JP4257781B2 - Purification method for underground soil contaminated with organochlorine compounds - Google Patents

Purification method for underground soil contaminated with organochlorine compounds Download PDF

Info

Publication number
JP4257781B2
JP4257781B2 JP2003291536A JP2003291536A JP4257781B2 JP 4257781 B2 JP4257781 B2 JP 4257781B2 JP 2003291536 A JP2003291536 A JP 2003291536A JP 2003291536 A JP2003291536 A JP 2003291536A JP 4257781 B2 JP4257781 B2 JP 4257781B2
Authority
JP
Japan
Prior art keywords
groundwater
underground soil
treated water
anaerobic microorganisms
organochlorine compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003291536A
Other languages
Japanese (ja)
Other versions
JP2005058893A (en
Inventor
三智男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2003291536A priority Critical patent/JP4257781B2/en
Publication of JP2005058893A publication Critical patent/JP2005058893A/en
Application granted granted Critical
Publication of JP4257781B2 publication Critical patent/JP4257781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、例えば、トリクロロエチレン又はテトラクロロエチレン等の有機塩素化合物で汚染された地下土壌を、その汚染物質である前記有機塩素化合物を除去するように浄化する方法に関するものである。   The present invention relates to a method for purifying underground soil contaminated with an organic chlorine compound such as trichlorethylene or tetrachloroethylene so as to remove the organic chlorine compound which is the contaminant.

先行技術としての特許文献1には、地下土壌に汚染物質として含まれている有機塩素化合物を除去する方法として、地下土壌中における嫌気性微生物を利用して、この嫌気性微生物にて、前記有機塩素化合物を分解・除去することが記載されている。
特開2002−224659号公報
In Patent Document 1 as a prior art, as a method for removing an organic chlorine compound contained as a pollutant in underground soil, anaerobic microorganisms in the underground soil are used, and the anaerobic microorganisms are used to It describes that chlorine compounds can be decomposed and removed.
JP 2002-224659 A

この先行技術による方法は、前記地下土壌中における嫌気性微生物を、これにその栄養剤を供給することで活性化するものではあるが、その浄化処理は、専ら、地下土壌中における嫌気性微生物のみに依存するものであることから、ここにおける浄化処理の能力は可成り低いという問題がある。   This method according to the prior art activates anaerobic microorganisms in the underground soil by supplying nutrients thereto, but the purification treatment is exclusively for anaerobic microorganisms in the underground soil. Therefore, there is a problem that the capacity of the purification treatment here is considerably low.

そこで、これを改善するものとして、有機塩素化合物で汚染された地下土壌における地下水を、地下土壌から地上に汲み上げて、地上において、これに多量の空気を吹き込むというバブリング(曝気)処理を行うことによって、これに含まれ有機塩素化合物を除去し、このバブリング(曝気)処理した後の処理水を、前記地下土壌に地下水として再び戻すことが提案されている。   To improve this, groundwater in underground soil contaminated with organochlorine compounds is pumped from the underground soil to the ground, and a large amount of air is blown into the ground. It has been proposed to remove the organic chlorine compound contained therein and return the treated water after the bubbling (aeration) treatment to the underground soil as groundwater again.

この方法によると、浄化処理を、地上でのバブリング(曝気)による処理と、地中での嫌気性微生物による処理とに分けて行うことができるから、前記先行技術の場合よりも浄化処理の能力を促進できる。   According to this method, the purification treatment can be performed by separating the treatment by bubbling (aeration) on the ground and the treatment by anaerobic microorganisms in the ground. Can be promoted.

しかし、その一方、前記バブリング(曝気)処理した後の処理水には、前記したバブリング(曝気)により酸素が多量に溶解していることにより、換言すると溶存酸素量が多いことにより、この処理水を、そのまま、地下土壌に戻すことは、その溶存酸素量にて一部の嫌気性微生物が死滅することになって、嫌気性微生物の活性化が低下するから、地中での嫌気性微生物による処理が大幅に低減することになる。   However, on the other hand, the treated water after the bubbling (aeration) treatment has a large amount of oxygen dissolved by the bubbling (aeration), in other words, a large amount of dissolved oxygen. Is returned to the underground soil as it is because some anaerobic microorganisms are killed by the amount of dissolved oxygen and the activation of the anaerobic microorganisms is reduced. Processing will be greatly reduced.

また、有機塩素化合物で汚染された地下土壌から汲み上げた地下水をバブリング(曝気)処理した後の処理水に、例えば、特開2002−316050号公報又は特開2003−80074号公報等に記載されているように、鉄粉を添加したのち、前記地下土壌に戻すことによって、前記鉄粉によって前記有機塩素化合物の分解・処理の促進を図るようにすることが考えられるが、この方法によると、添加した鉄粉の多くが、多い溶存酸素との反応によって酸化鉄になり、この酸化鉄が処理水と一緒に地下水に混ざることになるから、地下土壌に、前記酸化鉄にて、地下水の流れを阻害するという目詰まりの発生を招来するばかりか、鉄粉による有機塩素化合物の分解が低下することになる。   Moreover, the treated water after bubbling (aeration) treatment of the groundwater pumped up from the underground soil contaminated with the organic chlorine compound is described in, for example, Japanese Patent Application Laid-Open No. 2002-316050 or Japanese Patent Application Laid-Open No. 2003-80074. As described above, it is conceivable to promote decomposition and treatment of the organochlorine compound with the iron powder by adding the iron powder and then returning to the underground soil. Most of the iron powder that is produced becomes iron oxide by reaction with a large amount of dissolved oxygen, and this iron oxide is mixed with groundwater together with the treated water. Not only will clogging occur, but the decomposition of organochlorine compounds by iron powder will be reduced.

本発明は、これらの問題を解消した浄化方法を提供することを技術的課題とするものである。   This invention makes it a technical subject to provide the purification method which eliminated these problems.

この技術的課題を達成するため本発明の請求項1は、
「有機塩素化合物で汚染された地下土壌から汲み上げた地下水を、大気圧より低い減圧状態に保持した蒸発缶内に供給して沸騰蒸発するか、或いは、前記地下水を、大気圧より低い減圧状態に保持した脱気缶内に供給して脱気し、次いで、前記蒸発缶から排出される処理水、又は、前記脱気缶から排出される処理水を、これに嫌気性微生物の栄養剤を添加したのち前記地下土壌のうち前記地下水の汲み上げ箇所より離れた箇所に戻す。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“Groundwater pumped up from underground soil contaminated with organochlorine compounds is supplied into an evaporator maintained at a reduced pressure lower than atmospheric pressure and boiled or evaporated, or the groundwater is reduced to a reduced pressure lower than atmospheric pressure . Supply to the deaeration can that has been held and deaerate, then add the treated water discharged from the evaporation can or the treated water discharged from the deaerator to the nutrients of anaerobic microorganisms After that, it is returned to a location away from the location where the groundwater is pumped out of the underground soil. "
It is characterized by that.

また、本発明の請求項2は
「前記請求項1の記載において、前記地下土壌に戻される処理水に、鉄粉を添加する。」ことを特徴としている。
Moreover, claim 2 of the present invention is characterized in that "in the description of claim 1, iron powder is added to the treated water returned to the underground soil."

有機塩素化合物で汚染された地下土壌から汲み上げた地下水を、大気圧以下の減圧に保持した蒸発缶内に供給して沸騰蒸発することにより、この地下水に含まれている有機塩素化合物は、沸騰蒸発する水蒸気と一緒にガス化して地下水から分離するとともに、この地下水に溶けた状態で存在している酸素、つまり、溶存酸素も、減圧状態での沸騰蒸発により水蒸気と一緒にガス化して地下水から分離するから、前記蒸発缶から排出される処理水は、有機塩素化合物の含有量が著しく少ない状態になるとともに、溶存酸素量も著しく少ない状態になる。   By supplying the groundwater pumped up from the underground soil contaminated with organochlorine compounds into an evaporator maintained at a reduced pressure below atmospheric pressure and boiling and evaporating, the organochlorine compounds contained in this groundwater are boiled and evaporated. It is gasified together with the water vapor to be separated from the groundwater, and oxygen that is dissolved in this groundwater, that is, dissolved oxygen, is also gasified with water vapor by boiling evaporation under reduced pressure and separated from the groundwater Therefore, the treated water discharged from the evaporator is in a state where the content of the organic chlorine compound is extremely low and the amount of dissolved oxygen is also extremely low.

また、有機塩素化合物で汚染された地下土壌から汲み上げた地下水を、大気圧より低い減圧状態に保持した脱気缶内に供給して脱気することにより、この地下水に含まれている有機塩素化合物は、気泡の発生と一緒にガス化して地下水から分離するとともに、この地下水における溶存酸素も、減圧状態での脱気により気泡の発生と一緒にガス化して地下水から分離するから、前記脱気缶から排出される処理水は、有機塩素化合物の含有量が著しく少ない状態になるとともに、溶存酸素量も著しく少ない状態になる。
In addition, by supplying the groundwater pumped up from the underground soil contaminated with organochlorine compounds into a degassing can kept at a reduced pressure lower than atmospheric pressure, the organochlorine compounds contained in this groundwater Is separated from the groundwater by gasification along with the generation of bubbles, and dissolved oxygen in this groundwater is also gasified along with the generation of bubbles by degassing under reduced pressure and separated from the groundwater. The treated water discharged from the water is in a state where the content of the organic chlorine compound is remarkably low and the amount of dissolved oxygen is also remarkably low.

この場合において、地下土壌から汲み上げた地下水を減圧に保持した脱気缶内に供給する前において、この地下水に予め空気等のガスを溶解することにより、減圧状態での脱気が一層激しくなるから、前記有機塩素化合物の分離をより促進できる。   In this case, before supplying the groundwater pumped up from the underground soil into the deaeration can kept under reduced pressure, the deaeration in the reduced pressure state becomes more intense by dissolving the gas such as air in the groundwater in advance. , The separation of the organochlorine compound can be further promoted.

そこで、このように減圧状態で沸騰蒸発又は脱気したあとの処理水は、溶存酸素が著しく少ない状態になっているから、この処理水を、これに嫌気性微生物に対する栄養剤を添加したのち前記地下土壌のうち前記地下水の汲み上げ箇所より離れた箇所に戻すことにより、前記地下土壌における嫌気性微生物を、溶存酸素による嫌気性微生物の死滅を少なくできる状態のもとで確実に活性化できる。   Therefore, the treated water after boiling or evaporating or deaerating in a reduced pressure state is in a state where the dissolved oxygen is remarkably low. Therefore, after adding the nutrient for anaerobic microorganisms to the treated water, By returning the ground soil to a location away from the location where the ground water is pumped up, the anaerobic microorganisms in the underground soil can be reliably activated under a state where the death of the anaerobic microorganisms due to dissolved oxygen can be reduced.

そして、この地下土壌における嫌気性微生物の活性化は、地下土壌における地下水にその汲み上げ箇所に向かう流れができることで、前記地下水の戻し箇所から汲み上げ箇所に向かって順番に進行し、やがて、地下土壌の全体にまで波及することになる。   The activation of the anaerobic microorganisms in the ground soil proceeds in order from the groundwater return point to the pumping point by allowing the groundwater in the ground soil to flow toward the pumping point. It will spread to the whole.

つまり、本発明によると、有機塩素化合物で汚染された地下土壌から汲み上げた地下水に対する蒸発又は脱気と、地下土壌中での嫌気性微生物の確実な活性化とによって、前記有機塩素化合物で汚染された地下土壌の浄化処理を大幅に向上できる効果を有する。


That is, according to the present invention, the organic chlorine compound is contaminated with the organic chlorine compound by evaporation or degassing of the groundwater pumped from the underground soil contaminated with the organic chlorine compound and reliable activation of the anaerobic microorganisms in the underground soil. It has the effect of greatly improving the purification treatment of underground soil.


この場合において、請求項2に記載したように、地下土壌に戻される処理水に、鉄粉を添加することにより、この鉄粉は、前記処理水における溶存酸素量が著しく少ないことで、酸化されることが少なく、ひいては、地下土壌に酸化鉄による目詰まりの発生が少ない状態で、その殆ど総てが有機塩素化合物中の塩素(ハロゲン元素)と結合して、有機塩素化合物を分解するから、前記有機塩素化合物で汚染された地下土壌の浄化処理を更に向上できる利点がある。   In this case, as described in claim 2, by adding iron powder to the treated water returned to the underground soil, the iron powder is oxidized because the amount of dissolved oxygen in the treated water is extremely small. As a result, almost all of them combine with chlorine (halogen elements) in the organic chlorine compound to decompose the organic chlorine compound in a state where clogging due to iron oxide is low in the underground soil. There exists an advantage which can further improve the purification process of the underground soil contaminated with the said organic chlorine compound.

以下、本発明の実施の形態を図面について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、第1の実施の形態を示す。   FIG. 1 shows a first embodiment.

この第1の実施の形態は、地下土壌が、例えば、トリクロロエチレン又はテトラクロロエチレン等の有機塩素化合物で汚染された地面1に、二つの井戸2,3を適宜の距離を隔てて、これら井戸2,3が前記地下土壌における地下水の水面1aより深い部分にまで達する深さにして掘削する。   In the first embodiment, two wells 2 and 3 are separated from each other by an appropriate distance on the ground 1 in which the underground soil is contaminated with an organic chlorine compound such as trichlorethylene or tetrachlorethylene. Is excavated to a depth that reaches a portion deeper than the water surface 1a of the groundwater in the underground soil.

前記地下土壌における地下水を、前記両井戸2,3のうち一方の井戸2内に装填した管路4を介してポンプ5にて汲み上げて、この地下水を、当該地下水の温度は約15℃程度であるから、ボイラーからの蒸気又は電気等を熱源とする加熱手段6bにて適宜温度に加熱したのち、内部が密閉され且つ真空ポンプ7等の真空発生源にて大気圧より低い減圧状態に保持された蒸発缶6内に、ノズル6aから噴出することにより、この蒸発缶6内で沸騰蒸発する。   Groundwater in the underground soil is pumped up by a pump 5 through a pipe line 4 loaded in one of the wells 2 and 3, and the temperature of the groundwater is about 15 ° C. Therefore, after heating to an appropriate temperature by the heating means 6b using steam or electricity from the boiler as a heat source, the inside is sealed and kept at a reduced pressure lower than the atmospheric pressure by a vacuum generation source such as the vacuum pump 7. By evaporating from the nozzle 6 a into the evaporator 6, the liquid evaporates in the evaporator 6.

この沸騰蒸発により、この地下水に含まれているトリクロロエチレン又はテトラクロロエチレン等の有機塩素化合物は、沸騰蒸発する水蒸気と一緒にガス化して地下水から分離する。   By this boiling evaporation, the organic chlorine compound such as trichlorethylene or tetrachloroethylene contained in the ground water is gasified together with the water vapor boiling and evaporated and separated from the ground water.

これに加えて、前記地下水に溶けた状態で存在している酸素、つまり溶存酸素も、前記の沸騰蒸発により水蒸気と一緒にガス化して地下水から分離するから、前記蒸発缶6における排出管路8からは、有機塩素化合物の含有量が著しく少なく、且つ、溶存酸素量も著しく少ない状態の処理水が排出される。   In addition, since oxygen dissolved in the ground water, that is, dissolved oxygen, is gasified together with water vapor by the boiling evaporation and separated from the ground water, the discharge pipe 8 in the evaporator 6 is separated from the ground water. , The treated water in which the content of the organic chlorine compound is remarkably small and the amount of dissolved oxygen is remarkably small is discharged.

なお、前記蒸発缶6とその真空ポンプ7等の真空発生源との間には、沸騰蒸発にて発生した水蒸気を冷却して凝縮するための凝縮器9が設けられており、また、前記真空ポンプ7等の真空発生源から排出されるガスは、凝縮器9にて水蒸気を凝縮したのち大気中に放出する。このガスには、有機塩素化合物を含んでいるので、このガスを、前記有機塩素化合物の除去手段(例えば、燃焼にて分解除去する手段等)を経て、大気中に放出するように構成する。   A condenser 9 is provided between the evaporator 6 and a vacuum generation source such as a vacuum pump 7 for cooling and condensing water vapor generated by boiling evaporation, and the vacuum. The gas discharged from the vacuum generation source such as the pump 7 is condensed in the condenser 9 and then discharged into the atmosphere. Since this gas contains an organic chlorine compound, this gas is configured to be released into the atmosphere via a means for removing the organic chlorine compound (for example, a means for decomposing and removing by combustion).

そして、前記蒸発缶6から排出管路8を介して排出される処理水を、これに管路10から前記地下土壌に存在する嫌気性微生物に対する栄養剤(例えば、酪酸、乳酸又はエタノール等)の適宜量を添加したのち、ポンプ11にて加圧して、管路12を介して前記他方の井戸3における底部に供給することにより、前記地下土壌における地下水に戻す。   Then, the treated water discharged from the evaporator 6 through the discharge pipe 8 is used as a nutrient for anaerobic microorganisms (for example, butyric acid, lactic acid, ethanol, etc.) present in the underground soil from the pipe 10. After adding an appropriate quantity, it pressurizes with the pump 11 and supplies it to the bottom part in the said other well 3 via the pipe line 12, It returns to the groundwater in the said underground soil.

これにより、前記地下土壌における地下水には、矢印Aで示すように、他方の井戸3から一方の井戸2に向かう方向の流れが発生する。   Thereby, as shown by the arrow A, a flow in a direction from the other well 3 to the one well 2 is generated in the groundwater in the underground soil.

前記他方の井戸3から地下土壌における地下水に戻される前記処理水は、前記したように、溶存酸素量が著しく少ない状態であり、且つ、これに嫌気性微生物に対する栄養剤が添加されていることより、前記地下土壌における嫌気性微生物は、溶存酸素による当該嫌気性微生物の死滅が少ない状態のもとで、確実に活性化できる。   From the fact that the treated water returned from the other well 3 to the groundwater in the underground soil is in a state in which the amount of dissolved oxygen is remarkably small and a nutrient for anaerobic microorganisms is added thereto. The anaerobic microorganisms in the underground soil can be reliably activated in a state where there is little killing of the anaerobic microorganisms by dissolved oxygen.

そして、この地下土壌における嫌気性微生物の活性化は、前記矢印Aで示す地下水の流れの方向、つまり、前記蒸発缶6における処理水が地下水に戻される他方の井戸3から地下水の汲み上げを行う一方の井戸2に向かって順番に進行し、やがて、両井戸2,3の間の部分の全体にまで波及することになるから、有機塩素化合物で汚染された地下土壌の浄化処理を、早い速度で確実に達成できるのである。   And the activation of the anaerobic microorganisms in the underground soil pumps the groundwater from the other well 3 where the treated water in the evaporator 6 is returned to the groundwater, that is, the direction of the groundwater flow indicated by the arrow A. It will proceed in order toward the well 2, and will eventually spread to the entire area between the wells 2 and 3, so that the purification of underground soil contaminated with organochlorine compounds can be performed at a high speed. It can be achieved with certainty.

また、前記蒸発缶6から排出管路8を介して排出される処理水に、管路13より適宜量の鉄粉を添加する。   Further, an appropriate amount of iron powder is added from the conduit 13 to the treated water discharged from the evaporator 6 through the discharge conduit 8.

すると、この鉄粉は、これを添加する前記処理水における溶存酸素量が著しく少ないことにより、殆ど酸化することなく、ひいては、地下土壌に酸化鉄による目詰まりの発生が少ない状態で地下水に混ざり、その殆どの総てがて地下水における有機塩素化合物中の塩素(ハロゲン元素)と結合して、この有機塩素化合物を分解するから、地下土壌の浄化処理を更に促進できる。   Then, this iron powder is mixed with the groundwater in a state in which the amount of dissolved oxygen in the treated water to which it is added is extremely small, hardly oxidized, and in the state where clogging due to iron oxide is small in the underground soil, Almost all of them combine with chlorine (halogen element) in the organic chlorine compound in the groundwater to decompose the organic chlorine compound, so that the purification treatment of the underground soil can be further promoted.

図2は、第2の実施の形態を示す。   FIG. 2 shows a second embodiment.

この第2の実施の形態は、前記第1の実施の形態において一方の井戸2から管路4を介してポンプ5にて汲み上げた地下水を、前記第1の実施の形態のように沸騰蒸発することに代えて、内部が密閉され且つ真空ポンプ15等の真空発生源にて大気圧より低い減圧状態に保持された脱気缶14内にノズル14aから噴出することにより、この脱気缶14内で脱気する。   In the second embodiment, the ground water pumped from the one well 2 through the pipe 4 by the pump 5 in the first embodiment is boiled and evaporated as in the first embodiment. Instead, the inside of the deaeration can 14 is ejected from the nozzle 14a into the deaeration can 14 that is sealed inside and maintained at a reduced pressure lower than the atmospheric pressure by a vacuum generation source such as a vacuum pump 15. Degas with.

この脱気により、地下水に含まれているトリクロロエチレン又はテトラクロロエチレン等の有機塩素化合物は、発生する気泡と一緒にガス化して地下水から分離する。   By this deaeration, organochlorine compounds such as trichlorethylene or tetrachloroethylene contained in the groundwater are gasified together with the generated bubbles and separated from the groundwater.

これに加えて、前記地下水に溶けた状態で存在している酸素、つまり溶存酸素も、前記の脱気によりガス化して地下水から分離するから、前記脱気缶14における排出管路16からは、有機塩素化合物の含有量が著しく少なく、且つ、溶存酸素量も著しく少ない状態の処理水が排出される。   In addition to this, oxygen that is present in the state of being dissolved in the groundwater, that is, dissolved oxygen is also gasified by the deaeration and separated from the groundwater. From the discharge pipe 16 in the deaeration can 14, The treated water in a state where the content of the organic chlorine compound is remarkably small and the amount of dissolved oxygen is remarkably small is discharged.

この場合において、前記ポンプ5にて汲み上げた地下水を前記脱気缶14に供給する前に、これに管路17から吹き込まれる空気等のガスを予め溶解することにより、前記脱気缶14内での減圧状態での脱気が一層激しくなるから、前記有機塩素化合物の分離をより促進できる。   In this case, before supplying the groundwater pumped up by the pump 5 to the degassing can 14, a gas such as air blown from the pipe line 17 is dissolved in advance in the degassing can 14. Since the deaeration in the reduced pressure state becomes more intense, the separation of the organic chlorine compound can be further promoted.

そして、前記脱気缶14から排出管路16を介して排出される処理水を、これに管路10から前記地下土壌に存在する嫌気性微生物に対する栄養剤(例えば、酪酸、乳酸又はエタノール等)の適宜量を添加したのち、ポンプ11にて加圧して、管路12を介して前記他方の井戸3における底部に供給することにより、前記地下土壌における地下水に戻す。   And the treated water discharged | emitted from the said deaeration can 14 through the discharge pipe 16 is used as the nutrient for anaerobic microorganisms which exist in the said underground soil from the pipe 10 (for example, butyric acid, lactic acid, ethanol, etc.) After adding an appropriate amount, the pressure is increased by the pump 11 and supplied to the bottom of the other well 3 through the pipe 12 to return to the groundwater in the underground soil.

これにより、前記地下土壌における地下水には、矢印Aで示すように、他方の井戸3から一方の井戸2に向かう方向の流れが発生する。   Thereby, as shown by the arrow A, a flow in a direction from the other well 3 to the one well 2 is generated in the groundwater in the underground soil.

前記他方の井戸3から地下土壌における地下水に戻される前記処理水は、前記したように、溶存酸素量が著しく少ない状態であり、且つ、これに嫌気性微生物に対する栄養剤が添加されていることより、前記地下土壌における嫌気性微生物は、溶存酸素による当該嫌気性微生物の死滅が少ない状態のもとで、確実に活性化できる。   From the fact that the treated water returned from the other well 3 to the groundwater in the underground soil is in a state in which the amount of dissolved oxygen is remarkably small and a nutrient for anaerobic microorganisms is added thereto. The anaerobic microorganisms in the underground soil can be reliably activated in a state where there is little killing of the anaerobic microorganisms by dissolved oxygen.

そして、この地下土壌における嫌気性微生物の活性化は、前記矢印Aで示す地下水の流れの方向、つまり、前記脱気缶14における処理水が地下水に戻される他方の井戸3から地下水の汲み上げを行う一方の井戸2に向かって順番に進行し、やがて、両井戸2,3の間の部分の全体にまで波及することになるから、有機塩素化合物で汚染された地下土壌の浄化処理を、早い速度で確実に達成できるのである。   Then, the activation of the anaerobic microorganisms in the ground soil pumps up the groundwater from the other well 3 where the treated water in the deaeration can 14 is returned to the groundwater in the direction of the groundwater flow indicated by the arrow A. Since it progresses in turn toward one well 2 and eventually spreads to the entire area between the two wells 2 and 3, the remediation of the underground soil contaminated with organochlorine compounds can be performed at a high speed. This can be achieved reliably.

なお、この第2の実施の形態においても、前記第1の実施の形態の場合と同様に、前記脱気缶14から排出される処理水に、管路13から適宜量の鉄粉を添加したのち、地下土壌における地下水に戻すようにしても良いことはいうまでもない。   In the second embodiment, as in the case of the first embodiment, an appropriate amount of iron powder is added from the pipeline 13 to the treated water discharged from the degassing can 14. It goes without saying that it may be returned to the groundwater in the underground soil.

また、この第2の実施の形態においても、前記真空ポンプ15等の真空発生源から排出されるガスには、有機塩素化合物を含んでいるので、このガスを、前記有機塩素化合物の除去手段(例えば、燃焼にて分解除去する手段等)を経て、大気中に放出するように構成する。   Also in the second embodiment, since the gas discharged from the vacuum generation source such as the vacuum pump 15 contains an organic chlorine compound, the gas is removed from the organic chlorine compound removing means ( For example, it is configured to be released into the atmosphere through a means for decomposing and removing by combustion.

本発明における第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment in this invention. 本発明における第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment in this invention.

符号の説明Explanation of symbols

1 地面
1a 地下水の水面
2 一方の井戸
3 他方の井戸
6 蒸発缶
7,15 真空ポンプ
14 脱気缶
DESCRIPTION OF SYMBOLS 1 Ground 1a Groundwater surface 2 One well 3 The other well 6 Evaporator 7,15 Vacuum pump 14 Deaeration can

Claims (2)

有機塩素化合物で汚染された地下土壌から汲み上げた地下水を、大気圧より低い減圧状態に保持した蒸発缶内に供給して沸騰蒸発するか、或いは、前記地下水を、大気圧より低い減圧状態に保持した脱気缶内に供給して脱気し、次いで、前記蒸発缶から排出される処理水、又は、前記脱気缶から排出される処理水を、これに嫌気性微生物の栄養剤を添加したのち前記地下土壌のうち前記地下水の汲み上げ箇所より離れた箇所に戻すことを特徴とする有機塩素化合物にて汚染された地下土壌の浄化方法。
Groundwater pumped up from underground soil contaminated with organochlorine compounds is supplied to an evaporator that is kept at a reduced pressure lower than atmospheric pressure to evaporate to boiling, or the groundwater is held at a reduced pressure lower than atmospheric pressure. The deaerated can was supplied to the deaerated can and deaerated, and then the treated water discharged from the evaporation can or the treated water discharged from the deaerated can was added with nutrients for anaerobic microorganisms. A method for purifying underground soil contaminated with organochlorine compounds, wherein the soil is returned to a location away from the location where the groundwater is pumped.
前記請求項1の記載において、前記地下土壌に戻される処理水に、鉄粉を添加することを特徴とする有機塩素化合物にて汚染された地下土壌の浄化方法。   The method for purifying underground soil contaminated with an organochlorine compound according to claim 1, wherein iron powder is added to the treated water returned to the underground soil.
JP2003291536A 2003-08-11 2003-08-11 Purification method for underground soil contaminated with organochlorine compounds Expired - Fee Related JP4257781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291536A JP4257781B2 (en) 2003-08-11 2003-08-11 Purification method for underground soil contaminated with organochlorine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291536A JP4257781B2 (en) 2003-08-11 2003-08-11 Purification method for underground soil contaminated with organochlorine compounds

Publications (2)

Publication Number Publication Date
JP2005058893A JP2005058893A (en) 2005-03-10
JP4257781B2 true JP4257781B2 (en) 2009-04-22

Family

ID=34369193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291536A Expired - Fee Related JP4257781B2 (en) 2003-08-11 2003-08-11 Purification method for underground soil contaminated with organochlorine compounds

Country Status (1)

Country Link
JP (1) JP4257781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988022B1 (en) 2010-03-22 2010-10-18 한국지질자원연구원 Radon regassing instruments and system of underground water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821097B2 (en) * 2004-07-16 2011-11-24 株式会社大林組 Water flow anaerobic biosystem and its treatment method
JP2008279403A (en) * 2007-05-14 2008-11-20 Shimizu Corp In situ cleaning method of contaminated soil and contaminated underground water
JP5042278B2 (en) * 2009-06-24 2012-10-03 鹿島建設株式会社 Contaminated soil purification method
JP5722006B2 (en) * 2010-11-18 2015-05-20 鹿島建設株式会社 Groundwater purification method
JP5441192B2 (en) * 2012-06-21 2014-03-12 鹿島建設株式会社 Contaminated soil purification method
JP5868373B2 (en) * 2013-10-18 2016-02-24 エコサイクル株式会社 Purification method for contaminated groundwater and soil
JP7279400B2 (en) * 2019-02-21 2023-05-23 株式会社大林組 Anaerobic Permeable System, Permeable Anaerobic Biosystem
JP2021090927A (en) * 2019-12-11 2021-06-17 株式会社竹中工務店 Soil cleaning method
JP7351791B2 (en) * 2020-04-16 2023-09-27 大成建設株式会社 Methods for purifying contaminated soil, etc.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988022B1 (en) 2010-03-22 2010-10-18 한국지질자원연구원 Radon regassing instruments and system of underground water

Also Published As

Publication number Publication date
JP2005058893A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4257781B2 (en) Purification method for underground soil contaminated with organochlorine compounds
JP2007260610A (en) Cleaning method of contaminated soil
US9238978B2 (en) Method and device for waste-water purification
JP5737551B2 (en) Method and apparatus for purifying contaminated soil or groundwater
JP4556471B2 (en) Purification method for contaminated soil
JP3555738B2 (en) Apparatus and method for separating and removing harmful substances
JP2008279403A (en) In situ cleaning method of contaminated soil and contaminated underground water
JP4206949B2 (en) Cleaning method for water-soluble waste liquid treatment equipment
JP3795796B2 (en) Equipment for separating and decomposing volatile organic compounds in wastewater
JP4351594B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
KR20090018403A (en) Apparatus and method for purifying waste-water using a distillation under reduced pressure
JP4371375B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4626360B2 (en) Treatment method for wastewater containing phenols
JP2002336841A (en) Method for vaporizing and treating oily waste water
JP4821097B2 (en) Water flow anaerobic biosystem and its treatment method
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
JP3992130B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in wastewater
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP2007296529A (en) Method and apparatus for separating volatile organic compound in waste water
JP4351589B2 (en) Method and apparatus for purifying exhaust gas in purification of groundwater containing volatile organic compounds
JP4043199B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP2015160175A (en) Purification processing method of original position of contaminated soil and contaminated groundwater
JP2007260611A (en) Method of cleaning contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150213

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees