JP3925778B2 - Method for separating volatile organic compounds in wastewater - Google Patents

Method for separating volatile organic compounds in wastewater Download PDF

Info

Publication number
JP3925778B2
JP3925778B2 JP2001364995A JP2001364995A JP3925778B2 JP 3925778 B2 JP3925778 B2 JP 3925778B2 JP 2001364995 A JP2001364995 A JP 2001364995A JP 2001364995 A JP2001364995 A JP 2001364995A JP 3925778 B2 JP3925778 B2 JP 3925778B2
Authority
JP
Japan
Prior art keywords
waste water
volatile organic
water
gas
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364995A
Other languages
Japanese (ja)
Other versions
JP2003164860A (en
Inventor
三智男 三浦
利夫 香月
慶明 三保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2001364995A priority Critical patent/JP3925778B2/en
Publication of JP2003164860A publication Critical patent/JP2003164860A/en
Application granted granted Critical
Publication of JP3925778B2 publication Critical patent/JP3925778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,地下水又は産業廃水等の廃水にトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を含んでいる場合に,この揮発性有機化合物を,廃水から効率良く分離する方法に関するものである。
【0002】
【従来の技術】
従来,地下水又は産業廃水等の廃水の処理に際して,これに含まれているトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を,前記廃水から分離するには,この廃水に対して空気等の気体を多量に吹き込むというバブリング(曝気)を行い,廃水中における揮発性有機化合物を,この廃水に吹き込んだ気体中に揮発させることにより,廃水から分離するという方法が採用されている。
【0003】
【発明が解決しようとする課題】
しかし,このバブリング方法においては,揮発性有機化合物からの分離率を高くすることのために,廃水に対して吹き込むバブリング気体の量を著しく多くしなければならず,多量の気体を取り扱うために,装置全体の大型化を避けることができないばかりか,空気を圧送するブロワーの大型化による騒音及び消費電力の増大を招来するという問題がある。
【0004】
しかも,従来のバブリング方法においては,廃水から分離した揮発性有機化合物は,当該揮発性有機化合物を廃水から分離することのために吹き込んだ多量の気体によって希釈されることにより,前記廃水からの排出ガスに含まれる揮発性有機化合物の濃度は極めて低くなるから,この濃度が極めて低い揮発性有機化合物を分解処理することが極めて厄介になり,この排気ガスを分解処理することに大きな装置と多大のランニングコストとが必要であるという問題もあった。
【0005】
そこで,本発明者達は,これらを改善するために,先の特許出願(特願2001−93962号)において,揮発性有機化合物を含む廃水を,減圧式蒸発缶内に,その底部より導入してこれより高い部位から排出するようにし,前記蒸発缶内における廃水を,当該廃水のうち水面からの液深さが深い部分より沸騰・蒸発することによって,揮発性有機化合物を廃水から分離する方法を提案した。
【0006】
この沸騰・蒸発による分離方法においては,排気ガスを少なく,且つ,揮発性有機化合物の濃度を高くできるが,揮発性有機化合物の分離をより促進するには,廃水の蒸発量を多くしなければならず,蒸発量を多くするには,廃水の温度をより高くすることが必要で,ひいては,廃水に加える熱エネルギーが大幅に増加するのであった。
【0007】
本発明は,これらの問題を解消した分離方法を提供することを技術的課題とするものである。
【0008】
【課題を解決するための手段】
この技術的課題を達成するため本発明の請求項1は,
「揮発性有機化合物を含む廃水にガスを吸収させ,次いで,この廃水を,大気圧以下の減圧に保持した脱気容器内に,当該脱気容器内に設けた充填層の下部又はこれより低い部分より導入して充填層の上部又はこれより高い部分における水面から排出することによって適宜液深さに溜めるようにし,この溜めた廃水を,その水面下の水中のうち前記充填層の上面より低い部分において前記ガスの気泡が発生するように脱気・発泡する。」
ことを特徴としている。
【0009】
本発明の請求項2は,
前記請求項1の記載において,前記脱気容器から排出される廃水を,大気圧以下の減圧に保持した蒸発缶内に供給して適宜液深さに溜めたのちその水面から排出するようにし,この溜めた廃水を,その水面下の水中の部分において蒸気の気泡が発生するように沸騰・蒸発する。」
ことを特徴としている。
【0010】
本発明の請求項3は,
前記請求項2の記載において,前記蒸発缶から排出される廃水を,ストリッピング容器内に導いて,ここで,前記蒸発缶内で発生した蒸気と直接接触させる。」
ことを特徴としている。
【0011】
【0012】
【発明の実施の形態】
以下,本発明の実施の形態を,図面について説明する。
【0013】
図1は第1の実施の形態を示す。
【0014】
この図において,符号1は,ラシヒリング等の充填層2を内蔵したガス吸収容器を示し,このガス吸収容器1内のうち前記充填層2の上方に,ポンプ4を備えた廃水供給管路3にて送られて来るトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を含む廃水を散布する一方,前記ガス吸収容器1内のうち前記充填層2の下方に,コンプレッサー5にて圧縮された空気をガス供給管路6を介して吹き込むことにより,前記廃水に空気を吸収させる。
【0015】
なお,この廃水に対する空気の吸収率は,圧力に比例するから,大気圧より高い圧力の状態で行うことが好ましい。
【0016】
また,廃水に吸収するガスとしては,前記空気に限らず,有害性のない炭酸ガス,窒素ガス及び酸素ガス等の他のガスを使用しても良い。
【0017】
このように,ガス吸収容器1において空気等のガスを吸収した廃水は,管路7を介して密閉型の脱気容器8内の底部に送られ,この脱気容器8内に適宜深さHに溜められたのち,その水面から排水管路9を介して排出される。
【0018】
このとき,前記脱気容器8内を,真空ポンプ10等の真空発生源による吸引にて大気圧以下の減圧状態にすることにより,前記廃水に吸収されているガスの気泡が,当該廃水のうちその水面より下の部分,つまり水面下の水中の部分において発生するように脱気・発泡する。
【0019】
このように,ガスを吸収した廃水を,減圧状態に保持した脱気容器8内において,当該廃水のうちその水面下の水中の部分において前記ガスの気泡が発生するように脱気・発泡することにより,トリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を廃水から高い率で確実に分離することができる。
【0020】
その理由は,以下によるものと考えられる。
【0021】
すなわち,廃水に含まれているトリクロロエチレン等の揮発性有機化合物は,廃水の脱気によって発生する気泡側に集まり,この気泡が破裂するときにおいて気相に移行(気化)して廃水から分離するのであるが,廃水の脱気が,この廃水に吸収されているガスの気泡が廃水の水面,又は水面の近傍においてのみ発生するような状態で行われているときには,この脱気・発泡によって発生する気泡が廃水に対して接触する時間がきわめて短く,従って,この気泡に集まるトリクロロエチレンが少ないので,前記揮発性有機化合物の廃水からの分離率は低い。
【0022】
これに対し,前記廃水の脱気・発泡を,当該廃水のうちその水面下の水中の部分において廃水に吸収されているガスの気泡が発生するようにして行った場合には,この脱気・発泡による気泡は,前記廃水のうちその水面下の水中の部分にて発生し,この気泡が水面に向かって上昇する。その上昇の途中において,この気泡に,廃水中におけるトリクロロエチレン等の揮発性有機化合物が多く集まり,徐々に気泡内に気化して気泡が大きくなる。そして,前記気泡が,水面において破裂するとき,この気泡に集まっている揮発性有機化合物が気相へ移行(気化)して廃水から分離するから,廃水中の揮発性有機化合物を廃水から分離することを,高い分離率で行うことができる。
【0023】
この場合において,前記脱気容器8内に,ラシヒリング等の充填材を投入した充填層11を設け,廃水を,脱気容器8内のうち前記充填層11の下部又はこれより低い部分に対して供給することによって適宜深さHに溜め,この溜めた廃水における水面を,この充填層11の上部又はこれより高い部位に設定し,前記脱気容器8内に溜めた廃水を,この水面から排水管路9を介して排出するように構成する一方,前記脱気・発泡を,前記廃水における水面下の水中のうち前記充填層11の上面よりも低い部分において前記ガスの気泡が発生するようにして行うように構成する。
【0024】
このように構成すると,廃水における水面下の水中のうち前記充填層11の上面よりも低い部分での脱気・発泡で発生したのち水面に浮上するガスの気泡は,前記充填層11のうち前記よりも上方に位置する部分を通過するときにおいて,気泡面積が増大し,且つ,急浮上することなく滞留することにより,当該気泡が水面に浮上するまでの時間が長くなり,従って,廃水との接触時間が長くなるから,このガスの気泡により多くの揮発性有機化合物を集めることができる。
【0025】
一方,前記脱気容器8内の廃水における揮発性有機化合物の濃度は,水面下の水中の部分においてガスの気泡が発生するという脱気・発泡により水面において最も低くなるが,前記充填層11を設けていない場合は,水面における揮発性有機化合物濃度の低い廃水は,前記水面下の水中の部分における気泡が水面に浮上することで発生する対流現象のために,水面下の水中の部分に混合されることになるから,前記排水管路9からは,揮発性有機化合物濃度が最も低い濃度の廃水を排出することができないことになる。
【0026】
しかし,前記したように,脱気容器8内に充填層11を設けた場合には,この充填層11の存在によって,前記対流現象を抑制することができるから,前記排水管路9からは,廃水のうちその水面の部分における低濃度の廃水のみを排出することができる。
【0027】
その結果,前記充填層11の存在によって,揮発性有機化合物の分離率を大幅に向上できる。
【0028】
一方,前記脱気容器6内を減圧状態に維持する真空ポンプ10から排出される排出ガスは,ガス化した揮発性有機化合物を含んでいるので,この排出ガスを,活性炭によるガス浄化装置,紫外線によるガス浄化装置又は燃焼式のガス浄化装置等のガス浄化装置12にて無害なガス等に分解したのち,大気中に放出する。
【0029】
この場合,前記真空ポンプ8からの排出ガスは,その量が廃水に対して最初に吸収するガス量と略等しくて,従来のバブリングよりも遥かに少ないことに加えて,揮発性有機化合物の濃度も高いから,ガス浄化装置12を,従来のように,濃度の低い排出ガスを多量に取り扱う場合よりも大幅に簡単化及び小型化できる。
【0030】
次に,図2は,第2の実施の形態を示す。
【0031】
この第2の実施の形態は,前記第1の実施の形態に,蒸発式の分離装置を併用した場合である。
【0032】
この図において,符号13は,減圧式の蒸発缶を示し,この蒸発缶13内の底部に,前記脱気容器8における排水管路9から排出される廃水を移送管路14を介して導入して,適宜高さH0だけ高い部位に設けた出口管路15から排出することにより,蒸発缶1内に,その下部から供給して所定の液深さH0だけ常時蓄えたのち,その水面から出口管路15を介して排出するように構成されている。
【0033】
前記蒸発缶13における出口管路15から排出される廃水を,密閉型ストリッピング容器16内のうちこれに設けたラシヒリング等の充填層17の上面にノズル18にて散布したのち,充填層17の下方より出口管路19を介して排出する一方,前記蒸発缶13内で発生した蒸気を,蒸気ダクト20を介して前記充填層17の下方に導入することにより,ストリッピング容器16内において,廃水と蒸発蒸気との直接的な気液接触を行う。
【0034】
一方,前記脱気容器8から前記蒸発缶13への廃水移送管路14の途中には,間接熱交換型の給水加熱器21が設けられ,この給水加熱器21に,前記ストリッピング容器16内における水蒸気をダクト23を介して電動モータにて回転駆動されるブロワー等の圧縮機22に吸引して圧縮したのちダクト24を介して導入することにより,前記廃水移送管路14を通って蒸発缶13に送られる廃水を加熱(給水加熱)する。
【0035】
この給水加熱器21における凝縮水及び不凝縮性ガスを,管路26を介して液封式の真空ポンプ25にて吸引することにより,前記蒸発缶13内及び前記ストリッピング容器16内を大気圧以下の減圧に保持する。
【0036】
この場合において,前記蒸発缶13内における減圧度と,廃水が蒸発缶13内に流入するときの温度とを適宜設定することによって,前記蒸発缶13内に所定液深さH0に蓄えた廃水が,その水面下の水中の部分において蒸気の気泡が発生するように沸騰・蒸発を行うという構成にする。
【0037】
このように,蒸発缶13内における廃水を,その水面下の水中の部分において蒸気の気泡が発生するように沸騰・蒸発することにより,前記脱気容器8の場合と同様に,沸騰・蒸発にて発生する蒸気の気泡が水面に向かって上昇する途中において,この蒸気の気泡に,廃水中におけるトリクロロエチレンが多く集まり,徐々に気泡内に蒸発して気泡が大きくなり,そして,前記蒸気の気泡が,水面において破裂するとき,この蒸気の気泡に集まっているトリクロロエチレンが気相へ移行(気化)して廃水から分離するから,廃水中の揮発性有機化合物を,この蒸発缶13においても,廃水から分離することができる。
【0038】
この蒸発缶13の内部にも,前記脱気容器8の場合と同様に,ラシヒリング等による充填層13aを設けて,前記廃水の沸騰・蒸発を,その水面下の水中のうち前記充填層13aの上面よりも低い部分で蒸気の気泡が発生するように行うという構成にすることにより,揮発性有機化合物の分離率の向上を図ることができる。
【0039】
そして,前記蒸発缶13における出口管路15から排出される廃水は,ストリッピング容器16内において,前記蒸発缶13内で発生した蒸気と直接的な気液接触を行うことにより,この廃水中における揮発性有機化合物が蒸気側に移行するから,揮発性有機化合物の廃水からの分離率を更に向上することができ,分離処理の終わった廃水は,出口管路19を介して排出され,別の用途の使用に供される。
【0040】
本発明者達は,前記第2の実施の形態において,前記脱気容器8内における圧力を14mmHgの減圧にし,蒸発缶13における圧力を25mmHgの減圧にして,且つ,蒸発缶13における沸騰・蒸発の温度差を15℃にした場合において,前記ガス吸収容器1に,揮発性有機化合物の濃度が8.2ppmの廃水を供給する実験を行った。
【0041】
この実験において,前記脱気容器8からの出口の廃水における揮発性有機化合物の濃度は,2.8ppmに低下し,更に,前記蒸発缶13からの出口の廃水における揮発性有機化合物の濃度は,0.08ppmに低下することが認められた。
【0042】
すなわち,前記廃水からの揮発性有機化合物の分離に,前記廃水に対するガス吸収及び減圧状態での脱気と,廃水の減圧状態での沸騰・蒸発とを併用することにより,廃水における揮発性有機化合物の濃度を,8.2ppmから0.08ppmに低下することができたのである。
【0043】
一方,前記蒸発缶13における沸騰・蒸発による分離の前処理として前記ガス吸収及び減圧状態での脱気・発泡を適用しない場合においては,沸騰・蒸発に加える熱エネルギーが同じであるとき,廃水における揮発性有機化合物の濃度は,8.2ppmから0.27ppmまでにしか下げることができなかった。
【0044】
また,前記蒸発缶13からの廃水を,ストリッピング容器16内において,蒸発蒸気と直接的に接触することにより,揮発性有機化合物の濃度を略半分程度に下げることができるのであった。
【0045】
一方,前記液封式の真空ポンプ25から排出される凝縮水及び不凝縮性ガスを気液分離容器27内に導入し,凝縮水を循環ポンプ28にて汲み出し,次いで,前記廃水移送管路14に設けた間接熱交換型の副給水加熱器29に供給してこの副給水加熱器29から前記液封式真空ポンプ25の吸い込み側に戻すという循環を繰り返すように構成することにより,前記液封式真空ポンプ25の箇所で加えた熱エネルギーを前記蒸発缶13への廃水移送管路14中に設けた副給水加熱器29にて前記蒸発缶13に供給される廃水の給水加熱に熱回収する。
【0046】
また,前記気液分離容器27内における余剰の凝縮水及び不凝縮性ガスを,次の気液分離容器30内に導入し,この凝縮水を,超音波発信手段32を備えた分解容器31内に導入して,この分解容器31内において前記超音波発信手段32による超音波を照射することにより,凝縮水に含まれている揮発性有機化合物を分解処理したのち,管路33より取り出すか,その一部を,管路34を介して,前記脱気容器8内に供給される廃水に混合する。
【0047】
前記気液分離容器30内における不凝縮性ガス及び分解容器31内からの排出ガスは,ガス化した揮発性有機化合物を含んでいるので,この排出ガスを,前記第1の実施の形態と同様に,活性炭によるガス浄化装置,紫外線によるガス浄化装置又は燃焼式のガス浄化装置等のガス浄化装置12にて無害なガス等に分解したのち,大気中に放出する。
【0048】
この場合においても,前記ガス浄化装置12への排出ガスは,その量が廃水に対して最初に吸収するガス量と略等しくて,従来のバブリングよりも遥かに少ないことに加えて,揮発性有機化合物の濃度も高いから,ガス浄化装置12を,従来のように,濃度の低いガスを多量に取り扱う場合よりも大幅に簡単化できる。
【0049】
【発明の作用・効果】
このように,本発明における請求項1は,揮発性有機化合物を含む廃水に,空気等のガスを吸収させ,次いで,この廃水を,減圧に保持した脱気容器内において,その水面下の水中の部分においてガスの気泡が発生するように脱気・発泡することによって,前記揮発性有機化合物を廃水から分離するものであることにより,この分離に際して,多量の空気を吹き込むこと,及び,蒸発のための熱エネルギーを加えることを必要としないから,装置を大幅に小型化できるとともに,騒音及び消費電力の低減,ひいては,ランニングコストの低減を達成できるのであり,しかも,揮発性有機化合物を高い濃度の排気ガスとして廃水から分離できるから,この分離した揮発性有機化合物を分解することが,前記従来の場合よりも簡単にできるという効果を有する。
【0050】
これに加えて,前記脱気容器内における揮発性有機化合物の分離を,充填層にて促進することができるから,前記の効果を一層に助長できる。
【0051】
一方,本発明の請求項2は,廃水からの揮発性有機化合物の分離を,前記廃水に対するガス吸収及び減圧状態での脱気・発泡と,廃水の減圧状態での沸騰・蒸発との二段で行うものであることにより,処理済廃水における揮発性有機化合物の濃度を,排気ガスを多くすることなく,前記二段分離にて大幅に低減できるとともに,廃水の沸騰・蒸発のために加える熱エネルギーを,この沸騰・蒸発よりも前において廃水に対するガス吸収及び減圧状態での脱気・発泡にて揮発性有機化合物の分離を行う分だけ少なくすることができる効果を有する。
【0052】
本発明の請求項3は,廃水からの揮発性有機化合物の分離を,前記廃水に対するガス吸収及び減圧状態での脱気・発泡と,廃水の減圧状態での沸騰・蒸発と,その後におけるストリッピング容器内での蒸気接触との三段で行うものであることにより,処理済廃水における揮発性有機化合物の濃度を,排気ガスを多くすることなく,前記三段分離にて大幅に低減できるとともに,廃水の沸騰・蒸発のために加える熱エネルギーを,この沸騰・蒸発よりも前において廃水に対するガス吸収及び減圧状態での脱気にて揮発性有機化合物の分離を行う分,及び前記沸騰・蒸発後において蒸気接触にて揮発性有機化合物の分離を行う分だけ大幅に少なくすることができる効果を有する。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を示すフローシートである。
【図2】 本発明の第2の実施の形態を示すフローシートである。
【符号の説明】
1 ガス吸収容器
3 廃水供給管路
6 ガス供給管路
8 脱気容器
10 真空ポンプ
11 充填層
12 ガス浄化装置
13 蒸発缶
16 ストリッピング容器
17 充填層
21 給水加熱器
22 圧縮機
25 液封式真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently separating volatile organic compounds from waste water when waste water such as groundwater or industrial waste water contains volatile organic compounds such as trichlorethylene or tetrachloroethylene.
[0002]
[Prior art]
Conventionally, in the treatment of wastewater such as groundwater or industrial wastewater, volatile organic compounds such as trichlorethylene or tetrachloroethylene contained therein are separated from the wastewater by using a gas such as air. Bubbling (aeration) is performed by blowing a large amount, and the volatile organic compound in the wastewater is volatilized in the gas blown into the wastewater to separate it from the wastewater.
[0003]
[Problems to be solved by the invention]
However, in this bubbling method, in order to increase the separation rate from volatile organic compounds, the amount of bubbling gas blown into the waste water must be remarkably increased. In order to handle a large amount of gas, There is a problem that not only an increase in the size of the entire apparatus cannot be avoided, but also an increase in noise and power consumption due to an increase in the size of a blower that pumps air.
[0004]
Moreover, in the conventional bubbling method, the volatile organic compound separated from the waste water is diluted with a large amount of gas blown in order to separate the volatile organic compound from the waste water, thereby discharging the waste water from the waste water. Since the concentration of the volatile organic compound contained in the gas is extremely low, it is very troublesome to decompose the volatile organic compound having a very low concentration. There was also a problem that running costs were necessary.
[0005]
In order to improve these problems, the present inventors introduced waste water containing a volatile organic compound into a vacuum evaporator from the bottom in a previous patent application (Japanese Patent Application No. 2001-93962). A method for separating volatile organic compounds from waste water by discharging the waste water from the higher portion and boiling and evaporating the waste water in the evaporator from a portion of the waste water having a deep liquid depth from the water surface. Proposed.
[0006]
In this separation method by boiling and evaporation, the exhaust gas can be reduced and the concentration of volatile organic compounds can be increased. However, in order to further promote the separation of volatile organic compounds, the amount of waste water must be increased. However, in order to increase the amount of evaporation, it was necessary to raise the temperature of the wastewater, and as a result, the heat energy added to the wastewater increased significantly.
[0007]
It is a technical object of the present invention to provide a separation method that solves these problems.
[0008]
[Means for Solving the Problems]
In order to achieve this technical problem, claim 1 of the present invention provides:
“Gas is absorbed into wastewater containing volatile organic compounds, and then this wastewater is placed in a degassing vessel maintained at a reduced pressure below atmospheric pressure, below or below the packed bed provided in the degassing vessel. It is introduced from the part and discharged from the water surface at the upper part of the packed bed or at a higher part so as to be stored at a suitable liquid depth. The pooled waste water is lower than the upper surface of the packed bed in the water below the water surface. The gas is deaerated and foamed so that the gas bubbles are generated in the portion. "
It is characterized by that.
[0009]
Claim 2 of the present invention includes:
“In the first aspect of the present invention, the waste water discharged from the deaeration container is supplied into an evaporator maintained at a reduced pressure below atmospheric pressure, stored at an appropriate liquid depth, and then discharged from the water surface. ”The accumulated waste water boils and evaporates so that steam bubbles are generated in the submerged portion of the water .”
It is characterized by that.
[0010]
Claim 3 of the present invention provides:
“In claim 2, waste water discharged from the evaporator is led into a stripping vessel where it is brought into direct contact with the steam generated in the evaporator .”
It is characterized by that.
[0011]
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 shows a first embodiment.
[0014]
In this figure, reference numeral 1 denotes a gas absorption container having a packed bed 2 such as Raschig ring, and a waste water supply line 3 having a pump 4 is provided above the packed bed 2 in the gas absorbing container 1. The waste water containing a volatile organic compound such as trichlorethylene or tetrachloroethylene is sprayed and the air compressed by the compressor 5 is gasified below the packed bed 2 in the gas absorption container 1. By blowing through the supply pipe 6, the waste water absorbs air.
[0015]
In addition, since the absorption rate of the air with respect to this wastewater is proportional to a pressure, it is preferable to carry out in the state of pressure higher than atmospheric pressure.
[0016]
The gas absorbed in the wastewater is not limited to the air, and other gases such as carbon dioxide, nitrogen gas and oxygen gas which are not harmful may be used.
[0017]
As described above, the waste water that has absorbed the gas such as air in the gas absorption container 1 is sent to the bottom of the sealed deaeration container 8 through the pipe line 7, and the degassing container 8 has an appropriate depth H. And then discharged from the surface of the water through the drain line 9.
[0018]
At this time, by making the inside of the deaeration container 8 in a reduced pressure state below atmospheric pressure by suction by a vacuum generation source such as a vacuum pump 10, gas bubbles absorbed in the wastewater are contained in the wastewater. It deaerates and foams so as to occur in the part below the surface of the water, that is, the part of the water under the surface of the water.
[0019]
In this way, the waste water that has absorbed the gas is degassed and foamed in the deaeration container 8 that is kept in a decompressed state so that bubbles of the gas are generated in a portion of the waste water under water. Thus, a volatile organic compound such as trichlorethylene or tetrachlorethylene can be reliably separated from the waste water at a high rate.
[0020]
The reason is considered to be as follows.
[0021]
In other words, volatile organic compounds such as trichlorethylene contained in wastewater collect on the bubbles generated by the degassing of the wastewater, and when these bubbles burst, they move to the gas phase (vaporize) and are separated from the wastewater. However, when degassing of wastewater is performed in a state where gas bubbles absorbed in this wastewater are generated only at or near the surface of the wastewater, this degassing / foaming occurs. The time for the bubbles to contact the wastewater is very short, and therefore the trichloroethylene collected in the bubbles is small, so that the separation rate of the volatile organic compound from the wastewater is low.
[0022]
On the other hand, when the degassing / foaming of the wastewater is performed such that gas bubbles absorbed in the wastewater are generated in the submerged portion of the wastewater, the degassing / foaming is performed. Bubbles due to foaming are generated in the portion of the waste water below the surface of the water, and the bubbles rise toward the water surface. In the middle of the rise, a large amount of volatile organic compounds such as trichlorethylene in the wastewater gather in the bubbles and gradually vaporize in the bubbles to increase the size of the bubbles. When the bubbles burst on the surface of the water, the volatile organic compounds collected in the bubbles move (vaporize) into the gas phase and separate from the wastewater, so the volatile organic compounds in the wastewater are separated from the wastewater. This can be done with a high separation rate.
[0023]
In this case, a packed bed 11 filled with a filler such as Raschig ring is provided in the degassing container 8, and waste water is fed to the lower part of the degassing container 8 or a lower portion of the packed bed 11. By supplying the water, it is appropriately stored at a depth H, and the water level in the stored waste water is set at the upper part of the packed bed 11 or higher than this, and the waste water stored in the deaeration container 8 is drained from the water surface. While being configured to discharge through the conduit 9, the deaeration / foaming is performed so that bubbles of the gas are generated in a portion of the waste water below the surface of the waste water that is lower than the top surface of the packed bed 11. To be done.
[0024]
If comprised in this way, the bubble of the gas which floats on the water surface after it generate | occur | produces by deaeration and foaming in the part lower than the upper surface of the said packed bed 11 among the water under the surface of wastewater in the said packed bed 11 will be said. When passing through the part located above, the bubble area increases and stays without rising rapidly, so that the time until the bubbles rise to the surface of the water becomes longer. Since the contact time becomes longer, more volatile organic compounds can be collected by the gas bubbles.
[0025]
On the other hand, the concentration of the volatile organic compound in the waste water in the deaeration container 8 is the lowest on the water surface due to deaeration and foaming in which gas bubbles are generated in the portion of the water below the water surface. Otherwise, wastewater with a low concentration of volatile organic compounds on the surface of the water will be mixed into the underwater part due to convection caused by air bubbles rising above the surface. Therefore, the waste water having the lowest concentration of the volatile organic compound cannot be discharged from the drain pipe 9.
[0026]
However, as described above, when the packed bed 11 is provided in the deaeration vessel 8, the presence of the packed bed 11 can suppress the convection phenomenon. Only the low-concentration waste water in the surface portion of the waste water can be discharged.
[0027]
As a result, the separation rate of the volatile organic compound can be greatly improved by the presence of the packed bed 11.
[0028]
On the other hand, since the exhaust gas discharged from the vacuum pump 10 that maintains the inside of the deaeration container 6 in a depressurized state contains a gasified volatile organic compound, the exhaust gas is converted into a gas purification device using activated carbon, ultraviolet rays, and the like. After being decomposed into harmless gas or the like by the gas purifying device 12 such as a gas purifying device or a combustion type gas purifying device, it is released into the atmosphere.
[0029]
In this case, the exhaust gas from the vacuum pump 8 is approximately equal to the amount of gas initially absorbed into the waste water, much less than the conventional bubbling, in addition to the concentration of volatile organic compounds. Therefore, the gas purification device 12 can be greatly simplified and miniaturized as compared with the case where a large amount of exhaust gas having a low concentration is handled as in the prior art.
[0030]
Next, FIG. 2 shows a second embodiment.
[0031]
The second embodiment is a case where an evaporation type separation device is used in combination with the first embodiment.
[0032]
In this figure, reference numeral 13 denotes a decompression type evaporator, and waste water discharged from the drain line 9 in the deaeration vessel 8 is introduced into the bottom of the evaporator 13 through a transfer line 14. Then, by discharging from the outlet line 15 provided at a position where it is appropriately higher by the height H0, it is supplied from the lower part into the evaporator 1 and is always stored for a predetermined liquid depth H0, and then exits from the water surface. It is configured to discharge through the pipe line 15.
[0033]
After the waste water discharged from the outlet pipe 15 in the evaporator 13 is sprayed by the nozzle 18 on the upper surface of the packed bed 17 such as Raschig ring provided in the sealed stripping container 16, While discharging from the lower side through the outlet pipe 19, the steam generated in the evaporator 13 is introduced below the packed bed 17 through the steam duct 20, so that the waste water is discharged in the stripping container 16. And direct vapor-liquid contact with vapor.
[0034]
On the other hand, an indirect heat exchange type feed water heater 21 is provided in the middle of the waste water transfer line 14 from the deaeration container 8 to the evaporator 13, and the feed water heater 21 is provided in the stripping container 16. The water vapor in the tank is sucked into a compressor 22 such as a blower that is rotationally driven by an electric motor through a duct 23, compressed and then introduced through a duct 24. The waste water sent to 13 is heated (heated water heating).
[0035]
Condensed water and non-condensable gas in the feed water heater 21 are sucked by a liquid-sealed vacuum pump 25 through a pipe line 26 so that the inside of the evaporator 13 and the stripping container 16 are at atmospheric pressure. Maintain the following reduced pressure.
[0036]
In this case, the waste water stored in the evaporator 13 at a predetermined liquid depth H0 can be obtained by appropriately setting the degree of decompression in the evaporator 13 and the temperature at which the waste water flows into the evaporator 13. , Boiling and evaporation are performed so that steam bubbles are generated in the underwater portion of the water.
[0037]
In this way, the waste water in the evaporator 13 is boiled and evaporated so that steam bubbles are generated in the portion of the water below the surface of the water, so that the waste water is boiled and evaporated as in the case of the deaeration container 8. In the middle of the rising of the vapor bubbles toward the water surface, a large amount of trichlorethylene in the waste water gathers in the vapor bubbles, gradually evaporates into the bubbles, and the bubbles become larger. When ruptured on the water surface, the trichlorethylene collected in the vapor bubbles is transferred to the gas phase (vaporized) and separated from the wastewater, so that the volatile organic compounds in the wastewater are also separated from the wastewater in the evaporator 13. Can be separated.
[0038]
As in the case of the deaeration vessel 8, the inside of the evaporator 13 is provided with a packed bed 13 a by Raschig ring or the like to boil and evaporate the waste water in the water below the surface of the packed bed 13 a. By adopting a configuration in which vapor bubbles are generated in a portion lower than the upper surface, it is possible to improve the separation rate of the volatile organic compound.
[0039]
The waste water discharged from the outlet pipe 15 in the evaporator 13 is brought into direct contact with the vapor generated in the evaporator 13 in the stripping container 16, thereby allowing the waste water in the waste water. Since the volatile organic compound moves to the vapor side, the separation rate of the volatile organic compound from the wastewater can be further improved, and the wastewater after the separation treatment is discharged via the outlet pipe 19 and is separated. Served for use.
[0040]
In the second embodiment, the inventors set the pressure in the deaeration vessel 8 to 14 mmHg, the pressure in the evaporator 13 to 25 mmHg, and the boiling / evaporation in the evaporator 13. An experiment was conducted in which waste water having a volatile organic compound concentration of 8.2 ppm was supplied to the gas absorption container 1 when the temperature difference was 15 ° C.
[0041]
In this experiment, the concentration of the volatile organic compound in the waste water at the outlet from the deaeration vessel 8 is reduced to 2.8 ppm, and the concentration of the volatile organic compound in the waste water at the outlet from the evaporator 13 is A reduction to 0.08 ppm was observed.
[0042]
That is, the separation of the volatile organic compound from the wastewater uses gas absorption and degassing under reduced pressure in the wastewater together with boiling / evaporation under reduced pressure of the wastewater. The concentration of can be reduced from 8.2 ppm to 0.08 ppm.
[0043]
On the other hand, in the case where the gas absorption and degassing / foaming under reduced pressure are not applied as pretreatment for separation by boiling / evaporation in the evaporator 13, when the heat energy applied to boiling / evaporation is the same, The concentration of volatile organic compounds could only be lowered from 8.2 ppm to 0.27 ppm.
[0044]
Further, the waste water from the evaporator 13 can be brought into direct contact with the evaporated vapor in the stripping vessel 16 so that the concentration of the volatile organic compound can be reduced to about half.
[0045]
On the other hand, condensed water and non-condensable gas discharged from the liquid-sealed vacuum pump 25 are introduced into the gas-liquid separation container 27, the condensed water is pumped out by the circulation pump 28, and then the waste water transfer pipe 14 The liquid seal is configured so as to repeat the circulation of supplying to the indirect heat exchange type sub-feed water heater 29 and returning the sub-feed water heater 29 to the suction side of the liquid-sealed vacuum pump 25. The heat energy applied at the location of the vacuum pump 25 is recovered by heat for the feed water heating of the waste water supplied to the evaporator 13 by the auxiliary feed heater 29 provided in the waste water transfer pipe 14 to the evaporator 13. .
[0046]
Further, surplus condensed water and non-condensable gas in the gas-liquid separation container 27 are introduced into the next gas-liquid separation container 30, and this condensed water is introduced into the decomposition container 31 equipped with the ultrasonic transmission means 32. Or by radiating ultrasonic waves from the ultrasonic wave transmitting means 32 in the decomposition vessel 31 to decompose the volatile organic compound contained in the condensed water and then take it out from the conduit 33; A part thereof is mixed with waste water supplied into the deaeration container 8 through a pipe 34.
[0047]
Since the non-condensable gas in the gas-liquid separation container 30 and the exhaust gas from the decomposition container 31 contain gasified volatile organic compounds, this exhaust gas is used as in the first embodiment. Further, after being decomposed into harmless gas or the like by a gas purification device 12 such as a gas purification device using activated carbon, a gas purification device using ultraviolet rays, or a combustion type gas purification device, it is released into the atmosphere.
[0048]
In this case as well, the amount of exhaust gas to the gas purification device 12 is approximately equal to the amount of gas initially absorbed into the wastewater, much less than conventional bubbling, and in addition to volatile organics. Since the concentration of the compound is also high, the gas purification device 12 can be greatly simplified as compared with the case where a large amount of low concentration gas is handled as in the prior art.
[0049]
[Operation and effect of the invention]
Thus, claim 1 in the present invention is a method in which waste water containing a volatile organic compound is absorbed with a gas such as air, and then the waste water is submerged under the surface of water in a deaeration container maintained at a reduced pressure. In this part, the volatile organic compound is separated from the wastewater by degassing and foaming so that gas bubbles are generated. In this separation, a large amount of air is blown and evaporation is performed. Therefore, it is possible to greatly reduce the size of the device, reduce noise and power consumption, and thus reduce the running cost, and achieve high concentration of volatile organic compounds. Because it can be separated from wastewater as exhaust gas, it is easier to decompose the separated volatile organic compounds than in the conventional case With the results.
[0050]
In addition, since the separation of the volatile organic compound in the deaeration container can be promoted by the packed bed, the above effect can be further promoted.
[0051]
On the other hand, according to claim 2 of the present invention, the separation of the volatile organic compound from the wastewater is divided into two stages of gas absorption and degassing / foaming under reduced pressure and boiling / evaporation under reduced pressure of the wastewater. As a result, the concentration of volatile organic compounds in the treated wastewater can be greatly reduced by the two-stage separation without increasing the exhaust gas, and the heat applied for boiling and evaporating the wastewater. The energy can be reduced by an amount corresponding to the separation of the volatile organic compound by gas absorption into the wastewater and degassing / foaming under reduced pressure before the boiling / evaporation.
[0052]
According to claim 3 of the present invention, the separation of volatile organic compounds from wastewater is carried out by gas absorption and degassing / foaming under reduced pressure, boiling / evaporation under reduced pressure of wastewater, and subsequent stripping. By performing in three stages with steam contact in the container, the concentration of volatile organic compounds in the treated wastewater can be significantly reduced by the above three-stage separation without increasing exhaust gas, Before the boiling / evaporation, the heat energy applied for boiling / evaporation of the wastewater is separated by volatile organic compounds by gas absorption into the wastewater and degassing under reduced pressure, and after the boiling / evaporation. In this case, the amount of the volatile organic compound separated by vapor contact can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a first embodiment of the present invention.
FIG. 2 is a flow sheet showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas absorption container 3 Waste water supply line 6 Gas supply line 8 Deaeration container 10 Vacuum pump 11 Packing layer 12 Gas purification device 13 Evaporator 16 Stripping container 17 Packing layer 21 Water heater 22 Compressor 25 Liquid seal type vacuum pump

Claims (3)

揮発性有機化合物を含む廃水にガスを吸収させ,次いで,この廃水を,大気圧以下の減圧に保持した脱気容器内に,当該脱気容器内に設けた充填層の下部又はこれより低い部分より導入して充填層の上部又はこれより高い部分における水面から排出することによって適宜液深さに溜めるようにし,この溜めた廃水を,その水面下の水中のうち前記充填層の上面より低い部分において前記ガスの気泡が発生するように脱気・発泡することを特徴とする廃水中の揮発性有機化合物を分離する方法。Gas is absorbed in waste water containing volatile organic compounds, and then this waste water is placed in a deaeration container maintained at a reduced pressure below atmospheric pressure, below the packed bed provided in the deaeration container or in a lower part thereof. By introducing more and discharging from the water surface at the upper part or higher part of the packed bed, the liquid is appropriately stored at a liquid depth, and the pooled waste water is a part of the water below the upper surface of the packed bed that is lower than the upper surface of the packed bed. And separating the volatile organic compound in the wastewater, wherein the gas is deaerated and foamed to generate gas bubbles. 前記請求項1の記載において,前記脱気容器から排出される廃水を,大気圧以下の減圧に保持した蒸発缶内に供給して適宜液深さに溜めたのちその水面から排出するようにし,この溜めた廃水を,その水面下の水中の部分において蒸気の気泡が発生するように沸騰・蒸発することを特徴とする廃水中の揮発性有機化合物を分離する方法。 In the description of claim 1, the waste water discharged from the deaeration container is supplied into an evaporator maintained at a reduced pressure of atmospheric pressure or less, and is stored at an appropriate liquid depth, and then discharged from the water surface. the pooled effluent, a method of separating volatile organic compounds in the waste water, characterized in that a vapor bubble in water at portions under the water surface boils and evaporation to occur. 前記請求項2の記載において,前記蒸発缶から排出される廃水を,ストリッピング容器内に導いて,ここで,前記蒸発缶内で発生した蒸気と直接接触させることを特徴とする廃水中の揮発性有機化合物を分離する方法。 The waste water discharged from the evaporator according to claim 2, wherein the waste water discharged from the evaporator is introduced into a stripping container, where the waste water is brought into direct contact with the steam generated in the evaporator. For separating the organic compound.
JP2001364995A 2001-11-29 2001-11-29 Method for separating volatile organic compounds in wastewater Expired - Fee Related JP3925778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364995A JP3925778B2 (en) 2001-11-29 2001-11-29 Method for separating volatile organic compounds in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364995A JP3925778B2 (en) 2001-11-29 2001-11-29 Method for separating volatile organic compounds in wastewater

Publications (2)

Publication Number Publication Date
JP2003164860A JP2003164860A (en) 2003-06-10
JP3925778B2 true JP3925778B2 (en) 2007-06-06

Family

ID=19175095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364995A Expired - Fee Related JP3925778B2 (en) 2001-11-29 2001-11-29 Method for separating volatile organic compounds in wastewater

Country Status (1)

Country Link
JP (1) JP3925778B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112744885A (en) * 2020-12-30 2021-05-04 中广核核电运营有限公司 Demineralized water degassing system and demineralized water degassing method

Also Published As

Publication number Publication date
JP2003164860A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JPH04190803A (en) Vacuum degassing method
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP4257781B2 (en) Purification method for underground soil contaminated with organochlorine compounds
JP3795796B2 (en) Equipment for separating and decomposing volatile organic compounds in wastewater
JP4371375B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JPH08175810A (en) Purification apparatus for waste sulfuric acid
WO2003070643A1 (en) Water treatment system
JP4043199B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
JP2009056355A (en) Method for purifying contaminated ground water
KR102062062B1 (en) Ejector-vacuum-preheater for evaporative concentration apparatus and evaporative concentration method thereof
JP4351594B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
KR20090018403A (en) Apparatus and method for purifying waste-water using a distillation under reduced pressure
CN1257107C (en) Membrane distillation sea water desalination method
JP3992130B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in wastewater
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
JP2006334532A (en) Concentration apparatus
JP2007296529A (en) Method and apparatus for separating volatile organic compound in waste water
JP2001137837A (en) Treating device for water containing volatile organic material, and non-polluting treating device for groundwater
JP5024693B2 (en) Vacuum deaerator
JP4351589B2 (en) Method and apparatus for purifying exhaust gas in purification of groundwater containing volatile organic compounds
JP2002273157A (en) Method and apparatus for removing volatile organic compound
JP3809921B2 (en) Method and apparatus for evaporating and removing trace components in aqueous solution
JP4132549B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in treated water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160309

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees