JP2006229632A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2006229632A
JP2006229632A JP2005041393A JP2005041393A JP2006229632A JP 2006229632 A JP2006229632 A JP 2006229632A JP 2005041393 A JP2005041393 A JP 2005041393A JP 2005041393 A JP2005041393 A JP 2005041393A JP 2006229632 A JP2006229632 A JP 2006229632A
Authority
JP
Japan
Prior art keywords
dam
saw
chip
mounting substrate
saw device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005041393A
Other languages
Japanese (ja)
Inventor
Ryota Nagashima
了太 長島
Yasuhide Onozawa
康秀 小野澤
Shozo Matsumoto
省三 松本
Keiichi Suzuki
桂一 鈴木
Yuji Ogawa
祐史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005041393A priority Critical patent/JP2006229632A/en
Publication of JP2006229632A publication Critical patent/JP2006229632A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize an SAW device whose reliability and mass productivity is improved, where an SAW chip flip-chip mounted through a conductor bump on a mounting substrate is sealed with resin from the outer surface of the SAW chip to the upper face of the mounting substrate and an air-tight space is formed between the SAW chip and the mounting substrate. <P>SOLUTION: This surface acoustic wave device is provided with an SAW chip 1 where an IDT electrode 3 and a connection pad 4 are arranged on a piezoelectric substrate 2, and a dam 21 constituted of a metal or an alloy is formed in an outer periphery excluding an SAW exciting section and a mounting substrate 11 equipped with an external electrode terminal 13 for surface mounting at the bottom section of an insulating substrate 12 and a wiring pattern 14 conducted to the external electrode terminal 13, and connected to a connection pad. The connection pad 4 and the wiring pattern 14 are flip-flop mounted through a conductor bump 22 and are sealed with sealing resin 31 from the outer surface of the SAW chip 1 to the upper face of the mounting substrate 11. The dam 21 is formed so as not to be brought into contact with the mounting substrate 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、実装基板上に弾性表面波チップを導体バンプを介してフリップチップ実装し、弾性表面波チップの外面から実装基板の上面にかけて樹脂封止し、実装基板とSAWチップの間に気密空間を形成した表面実装型の弾性表面波デバイスに関する。   In the present invention, a surface acoustic wave chip is flip-chip mounted on a mounting substrate via a conductor bump, resin-sealed from the outer surface of the surface acoustic wave chip to the upper surface of the mounting substrate, and an airtight space between the mounting substrate and the SAW chip. The present invention relates to a surface-mount type surface acoustic wave device in which is formed.

半導体部品においてCSP(Chip Size Package)と呼ばれる小型パッケージング技術が一般化するのに伴って、弾性表面波(以下、SAWと称す)デバイスにおいても、デバイス小型化の容易化と、バッチ式の製造方法による生産性の向上という観点から、CSP技術を用いた生産方法が導入されるようになっている。また、CSP技術は主に樹脂を用いた封止工法が多く使用されている。   As a small packaging technology called CSP (Chip Size Package) is generalized in semiconductor parts, surface acoustic wave (hereinafter referred to as SAW) devices can be easily downsized and batch-type manufacturing can be performed. From the viewpoint of improving productivity by a method, a production method using CSP technology has been introduced. In addition, the CSP technique mainly uses a sealing method mainly using a resin.

以下では、CSP技術を用いたSAWデバイスの先行技術について説明する。図9は、特開2004−64599号公報に開示されているSAWデバイスを示している。SAWチップ101は、圧電基板102上にSAWを励振させるためのIDT電極103と接続パッド104とを配置し、IDT電極103及び接続パッド104を取り囲むように環状の外周電極105を設けている。実装基板111は、絶縁基板112の底部に表面実装用の外部端子電極113と、該外部端子電極113と導通し、且つ接続パッド104と接続するための配線パターン114と、該配線パターン114を取り込むように設けた環状の外周パターン115とを備えている。そして、接続パッド104と配線パターン114とを導体バンプ122を介してフリップチップ実装すると共に、外周電極105と外周パターン115とを接合部材121で接続し、SAWチップ101の外面から実装基板111の上面にかけて封止樹脂131で封止し、SAWチップと実装基板の間に気密空間123を形成している。なお、接合部材121及び導体バンプ122にはSn−Sb半田,Sn−Ag−Cu半田,Sn−Pb半田,Sn−Au半田等の合金材料が用いられる。   Hereinafter, the prior art of the SAW device using the CSP technology will be described. FIG. 9 shows a SAW device disclosed in Japanese Patent Application Laid-Open No. 2004-64599. In the SAW chip 101, an IDT electrode 103 for exciting SAW and a connection pad 104 are arranged on a piezoelectric substrate 102, and an annular outer peripheral electrode 105 is provided so as to surround the IDT electrode 103 and the connection pad 104. The mounting substrate 111 captures the external terminal electrode 113 for surface mounting at the bottom of the insulating substrate 112, the wiring pattern 114 that is electrically connected to the external terminal electrode 113 and connected to the connection pad 104, and the wiring pattern 114. And an annular outer peripheral pattern 115 provided as described above. Then, the connection pad 104 and the wiring pattern 114 are flip-chip mounted via the conductor bump 122, and the outer peripheral electrode 105 and the outer peripheral pattern 115 are connected by the bonding member 121, and the upper surface of the mounting substrate 111 is connected from the outer surface of the SAW chip 101. And is sealed with a sealing resin 131 to form an airtight space 123 between the SAW chip and the mounting substrate. Note that an alloy material such as Sn—Sb solder, Sn—Ag—Cu solder, Sn—Pb solder, or Sn—Au solder is used for the bonding member 121 and the conductor bump 122.

前記SAWデバイスの気密空間123は、外周電極105と外周パターン115とを接合部材121で接続することにより形成される。これにより、封止樹脂131の気密空間123への浸入を防止することができる。また、SAWチップ101の外周電極105に合金材料からなる接合部材121を接続することで、低抵抗な配線電極として用いることが可能となる。   The SAW device hermetic space 123 is formed by connecting the outer peripheral electrode 105 and the outer peripheral pattern 115 with a bonding member 121. Thereby, the penetration of the sealing resin 131 into the airtight space 123 can be prevented. Further, by connecting the bonding member 121 made of an alloy material to the outer peripheral electrode 105 of the SAW chip 101, it can be used as a low resistance wiring electrode.

次に、図10は特開平5−55303号公報に開示されているSAWデバイスを応用した構造を示している。なお、SAWチップ及び実装基板の構造は図9と同じであるので説明は省略する。図9との相違点は、SAWチップ101の外周電極105上に樹脂性のダム124を設けている点と、ダム124は実装基板111の外周パターン115に接触していない点である。また、ダム124は封止樹脂131よりも耐熱性の高い樹脂を用いている。これにより、封止樹脂131を加熱硬化する時の熱によって樹脂性のダム124が溶融してしまうことを防ぐことができ、封止樹脂131の気密空間123への浸入を防止することができる。
特開2004−64599号公報 特開平5−55303号公報 特開2004−129092号公報 特開2004−363770号公報
Next, FIG. 10 shows a structure to which the SAW device disclosed in Japanese Patent Laid-Open No. 5-55303 is applied. The structure of the SAW chip and the mounting substrate is the same as that shown in FIG. The difference from FIG. 9 is that a resinous dam 124 is provided on the outer peripheral electrode 105 of the SAW chip 101 and that the dam 124 is not in contact with the outer peripheral pattern 115 of the mounting substrate 111. The dam 124 uses a resin having higher heat resistance than the sealing resin 131. Thereby, it is possible to prevent the resinous dam 124 from being melted by heat when the sealing resin 131 is heated and cured, and to prevent the sealing resin 131 from entering the hermetic space 123.
JP 2004-64599 A JP-A-5-55303 JP 2004-129092 A JP 2004-363770 A

ところで、SAWチップを導体バンプを介して実装基板にフリップチップ実装する場合、温度変化が加わり、実装基板とSAWチップとの熱膨張係数の差により導体バンプとその接合部に応力が生じてしまうことが知られている。温度変化が繰り返されると、導体バンプとその接合部に生じる応力も繰り返し発生してしまい、SAWデバイスの特性変動、特性劣化の原因となる。また、急激な温度変化が長期にわたり加わると、導体バンプとその接合部が破断に至る場合もある。これを改善するには、導体バンプ間の距離を極力小さくする必要がある。同じ温度変化が加わったとしても、導体バンプ間の距離が小さい方がより小さい応力となるので、導体バンプとその接合部の破断などを防ぐことができる。   By the way, when a SAW chip is flip-chip mounted on a mounting substrate via a conductor bump, a temperature change is applied, and stress is generated in the conductor bump and its joint due to a difference in thermal expansion coefficient between the mounting substrate and the SAW chip. It has been known. When the temperature change is repeated, the stress generated in the conductor bump and its joint is also repeatedly generated, which causes the characteristic fluctuation and characteristic deterioration of the SAW device. In addition, when a sudden temperature change is applied over a long period of time, the conductor bump and its joint may break. In order to improve this, it is necessary to make the distance between the conductor bumps as small as possible. Even if the same temperature change is applied, the smaller the distance between the conductor bumps, the smaller the stress becomes, so that it is possible to prevent breakage of the conductor bump and its joint.

図11は図9で用いられているSAWチップを上面から透視した図である。SAWチップ101上には接合部材121と導体バンプ122のみを図示し、その他の図示は省略している。図9のSAWデバイスでは、実装基板とSAWチップを接続している導体として、導体バンプの他に接合部材があり、この接合部材においても実装基板とSAWチップの熱膨張係数の差に起因する応力が発生する。ここで、SAWチップ101において、横方向の導体バンプ122の両端の距離をX1、縦方向の導体バンプ122の両端の距離をY1とし、横方向の接合部材121の両端の距離をX2、縦方向の接合部材121の両端の距離をY2とした時、X1<X2及びY1<Y2の関係から、導体バンプ122よりも外側(SAWチップ端面寄り)に配置されている接合部材121の方が温度変化が加わった時に発生する応力が大きく、接合部材とその接合部の破断等により気密空間に樹脂が浸入してしまう虞がある。これを改善するには、接合部材121の寸法X2,Y2を極力小さくする必要があるが、接合部材121の寸法を小さくすると気密空間が小さくなってしまい、IDT電極や反射器等のフィルタ機能部を気密空間内に配置するのが困難となる。   FIG. 11 is a perspective view of the SAW chip used in FIG. Only the bonding member 121 and the conductor bump 122 are shown on the SAW chip 101, and other illustrations are omitted. In the SAW device of FIG. 9, there is a bonding member in addition to the conductor bump as a conductor connecting the mounting substrate and the SAW chip. Also in this bonding member, the stress caused by the difference in thermal expansion coefficient between the mounting substrate and the SAW chip. Occurs. Here, in the SAW chip 101, the distance between both ends of the lateral conductor bump 122 is X1, the distance between both ends of the longitudinal conductor bump 122 is Y1, and the distance between both ends of the lateral bonding member 121 is X2. When the distance between both ends of the bonding member 121 is Y2, the temperature of the bonding member 121 arranged on the outer side (closer to the end face of the SAW chip) than the conductor bump 122 is changed due to the relationship of X1 <X2 and Y1 <Y2. When stress is applied, the stress generated is large, and there is a risk that the resin may enter the airtight space due to breakage of the joining member and the joining portion. In order to improve this, it is necessary to reduce the dimensions X2 and Y2 of the joining member 121 as much as possible. However, if the dimensions of the joining member 121 are reduced, the airtight space is reduced, and filter function parts such as IDT electrodes and reflectors. It becomes difficult to arrange in the airtight space.

また、図9のSAWデバイスは、配線の自由度が著しく低いという欠点も有している。即ち、図9のSAWデバイスは、SAWチップの外周電極と実装基板の外周パターンの両方とも接地パターンである場合などは、半田からなる接合部材にて外周電極と外周パターンを接続しても問題ないが、SAWチップの外周電極が接地パターンで、且つ外周電極の真下の実装基板上に信号線パターンが配置されている場合等は、接合部材によって接地パターンと信号線パターンとを短絡してしまう問題がある。従って、SAWチップの外周電極と実装基板の外周パターンは接地パターン同士、又は信号線パターン同士等、互いに短絡できるもの同士を配置する必要がある。以上説明した欠点は、導体バンプと接合部材に半田以外の合金または金属を用いた場合でも同様に生じる。   Further, the SAW device of FIG. 9 has a drawback that the degree of freedom of wiring is extremely low. That is, in the SAW device of FIG. 9, there is no problem even if the outer peripheral electrode and the outer peripheral pattern are connected by a joining member made of solder when both the outer peripheral electrode of the SAW chip and the outer peripheral pattern of the mounting substrate are ground patterns. However, when the outer peripheral electrode of the SAW chip is a ground pattern and the signal line pattern is arranged on the mounting substrate directly below the outer peripheral electrode, the problem is that the ground pattern and the signal line pattern are short-circuited by the joining member. There is. Therefore, it is necessary to arrange the outer peripheral electrode of the SAW chip and the outer peripheral pattern of the mounting substrate so that they can be short-circuited to each other, such as ground patterns or signal line patterns. The drawbacks described above are similarly caused even when an alloy or metal other than solder is used for the conductor bump and the joining member.

これに対し、図10のSAWデバイスは、ダムが実装基板に接触していないため、実装基板とSAWチップとの熱膨張係数の差による応力がダム部分では発生しなくなる。また、実装基板の外周パターンの有無を任意に決定することができ、SAWチップの外周電極の真下の実装基板上に任意の配線パターンを設けることができるという利点がある。   On the other hand, in the SAW device of FIG. 10, since the dam is not in contact with the mounting substrate, stress due to the difference in thermal expansion coefficient between the mounting substrate and the SAW chip does not occur in the dam portion. In addition, the presence or absence of the outer peripheral pattern of the mounting substrate can be arbitrarily determined, and there is an advantage that an arbitrary wiring pattern can be provided on the mounting substrate immediately below the outer peripheral electrode of the SAW chip.

しかしながら、図9のSAWデバイスではSAWチップの外周電極に合金材料からなる接合部材を接続することで、これを低抵抗な配線電極として用いることが可能であったが、図10のダムは絶縁体であるので、SAWチップの外周電極が低抵抗でなくなるという欠点がある。また、本願発明者らの実験によれば、樹脂性のダムが封止樹脂の気密空間への浸入防止に効果を発揮するのは、樹脂封止の加熱の際に封止樹脂の加圧を伴わない場合のみであり、例えば特開2004−129092号公報や特開2004−363770号公報に開示されている工法のように、樹脂封止の際に封止樹脂の加熱と加圧が伴う場合は、たとえ封止樹脂よりも耐熱性の高い樹脂を用いて樹脂ダムを形成したとしても樹脂ダムの著しい変形が生じる。本願発明者は、この樹脂ダムの著しい変形により、封止樹脂が気密空間へ浸入してしまうことを実験により確認した。   However, in the SAW device of FIG. 9, it was possible to use a bonding member made of an alloy material to connect the outer peripheral electrode of the SAW chip as a low-resistance wiring electrode. However, the dam of FIG. Therefore, there is a drawback that the outer peripheral electrode of the SAW chip is not low resistance. Also, according to the experiments by the inventors of the present application, the resinous dam is effective in preventing the sealing resin from entering the airtight space because the sealing resin is pressurized during the heating of the resin sealing. This is only the case where there is no accompanying, for example, when the sealing resin is heated and pressurized during resin sealing, such as the method disclosed in Japanese Patent Application Laid-Open No. 2004-129092 and Japanese Patent Application Laid-Open No. 2004-363770. Even if the resin dam is formed using a resin having higher heat resistance than the sealing resin, the resin dam is significantly deformed. The inventor of the present application confirmed by experiment that the sealing resin would enter the airtight space due to the significant deformation of the resin dam.

以上説明した問題点を解決すべく、本発明では、実装基板上にSAWチップを導体バンプを介してフリップチップ実装し、SAWチップの外面から実装基板の上面にかけて樹脂封止し、実装基板とSAWチップの間に気密空間を形成した表面実装型のSAWデバイスにおいて、樹脂封止工程において気密空間に樹脂が浸入するのを防止すると共に、実装基板とSAWチップの熱膨張係数の差に起因する応力を低減することによりSAWチップと実装基板の接続強度を高め、配線の自由度を高めたSAWデバイスを実現することを目的とする。   In order to solve the problems described above, in the present invention, a SAW chip is flip-chip mounted on a mounting substrate via a conductor bump, and resin-sealed from the outer surface of the SAW chip to the upper surface of the mounting substrate. In a surface-mount SAW device in which an airtight space is formed between chips, the resin is prevented from entering the airtight space in the resin sealing step, and stress caused by a difference in thermal expansion coefficient between the mounting substrate and the SAW chip. An object of the present invention is to realize a SAW device in which the connection strength between the SAW chip and the mounting substrate is increased by reducing the above, and the degree of freedom of wiring is increased.

上記課題を解決するために本発明に係るSAWデバイスの請求項1に記載の発明は、 絶縁基板と、該絶縁基板の底部に配置した表面実装用の外部端子電極と、該絶縁基板の上部に配置され前記外部端子電極と導通した配線パターンとを備えた実装基板と、圧電基板と、該圧電基板の一面に形成したIDT電極と、前記配線パターンと導体バンプを介して接続される接続パッドとを備えた弾性表面波(SAW)チップと、前記SAWチップと前記実装基板とをフリップチップ実装した状態で、SAWチップ外面から実装基板上面にかけて被覆形成されることにより前記IDT電極と前記実装基板との間に気密空間を形成する封止樹脂とを備えたSAWデバイスにおいて、前記SAWチップのSAW励振部分を除く外周部に、前記封止樹脂のSAW励振部分への流入を阻止するための金属または合金からなるダムを設け、且つ、該ダムと前記実装基板とが接触していないことを特徴とする。   In order to solve the above problems, the invention according to claim 1 of the SAW device according to the present invention comprises an insulating substrate, an external terminal electrode for surface mounting disposed at the bottom of the insulating substrate, and an upper portion of the insulating substrate. A mounting substrate having a wiring pattern disposed and electrically connected to the external terminal electrode; a piezoelectric substrate; an IDT electrode formed on one surface of the piezoelectric substrate; and a connection pad connected to the wiring pattern via a conductor bump. A surface acoustic wave (SAW) chip comprising: the SAW chip and the mounting board are flip-chip mounted, and the IDT electrode and the mounting board are coated and formed from the outer surface of the SAW chip to the upper surface of the mounting board. And a sealing resin that forms an airtight space between the sealing resin and the outer periphery of the SAW chip excluding the SAW excitation portion. W provided a dam made of a metal or alloy for preventing flowing into the excitation portion, and characterized in that said mounting substrate with said dam is not in contact.

請求項2に記載の発明は、前記ダムが前記SAWチップの端面に接しないように設けられたことを特徴とする。   The invention described in claim 2 is characterized in that the dam is provided so as not to contact the end face of the SAW chip.

請求項3に記載の発明は、前記ダムの前記SAWチップ端面からの距離が、前記SAWチップの四隅で大きくなっていることを特徴とする。   The invention according to claim 3 is characterized in that the distance of the dam from the end face of the SAW chip is large at the four corners of the SAW chip.

請求項4に記載の発明は、前記ダムが400℃より高い融点を有する金属または合金からなることを特徴とする。 The invention described in claim 4 is characterized in that the dam is made of a metal or an alloy having a melting point higher than 400 ° C.

請求項5に記載の発明は、前記ダムがAlまたはAlを主成分とした合金からなることを特徴とする。   The invention according to claim 5 is characterized in that the dam is made of Al or an alloy containing Al as a main component.

請求項6に記載の発明は、前記ダムの断面形状が略矩形であることを特徴とする。   The invention described in claim 6 is characterized in that the cross-sectional shape of the dam is substantially rectangular.

請求項7に記載の発明は、前記ダムが蒸着,スパッタリング,イオンプレーティング等の乾式の成膜法により成膜されたものであり、かつ、前記ダムのパターン形成がリフトオフ法によるものであることを特徴とする。 In the invention described in claim 7, the dam is formed by a dry film forming method such as vapor deposition, sputtering, or ion plating, and the pattern formation of the dam is by a lift-off method. It is characterized by.

請求項8に記載の発明は、前記封止樹脂がフィラー入りの樹脂であり、前記ダムと前記実装基板との間隔が前記フィラーの平均サイズよりも小さいことを特徴とする。   The invention according to claim 8 is characterized in that the sealing resin is a resin containing a filler, and an interval between the dam and the mounting substrate is smaller than an average size of the filler.

請求項9に記載の発明は、前記ダムを絶縁膜で覆ったことを特徴とする。   The invention described in claim 9 is characterized in that the dam is covered with an insulating film.

請求項1に記載の発明によれば、SAWチップのSAW励振部分を除く外周に金属または合金からなるダムを設け、且つ、ダムを実装基板に接触しないようにしたので、封止樹脂がSAW励振部分に浸入するのを防止すると共に、SAWチップと実装基板の熱膨張係数の差に起因する応力を小さくでき、SAWチップと実装基板の接合部の破断等を起因とする特性変動や特性劣化を防止できる。また、前記ダムを金属又は合金で形成したので、樹脂封止工程の際の封止樹脂の加熱と加圧によってダムが変形することはなく、信頼性に優れたSAWデバイスを実現できる。   According to the first aspect of the present invention, since the dam made of a metal or an alloy is provided on the outer periphery excluding the SAW excitation portion of the SAW chip and the dam is prevented from contacting the mounting substrate, the sealing resin is used for the SAW excitation. In addition to preventing intrusion into the portion, the stress due to the difference in thermal expansion coefficient between the SAW chip and the mounting substrate can be reduced, and characteristic fluctuations and characteristic deterioration caused by breakage of the joint portion between the SAW chip and the mounting substrate can be prevented. Can be prevented. In addition, since the dam is formed of a metal or an alloy, the dam is not deformed by heating and pressurizing the sealing resin in the resin sealing step, and a highly reliable SAW device can be realized.

請求項2に記載の発明によれば、前記ダムを前記SAWチップの端面に接しないように設けることにより、ダイシング時にダイシングブレードに金属が付着して切削性が劣化してしまうことがないので、量産性に優れたSAWデバイスを実現できる。   According to the invention described in claim 2, by providing the dam so as not to contact the end face of the SAW chip, metal does not adhere to the dicing blade at the time of dicing, and machinability is not deteriorated. A SAW device with excellent mass productivity can be realized.

請求項3に記載の発明によれば、前記ダムの前記SAWチップ端面からの距離を前記SAWチップの四隅で大きくすることにより、SAWチップを実装基板にフリップチップ実装する際の実装角度を制御する必要がないので、製造効率を高めることができる。   According to the third aspect of the present invention, the mounting angle when the SAW chip is flip-chip mounted on the mounting substrate is controlled by increasing the distance from the end face of the SAW chip at the four corners of the SAW chip. Since it is not necessary, the production efficiency can be increased.

請求項4に記載の発明によれば、前記ダムを400℃より高い融点を有する金属又は合金から形成することにより、SAWチップを実装基板にフリップチップ実装する際にかかる熱によりダム形状が変形することがないので、信頼性に優れたSAWデバイスを実現できる。   According to the invention described in claim 4, by forming the dam from a metal or alloy having a melting point higher than 400 ° C., the dam shape is deformed by heat applied when flip-chip mounting the SAW chip on the mounting substrate. Therefore, a highly reliable SAW device can be realized.

請求項5に記載の発明によれば、前記ダムをAl又はAlを主成分とする合金から形成することにより、安価で且つ成膜加工が容易であるので、量産性に優れたSAWデバイスを実現できる。   According to the invention described in claim 5, since the dam is formed from Al or an alloy containing Al as a main component, it is inexpensive and easy to form a film, so that a SAW device excellent in mass productivity is realized. it can.

請求項6に記載の発明によれば、前記ダムの断面形状を略矩形状にすることにより、樹脂封止の際の気密空間への樹脂浸入防止の効果を高めることができるので、信頼性に優れたSAWデバイスを実現できる。   According to the sixth aspect of the present invention, since the cross-sectional shape of the dam is substantially rectangular, it is possible to enhance the effect of preventing resin intrusion into the airtight space during resin sealing. An excellent SAW device can be realized.

請求項7に記載の発明によれば、前記ダムを蒸着,スパッタリング,イオンプレーティング等の乾式の成膜法により成膜し、且つ、前記ダムのパターン形成をリフトオフ法を用いて行うことにより、金属膜または合金膜の表面に不純物が付着するのを防止でき、湿式成膜法で必要であった成膜後の洗浄工程も実施する必要がなくなり、精度よくダムを形成できるので、信頼性や製造効率を高めることができる。   According to the invention described in claim 7, by forming the dam by a dry film formation method such as vapor deposition, sputtering, ion plating, and the like, and performing pattern formation of the dam using a lift-off method, Impurities can be prevented from adhering to the surface of the metal film or alloy film, and it is no longer necessary to carry out a cleaning process after film formation, which was necessary in the wet film forming method, and a dam can be formed with high accuracy. Manufacturing efficiency can be increased.

請求項8に記載の発明によれば、封止樹脂をフィラー入りの樹脂とし、ダムと実装基板との間隔が前記フィラーの平均サイズよりも小さくすることにより、樹脂封止工程における気密空間への封止樹脂浸入の抑制効果を格段に向上させることができると共に、封止樹脂の機械的強度及び耐湿性を向上できる。   According to the eighth aspect of the present invention, the sealing resin is a resin containing a filler, and the distance between the dam and the mounting substrate is smaller than the average size of the filler, whereby the airtight space in the resin sealing step is reduced. The effect of suppressing the intrusion of the sealing resin can be remarkably improved, and the mechanical strength and moisture resistance of the sealing resin can be improved.

請求項9に記載の発明によれば、前記ダムを絶縁膜で覆うことにより、SAWチップと実装基板のギャップを小さくした際に生じる金属粉による短絡事故を防止することができるので、信頼性に優れたSAWデバイスを実現できる。   According to the invention described in claim 9, by covering the dam with an insulating film, it is possible to prevent a short circuit accident due to metal powder that occurs when the gap between the SAW chip and the mounting substrate is reduced. An excellent SAW device can be realized.

以下、本発明を図面に示した実施の形態により詳細に説明する。図1は本発明の第1の実施例に係るSAWデバイスを示しており、SAWチップ1は、圧電基板2上にSAWを励振させるためのIDT電極3と接続パッド4とを配置し、SAW励振部分を除く外周部に金属または合金からなるダム21を設けている。実装基板11は、絶縁基板12の底部に表面実装用の外部端子電極13と、該外部端子電極13と導通し、且つ接続パッド4と接続するための配線パターン14とを備えている。そして、SAWチップ1の接続パッド4と実装基板11の配線パターン14とを導体バンプ22を介してフリップチップ実装し、SAWチップ1の外面から実装基板11の上面にかけて封止樹脂31で封止し、SAWチップ1と実装基板11の間に気密空間23を形成している。なお、前記ダム21は実装基板11に接触しておらず、ダム21の下面と実装基板11との間はギャップGだけ離れている。また、前記ダム21は樹脂封止工程の際に気密空間23内に樹脂が浸入するのを防止する。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIG. 1 shows a SAW device according to a first embodiment of the present invention. In a SAW chip 1, an IDT electrode 3 and a connection pad 4 for exciting SAW are arranged on a piezoelectric substrate 2, and SAW excitation is performed. A dam 21 made of metal or alloy is provided on the outer peripheral portion excluding the portion. The mounting substrate 11 includes an external terminal electrode 13 for surface mounting and a wiring pattern 14 that is electrically connected to the external terminal electrode 13 and connected to the connection pad 4 at the bottom of the insulating substrate 12. Then, the connection pads 4 of the SAW chip 1 and the wiring pattern 14 of the mounting substrate 11 are flip-chip mounted via the conductor bumps 22 and sealed with a sealing resin 31 from the outer surface of the SAW chip 1 to the upper surface of the mounting substrate 11. An airtight space 23 is formed between the SAW chip 1 and the mounting substrate 11. The dam 21 is not in contact with the mounting substrate 11, and the lower surface of the dam 21 and the mounting substrate 11 are separated by a gap G. The dam 21 prevents the resin from entering the airtight space 23 during the resin sealing process.

本発明のSAWデバイスはダムが実装基板に接触しないため、実装基板とSAWチップとの熱膨張係数の差に起因する応力がダム部分に発生しない。厳密に言うと、図1においてダムは封止樹脂と空隙を介して実装基板につながるが、封止樹脂は金属又は合金からなるダムよりも弾性率が低いため、図9のSAWデバイスよりもダムに発生する実装基板とSAWチップとの熱膨張係数の差に起因する応力は小さくなる。更に、ダムと実装基板とのギャップGを小さくすれば、ダムの下に入り込む封止樹脂の浸入が僅かとなるので、ダムに発生する応力は極めて小さくできる。   In the SAW device of the present invention, since the dam does not contact the mounting substrate, stress due to the difference in thermal expansion coefficient between the mounting substrate and the SAW chip does not occur in the dam portion. Strictly speaking, the dam in FIG. 1 is connected to the mounting substrate through a sealing resin and a gap, but the sealing resin has a lower elastic modulus than a dam made of a metal or an alloy, so that the dam is lower than the SAW device of FIG. The stress caused by the difference in the coefficient of thermal expansion between the mounting substrate and the SAW chip is reduced. Furthermore, if the gap G between the dam and the mounting substrate is made small, the intrusion of the sealing resin that enters under the dam becomes small, so that the stress generated in the dam can be made extremely small.

また、従来の図9のSAWデバイスは、実装基板とSAWチップとの熱膨張係数の差に起因する応力を小さくするために気密空間の寸法を極力小さくする必要があり、IDT電極や反射器等のフィルタ機能部を気密空間内に配置するのが困難であったが、本発明のSAWデバイスは、気密空間を小さくすることなく実装基板とSAWチップとの熱膨張係数の差に起因する応力を小さくできるので、IDTや反射器等のフィルタ機能部を容易に気密空間内に配置できる。また、ダムが実装基板に接触しないため、例えばダムを接地用接続パッドに接続して接地電極として利用した場合においても、ダムの真下の実施基板上には必ずしも接地用配線パターンを配置する必要はなく、信号配線パターンを設けることが可能である。このように、本発明のSAWデバイスは、図9のSAWデバイスと比較してフィルタ設計及び配線の自由度が高い点で有利である。 Further, in the conventional SAW device of FIG. 9, it is necessary to reduce the dimension of the hermetic space as much as possible in order to reduce the stress caused by the difference in thermal expansion coefficient between the mounting substrate and the SAW chip. However, the SAW device of the present invention has a stress caused by the difference in thermal expansion coefficient between the mounting substrate and the SAW chip without reducing the airtight space. Since it can be made small, filter function parts, such as IDT and a reflector, can be easily arrange | positioned in airtight space. In addition, since the dam does not contact the mounting substrate, for example, even when the dam is connected to the ground connection pad and used as a ground electrode, it is not always necessary to arrange the ground wiring pattern on the implementation substrate directly below the dam. And a signal wiring pattern can be provided. Thus, the SAW device of the present invention is advantageous in that the degree of freedom in filter design and wiring is higher than that of the SAW device in FIG.

更に、本発明のSAWデバイスのダムは金属又は合金から形成され、SAWチップ上に形成された接続パッドや該接続パッドとIDT電極とを接続する配線電極等よりも膜厚が厚いので、SAWチップ上における低抵抗な配線電極として用いることができる。例えば、ダムが接地用接続パッドに接続されている場合、ダムを低抵抗な接地電極として利用することが可能となり、SAWデバイスの低損失化に効果を発揮する。また、従来の図10のSAWデバイスのように、ダムを樹脂で形成すると、樹脂封止工程の際に封止樹脂の加熱と加圧が伴うと樹脂ダムの著しい変形が生じてダムの機能を損なってしまう問題があったが、本発明のSAWデバイスはダムを金属または合金から形成しているので、樹脂封止工程の際の封止樹脂の加熱と加圧によってダムが変形することはない。従って、本発明のSAWデバイスは、図10のSAWデバイスと比較して、樹脂封止工程時に気密空間に樹脂が浸入するのを確実に防止できる。 Furthermore, the dam of the SAW device of the present invention is formed of a metal or an alloy, and the SAW chip is thicker than the connection pad formed on the SAW chip, the wiring electrode connecting the connection pad and the IDT electrode, etc. It can be used as a low resistance wiring electrode. For example, when the dam is connected to the ground connection pad, the dam can be used as a low-resistance ground electrode, which is effective in reducing the loss of the SAW device. In addition, when the dam is formed of a resin as in the conventional SAW device of FIG. 10, if the sealing resin is heated and pressurized during the resin sealing process, the resin dam significantly deforms and the function of the dam is increased. Although the SAW device of the present invention has a dam formed from a metal or an alloy, the dam is not deformed by heating and pressurizing the sealing resin during the resin sealing process. . Therefore, as compared with the SAW device of FIG. 10, the SAW device of the present invention can reliably prevent the resin from entering the airtight space during the resin sealing process.

なお、前記ダムは実装基板側に設けても良いが、実装基板を複数個連接した配線基板母材上に、一括して、且つ高い寸法精度で金属又は合金からなるダムを形成するには、ダムパターンに対応したフォトリソグラフィ技術によるレジストパターンを配線基板母材上に形成する必要がある。高寸法精度であるレジストパターンに対し、配線基板母材上の配線パターンは寸法精度が悪く、配線基板母材全体に渡って精度良く配線パターンとダムパターンを合わせ込むことが困難であり、高密度配線に不向きである。従って、ダムはSAWチップ側に形成するのが好ましい。   The dam may be provided on the mounting substrate side, but in order to form a dam made of a metal or an alloy with high dimensional accuracy on the wiring substrate base material in which a plurality of mounting substrates are connected together, It is necessary to form a resist pattern by a photolithography technique corresponding to the dam pattern on the wiring board base material. Compared to resist patterns with high dimensional accuracy, the wiring pattern on the wiring board base material has poor dimensional accuracy, and it is difficult to accurately match the wiring pattern and dam pattern over the entire wiring board base material. Not suitable for wiring. Therefore, the dam is preferably formed on the SAW chip side.

また、前記ダムと前記実装基板のギャップGは、封止樹脂の気密空間への浸入量を低減するために狭い方が好ましい。ギャップGを狭くする方法としては、ダムの厚みを大きくする他に、図2のように、ダム21の真下の実装基板11上に外周パターン15を設けることでギャップGを狭くしても良い。外周パターン15の材料としてはアルミナコートやガラスコート等の絶縁物でも適用可能だが、配線パターン14と同一の材料、例えばWやMoからなるメタライズパターンにNiメッキとAuメッキを施したもので外周パターン15を形成すれば、実装基板の製造工程を増やすことなく外周パターンを形成することができる。   The gap G between the dam and the mounting substrate is preferably narrow in order to reduce the amount of sealing resin entering the airtight space. As a method of narrowing the gap G, in addition to increasing the thickness of the dam, the gap G may be narrowed by providing an outer peripheral pattern 15 on the mounting substrate 11 directly below the dam 21 as shown in FIG. As the material of the outer peripheral pattern 15, an insulator such as alumina coat or glass coat can be applied, but the same material as the wiring pattern 14, for example, a metallized pattern made of W or Mo is subjected to Ni plating and Au plating, and the outer peripheral pattern If 15 is formed, an outer peripheral pattern can be formed without increasing the manufacturing process of the mounting substrate.

また、前記ダムはSAWチップの周縁部端面に接しないように設けるのが好ましい。その理由について以下説明する。図3及び図4は、ダイシング前後の圧電基板の状態を示す図であり、(a)にダイシング前の圧電基板の平面図を、(b)にダイシング前の圧電基板の断面図を、(c)にダイシング後の圧電基板の断面図を示す。なお、圧電基板上に形成した導体バンプ、IDT電極、接続パッド等の図示は省略している。図3(a)(b)のように圧電基板2上にダイシング切り代を覆うようにして金属又は合金からなるダム21を形成してダイシングを行うと、図3(c)のようにSAWチップ1の端面に接してダムが形成される。しかしながら、圧電基板のダイシング切り代を金属膜で覆ってしまうと、ダイシングの際にダイシングブレードに金属が付着してしまい切削性が劣化し、ダイシング中に圧電基板が割れたり、ダイシングブレードに割れ欠けが生じる可能性がある。これに対し、図4(a)(b)のように、圧電基板2上にダイシング切り代に接しないように金属又は合金からなるダム21を形成しダイシングを行えば、ダイシングの際にダイシングブレードへ金属が付着することもなく、切削性の劣化も生じない。このような理由から、ダムはSAWチップの端面に接しないように圧電基板の内側に設けるのが好ましい。   Moreover, it is preferable that the dam is provided so as not to contact the peripheral edge of the SAW chip. The reason will be described below. 3 and 4 are views showing the state of the piezoelectric substrate before and after dicing. FIG. 3A is a plan view of the piezoelectric substrate before dicing, FIG. 3B is a cross-sectional view of the piezoelectric substrate before dicing, and FIG. ) Shows a cross-sectional view of the piezoelectric substrate after dicing. Illustration of conductor bumps, IDT electrodes, connection pads and the like formed on the piezoelectric substrate is omitted. When a dam 21 made of a metal or alloy is formed on the piezoelectric substrate 2 so as to cover the dicing margin as shown in FIGS. 3A and 3B and dicing is performed, a SAW chip as shown in FIG. A dam is formed in contact with the end face of 1. However, if the cutting allowance of the piezoelectric substrate is covered with a metal film, the metal adheres to the dicing blade during dicing and the machinability deteriorates, the piezoelectric substrate breaks during dicing, or the dicing blade is not cracked. May occur. On the other hand, as shown in FIGS. 4 (a) and 4 (b), if a dam 21 made of metal or alloy is formed on the piezoelectric substrate 2 so as not to be in contact with the cutting allowance, dicing is performed at the time of dicing. There is no adhesion of metal to the metal, and machinability is not deteriorated. For this reason, the dam is preferably provided inside the piezoelectric substrate so as not to contact the end face of the SAW chip.

以上説明したように、本発明の第1の実施例に係るSAWデバイスは、実装基板上にSAWチップを導体バンプを介してフリップチップ実装し、SAWチップの外面から実装基板の上面にかけて樹脂封止し、SAWチップと実装基板の間に気密空間を形成した表面実装型のSAWデバイスにおいて、SAWチップのSAW励振部分を除く外周に金属又は合金からなるダムを設け、且つ、ダムを実装基板に接触しないようにしたので、ダム部分に発生する実装基板とSAWチップとの熱膨張係数の差に起因する応力は極めて小さくなる。その結果、実装基板とSAWチップの接合部分が破断するのを防止でき、気密空間を大きくできるので配線の自由度を高めることができる。また、前記ダムは、金属または合金から形成しているので樹脂封止の際の封止樹脂の加熱と加圧によって形状が変化しないので信頼性に優れている。また、前記ダムをSAWチップの端面に接しないように圧電基板の内側に設けることにより、ダイシング工程で不良品が発生するのを防止できる。   As described above, in the SAW device according to the first embodiment of the present invention, the SAW chip is flip-chip mounted on the mounting substrate via the conductor bump, and the resin sealing is performed from the outer surface of the SAW chip to the upper surface of the mounting substrate. In a surface mount type SAW device in which an airtight space is formed between the SAW chip and the mounting substrate, a dam made of metal or alloy is provided on the outer periphery excluding the SAW excitation portion of the SAW chip, and the dam contacts the mounting substrate. As a result, the stress caused by the difference in thermal expansion coefficient between the mounting substrate and the SAW chip generated in the dam portion becomes extremely small. As a result, the joint portion between the mounting substrate and the SAW chip can be prevented from breaking, and the airtight space can be increased, so that the degree of freedom of wiring can be increased. Further, since the dam is made of a metal or an alloy, its shape is not changed by heating and pressurization of the sealing resin at the time of resin sealing, so that the dam is excellent in reliability. Further, by providing the dam on the inner side of the piezoelectric substrate so as not to contact the end face of the SAW chip, it is possible to prevent a defective product from being generated in the dicing process.

次に、本発明の第2の実施例に係るSAWデバイスについて説明する。図5は本発明の第2の実施例に係るSAWデバイスのSAWチップ41の平面図を示している。圧電基板42上にはRF回路に用いられる2段縦続接続型の縦結合1次−3次二重モードSAWフィルタが2つ形成されており、入力側を不平衡回路、出力側を平衡回路としている。第1のSAWフィルタ51は表面波の伝搬方向に沿ってIDT電極を3つ近接配置すると共に、該IDT電極の両側に反射器を形成した第1の電極郡52と第2の電極郡53とを縦続接続することによりフィルタを形成している。また、第2のSAWフィルタ61も第1のSAWフィルタ51と同様に表面波の伝搬方向に沿ってIDT電極を3つ近接配置すると共に、該IDT電極の両側に反射器を形成した第3の電極郡62と第4の電極郡63とを縦続接続することによりフィルタを形成している。そして、第1のSAWフィルタ51の導体パッド54及び第2のSAWフィルタ61の導体パッド64を不平衡入力端子とし、第1のSAWフィルタ51の導体パッド55、56及び第2のSAWフィルタ61の導体パッド65、66を平衡出力端子とし、導体パッド57、58、59、67を接地する。そして、圧電基板上の第1〜第4の電極郡、及び配線パターン、金属パッドを取り囲むように八角形状のダム43を形成する。なお、図示していないが、ダム形成後、第1の実施例と同様にSAWチップと実装基板とを導体バンプを介してフリップチップ実装し、SAWチップの外面から実装基板の上面にかけて樹脂封止し、SAWチップと実装基板の間に気密空間を形成している。また、前記ダムは実装基板に接触しないように厚みが調整されている。   Next, a SAW device according to a second embodiment of the present invention will be described. FIG. 5 shows a plan view of a SAW chip 41 of a SAW device according to the second embodiment of the present invention. On the piezoelectric substrate 42, two two-stage cascaded primary-third-order dual mode SAW filters used in the RF circuit are formed. The input side is an unbalanced circuit and the output side is a balanced circuit. Yes. The first SAW filter 51 has three IDT electrodes arranged close to each other along the propagation direction of the surface wave, and a first electrode group 52 and a second electrode group 53 in which reflectors are formed on both sides of the IDT electrode. Are connected in cascade to form a filter. Similarly to the first SAW filter 51, the second SAW filter 61 has three IDT electrodes arranged close to each other along the propagation direction of the surface wave, and a third SAW filter 61 in which reflectors are formed on both sides of the IDT electrode. A filter is formed by cascading the electrode group 62 and the fourth electrode group 63. The conductor pads 54 of the first SAW filter 51 and the conductor pads 64 of the second SAW filter 61 are used as unbalanced input terminals, and the conductor pads 55 and 56 of the first SAW filter 51 and the second SAW filter 61 The conductor pads 65, 66 are used as balanced output terminals, and the conductor pads 57, 58, 59, 67 are grounded. Then, an octagonal dam 43 is formed so as to surround the first to fourth electrode groups on the piezoelectric substrate, the wiring pattern, and the metal pad. Although not shown, after the dam is formed, the SAW chip and the mounting substrate are flip-chip mounted via conductor bumps in the same manner as in the first embodiment, and resin sealing is performed from the outer surface of the SAW chip to the upper surface of the mounting substrate. In addition, an airtight space is formed between the SAW chip and the mounting substrate. The thickness of the dam is adjusted so as not to contact the mounting substrate.

本実施例の特徴は、ダム形状を八角形にして、圧電基板の四隅にダムが配置されないようにしたことである。即ち、図6に示すようにダムを圧電基板の四隅まで形成した場合を考えると、図7に示すようにフリップチップ実装時にSAWチップが矢印φ及びθ方向へ傾いてしまった場合にダムが実装基板に当たってしまい、SAWチップの実装強度の劣化やSAWチップの破損等の不具合が生じる。特に、SAWチップに設けたダムと実装基板とのギャップGを小さくするほど、ダムが実装基板に当たりやすくなってしまう問題が生じる。このような理由から、SAWチップの四隅にダムが配置されないようにすれば、フリップチップ実装時にSAWチップが図7に示すように矢印φ及びθ方向へ多少傾いたとしても、ダムが実装基板に当たらなくなる。 The feature of this embodiment is that the dam shape is octagonal so that dams are not arranged at the four corners of the piezoelectric substrate. That is, considering the case where the dam is formed up to the four corners of the piezoelectric substrate as shown in FIG. 6, the dam is mounted when the SAW chip is tilted in the directions of arrows φ and θ as shown in FIG. It hits the substrate, causing problems such as deterioration of the mounting strength of the SAW chip and breakage of the SAW chip. In particular, the smaller the gap G between the dam provided on the SAW chip and the mounting substrate, the more likely the dam will hit the mounting substrate. For this reason, if the dams are not arranged at the four corners of the SAW chip, even if the SAW chip is slightly inclined in the directions of the arrows φ and θ as shown in FIG. You wo n’t win.

以上説明したように、本発明の第2の実施例に係るSAWデバイスによれば、SAWチップ上に設けたダムが圧電基板の四隅に配置されないようにしたので、SAWチップの実装角度を厳密に制御する必要がなくなり、製造効率を高めることができる。なお、図5ではダム形状は八角形となっているが、SAWチップの四隅にダムが配置されないようにしてあれば、八角形以上の多角形、円、楕円等の形状であっても良い。また、ダムの形状が多角形の場合、各頂点の少なくとも一つを円弧により丸めても良い。   As described above, according to the SAW device according to the second embodiment of the present invention, the dams provided on the SAW chip are not arranged at the four corners of the piezoelectric substrate. There is no need to control, and manufacturing efficiency can be increased. In FIG. 5, the dam shape is an octagon, but may be a polygon, a circle, an ellipse or the like that is an octagon or more as long as the dam is not disposed at the four corners of the SAW chip. When the dam shape is a polygon, at least one of the vertices may be rounded with an arc.

ところで、上述の第1及び第2の実施例において、SAWチップと実装基板を接続する導体バンプはSn−Ag−Cu半田やAuを用いるのが一般的である。導体バンプをSn−Ag−Cu半田とした場合には、SAWチップを実装基板にフリップチップ実装する時にかかるピーク温度は260℃以下であり、導体バンプをAuとした場合は、SAWチップを熱圧着方式(超音波を併用しない熱圧着方式)にてフリップチップ実装する時に、通常300℃〜350℃、最大で400℃の加熱が行われる。従って、フリップチップ実装時の加熱によりダムが変形しないように、ダムに用いる金属材料または合金材料は融点が少なくとも400℃よりも高い温度である必要がある。例えばダムの材料を融点217℃のSn−Ag−Cu半田とした場合、SAWチップを実装基板にフリップチップ実装する際の導体バンプ溶融時に、ダムも一緒に溶融してしまう。一度溶融したダムは冷却により固まるが、その断面形状は図8のダム71のように丸みをおびたものとなってしまう。ダムの断面形状は、図1や図2のように略矩形となっている方が、樹脂封止の際の気密空間への封止樹脂浸入防止の効果が高く、図8のようにダムの断面形状が丸みをおびてしまうと、樹脂封止の際に封止樹脂が気密空間へ浸入し易く、信頼性が損なわれる。   In the first and second embodiments described above, Sn-Ag-Cu solder or Au is generally used for the conductor bumps that connect the SAW chip and the mounting substrate. When the conductor bump is Sn-Ag-Cu solder, the peak temperature when the SAW chip is flip-chip mounted on the mounting substrate is 260 ° C. or less, and when the conductor bump is Au, the SAW chip is thermocompression bonded. When flip-chip mounting is performed by a method (thermocompression method not using ultrasonic waves), heating is usually performed at 300 ° C. to 350 ° C. and a maximum of 400 ° C. Accordingly, the metal material or alloy material used for the dam needs to have a melting point higher than at least 400 ° C. so that the dam is not deformed by heating during flip chip mounting. For example, when the material of the dam is Sn—Ag—Cu solder having a melting point of 217 ° C., the dam is melted together when the conductor bump is melted when the SAW chip is flip-chip mounted on the mounting substrate. The dam once melted is solidified by cooling, but its cross-sectional shape is rounded like the dam 71 in FIG. The cross-sectional shape of the dam is substantially rectangular as shown in FIGS. 1 and 2, and the effect of preventing the infiltration of the sealing resin into the airtight space during resin sealing is higher. As shown in FIG. If the cross-sectional shape is rounded, the sealing resin easily enters the airtight space during resin sealing, and reliability is impaired.

融点が400℃よりも高い金属としては、例えばAl,Au,Ag,Cu,Ni,Ti,Cr,Ta,Mo,W などが挙げられ、ダムに適用可能である。その中でも、安価で成膜・加工の容易な金属であるAlがダムの材料として最も好ましい。   Examples of the metal having a melting point higher than 400 ° C. include Al, Au, Ag, Cu, Ni, Ti, Cr, Ta, Mo, and W, and are applicable to dams. Among these, Al, which is an inexpensive metal that can be easily formed and processed, is most preferable as a material for the dam.

また、前記ダムは蒸着、スパッタリング、イオンプレーティング等の乾式成膜法により成膜されたものであり、且つ、ダムのパターン形成がリフトオフ法によるものであることが好ましい。電気メッキや無電解メッキなどの湿式成膜法を用いてダムとなる金属膜または合金膜を成膜した場合、金属膜または合金膜の表面に不純物がついてしまう。金属膜または合金膜の表面に不純物がついたままSAWデバイスを構成すると、ダム、接続パッド、IDT電極等に腐食が発生し、SAWデバイスの性能を著しく劣化させてしまう。これを防ぐためには湿式成膜法による成膜の後で洗浄工程を入れる必要があるが、製造工程が増えてしまう問題がある。また、湿式成膜法では膜厚のばらつきが大きく、SAWチップと実装基板のギャップGを小さくした場合に、ダムと実装基板が接触してしまう箇所が発生すると共に、局所的にギャップGが大きくなってしまう箇所も同時に発生してしまう。更には、湿式成膜法ではダムの材料として好ましいAlを成膜することが困難である。   Preferably, the dam is formed by a dry film formation method such as vapor deposition, sputtering, or ion plating, and the dam pattern is formed by a lift-off method. When a metal film or alloy film serving as a dam is formed using a wet film forming method such as electroplating or electroless plating, impurities are attached to the surface of the metal film or alloy film. If a SAW device is configured with impurities on the surface of the metal film or alloy film, dams, connection pads, IDT electrodes and the like are corroded, and the performance of the SAW device is significantly deteriorated. In order to prevent this, it is necessary to insert a cleaning step after film formation by the wet film formation method, but there is a problem that the number of manufacturing steps increases. In addition, the wet film forming method has a large variation in film thickness, and when the gap G between the SAW chip and the mounting substrate is reduced, a location where the dam and the mounting substrate are brought into contact with each other and the gap G is locally increased. The part which becomes will also occur at the same time. Furthermore, it is difficult to deposit Al, which is preferable as a dam material, by the wet film formation method.

以上の理由から、蒸着 、スパッタリング、イオンプレーティング等の乾式成膜法を用いてダムとなる金属膜または合金膜を成膜すれば、金属膜または合金膜の表面に不純物がつくことはほとんどなくなるので、湿式成膜法で必要であった成膜後の洗浄工程も実施する必要がなくなる。また、乾式成膜法は湿式成膜法よりも膜厚のばらつきが小さいので、図1や図2のギャップGのばらつきを小さくすることができる。また、乾式成膜法であれば、湿式成膜法で困難であったAlの成膜も容易に行える。   For the above reasons, if a metal film or alloy film that becomes a dam is formed using a dry film forming method such as vapor deposition, sputtering, or ion plating, the surface of the metal film or alloy film is hardly contaminated. Therefore, it is not necessary to carry out a cleaning step after film formation, which is necessary in the wet film formation method. Further, since the dry film formation method has a smaller variation in film thickness than the wet film formation method, the variation in the gap G in FIGS. 1 and 2 can be reduced. In addition, if a dry film forming method is used, it is possible to easily form an Al film, which was difficult with the wet film forming method.

また、ダムパターン形成法として印刷工法を用いた場合、微細なダムパターンを形成することが困難である。フォトリソグラフィ技術によれば微細なダムパターンに対応したレジストパターンを形成することができる。ダムの形成は接続パッドやIDT電極の形成よりも後に行う必要があるので、ダムを形成する箇所のみに選択的に成膜することができるリフトオフ法を用いて、ダムとなる金属膜または合金膜を形成するのが良い。   Further, when a printing method is used as a dam pattern forming method, it is difficult to form a fine dam pattern. According to the photolithography technique, a resist pattern corresponding to a fine dam pattern can be formed. Since the dam needs to be formed after the formation of the connection pad and the IDT electrode, the metal film or alloy film to be the dam is formed by using a lift-off method that can be selectively formed only at the location where the dam is formed. It is good to form.

なお、ダムの形成を接続パッドやIDT電極の形成よりも後に行うのは、ダムの膜厚が接続パッドやIDT電極よりも厚いためである。ダムを形成した後で接続パッドやIDT電極を形成すると、接続パッドやIDT電極のフォトリソグラフィ工程においてレジストを均一な膜厚で塗布することができなくなり、接続パッドやIDT電極の仕上がり寸法にばらつきが生じてしまう。従って、ダムは接続パッドやIDT電極を形成した後で形成する必要がある。   The reason for forming the dam after the formation of the connection pad and the IDT electrode is that the film thickness of the dam is thicker than that of the connection pad and the IDT electrode. If the connection pad and IDT electrode are formed after the dam is formed, the resist cannot be applied with a uniform film thickness in the photolithography process of the connection pad and IDT electrode, and the finished dimensions of the connection pad and IDT electrode vary. It will occur. Therefore, it is necessary to form the dam after the connection pad and the IDT electrode are formed.

前記ダムを形成する金属膜、又は合金膜は単層でもよいし、積層膜であっても良い。例えば、Alの真空蒸着膜からなるダムをLiTaO基板上にリフトオフ法で形成する際に、Alの真空蒸着中にレジストパターンが変質しないよう低温で成膜する場合はLiTaOとAlダムの密着性が弱くなることがあるので、AlダムとLiTaOの間に密着性を向上させる金属膜または合金膜(以下、密着膜と呼ぶ)を少なくとも1層設けても良い。この密着膜を、接続パッドまたはIDT電極と同じ膜構造とすれば、製造工程を増やすことなく密着膜を形成することができ、また、接続パッドまたはIDT電極と同時に密着膜を形成することができる。 The metal film or alloy film forming the dam may be a single layer or a laminated film. For example, when a dam composed of an Al vacuum deposition film is formed on a LiTaO 3 substrate by a lift-off method, the LiTaO 3 and Al dam are in close contact with each other when the resist pattern is not changed during the vacuum deposition of Al. Therefore, at least one metal film or alloy film (hereinafter referred to as an adhesion film) that improves adhesion may be provided between the Al dam and LiTaO 3 . If this adhesion film has the same film structure as the connection pad or IDT electrode, the adhesion film can be formed without increasing the number of manufacturing steps, and the adhesion film can be formed simultaneously with the connection pad or IDT electrode. .

ところで、封止樹脂の熱膨張係数の制御や機械的強度、耐湿性の向上を目的とし、封止樹脂中に例えば球状シリカなどのフィラーを含有させることがあるが、本願発明者らは、このフィラーの平均サイズよりも図1や図2におけるギャップGを小さくすることで、樹脂封止工程における気密空間への封止樹脂浸入の抑制効果を格段に向上させることができることを見出した。図2において、接続パッドの厚みを1μm、導体バンプの厚みを22μm、Alからなるダムの厚みを18μm、ギャップGを5μmとし、封止樹脂として平均粒子径15μmの球状シリカを含有させたエポキシ系の樹脂シートを用い、特許文献3及び特許文献4に開示されている、樹脂シートの加熱と加圧が伴う樹脂封止工法でSAWデバイスを製作したところ、気密空間への封止樹脂の浸入は一切発生しなかった。一方、Alからなるダムの厚みを5μm、ギャップGを18μmにして同様のSAWデバイスを製作したところ、気密空間への封止樹脂の浸入が発生してしまった。ダムの厚みとギャップGを実験パラメータとして種々のサンプルを製作したところ、ギャップGが封止樹脂に含有されている球状シリカの平均粒子径よりも大きくなると、気密空間への封止樹脂の浸入の発生が多発し、さらにギャップGが大きくなるにつれて封止樹脂の浸入量が多くなっていった。以上より、ギャップGは封止樹脂に含有されているフィラーの平均サイズよりも小さくする必要があることが確認された。   By the way, for the purpose of controlling the thermal expansion coefficient of the sealing resin and improving the mechanical strength and moisture resistance, the sealing resin may contain fillers such as spherical silica. It has been found that by suppressing the gap G in FIG. 1 and FIG. 2 to be smaller than the average size of the filler, the effect of suppressing the intrusion of the sealing resin into the airtight space in the resin sealing process can be remarkably improved. In FIG. 2, the thickness of the connection pad is 1 μm, the thickness of the conductor bump is 22 μm, the thickness of the dam made of Al is 18 μm, the gap G is 5 μm, and an epoxy resin containing spherical silica having an average particle diameter of 15 μm as a sealing resin. When a SAW device was manufactured by a resin sealing method involving heating and pressurization of a resin sheet, which is disclosed in Patent Document 3 and Patent Document 4, using the resin sheet, the intrusion of the sealing resin into the airtight space is It did not occur at all. On the other hand, when a similar SAW device was manufactured with the thickness of the dam made of Al being 5 μm and the gap G being 18 μm, the infiltration of the sealing resin into the airtight space occurred. When various samples were manufactured using the dam thickness and the gap G as experimental parameters, when the gap G was larger than the average particle diameter of the spherical silica contained in the sealing resin, the sealing resin entered the hermetic space. Occurrence occurred frequently, and as the gap G was further increased, the amount of sealing resin invaded. From the above, it was confirmed that the gap G needs to be smaller than the average size of the filler contained in the sealing resin.

以上説明した本発明のSAWデバイスにおいて、金属または合金からなるダムを絶縁膜で覆えば、図1や図2におけるギャップGを小さくした際に生じるダムと配線パターン、又はダムと外周パターンの金属粉による短絡事故を防止することができる。ダム表面に設ける絶縁膜は、例えば酸化珪素、窒化珪素、アルミナである。ダム表面に設ける絶縁膜の成膜方法は、例えばスパッタリング法,CVD法,陽極酸化法などが挙げられる。   In the SAW device of the present invention described above, if the dam made of metal or alloy is covered with an insulating film, the metal powder of the dam and the wiring pattern or the dam and the outer peripheral pattern generated when the gap G in FIGS. It is possible to prevent a short circuit accident due to. The insulating film provided on the dam surface is, for example, silicon oxide, silicon nitride, or alumina. Examples of the method for forming the insulating film provided on the surface of the dam include a sputtering method, a CVD method, and an anodic oxidation method.

本発明の第1の実施例に係るSAWデバイスの断面図を示す。1 shows a cross-sectional view of a SAW device according to a first embodiment of the present invention. 本発明の第1の実施例に係るSAWデバイスの変形例の断面図を示す。Sectional drawing of the modification of the SAW device which concerns on 1st Example of this invention is shown. SAWチップの端面に接するようにダムを形成する場合の説明図であり、ダイシング前の圧電基板の平面図を(a)に、断面図を(b)に示し、ダイシング後の圧電基板の断面図を(c)に示す。It is explanatory drawing at the time of forming a dam so that it may touch the end surface of a SAW chip, A top view of a piezoelectric substrate before dicing is shown in (a), A sectional view is shown in (b), A sectional view of a piezoelectric substrate after dicing Is shown in (c). SAWチップの端面に接しないようにダムを形成する場合の説明図であり、ダイシング前の圧電基板の平面図を(a)に、断面図を(b)に示し、ダイシング後の圧電基板の断面図を(c)に示す。It is explanatory drawing at the time of forming a dam so that it may not contact the end surface of a SAW chip, The top view of the piezoelectric substrate before dicing is shown to (a), sectional drawing is shown to (b), The cross section of the piezoelectric substrate after dicing The figure is shown in (c). 本発明の第2の実施例に係るSAWデバイスのSAWチップの平面図を示す。The top view of the SAW chip of the SAW device concerning the 2nd example of the present invention is shown. ダムをSAWチップの四隅まで形成した場合のSAWチップの平面図を示す。The top view of a SAW chip at the time of forming a dam to the four corners of a SAW chip is shown. ダム形成後のSAWチップを実装基板上にフリップチップ実装する時の実装角度を説明する図である。It is a figure explaining the mounting angle at the time of flip-chip mounting the SAW chip after dam formation on a mounting substrate. ダム材料に融点の低い半田を用いた場合のフリップチップ実装後のSAWデバイスの断面図を示す。Sectional drawing of the SAW device after flip-chip mounting when a solder with a low melting point is used for the dam material is shown. 特許文献1に記載されたSAWデバイスの断面図を示す。A sectional view of a SAW device indicated in patent documents 1 is shown. 特許文献2に記載されたSAWデバイスの断面図を示す。A cross-sectional view of a SAW device described in Patent Document 2 is shown. 特許文献1に記載されたSAWデバイスのSAWチップの透視図を示す。The perspective view of the SAW chip of the SAW device described in patent document 1 is shown.

符号の説明Explanation of symbols

1,41:SAWチップ
2,42:圧電基板
3:IDT電極
4:接続パッド
11:実装基板
12:絶縁基板
13:外部端子電極
14:配線パターン
15:外周パターン
21,43,71:ダム
22:導体バンプ
23:気密空間
31:封止樹脂
51:第1のSAWフィルタ
52:第1の電極郡
53:第2の電極郡
54,64:不平衡入力端子
55,56,65,66:平衡出力端子
57,58,59,67:接地端子
61:第2のSAWフィルタ
62:第3の電極郡
63:第4の電極郡
1, 41: SAW chip 2, 42: Piezoelectric substrate 3: IDT electrode 4: Connection pad 11: Mounting substrate 12: Insulating substrate 13: External terminal electrode 14: Wiring pattern 15: Peripheral patterns 21, 43, 71: Dam 22: Conductor bump 23: Airtight space 31: Sealing resin 51: First SAW filter 52: First electrode group 53: Second electrode group 54, 64: Unbalanced input terminals 55, 56, 65, 66: Balanced output Terminals 57, 58, 59, 67: Ground terminal 61: Second SAW filter 62: Third electrode group 63: Fourth electrode group

Claims (9)

絶縁基板と、該絶縁基板の底部に配置した表面実装用の外部端子電極と、該絶縁基板の上部に配置され前記外部端子電極と導通した配線パターンとを備えた実装基板と、
圧電基板と、該圧電基板の一面に形成したIDT電極と、前記配線パターンと導体バンプを介して接続される接続パッドとを備えた弾性表面波(SAW)チップと、
前記SAWチップと前記実装基板とをフリップチップ実装した状態で、SAWチップ外面から実装基板上面にかけて被覆形成されることにより前記IDT電極と前記実装基板との間に気密空間を形成する封止樹脂とを備えたSAWデバイスにおいて、
前記SAWチップのSAW励振部分を除く外周部に、前記封止樹脂のSAW励振部分への流入を阻止するための金属または合金からなるダムを設け、且つ、該ダムと前記実装基板とが接触していないことを特徴とするSAWデバイス。
A mounting substrate comprising: an insulating substrate; an external terminal electrode for surface mounting disposed at the bottom of the insulating substrate; and a wiring pattern disposed on the insulating substrate and electrically connected to the external terminal electrode;
A surface acoustic wave (SAW) chip comprising a piezoelectric substrate, an IDT electrode formed on one surface of the piezoelectric substrate, and a connection pad connected to the wiring pattern via a conductor bump;
A sealing resin that forms an airtight space between the IDT electrode and the mounting substrate by being coated from the outer surface of the SAW chip to the upper surface of the mounting substrate in a state where the SAW chip and the mounting substrate are flip-chip mounted; In a SAW device with
A dam made of a metal or an alloy for preventing the sealing resin from flowing into the SAW excitation portion is provided on the outer peripheral portion excluding the SAW excitation portion of the SAW chip, and the dam and the mounting substrate are in contact with each other. SAW device characterized by not.
前記ダムが前記SAWチップの端面に接しないように設けられたことを特徴とする請求項1に記載のSAWデバイス。   The SAW device according to claim 1, wherein the dam is provided so as not to contact an end face of the SAW chip. 前記ダムの前記SAWチップ端面からの距離が、前記SAWチップの四隅で大きくなっていることを特徴とする請求項1乃至2に記載のSAWデバイス。   3. The SAW device according to claim 1, wherein a distance of the dam from the end face of the SAW chip is increased at four corners of the SAW chip. 4. 前記ダムが400℃より高い融点を有する金属または合金からなることを特徴とする請求項1乃至3に記載のSAWデバイス。 The SAW device according to any one of claims 1 to 3, wherein the dam is made of a metal or an alloy having a melting point higher than 400 ° C. 前記ダムがAlまたはAlを主成分とした合金からなることを特徴とする請求項1乃至4に記載のSAWデバイス。   The SAW device according to claim 1, wherein the dam is made of Al or an alloy containing Al as a main component. 前記ダムの断面形状が略矩形であることを特徴とする請求項1乃至5に記載のSAWデバイス。   The SAW device according to any one of claims 1 to 5, wherein a cross-sectional shape of the dam is substantially rectangular. 前記ダムが蒸着、スパッタリング、イオンプレーティング等の乾式の成膜法により成膜されたものであり、且つ、前記ダムのパターン形成がリフトオフ法によるものであることを特徴とする請求項1乃至6に記載のSAWデバイス。 The dam is formed by a dry film formation method such as vapor deposition, sputtering, or ion plating, and the pattern formation of the dam is by a lift-off method. The SAW device according to 1. 前記封止樹脂がフィラー入りの樹脂であり、且つ、前記ダムと前記実装基板との間隔が前記フィラーの平均サイズよりも小さいことを特徴とする請求項1乃至7に記載のSAWデバイス。   The SAW device according to claim 1, wherein the sealing resin is a resin containing a filler, and an interval between the dam and the mounting substrate is smaller than an average size of the filler. 前記ダムを絶縁膜で覆ったことを特徴とする請求項1乃至8に記載のSAWデバイス。
The SAW device according to claim 1, wherein the dam is covered with an insulating film.
JP2005041393A 2005-02-17 2005-02-17 Surface acoustic wave device Withdrawn JP2006229632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041393A JP2006229632A (en) 2005-02-17 2005-02-17 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041393A JP2006229632A (en) 2005-02-17 2005-02-17 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
JP2006229632A true JP2006229632A (en) 2006-08-31

Family

ID=36990571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041393A Withdrawn JP2006229632A (en) 2005-02-17 2005-02-17 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2006229632A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295625A (en) * 2008-06-02 2009-12-17 Fujitsu Media Device Kk Electronic component
WO2012007252A1 (en) * 2010-07-12 2012-01-19 Epcos Ag Module package and production method
JP2015130413A (en) * 2014-01-08 2015-07-16 新日本無線株式会社 Electronic component and method of manufacturing the same
CN108899414A (en) * 2018-05-24 2018-11-27 厦门市三安集成电路有限公司 A kind of surface wave filter device architecture and preparation method thereof
CN109244231A (en) * 2018-11-09 2019-01-18 江阴长电先进封装有限公司 Packaging structure and packaging method of sound surface filtering chip
CN115000024A (en) * 2022-04-18 2022-09-02 锐石创芯(重庆)科技有限公司 Chip packaging structure and method
CN115000022A (en) * 2022-04-18 2022-09-02 锐石创芯(重庆)科技有限公司 Chip packaging structure
CN115312477A (en) * 2022-07-06 2022-11-08 锐石创芯(重庆)科技有限公司 Chip packaging structure and chip module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049559A (en) * 1998-07-30 2000-02-18 Kyocera Corp Surface acoustic wave device
JP2002043248A (en) * 2000-07-28 2002-02-08 Murata Mfg Co Ltd Thin film forming method and electronic component manufactured by using the same
JP2004039945A (en) * 2002-07-05 2004-02-05 Murata Mfg Co Ltd Electron device and its manufacturing method
JP2004064599A (en) * 2002-07-31 2004-02-26 Kyocera Corp Surface acoustic wave equipment and method for manufacturing the same
JP2004064732A (en) * 2002-06-03 2004-02-26 Murata Mfg Co Ltd Surface acoustic wave device
JP2004129092A (en) * 2002-10-04 2004-04-22 Toyo Commun Equip Co Ltd Method for manufacturing surface mounted saw device
JP2004363770A (en) * 2003-06-03 2004-12-24 Toyo Commun Equip Co Ltd Method for manufacturing surface acoustic wave device
JP2005039331A (en) * 2003-07-15 2005-02-10 Murata Mfg Co Ltd Surface acoustic wave device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049559A (en) * 1998-07-30 2000-02-18 Kyocera Corp Surface acoustic wave device
JP2002043248A (en) * 2000-07-28 2002-02-08 Murata Mfg Co Ltd Thin film forming method and electronic component manufactured by using the same
JP2004064732A (en) * 2002-06-03 2004-02-26 Murata Mfg Co Ltd Surface acoustic wave device
JP2004039945A (en) * 2002-07-05 2004-02-05 Murata Mfg Co Ltd Electron device and its manufacturing method
JP2004064599A (en) * 2002-07-31 2004-02-26 Kyocera Corp Surface acoustic wave equipment and method for manufacturing the same
JP2004129092A (en) * 2002-10-04 2004-04-22 Toyo Commun Equip Co Ltd Method for manufacturing surface mounted saw device
JP2004363770A (en) * 2003-06-03 2004-12-24 Toyo Commun Equip Co Ltd Method for manufacturing surface acoustic wave device
JP2005039331A (en) * 2003-07-15 2005-02-10 Murata Mfg Co Ltd Surface acoustic wave device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295625A (en) * 2008-06-02 2009-12-17 Fujitsu Media Device Kk Electronic component
WO2012007252A1 (en) * 2010-07-12 2012-01-19 Epcos Ag Module package and production method
US9576870B2 (en) 2010-07-12 2017-02-21 Epcos Ag Module package and production method
KR101844565B1 (en) * 2010-07-12 2018-04-02 스냅트랙, 인코포레이티드 Module package and production method
JP2015130413A (en) * 2014-01-08 2015-07-16 新日本無線株式会社 Electronic component and method of manufacturing the same
CN108899414A (en) * 2018-05-24 2018-11-27 厦门市三安集成电路有限公司 A kind of surface wave filter device architecture and preparation method thereof
CN109244231A (en) * 2018-11-09 2019-01-18 江阴长电先进封装有限公司 Packaging structure and packaging method of sound surface filtering chip
CN109244231B (en) * 2018-11-09 2024-03-12 江阴长电先进封装有限公司 Packaging structure and packaging method of acoustic surface filter chip
CN115000024A (en) * 2022-04-18 2022-09-02 锐石创芯(重庆)科技有限公司 Chip packaging structure and method
CN115000022A (en) * 2022-04-18 2022-09-02 锐石创芯(重庆)科技有限公司 Chip packaging structure
CN115000024B (en) * 2022-04-18 2023-09-08 锐石创芯(重庆)科技有限公司 Chip packaging structure and method
CN115312477A (en) * 2022-07-06 2022-11-08 锐石创芯(重庆)科技有限公司 Chip packaging structure and chip module

Similar Documents

Publication Publication Date Title
US7816794B2 (en) Electronic device and method of fabricating the same
US7211934B2 (en) Electronic device and method of manufacturing the same
US7336017B2 (en) Stack type surface acoustic wave package, and method for manufacturing the same
KR100654054B1 (en) Piezoelectric component and method for manufacturing the same
JP4766831B2 (en) Manufacturing method of electronic parts
JP4460612B2 (en) Surface acoustic wave device and manufacturing method thereof
EP1041715B1 (en) Electronic component
JP2006229632A (en) Surface acoustic wave device
JP6963445B2 (en) Electronic components
JP2012151698A (en) Elastic wave device
JP6934340B2 (en) Electronic components
JP2013131711A (en) Electronic component
JP6556081B2 (en) Surface acoustic wave device
WO2018216486A1 (en) Electronic component and module equipped with same
US8093101B2 (en) Electronic device and method of fabricating the same
US11621693B2 (en) Acoustic wave device
JP2004129193A (en) Elastic surface wave apparatus
JP2004096456A (en) Surface mounted type surface acoustic wave device and manufacturing method therefor
JP2010147348A (en) Electronic component and method of manufacturing the same
JP2008072617A (en) Surface acoustic wave device and manufacturing method thereof
US11233026B2 (en) Electronic component
JP2018160829A (en) Surface acoustic wave device
JP2006270170A (en) Elastic surface acoustic wave element and manufacturing method of elastic surface acoustic wave element
JP6793009B2 (en) Elastic wave device and multi-chamfered substrate
JP5794778B2 (en) Electronic equipment

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100810