで、(TAM−15℃)が目標吹出温度TAOよりも低温の場合には、冷房ぎみ除湿モードを選択することにより、低めに設定される目標吹出温度TAOを作り易くなる。また、DEF制御に移行する前の運転モードが暖房モードの場合には、暖房ぎみ除湿モードを選択することにより、高めに設定される目標吹出温度TAOを作り易くなる。
【0102】
本実施例のように、DEF制御に移行する前の運転モードが暖房モードの時に、DEFスイッチ58をONして運転モードが暖房ぎみ除湿モードに切り替わった場合に、目標吹出温度TAO、コンプレッサ20の回転速度NC、コンプレッサ20の吐出圧力Pd、実際の吹出温度TA、エバ後温度TEがどのように変化するかについて調査した試験例について説明する。この試験結果を図7のタイムチャートに示した。なお、この試験は、外気温度が20℃〜25℃、車室内湿度が100%、5人乗車の場合の空調状態を表している。
【0103】
この図7のタイムチャートからも確認できるように、暖房モードからDEF制御に移行する際に長時間の切替待機時間(例えば30秒間〜1分間)を必要とすることなく、コンプレッサ20の回転速度を除湿の効果を発揮する回転速度を維持しながら、暖房ぎみ除湿モードにて車室内の除湿が成されるので、従来の技術と比較して短時間でフロント窓ガラスの内面の曇りを確実に晴らすことができる。また、実際の吹出温度TAと目標吹出温度TAOとがDEFスイッチ58をONしてから短時間で一致するので、車両乗員に違和感を与えない快適な吹出温度を作り出すことができることが分かる。
【0104】
〔第2実施例〕
図8は本発明の第2実施例を示したもので、電気自動車用空調装置の全体構成を示した図である。
【0105】
本実施例の冷凍サイクルは、回転速度がインバータ制御されるコンプレッサ20、このコンプレッサ20の吐出口より吐出された冷媒が流入するコンデンサ71、このコンデンサ71より流出冷媒を減圧する第1、第2減圧手段21、22よりなる減圧手段、空調ダクト2外に設置された室外熱交換器23、空調ダクト2内に設置されたエバポレータ24、気液分離するアキュームレータ25、冷凍サイクル中の冷媒の流れ方向を切り替える電磁弁VC、VH、VDよりなる循環回路切替手段、およびこれらを環状に接続する冷媒配管等から構成されている。
【0106】
コンデンサ71は、本発明の加熱用室内熱交換器に相当するもので、空調ダクト2内においてエバポレータ24よりも下流側に設置され、内部を流れる冷媒の凝縮熱によって通過する空気を加熱する凝縮器である。コンデンサ71には、コンデンサ71を通過する空気量(温風量)とコンデンサ71を迂回する空気量(冷風量)とを調節して車室内へ吹き出す空気の吹出温度を調整する空気量調節手段としての2個のエアミックス(A/M)ダンパ72が回転自在に支持されている。これらのA/Mダンパ72は、ステッピングモータやサーボモータ等のアクチュエータ(図示せず)により駆動される。
【0107】
ここで、本実施例では、エアコンユニット1の通常AUTO状態からDEF制御に移行するときに、DEF制御に移行する前の運転モードが冷房モードの時には冷房ぎみ除湿モードを選択し、DEF制御に移行する前の運転モードが暖房モードの時には暖房ぎみ除湿モードを選択するようにして、第1実施例と同様な効果を得る。なお、冷房サイクルとして、コンプレッサ20の吐出口より吐出された冷媒をコンデンサ71を迂回させて電磁弁VCを経て室外熱交換器23に直接流入させることのできる冷媒流路を設ければ、第1実施例の除湿モード時の外気導入冷房モードと同じ作用効果を得ることができる。
【0108】
〔変形例〕
本実施例では、本発明を電気自動車用空調装置に適用したが、本発明を空冷式エンジン搭載車または水冷式エンジン搭載車用空調装置に適用しても良い。
第1、第2実施例では、通常AUTO状態(通常の冷暖房モード)からDEF制御(除湿モード)に移行する時に、DEF制御に移行する前の運転モードの時の電磁弁VCの作動状態に一致した除湿モードに切り替えるようにした。また、第3実施例では、DEF制御(除湿モード)から通常AUTO状態(通常の冷暖房モード)に移行する時に、通常AUTO状態に移行する前の除湿モードの時の電磁弁VCの作動状態に一致した通常AUTO状態に切り替えるようにした。これらの制御を1つの実施例で両方行うようにしても良い。
【0109】
第1、第2実施例では、エアコンユニット1の通常AUTO状態(温度コントロール状態)の途中でDEF制御に移行する時にのみ本発明を用いたが、エアコンユニット1の通常AUTO状態からDEF制御に移行する時に本発明を用いても良く、また通常AUTO状態(温度コントロール状態)の途中でモード設定スイッチ55によりFOOTモードやF/Dモードが選択された時に本発明を用いても良い。
【0110】
また、第3実施例では、エアコンユニット1のDEF制御の途中で通常AUTO状態(温度コントロール状態)に移行する時にのみ本発明を用いたが、モード設定スイッチ55によりFOOTモードやF/Dモードが選択されてFOOTモードやF/Dモードの途中でオートスイッチ53が押されて通常AUTO状態(温度コントロール状態)に移行する際に本発明を用いても良い。
【0111】
本実施例では、温水温度TWとして水温センサ46で検出する温水式ヒータ6の入口水温を用いたが、温水温度TWとして水温センサ48で検出する燃焼式ヒータ9の出口水温を用いても良い。なお、ブラインサイクルのいずれの箇所の水温を温水温度TWとして読み込んでも良い。
【0112】
また、本実施例では、加熱量調節手段としてA/Mダンパ19の開度を調節して車室内に吹き出す空気の吹出温度を調整するエアミックス温度コントロール方式を利用したが、加熱量調節手段として温水式ヒータ6に流入する温水量を調節して車室内に吹き出す空気の吹出温度を調整するリヒート式温度コントロールを利用しても良い。
【0113】
本実施例では、第2暖房ぎみ除湿モード時に、コンプレッサ20→ブライン冷媒熱交換器7またはコンデンサ71→第1減圧手段21→室外熱交換器23およびエバポレータ24→コンプレッサ20のように冷媒が循環する暖房ぎみ除湿サイクルH、D(暖房ぎみ除湿モード循環回路)を形成したが、第2暖房ぎみ除湿モード時に、コンプレッサ20→ブライン冷媒熱交換器7またはコンデンサ71→第1減圧手段21→室外熱交換器23→エバポレータ24→コンプレッサ20のように冷媒が循環する暖房ぎみ除湿サイクルが形成できるように冷凍サイクルを変更しても良い。すなわち、第2暖房ぎみ除湿モード時に、室外熱交換器23とエバポレータ24とを直列に蒸発器として運転する暖房ぎみ除湿サイクルが形成できるように冷凍サイクルを変更しても良い。
【0114】
本実施例では、暖房ぎみ除湿モード時に、エバポレータ24のみ蒸発器として単独運転する第1暖房ぎみ除湿モードと、室外熱交換器23とエバポレータ24とを並列または直列して蒸発器として運転する第2暖房ぎみ除湿モードと、室外熱交換器23のみ蒸発器として単独運転する第3暖房ぎみ除湿(外気導入暖房)モードとを行うようにしたが、暖房ぎみ除湿モード時に、第1暖房ぎみ除湿モード、第2暖房ぎみ除湿モードまたは外気導入暖房モードのいずれか1つ以上の暖房ぎみ除湿モードを行うようにしても良い。例えば第2暖房ぎみ除湿モードのみ、第1、第2暖房ぎみ除湿モードのみ、第2暖房ぎみ除湿モードおよび外気導入暖房モードのみ行うようにする。
【0115】
そして、図1に示したブラインサイクルに、ラジエータ等の放熱装置、電動器具の排熱を回収する排気回収器や電気ヒータ等の補助加熱装置、流路切替弁等の付属装置を追加しても良い。さらに、減圧手段として、温度自動膨張弁、電動式の膨張弁、オリフィス等の減圧手段を用いても良いが、安価で、故障のないキャピラリチューブやオリフィス等の固定絞りを用いることが望ましい。そして、気液分離器として、レシーバ(受液器)を使用しても良い。このレシーバの接続箇所は、ブライン冷媒熱交換器7と第1減圧手段21との間に接続するか、あるいは室外熱交換器23と第2減圧手段22との間に接続する。
【図面の簡単な説明】
【図1】電気自動車用空調装置の全体構成を示した模式図である(第1実施例)。
【図2】電気自動車用空調装置の制御系を示したブロック図である(第1実施例)。
【図3】操作パネルを示した正面図である(第1実施例)。
【図4】エアコンECUによる主要な制御処理を示したフローチャートである(第1実施例)。
【図5】運転モード決定制御を示したサブルーチンである(第1実施例)。
【図6】DEF制御時の吹出温度制御を示したサブルーチンである(第1実施例)。
【図7】コンプレッサの回転速度、吐出圧力等の変化を示したタイムチャートである(第1実施例)。
【図8】電気自動車用空調装置の全体構成を示した模式図である(第2実施例)。
【図9】コンプレッサの回転速度、吐出圧力等の変化を示したタイムチャートである(従来の技術)。
【符号の説明】
1 エアコンユニット
2 空調ダクト
6 温水式ヒータ(加熱用室内熱交換器)
7 ブライン冷媒熱交換器(加熱用室内熱交換器)
8 ウォータポンプ
10 エアコンECU(空調制御手段、目標吹出温度決定手段)
20 コンプレッサ(冷媒圧縮機)
21 第1減圧手段
22 第2減圧手段
23 室外熱交換器
24 エバポレータ(冷却用室内熱交換器)
41 内気温センサ(内気温度検出手段)
42 外気温センサ(外気温度検出手段)
50 操作パネル
51 温度設定スイッチ(吹出温度設定手段)
58 DEFスイッチ(除湿モード設定手段)
71 コンデンサ(加熱用室内熱交換器)
VC 電磁弁(循環回路切替手段)
VD 電磁弁(循環回路切替手段)
VH 電磁弁(循環回路切替手段)
Claims (4)
- (a)通過する空気を冷却する冷却用室内熱交換器、およびこの冷却用室内熱交換器よりも空気下流側に配されて、通過する空気を加熱する加熱用室内熱交換器を収容した空調ダクトと、
(b)この空調ダクト内において車室内へ向かう空気流を発生させる送風機と、
(c)冷媒圧縮機より吐出された冷媒を、室外熱交換器、減圧手段、前記冷却用室内熱交換器の順に流して前記冷媒圧縮機に戻す冷房モード用循環回路、
前記冷媒圧縮機より吐出された冷媒を、前記加熱用室内熱交換器、前記減圧手段、前記室外熱交換器の順に流して前記冷媒圧縮機に戻す暖房モード用循環回路、
前記冷媒圧縮機より吐出された冷媒を、前記加熱用室内熱交換器、前記室外熱交換器、前記減圧手段、前記冷却用室内熱交換器の順に流して前記冷媒圧縮機に戻す冷房ぎみ除湿モード用循環回路、
並びに前記冷媒圧縮機より吐出された冷媒を、前記加熱用室内熱交換器、前記減圧手段、前記室外熱交換器または前記冷却用室内熱交換器の順に流して前記冷媒圧縮機に戻す暖房ぎみ除湿モード用循環回路を有する冷凍サイクルと、
(d)この冷凍サイクルを、前記冷房モード用循環回路、前記暖房モード用循環回路、前記冷房ぎみ除湿モード用循環回路または前記暖房ぎみ除湿モード用循環回路のうちのいずれかの循環回路に切り替える循環回路切替手段と、
(e)車室内の除湿を希望する除湿モード設定手段と、
(f)車室内に吹き出す空気の吹出温度を所望の吹出温度に設定する吹出温度設定手段と、
(g)車室内の温度を検出する内気温度検出手段と、
(h)車室外の温度を検出する外気温度検出手段と、
(i)前記吹出温度設定手段にて設定された設定吹出温度、前記内気温度検出手段にて検出した内気温度、前記外気温度検出手段にて検出した外気温度に基づいて、車室内に吹き出す空気の目標吹出温度を決定する目標吹出温度決定手段と、
(j)前記除湿モード設定手段により車室内の除湿が希望された際に、
前記除湿モード設定手段により車室内の除湿を希望する前の運転モードが前記冷房モード用循環回路の場合は、前記冷房ぎみ除湿モード用循環回路に切り替えるか、あるいは前記除湿モード設定手段により車室内の除湿を希望する前の運転モードが前記暖房モード用循環回路の場合は、前記暖房ぎみ除湿モード用循環回路に切り替えるように前記循環回路切替手段を制御する空調制御手段と
を備えた車両用空調装置。 - 請求項1に記載の車両用空調装置において、
前記空調制御手段は、前記外気温度検出手段にて検出した外気温度と前記目標吹出温度決定手段にて決定された目標吹出温度との温度差に基づいて、冷房モード、冷房ぎみ除湿モードまたは暖房ぎみ除湿モードのうちのいずれかの運転モードを選択し、この選択した運転モードとなるように前記循環回路切替手段を制御することを特徴とする車両用空調装置。 - 請求項2に記載の車両用空調装置において、
前記空調制御手段は、前記除湿モード設定手段により車室内の除湿を希望する前の運転モードが前記冷房モード用循環回路の場合は、
前記外気温度検出手段にて検出した外気温度の関数が、前記目標吹出温度決定手段にて決定された目標吹出温度よりも小さい時、
前記冷房ぎみ除湿モード用循環回路に切り替えるように前記循環回路切替手段を制御することを特徴とする車両用空調装置。 - 請求項2または請求項3に記載の車両用空調装置において、
前記空調制御手段は、前記除湿モード設定手段により車室内の除湿を希望する前の運転モードが前記冷房モード用循環回路の場合は、
前記目標吹出温度決定手段にて決定された目標吹出温度が、前記外気温度検出手段にて検出した外気温度の関数以下の時、または所定の吹出温度以下の時、
前記冷房モード用循環回路を維持するように前記循環回路切替手段を制御することを特徴とする車両用空調装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19877298A JP3931438B2 (ja) | 1998-07-14 | 1998-07-14 | 車両用空調装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19877298A JP3931438B2 (ja) | 1998-07-14 | 1998-07-14 | 車両用空調装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000025448A JP2000025448A (ja) | 2000-01-25 |
JP3931438B2 true JP3931438B2 (ja) | 2007-06-13 |
Family
ID=16396682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19877298A Expired - Fee Related JP3931438B2 (ja) | 1998-07-14 | 1998-07-14 | 車両用空調装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3931438B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2808742B1 (fr) * | 2000-05-15 | 2003-03-21 | Peugeot Citroen Automobiles Sa | Dispositif optimise de regulation thermique a pompe a chaleur pour vehicule automobile |
DE102015122721B4 (de) | 2015-12-23 | 2019-09-05 | Hanon Systems | Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems |
CN112976986B (zh) * | 2019-12-13 | 2023-01-17 | 杭州三花研究院有限公司 | 应用于汽车热管理系统的控制装置及控制方法 |
-
1998
- 1998-07-14 JP JP19877298A patent/JP3931438B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000025448A (ja) | 2000-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5663849B2 (ja) | 車両用空調装置 | |
JP3480410B2 (ja) | 車両用空調装置 | |
JP3841039B2 (ja) | 車両用空調装置 | |
JP5446524B2 (ja) | 車両用空調装置 | |
JP5287578B2 (ja) | 車両用空調装置 | |
JP5263032B2 (ja) | 車両用空調装置 | |
JP2005059797A (ja) | 車両用空調装置 | |
JP3704814B2 (ja) | 車両用空気調和装置 | |
JPH11180137A (ja) | ハイブリッド自動車用空調装置 | |
JPH09220924A (ja) | 車両用空気調和装置 | |
JPH08216655A (ja) | 車両用ヒートポンプ式空調装置 | |
JP3758269B2 (ja) | 車両用空気調和装置 | |
JP3931438B2 (ja) | 車両用空調装置 | |
JP4196681B2 (ja) | 冷凍サイクル制御装置 | |
JP4407368B2 (ja) | 車両用空調装置 | |
JP2011020478A (ja) | 車両用空調装置 | |
JPH11170856A (ja) | ハイブリッド自動車用空調装置 | |
JP4561014B2 (ja) | 車両用空調装置 | |
JP3812042B2 (ja) | 電気自動車用空気調和装置 | |
JPH10264646A (ja) | 車両用空気調和装置 | |
JPH1086654A (ja) | ブライン式空調装置 | |
JP2002331820A (ja) | 車両用空調装置 | |
JPH10264647A (ja) | 車両用空気調和装置 | |
JP2008179202A (ja) | 空調装置 | |
JP3783607B2 (ja) | 車両用空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070305 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100323 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110323 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120323 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130323 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140323 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |