JP3928913B2 - Crystal oscillator - Google Patents

Crystal oscillator Download PDF

Info

Publication number
JP3928913B2
JP3928913B2 JP2000140127A JP2000140127A JP3928913B2 JP 3928913 B2 JP3928913 B2 JP 3928913B2 JP 2000140127 A JP2000140127 A JP 2000140127A JP 2000140127 A JP2000140127 A JP 2000140127A JP 3928913 B2 JP3928913 B2 JP 3928913B2
Authority
JP
Japan
Prior art keywords
chip
bump
crystal oscillator
container body
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000140127A
Other languages
Japanese (ja)
Other versions
JP2001326247A (en
Inventor
龍伸 渋谷
進 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2000140127A priority Critical patent/JP3928913B2/en
Publication of JP2001326247A publication Critical patent/JP2001326247A/en
Application granted granted Critical
Publication of JP3928913B2 publication Critical patent/JP3928913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Description

【0001】
【発明の属する技術分野】
本発明は、バンプを用いた超音波熱圧着によってICチップを接合した水晶発振器を産業上の技術分野とし、特にICチップの端子電極に生ずるクラックを防止した水晶発振器に関する。
【0002】
【従来の技術】
(発明の背景)種々の電子回路を集積化したICチップは多くの電子機器に使用され、その小型化の原動力となっている。近年では、ワイヤボンディングに比較して小型化をさらに促進することから、水晶発振器においても端子電極の形成された一主面を基板に直接に接合する所謂フェースダウンボンデングが採用されている。このようなものの一つにバンプを用いた超音波熱圧着による接合方法がある。
【0003】
(従来技術の一例)第4図は一従来例を説明する水晶発振器の断面図である。
水晶発振器は積層セラミックからなり、凹部と段部を有する容器本体1にICチップ2と水晶片3を収容し、カバー4を接合して密閉する。容器本体1の凹部底面1aには、第5図に示したように回路パターンとしての導電路5が形成される。導電路5の先端には導電端子部6が露出して形成され、これ以外は酸化アルミナ等の絶縁膜に覆われる。導電端子部6は一方向に長い矩形状として左右2列に並べられる。段部には図示しない水晶端子が形成される。
【0004】
ICチップ2は、図示しない発振回路の増幅器等の回路素子を集積化し、一主面に端子電極7を有する。端子電極7は導電端子部6に対応して、対向する一組の両辺側に形成される。両辺側の端子電極7の中心間距離Lは1.78mmで、ICチップ2の平面外形寸
法は1.9×1.9mmである。そして、端子電極7上には超音波熱圧着用の例えば金粒としたバンプ8が接続され、容器本体1の底面に固着される。バンプ8は概ね球状で高さは35〜50μとなる。
【0005】
超音波熱圧着はICチップ2のバンプ8を導電端子部6に当接し、導電端子部6の長さ方向に超音波による振動を加えるとともに加熱しながら、バンプ8を楕円状に押し潰して接続する。潰し後のバンプ8の高さTは概ね20〜25μとなる。水晶片3は導電性接着剤9によって段部に一端部両側を固着される。
【0006】
このようなものでは、導電端子部6の長さ方向にバンプ8を振動させて熱圧着するので、バンプ8が導電端子部から飛び出すことない。また、対向する一組の両辺に3:2内の範囲でバンプ8を配置したので、熱圧着時の押圧力が均等に分散する。したがって、超音波熱圧着を良好にする。
【0007】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成の水晶発振器では、超音波熱圧着に起因して次の問題があった。すなわち、シリコンからなるICチップ2とアルミナセラミックからなる容器本体1とでは熱膨張係数を異にし、容器本体1の方がICチップ2よりも大きい。したがって、加熱前後において、ICチップ2の端子電極7にはストレスによる亀裂等のクラックを生じ、ICチップ2の機能に障害を起こす。そして、これにより、水晶発振器の生産性を悪化させる問題があった。
【0008】
(発明の目的)本発明は、膨張係数の差による端子電極のクラックを防止して熱衝撃特性を良好とした水晶発振器を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、ICチップにおける一主面の対向する一組の両辺側のみに端子電極を有して前記端子電極にはバンプが設けられ、容器本体の凹部底面には互いに対向する一方向に長い導電端子部が設けられ、前記導電端子部に前記バンプを当接して、前記導電端子の長さ方向に前記バンプを振動させて熱圧着し、前記ICチップを前記容器本体の底面に装着するとともに、前記容器本体内に水晶片を収容してなる水晶発振器であって、前記ICチップにおける両辺側の辺と辺との間の前記端子電極の中心間距離をLとして前記バンプの超音波熱圧着後の高さをTとしたとき、T/Lを0.022〜0.042としたことを基本的な解決手段とする。
【0010】
【作用】
本発明では、両辺間の距離Lとバンプの高さTとの比T/Lを0.022〜0.042としたので、バンプによって熱膨張差によるストレスを吸収する。以下、本発明の一実施例を説明する。
【0011】
第1図及び第2図は本発明の一実施例を説明する図で、第1図は超音波熱圧着前の水晶発振器の一部裁断図、第2図は超音波熱圧着後の一部裁断図である。なお、前従来例図と同一部分には同番号を付与してその説明は簡略又は省略する。
水晶発振器は、前述同様に容器本体1の導電端子部6が形成された底面にICチップ2を超音波熱圧着により、段部に水晶片3を導電性接着剤9によって固着し、カバー4を接合して密閉する(前第4図参照)。
【0012】
ICチップ2は、前述したように対向する一組の一方の辺に6つ、他方の辺に5つの端子電極7を有し、端子電極7の中心間距離Lを1.78mmとする。そして、この実施例では、ICチップ2の端子電極7にバンプ8を二重にして形成する(第1図)。これにより、超音波熱圧着後のバンプ8は楕円状となってその高さTは40〜50μとなる(第2図)。
【0013】
第3図はこのようなものの熱衝撃特性を示す表であり、バンプ8が従来の1個とした場合と本実施例の2個(二重バンプ)とした場合の熱衝撃に対する端子電極7のクラック発生数及び発生率を示す表である。
【0014】
なお、ここでの熱衝撃特性は、超音波熱圧着により容器底面にICチップ2を固着した水晶発振器を−40℃及び+80℃としてそれぞれ30分間放置し、これを1サイクルとする。そして、1、5、7、10、50、70、100、700、1000サイクルの熱衝撃を加えた後、ICチップ2を容器底面から取り外し、端子電極7のうち一つにでもクラックを生じたICチップ2の数をカウントしたものである。但し、実験に供したICチップ2の数は各サイクル毎にそれぞれ10個ずつであり、本実施例及び従来例ともに90個の合計180個である
【0015】
この実験結果から明らかなように、本実施例では10、50及び70サイクルではクラック発生のICチップ2は皆無であり、100及び700サイクルで1個、1000サイクルで2個のICチップ2にクラックを生じる。これに対し、従来例では、50及び70サイクルでそれぞれ1個のICチップ2にクラックを生じ、100サイクルで2個、700及び1000サイクルで3個のICチップ2にクラックを生じる。
【0016】
要するに、本実施例では、クラックを生じるまでのサイクル数は従来例よりも90サイクル多く、同サイクル数でのクラックを生じるICチップ2の数も1.5倍以上少ない。
すなわち、バンプ8を二重バンプとして超音波熱圧着による潰し後の高さTを大きくしたので、ICチップ2(シリコン)と容器本体1(アルミナセラミック)との膨張係数の差によるストレスを吸収し、端子電極7に生じるクラックを防止する。したがって、本実施例は従来例に対して熱衝撃特性を格段に高め、水晶発振器の生産性を向上する。
【0017】
ここで、端子電極7(バンプ8)の中心間距離Lとバンプ8の厚みTとの関係に着目すると、中心間距離Lが長いほど膨張係数の差によるストレスは大きくなる。したがって、バンプ8の高さTは中心間距離Lに依存する。本実施例での中心間距離Lとバンプ8の厚みTとの比T/Lは0.022〜0.028となることから、T/Lは0.022以上とすれば本実施例による効果を得ることができる。
【0018】
なお、上記の実験では端子電極7の一つにでもクラックのあるICチップ2の数をカウントしたが、いずれのICチップ2でも一つの端子電極7のみにクラックを生じていた。これは、熱衝撃によって最も強度の弱い1カ所に応力が集中する結果と推察される。
【0019】
【他の事項】
上記実施例ではバンプ8を二重として端子電極7の中心間距離Lとバンプ8の高さTとの比T/Lを0.022以上としたが、例えばバンプ8を三重とすればさらに熱衝撃特性を向上すると期待される。この場合、超音波熱圧着後のバンプ8の高さTは60〜75μになり、T/Lは0.033〜0.042となる。
【0020】
そして、これを越えてバンプ8を重ねることはコスト増加の点から現実的ではない。そこで、本発明ではT/Lの上限値を0.042とし、これから、請求項1に示したようにT/Lを0.022〜0.042と規定する。
【0021】
また、バンプ8は二重及び三重としたが、前述のように端子電極7の中心間距離が小さくなればバンプ8の高さは小さくなるので、この場合はバンプ8を重ねることなく1個でよい。また、高さの大きいバンプ8が出現することも考えられるので、本発明ではバンプ8を重ねることが必ずしも要件ではない。
【0022】
また、一主面側に凹部及び段部を有する容器本体1にICチップ2及び水晶片3を収容した水晶発振器を例として説明したが、例えば両主面に凹部を有する容器本体1に水晶片3とICチップ2とを別個に収容した水晶発振器であっても、更には他の電子部品にも適用できる。
【0023】
【発明の効果】
本発明は、ICチップにおける一主面の対向する一組の両辺側のみに端子電極を有して前記端子電極にはバンプが設けられ、容器本体の凹部底面には互いに対向する一方向に長い導電端子部が設けられ、前記導電端子部に前記バンプを当接して、前記導電端子の長さ方向に前記バンプを振動させて熱圧着し、前記ICチップを前記容器本体の底面に装着するとともに、前記容器本体内に水晶片を収容してなる水晶発振器であって、前記ICチップにおける両辺側の辺と辺との間の前記端子電極の中心間距離をLとして前記バンプの超音波熱圧着後の高さをTとしたとき、T/Lを0.022〜0.042としたので、特に膨張係数の差による端子電極のクラックを防止する熱衝撃特性を良好とした水晶発振器を提供できる。
【図面の簡単な説明】
【図1】 本発明の一実施例を説明する超音波熱圧着前の水晶発振器の一部裁断図である。
【図2】 本発明の一実施例を説明する超音波熱圧着後の水晶発振器の一部裁断図である。
【図3】 本発明の一実施例を説明する超音波熱圧着後の水晶発振器の熱衝撃特性を示す表である。
【図4】 従来例を説明する水晶発振器の断面図である。
【図5】 従来例を説明する容器本体の凹部底面に設けた回路パターンの図である。
【図6】 従来例を説明するICチップの一主面の平面図である。
【符号の説明】
1 容器本体、2 ICチップ、3 水晶片、4 カバー、5 導電路、6 導電端子部、7 端子電極、8 バンプ、9 導電性接着剤.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystal oscillator in which an IC chip is bonded by ultrasonic thermocompression using a bump as an industrial technical field, and more particularly to a crystal oscillator that prevents cracks generated in terminal electrodes of an IC chip.
[0002]
[Prior art]
(Background of the Invention) An IC chip in which various electronic circuits are integrated is used in many electronic devices and is a driving force for miniaturization. In recent years, so-called face-down bonding, in which one main surface on which terminal electrodes are formed, is directly bonded to a substrate has been adopted in a crystal oscillator in order to further promote downsizing compared to wire bonding. One such method is a bonding method using ultrasonic thermocompression bonding using bumps.
[0003]
(Example of Prior Art) FIG. 4 is a cross-sectional view of a crystal oscillator for explaining a conventional example.
The crystal oscillator is made of a laminated ceramic, and an IC chip 2 and a crystal piece 3 are accommodated in a container body 1 having a recess and a step, and a cover 4 is bonded and sealed. A conductive path 5 as a circuit pattern is formed on the bottom surface 1a of the concave portion of the container body 1 as shown in FIG. The conductive terminal portion 6 is formed so as to be exposed at the tip of the conductive path 5, and the other portions are covered with an insulating film such as alumina oxide. The conductive terminal portions 6 are arranged in two rows on the left and right sides as a rectangular shape that is long in one direction. A crystal terminal (not shown) is formed on the stepped portion.
[0004]
The IC chip 2 integrates circuit elements such as an oscillation circuit amplifier (not shown) and has a terminal electrode 7 on one main surface. The terminal electrode 7 is formed on a pair of opposite sides corresponding to the conductive terminal portion 6. The distance L between the centers of the terminal electrodes 7 on both sides is 1.78 mm, and the planar outer dimension of the IC chip 2 is 1.9 × 1.9 mm. Then, bumps 8 made of, for example, gold grains for ultrasonic thermocompression bonding are connected on the terminal electrode 7 and fixed to the bottom surface of the container body 1. The bumps 8 are generally spherical and have a height of 35-50 μm.
[0005]
In the ultrasonic thermocompression bonding, the bump 8 of the IC chip 2 is brought into contact with the conductive terminal portion 6, the ultrasonic vibration is applied to the length direction of the conductive terminal portion 6, and the bump 8 is crushed into an ellipse shape while being heated. To do. The height T of the bump 8 after being crushed is approximately 20 to 25 μm. The crystal piece 3 is fixed to the stepped portion by the conductive adhesive 9 at both ends.
[0006]
In such a case, since the bump 8 is vibrated and thermocompression bonded in the length direction of the conductive terminal portion 6, the bump 8 does not jump out of the conductive terminal portion. In addition, since the bumps 8 are arranged in a range of 3: 2 on both sides of a pair of opposing sides, the pressing force at the time of thermocompression is evenly distributed. Therefore, ultrasonic thermocompression bonding is improved.
[0007]
[Problems to be solved by the invention]
(Problems of the prior art) However, the crystal oscillator having the above configuration has the following problems due to ultrasonic thermocompression bonding. That is, the IC chip 2 made of silicon and the container body 1 made of alumina ceramic have different thermal expansion coefficients, and the container body 1 is larger than the IC chip 2. Therefore, before and after heating, the terminal electrode 7 of the IC chip 2 is cracked due to stress, and the function of the IC chip 2 is impaired. As a result, there is a problem that the productivity of the crystal oscillator is deteriorated.
[0008]
(Object of the Invention) An object of the present invention is to provide a crystal oscillator having good thermal shock characteristics by preventing cracking of a terminal electrode due to a difference in expansion coefficient.
[0009]
[Means for Solving the Problems]
The present invention has terminal electrodes only on a pair of opposite sides of one main surface of an IC chip, bumps are provided on the terminal electrodes, and the bottom surfaces of the recesses of the container body are long in one direction facing each other. A conductive terminal portion is provided, the bump is brought into contact with the conductive terminal portion, the bump is vibrated in the length direction of the conductive terminal, thermocompression bonded, and the IC chip is mounted on the bottom surface of the container body. A crystal oscillator in which a crystal piece is housed in the container body, wherein the distance between the centers of the terminal electrodes between the sides of the IC chip is L, and the ultrasonic thermocompression bonding of the bumps When the subsequent height is T, T / L is 0.022 to 0.042 as a basic solution.
[0010]
[Action]
In the present invention, since the ratio T / L between the distance L between both sides and the height T of the bump is set to 0.022 to 0.042 , the stress due to the thermal expansion difference is absorbed by the bump. An embodiment of the present invention will be described below.
[0011]
FIGS. 1 and 2 are diagrams for explaining an embodiment of the present invention. FIG. 1 is a partial cutaway view of a crystal oscillator before ultrasonic thermocompression bonding, and FIG. 2 is a part after ultrasonic thermocompression bonding. FIG. In addition, the same number is attached | subjected to the same part as a prior art example figure, and the description is abbreviate | omitted or abbreviate | omitted.
In the crystal oscillator, the IC chip 2 is bonded to the bottom surface of the container body 1 where the conductive terminal portion 6 is formed by ultrasonic thermocompression bonding, and the crystal piece 3 is fixed to the stepped portion by the conductive adhesive 9 as described above. Join and seal (see previous Fig. 4).
[0012]
As described above, the IC chip 2 has six terminal electrodes 7 on one side of a set of opposing faces and five terminal electrodes 7 on the other side, and the distance L between centers of the terminal electrodes 7 is 1.78 mm. In this embodiment, the bumps 8 are doubled on the terminal electrode 7 of the IC chip 2 (FIG. 1). As a result, the bump 8 after ultrasonic thermocompression bonding has an elliptical shape and a height T of 40 to 50 μm (FIG. 2).
[0013]
FIG. 3 is a table showing the thermal shock characteristics of such a case. The terminal electrode 7 with respect to the thermal shock when the bump 8 is a conventional one and the two bumps (double bumps) of this embodiment is used. It is a table | surface which shows the number of crack generations, and an incidence rate.
[0014]
The thermal shock characteristic here is that a crystal oscillator having the IC chip 2 fixed to the bottom of the container by ultrasonic thermocompression bonding is left at -40 ° C. and + 80 ° C. for 30 minutes, and this is one cycle. Then, after applying 1, 5, 7, 10, 50, 70, 100, 700, 1000 cycles of thermal shock, the IC chip 2 was removed from the bottom of the container, and even one of the terminal electrodes 7 was cracked. The number of IC chips 2 is counted. However, the number of IC chip 2 used in the experiment are the ten pieces respectively in each cycle, which is 90 in total 180 pieces in both the examples and the conventional example.
[0015]
As is clear from this experimental result, in this embodiment, there are no IC chips 2 that generate cracks at 10, 50, and 70 cycles, and there are 1 IC chip 2 at 100 and 700 cycles and 2 IC chips 2 at 1000 cycles. Produce. On the other hand, in the conventional example, one IC chip 2 is cracked at 50 and 70 cycles, and two IC chips 2 are cracked at 100 cycles and three IC chips 2 at 700 and 1000 cycles.
[0016]
In short, in this embodiment, the number of cycles until a crack is generated is 90 cycles more than that in the conventional example, and the number of IC chips 2 that cause a crack in the same number of cycles is 1.5 times or less.
That is, since the bump 8 is a double bump and the height T after crushing by ultrasonic thermocompression is increased, the stress due to the difference in expansion coefficient between the IC chip 2 (silicon) and the container body 1 (alumina ceramic) is absorbed. The crack which arises in the terminal electrode 7 is prevented. Therefore, the present embodiment significantly improves the thermal shock characteristics as compared with the conventional example and improves the productivity of the crystal oscillator.
[0017]
Here, paying attention to the relationship between the center distance L of the terminal electrodes 7 (bumps 8) and the thickness T of the bumps 8, the longer the center distance L, the greater the stress due to the difference in expansion coefficient. Accordingly, the height T of the bump 8 depends on the center-to-center distance L. Since the ratio T / L between the center-to-center distance L and the thickness T of the bump 8 in this embodiment is 0.022 to 0.028, the effect of this embodiment is obtained when T / L is 0.022 or more. Can be obtained.
[0018]
In the above experiment, the number of IC chips 2 having a crack in one of the terminal electrodes 7 was counted. However, in any IC chip 2, only one terminal electrode 7 was cracked. This is presumed to be the result of stress concentration at one weakest place due to thermal shock.
[0019]
[Other matters]
In the above embodiment, the bump 8 is doubled, and the ratio T / L between the distance L between the centers of the terminal electrodes 7 and the height T of the bump 8 is 0.022 or more. Expected to improve impact properties. In this case, the height T of the bump 8 after ultrasonic thermocompression bonding is 60 to 75 μ, and T / L is 0.033 to 0.042.
[0020]
And it is not realistic from the point of cost increase to overlap the bump 8 beyond this. Therefore, in the present invention, the upper limit value of T / L is set to 0.042, and from this, T / L is defined as 0.022 to 0.042 as shown in claim 1.
[0021]
In addition, although the bumps 8 are double and triple, as described above, if the distance between the centers of the terminal electrodes 7 is reduced, the height of the bumps 8 is reduced. In this case, one bump 8 is not overlapped. Good. In addition, since it is conceivable that bumps 8 having a large height appear, it is not always necessary to overlap the bumps 8 in the present invention.
[0022]
Moreover, although the crystal oscillator which accommodated the IC chip 2 and the crystal piece 3 in the container main body 1 which has the recessed part and the step part on the one main surface side was demonstrated as an example, for example, the crystal piece in the container main body 1 which has a recessed part in both main surfaces 3 and the IC chip 2 can be applied to other electronic components.
[0023]
【The invention's effect】
The present invention has terminal electrodes only on a pair of opposite sides of one main surface of an IC chip, bumps are provided on the terminal electrodes, and the bottom surfaces of the recesses of the container body are long in one direction facing each other. A conductive terminal portion is provided, the bump is brought into contact with the conductive terminal portion, the bump is vibrated in the length direction of the conductive terminal, thermocompression bonded, and the IC chip is mounted on the bottom surface of the container body. A crystal oscillator in which a crystal piece is housed in the container body, wherein the distance between the centers of the terminal electrodes between the sides of the IC chip is L, and the ultrasonic thermocompression bonding of the bumps Since the T / L is 0.022 to 0.042 when the subsequent height is T, it is possible to provide a crystal oscillator with excellent thermal shock characteristics that prevent cracking of the terminal electrode due to a difference in expansion coefficient. .
[Brief description of the drawings]
FIG. 1 is a partial cutaway view of a crystal oscillator before ultrasonic thermocompression bonding, illustrating an embodiment of the present invention.
FIG. 2 is a partial cutaway view of a crystal oscillator after ultrasonic thermocompression bonding, illustrating an embodiment of the present invention.
FIG. 3 is a table showing thermal shock characteristics of a crystal oscillator after ultrasonic thermocompression bonding, illustrating an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a crystal oscillator for explaining a conventional example.
FIG. 5 is a diagram of a circuit pattern provided on the bottom surface of a concave portion of a container body for explaining a conventional example.
FIG. 6 is a plan view of one main surface of an IC chip for explaining a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container body, 2 IC chip, 3 Crystal piece, 4 Cover, 5 Conductive path, 6 Conductive terminal part, 7 Terminal electrode, 8 Bump, 9 Conductive adhesive agent.

Claims (1)

ICチップにおける一主面の対向する一組の両辺側のみに端子電極を有して前記端子電極にはバンプが設けられ、容器本体の凹部底面には互いに対向する一方向に長い導電端子部が設けられ、前記導電端子部に前記バンプを当接して、前記導電端子の長さ方向に前記バンプを振動させて熱圧着し、前記ICチップを前記容器本体の底面に装着するとともに、前記容器本体内に水晶片を収容してなる水晶発振器であって、前記ICチップにおける両辺側の辺と辺との間の前記端子電極の中心間距離をLとして前記バンプの超音波熱圧着後の高さをTとしたとき、T/Lを0.022〜0.042としたことを特徴とする水晶発振器。A terminal electrode is provided only on both sides of a pair of opposing main surfaces of the IC chip, bumps are provided on the terminal electrodes, and conductive terminal portions that are long in one direction facing each other on the bottom surface of the concave portion of the container body. The bump is brought into contact with the conductive terminal portion, the bump is vibrated in the length direction of the conductive terminal and thermocompression bonded, and the IC chip is mounted on the bottom surface of the container body, and the container body A crystal oscillator in which a crystal piece is housed, wherein the distance between the centers of the terminal electrodes between the sides of the IC chip is L, and the height of the bump after ultrasonic thermocompression bonding A crystal oscillator, wherein T / L is 0.022 to 0.042 , where T is T.
JP2000140127A 2000-05-12 2000-05-12 Crystal oscillator Expired - Fee Related JP3928913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140127A JP3928913B2 (en) 2000-05-12 2000-05-12 Crystal oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140127A JP3928913B2 (en) 2000-05-12 2000-05-12 Crystal oscillator

Publications (2)

Publication Number Publication Date
JP2001326247A JP2001326247A (en) 2001-11-22
JP3928913B2 true JP3928913B2 (en) 2007-06-13

Family

ID=18647469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140127A Expired - Fee Related JP3928913B2 (en) 2000-05-12 2000-05-12 Crystal oscillator

Country Status (1)

Country Link
JP (1) JP3928913B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374716B2 (en) * 2008-03-18 2013-12-25 エプコス アクチエンゲゼルシャフト Microphone and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001326247A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4580730B2 (en) Offset junction type multi-chip semiconductor device
JPH09260436A (en) Semiconductor device
KR20010020699A (en) Electronic component
JP3509507B2 (en) Mounting structure and mounting method of electronic component with bump
JP4161267B2 (en) Surface acoustic wave device
WO2007023747A1 (en) Semiconductor chip, method of manufacturing semiconductor chip, and semiconductor device
JP2943764B2 (en) Resin sealing structure for flip-chip mounted semiconductor devices
JP2006229632A (en) Surface acoustic wave device
JP3539315B2 (en) Method for mounting electronic device element and method for manufacturing surface acoustic wave device
JPH03142847A (en) Semiconductor integrated circuit device
JP3928913B2 (en) Crystal oscillator
JP2009130665A (en) Piezoelectric oscillator
JPH0669073B2 (en) Leadless parts
JP2000232182A (en) Semiconductor device of bga structure and its manufacture
JP3793715B2 (en) Sealed electronic component assembling method and sealed SAW filter
JP2001257236A (en) Manufacturing method of electronic device
JPH0936119A (en) Semiconductor device, its manufacture and semiconductor unit using the semiconductor device
JPH02271561A (en) Resin-sealed semiconductor device
JP2002170848A (en) Circuit board
JPH1012757A (en) Micropackage
WO2021020456A1 (en) Semiconductor package and semiconductor device
JPH09330952A (en) Printed circuit board and method for laminating semiconductor chip
JPH10214934A (en) Semiconductor device and its manufacture
JP2008003011A (en) Piezo-electric device and its manufacturing method
JP2004281899A (en) Semiconductor device, manufacturing method thereof, circuit board, and electronic appliance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050203

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3928913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees