JP2012035181A - In situ purification method of contaminated soil and groundwater - Google Patents

In situ purification method of contaminated soil and groundwater Download PDF

Info

Publication number
JP2012035181A
JP2012035181A JP2010176581A JP2010176581A JP2012035181A JP 2012035181 A JP2012035181 A JP 2012035181A JP 2010176581 A JP2010176581 A JP 2010176581A JP 2010176581 A JP2010176581 A JP 2010176581A JP 2012035181 A JP2012035181 A JP 2012035181A
Authority
JP
Japan
Prior art keywords
groundwater
contaminated
region
well
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010176581A
Other languages
Japanese (ja)
Inventor
Yoji Aoki
陽士 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2010176581A priority Critical patent/JP2012035181A/en
Publication of JP2012035181A publication Critical patent/JP2012035181A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an in situ purification method of contaminated soil and groundwater which can efficiently increase the dissolved oxygen amount in an aerobic decomposition region.SOLUTION: A suction well 1 is arranged in a contaminated region R contaminated with volatile organic compounds, and a first injection well 2 and a second injection well 3 are arranged respectively in one contaminated region R1 and the other contaminated region R2 so as to put the suction well 1 between them. By first circulation S1 of groundwater W generated by supplying the groundwater W from the first injection well 2, making the groundwater flow through the contaminated region R1, and sucking it by the suction well 1, an anaerobic decomposition region P1 where the volatile organic compounds are decomposed by activated anaerobic microorganisms is formed in the contaminated region R1. By second circulation S2 of the groundwater W generated by supplying the groundwater W from the second injection well 3, making the groundwater flow through the contaminated region R2, and sucking it by the suction well 1, an aerobic decomposition region P2 where the volatile organic compounds are decomposed by activated aerobic microorganisms is formed in the contaminated region R2. Fine bubbles are formed in the ground water W in the second circulation S2.

Description

本発明は、例えばテトラクロロエチレンやトリクロロエチレンなどの揮発性有機化合物で汚染された土壌及び地下水を微生物によって原位置で浄化処理する汚染土壌及び汚染地下水の原位置浄化処理方法に関する。   The present invention relates to a contaminated soil and contaminated groundwater in-situ purification method that purifies soil and groundwater contaminated with volatile organic compounds such as tetrachloroethylene and trichlorethylene in situ by microorganisms.

従来より、テトラクロロエチレンやトリクロロエチレンなどの揮発性有機化合物(揮発性有機塩素系化合物)で汚染された土壌や地下水を原位置で浄化処理する方法が提案され実施されている。
例えば、特許文献1には、効率的な微生物分解を実施するため、揮発性有機化合物で汚染された汚染領域に配設された揚水井戸の一方側に嫌気性分解領域、他方側に好気性分解領域を形成し、原位置微生物処理における地下水循環を2系統に分割する浄化処理方法が提案されている。
この方法では、嫌気性分解領域に配設された第1注入井戸に栄養剤を注入し、微生物を活性化させることによって嫌気性分解領域を嫌気的雰囲気に保持している。また、好気性分解領域に配設された第2注入井戸にエアレーション(曝気)を行うなどして酸素を強制的に溶存させた地下水を循環させることによって、好気性分解領域を好気的雰囲気に保持している。
そして、各注入井戸から注入された地下水は循環して揚水井戸に集水されるため、揚水井戸付近には、嫌気性雰囲気と好気性雰囲気とが共存する環境が形成されている。
Conventionally, methods for purifying soil and groundwater contaminated with volatile organic compounds (volatile organic chlorinated compounds) such as tetrachloroethylene and trichlorethylene have been proposed and implemented.
For example, Patent Document 1 discloses that an anaerobic decomposition region is provided on one side of a pumping well disposed in a contaminated region contaminated with a volatile organic compound and an aerobic decomposition is provided on the other side in order to carry out efficient microbial decomposition. A purification treatment method has been proposed in which a region is formed and the groundwater circulation in the in-situ microbial treatment is divided into two systems.
In this method, the nutrient solution is injected into the first injection well disposed in the anaerobic decomposition region and the microorganisms are activated to keep the anaerobic decomposition region in an anaerobic atmosphere. In addition, the aerobic decomposition region is brought into an aerobic atmosphere by circulating groundwater in which oxygen is forcibly dissolved by aeration (aeration) or the like in the second injection well disposed in the aerobic decomposition region. keeping.
And since the groundwater inject | poured from each injection well circulates and is collected by a pumping well, the environment where anaerobic atmosphere and aerobic atmosphere coexist is formed in the pumping well vicinity.

特開2008−200598号公報JP 2008-200598 A

しかしながら、特許文献1に記載の浄化処理方法では、第2注入井戸に循環される地下水にエアレーションを行うことで好気性分解領域の溶存酸素量を増大させているが、従来のエアレーションでは飽和溶存酸素量(例えば、20℃の場合、約9mg/L)以上の酸素を溶存させることは物理的に困難である。
好気性分解領域に多くの酸素を溶存させることによって好気性分解領域の好気性雰囲気が長時間保持され、確実な浄化処理を行うことができるため、好気性分解領域における溶存酸素量を飽和溶存酸素量よりも増大させることができる浄化処理方法が望まれている。
However, in the purification method described in Patent Document 1, the amount of dissolved oxygen in the aerobic decomposition region is increased by aeration of the groundwater circulated in the second injection well, but in the conventional aeration, saturated dissolved oxygen is increased. It is physically difficult to dissolve oxygen in an amount (for example, about 9 mg / L at 20 ° C.) or more.
Dissolving a large amount of oxygen in the aerobic decomposition region keeps the aerobic atmosphere in the aerobic decomposition region for a long time and can perform reliable purification treatment. There is a desire for a purification method that can be increased beyond the amount.

本発明は、上述する問題点に鑑みてなされたもので、好気性分解領域における溶存酸素量を効率的に増大させることができる汚染土壌及び汚染地下水の原位置浄化処理方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an in-situ purification method for contaminated soil and contaminated groundwater that can efficiently increase the amount of dissolved oxygen in the aerobic decomposition region. And

上記目的を達成するため、本発明に係る汚染土壌及び汚染地下水の原位置浄化処理方法は、揮発性有機化合物で汚染された土壌及び地下水を微生物によって原位置で浄化処理する方法であって、前記揮発性有機化合物で汚染された汚染領域に揚水井戸が配設されるとともに、該揚水井戸を間に一方の汚染領域側に第1注入井戸が、他方の汚染領域側に第2注入井戸が配設され、前記第1注入井戸から供給し前記一方の汚染領域を流通させて前記揚水井戸で汲み上げる前記地下水の第1循環によって、前記一方の汚染領域に、活性化した嫌気性微生物で前記揮発性有機化合物を分解させる嫌気性分解領域を形成するとともに、前記第2注入井戸から供給し前記他方の汚染領域を流通させて前記揚水井戸で汲み上げる前記地下水の第2循環によって、前記他方の汚染領域に、活性化した好気性微生物で前記揮発性有機化合物を分解させる好気性分解領域を形成し、前記第2循環において、前記地下水に微細気泡を生成することを特徴とする。   In order to achieve the above object, an in-situ purification method for contaminated soil and contaminated groundwater according to the present invention is a method for in situ purification of soil and groundwater contaminated with volatile organic compounds by microorganisms, A pumping well is disposed in a contaminated area contaminated with volatile organic compounds, and a first injection well is disposed on one contaminated area side and a second injection well is disposed on the other contaminated area side. The first circulated groundwater pumped up from the pumping well by supplying from the first injection well and flowing through the one contaminated well, to the one contaminated area, the activated anaerobic microorganisms and the volatile An anaerobic decomposition region for decomposing organic compounds is formed, and a second circulation of the groundwater supplied from the second injection well and circulated through the other contaminated region and pumped up in the pumping well. Forming an aerobic degradation region in the other contaminated region for decomposing the volatile organic compound with activated aerobic microorganisms, and generating fine bubbles in the groundwater in the second circulation. .

本発明では、第2循環において、揚水井戸から第2注入井戸に循環される地下水に微細気泡を生成している。微細気泡は、通常の気泡と比べて溶解量が多いため、地下水の溶存酸素量を増大させることができる。また、微細気泡は、通常の気泡と比べて水中での上昇速度が遅いため、地下水中に長時間存在することができる。そして、好気性分解領域の地下水には多くの酸素が長時間存在するため、好気性分解領域の好気性状態を長時間良好に維持することができる。
ここで、微細気泡とは、通常、マイクロバブル(粒径50μm〜1μm程度)やナノバブル(粒径1μm以下)と称される気泡を示し、通常の気泡とは、通常、ミリバブル(粒径数mm〜50μm程度)と称される気泡を示すこととする。
In the present invention, in the second circulation, fine bubbles are generated in the groundwater circulated from the pumping well to the second injection well. Since fine bubbles have a larger amount of dissolution than ordinary bubbles, the amount of dissolved oxygen in groundwater can be increased. In addition, fine bubbles can be present in the groundwater for a long time because the rising speed in water is slower than that of normal bubbles. And since a lot of oxygen exists in groundwater of an aerobic decomposition area for a long time, the aerobic state of an aerobic decomposition area can be maintained favorably for a long time.
Here, the fine bubbles usually indicate bubbles called microbubbles (particle size of about 50 μm to 1 μm) or nanobubbles (particle size of 1 μm or less), and the normal bubbles are usually millibubbles (particle size of several mm). ˜50 μm)).

本発明によれば、第2循環において地下水に微細気泡を生成していることにより、地下水に飽和溶存酸素量よりも多くの酸素を溶存させることができるとともに、地下水中に酸素を長時間存在させることができ、好気性分解領域の好気性状態を長時間良好に維持することができるため、好気性分解領域において、短時間で確実な浄化が可能であるとともに、浄化効果を長時間維持することができる   According to the present invention, since fine bubbles are generated in the groundwater in the second circulation, more oxygen than the saturated dissolved oxygen amount can be dissolved in the groundwater, and oxygen can exist in the groundwater for a long time. Since the aerobic state of the aerobic decomposition region can be maintained well for a long time, the aerobic decomposition region can be reliably purified in a short time and the purification effect can be maintained for a long time. Can

本発明の実施形態による汚染土壌及び汚染地下水の原位置浄化処理方法に用いる浄化処理装置の一例を示す図である。It is a figure which shows an example of the purification processing apparatus used for the contaminated soil and the contaminated groundwater in-situ purification method by embodiment of this invention. 溶存酸素濃度を比較する図である。It is a figure which compares dissolved oxygen concentration.

以下、本発明の実施形態による汚染土壌及び汚染地下水の原位置浄化処理方法について、図1および図2に基づいて説明する。本実施形態は、揮発性有機化合物で汚染された土壌及び地下水を、微生物によって原位置で浄化処理する汚染土壌及び汚染地下水の原位置浄化処理方法に関するものである。   Hereinafter, the in-situ purification treatment method for contaminated soil and contaminated groundwater according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The present embodiment relates to an in situ purification method for contaminated soil and contaminated groundwater, in which soil and groundwater contaminated with volatile organic compounds are purified in situ by microorganisms.

図1に示すように、本実施形態による汚染土壌及び汚染地下水の原位置浄化処理方法に用いる浄化処理装置(浄化処理設備)Aは、揮発性有機化合物で汚染された汚染領域Rに配置された揚水井戸1と、この揚水井戸1を間に一方の汚染領域R1側に配置された第1注入井戸2と、揚水井戸1を間に他方の汚染領域R2側に配置された第2注入井戸3とを備えて構成されている。また、揚水井戸1には、その下端側に周囲の地下水Wを内部に透過させるためのスリット部1aが設けられており、内部に挿入設置した揚水ポンプ1bの駆動によりスリット部1aを介して地下水Wを集水し地上に汲み上げるように構成されている。一方、第1注入井戸2と第2注入井戸3は、それぞれ、下端側にスリット部2a、3aが設けられており、揚水井戸1で汲み上げた地下水Wを第1注入井戸2と第2注入井戸3のそれぞれの内部に供給した際に、この地下水Wをスリット部2a、3aを通じて地中に返送できるように構成されている。なお、図1では、揚水井戸1と第1注入井戸2と第2注入井戸3とがそれぞれ1つずつ設けられているように図示しているが、揚水井戸1と第1注入井戸2と第2注入井戸3はそれぞれ、複数設けられていてもよい。   As shown in FIG. 1, a purification treatment apparatus (purification treatment facility) A used in the in-situ purification treatment method for contaminated soil and contaminated groundwater according to the present embodiment is disposed in a contaminated region R contaminated with a volatile organic compound. A pumping well 1, a first injection well 2 disposed on the one contaminated region R1 side with the pumped well 1 interposed therebetween, and a second injection well 3 disposed on the other contaminated region R2 side with the pumped well 1 interposed therebetween. And is configured. Further, the pumping well 1 is provided with a slit portion 1a for allowing the surrounding groundwater W to permeate inside at the lower end side thereof, and the groundwater is driven through the slit portion 1a by driving of a pumping pump 1b installed therein. It is configured to collect W and pump it to the ground. On the other hand, the first injection well 2 and the second injection well 3 are provided with slit portions 2a and 3a on the lower end side, respectively, and the ground water W pumped up by the pumping well 1 is the first injection well 2 and the second injection well. 3, the groundwater W can be returned to the ground through the slit portions 2 a and 3 a when supplied to the inside of each. In FIG. 1, the pumping well 1, the first injection well 2, and the second injection well 3 are illustrated as being provided one by one. A plurality of two injection wells 3 may be provided.

さらに、本実施形態の浄化処理装置Aにおいては、揚水井戸1の揚水ポンプ1bに繋がる配管4が地上にて二股に分岐しており、一方の分岐管5が栄養剤添加槽6に、他方の分岐管7が微細気泡生成槽8にそれぞれ繋げられている。また、栄養剤添加槽6と第1注入井戸2、微細気泡生成槽8と第2注入井戸3が、それぞれ、配管9、10を介して繋げられている。
なお、栄養剤添加槽6は、一方の分岐管5から送られてきた地下水Wに、例えば窒素栄養源、炭素栄養源、有機酸、無機塩、ビタミンなどの栄養剤を添加するための槽である。
Furthermore, in the purification treatment apparatus A of the present embodiment, the pipe 4 connected to the pump 1b of the pump well 1 is bifurcated on the ground, and one branch pipe 5 is connected to the nutrient solution addition tank 6 and the other is added. The branch pipes 7 are respectively connected to the fine bubble generation tank 8. Further, the nutrient solution addition tank 6 and the first injection well 2, the fine bubble generation tank 8 and the second injection well 3 are connected via pipes 9 and 10, respectively.
The nutrient solution addition tank 6 is a tank for adding nutrients such as nitrogen nutrient sources, carbon nutrient sources, organic acids, inorganic salts, and vitamins to the groundwater W sent from one branch pipe 5. is there.

また、微細気泡生成槽8は、他方の分岐管7から送られてきた地下水W内に微細気泡を生成する槽であり、微細気泡生成装置(不図示)を備えている。微細気泡生成装置の微細気泡を発生させる原理は、例えば、加圧溶解方式、旋回方式、スタティックミキサー方式などの公知の原理である。なお、この発生原理によって微細気泡の数や粒径分布などが異なる。このような微細気泡生成槽8で微細気泡を生成された微細気泡水は、酸素飽和水よりも多くの酸素を含有している。   The fine bubble generating tank 8 is a tank that generates fine bubbles in the groundwater W sent from the other branch pipe 7 and includes a fine bubble generating device (not shown). The principle of generating fine bubbles in the fine bubble generating apparatus is a known principle such as a pressure dissolution method, a swirl method, or a static mixer method. Note that the number of fine bubbles, the particle size distribution, and the like vary depending on the generation principle. The fine bubble water in which fine bubbles are generated in such a fine bubble generation tank 8 contains more oxygen than oxygen saturated water.

図2は、加圧溶解方式、旋回方式でそれぞれ製造した後にミリバブルを除去するために5分間以上放置して採取した2種類の微細気泡水1、微細気泡水2、酸素飽和水および脱気水の溶存酸素濃度(JISK0102)を測定した結果を示すものである。この測定時の温度条件は、約25℃であった。図2から分かるように、酸素飽和水の溶存酸素濃度は10.2mg/Lであるが、微細気泡水は2種類とも酸素飽和水と比べて1.2〜1.3倍の酸素を含有している。   Fig. 2 shows two types of microbubble water 1, microbubble water 2, oxygen-saturated water and degassed water, which were collected by leaving them for 5 minutes or more to remove millibubbles after being manufactured by the pressure dissolution method and swirl method, respectively. It shows the result of measuring the dissolved oxygen concentration (JISK0102). The temperature condition during this measurement was about 25 ° C. As can be seen from FIG. 2, the dissolved oxygen concentration of oxygen-saturated water is 10.2 mg / L, but both types of microbubble water contain 1.2 to 1.3 times as much oxygen as oxygen-saturated water. ing.

また、このような微細気泡水において、微細気泡は、通常の気泡(ミリバブル)と比べて上昇速度が遅いとともに、溶解量が多いという特徴がある。また、通常の気泡は水中を上昇して水面で破裂するのに対し、微細気泡のマイクロバブルは水中で縮小して最終的には圧壊して消滅し、ナノバブルは水中に長期間にわたって存在している。このため、微細気泡は、広い範囲に均一に供給されて、早期に好気性雰囲気を形成するとともに、この好気性雰囲気を長時間維持することができる。また、マイクロバブルの圧壊時にはラジカルが発生するため、このラジカルで汚染物質(揮発性有機化合物)を分解することができる。   Further, in such fine bubble water, fine bubbles are characterized in that the rising speed is slower than that of normal bubbles (millibubbles) and the amount of dissolution is large. In addition, normal bubbles rise in water and burst at the surface of the water, while microbubbles that are microbubbles shrink in water and eventually collapse and disappear, and nanobubbles exist in water for a long time. Yes. For this reason, the fine bubbles are uniformly supplied over a wide range to form an aerobic atmosphere at an early stage, and this aerobic atmosphere can be maintained for a long time. Further, since radicals are generated when the microbubbles are crushed, contaminants (volatile organic compounds) can be decomposed by the radicals.

上記のように構成した浄化処理装置Aによって汚染土壌及び汚染地下水を浄化処理する際には、揚水井戸1内に挿入した揚水ポンプ1bを駆動し、揚水井戸1のスリット部1aを介して周囲の地下水Wを集水しつつ地上に汲み上げる。このように揚水井戸1から地下水Wを汲み上げると、一方の汚染領域R1には、第1注入井戸2側から揚水井戸1に向けて流れる地下水流T1が発生し、他方の汚染領域R2には、第2注入井戸3側から揚水井戸1に向けて流れる地下水流T2が発生する。   When the contaminated soil and the contaminated groundwater are purified by the purification apparatus A configured as described above, the pumping pump 1b inserted into the pumping well 1 is driven, and the surroundings through the slit portion 1a of the pumping well 1 are driven. Pumping groundwater W to the ground while collecting water. When the groundwater W is pumped up from the pumping well 1 in this way, a groundwater flow T1 flowing from the first injection well 2 side toward the pumping well 1 is generated in one contaminated region R1, and in the other contaminated region R2, A groundwater flow T2 flowing from the second injection well 3 side toward the pumping well 1 is generated.

また、本実施形態において、一方の汚染領域R1から集水した地下水Wと他方の汚染領域R2から集水した地下水Wとが、揚水井戸1内で混合されて地上に汲み上げられる。そして、地上に汲み上げた地下水Wのうち一部の地下水は、一方の分岐管5を介して栄養剤添加槽6に送られ、この栄養剤添加槽6で、栄養剤が添加される。このように栄養剤を添加した地下水Wは、配管9を通じて第1注入井戸2に供給され、この第1注入井戸2のスリット部2aから再度地中に返送される。返送された栄養剤を含む地下水Wは、一方の汚染領域R1を流通する地下水流T1によってこの一方の汚染領域R1を通過し、再度揚水井戸1に集水される。これにより、揚水井戸1を間に一方の汚染領域R1側には、揚水井戸1から栄養剤添加槽6に、栄養剤添加槽6から第1注入井戸2に、第1注入井戸2から一方の汚染領域R1を通じて再び揚水井戸1に循環する地下水Wの第1循環S1が形成される。   In the present embodiment, the groundwater W collected from one contaminated area R1 and the groundwater W collected from the other contaminated area R2 are mixed in the pumping well 1 and pumped to the ground. A part of the groundwater W pumped up to the ground is sent to the nutrient solution addition tank 6 through one branch pipe 5, and the nutrient solution is added in the nutrient solution addition tank 6. The groundwater W to which the nutrient is added in this way is supplied to the first injection well 2 through the pipe 9, and is returned to the ground again from the slit portion 2a of the first injection well 2. The returned groundwater W containing the nutrient is passed through the one contaminated region R1 by the groundwater flow T1 flowing through the one contaminated region R1 and collected in the pumping well 1 again. Thereby, in the one contamination area | region R1 side between the pumping wells 1, the pumping well 1 to the nutrient solution addition tank 6, the nutrient solution addition tank 6 to the first injection well 2, and the first injection well 2 to one side. A first circulation S1 of the groundwater W that circulates again to the pumping well 1 through the contaminated region R1 is formed.

そして、このように形成された地下水Wの第1循環S1によって、栄養剤を含む地下水Wが順次一方の汚染領域R1を通過するとともに、土着の微生物が活性化して土壌や地下水中の酸素が消費され、一方の汚染領域R1側には、土着の嫌気性微生物が活性化した嫌気性分解領域P1が形成される。   And by the 1st circulation S1 of the groundwater W formed in this way, while the groundwater W containing a nutrient passes sequentially one pollution area | region R1, indigenous microorganisms are activated and oxygen in soil and groundwater is consumed. In addition, an anaerobic decomposition region P1 in which indigenous anaerobic microorganisms are activated is formed on one contamination region R1 side.

一方、揚水井戸1で汲み上げられ、他方の分岐管7を介して微細気泡生成槽8に送られた地下水Wには、この微細気泡生成槽8で微細気泡が生成され、その溶存酸素量が増大される。そして、このように溶存酸素濃度が高くなった地下水Wは、配管10を介して第2注入井戸3に供給され、この第2注入井戸3のスリット部3aから再度地中に返送される。返送された溶存酸素濃度が高い地下水Wは、他方の汚染領域R2を流通する地下水流T2によってこの他方の汚染領域R2を通過し、再度揚水井戸1に集水される。これにより、揚水井戸1を間に他方の汚染領域R2側には、揚水井戸1から微細気泡生成槽8に、微細気泡生成槽8から第2注入井戸3に、第2注入井戸3から他方の汚染領域R2を通じて再び揚水井戸1に循環する地下水Wの第2循環S2が形成される。   On the other hand, in the groundwater W pumped up in the pumping well 1 and sent to the fine bubble generating tank 8 through the other branch pipe 7, fine bubbles are generated in the fine bubble generating tank 8, and the amount of dissolved oxygen increases. Is done. And the groundwater W in which dissolved oxygen concentration became high in this way is supplied to the 2nd injection well 3 via the piping 10, and is returned in the ground again from the slit part 3a of this 2nd injection well 3. FIG. The returned groundwater W having a high dissolved oxygen concentration passes through the other contaminated region R2 by the groundwater flow T2 flowing through the other contaminated region R2, and is collected in the pumping well 1 again. As a result, the pumping well 1 is interposed between the pumping well 1 to the fine bubble generating tank 8, the microbubble generating tank 8 to the second injection well 3, and the second injection well 3 to the other contamination area R 2. A second circulation S2 of the groundwater W that circulates again to the pumping well 1 through the contaminated region R2 is formed.

そして、このように形成された地下水Wの第2循環S2によって、溶存酸素濃度が高い地下水Wが順次他方の汚染領域R2を通過するとともに、土着の微生物が活性化し、この他方の汚染領域R2側には、土着の好気性微生物が活性化した好気性分解領域P2が形成される。   Then, by the second circulation S2 of the groundwater W thus formed, the groundwater W having a high dissolved oxygen concentration sequentially passes through the other contaminated region R2, and the indigenous microorganisms are activated, and the other contaminated region R2 side is activated. In this case, an aerobic degradation region P2 in which native aerobic microorganisms are activated is formed.

例えばテトラクロロエチレン(揮発性有機化合物)で汚染された汚染領域Rに第1循環S1と第2循環S2を形成して地下水Wを循環させた場合には、第1循環S1で形成した嫌気性分解領域P1で、テトラクロロエチレンが活性化した嫌気性微生物による脱塩素反応でトリクロロエチレンひいてはシス−1,2−ジクロロエチレンに分解される。さらに、このようにトリクロロエチレンひいてはシス−1,2−ジクロロエチレンに分解された揮発性有機化合物が、第1循環S1によって地下水Wとともに揚水井戸1から汲み上げられる。ついで、このトリクロロエチレンひいてはシス−1,2−ジクロロエチレンを含む地下水Wが、第2循環S2に送られ、第2注入井戸3から好気性分解領域P2に流通する。これにより、嫌気性分解領域P1の嫌気性微生物でトリクロロエチレンひいてはシス−1,2−ジクロロエチレンまで分解された揮発性有機化合物は、好気性分解領域P2で活性化した好気性微生物による脱塩素反応で塩化ビニルを経て二酸化炭素に分解される。   For example, when the first circulation S1 and the second circulation S2 are formed in the contaminated region R contaminated with tetrachloroethylene (volatile organic compound) and the groundwater W is circulated, the anaerobic decomposition region formed in the first circulation S1. At P1, it is decomposed into trichlorethylene and thus cis-1,2-dichloroethylene by a dechlorination reaction by an anaerobic microorganism in which tetrachloroethylene is activated. Further, the volatile organic compound thus decomposed into trichlorethylene and thus cis-1,2-dichloroethylene is pumped from the pumping well 1 together with the ground water W by the first circulation S1. Then, the groundwater W containing trichlorethylene and thus cis-1,2-dichloroethylene is sent to the second circulation S2, and flows from the second injection well 3 to the aerobic decomposition region P2. As a result, the volatile organic compound decomposed to trichlorethylene and thus cis-1,2-dichloroethylene by the anaerobic microorganism in the anaerobic decomposition region P1 is chlorinated by the dechlorination reaction by the aerobic microorganism activated in the aerobic decomposition region P2. It is decomposed into carbon dioxide via vinyl.

ここで、本実施形態において、揚水井戸1で汲み上げた地下水Wは、嫌気性分解領域P1を通過した第1循環S1の地下水Wと、好気性分解領域P2を通過した第2循環S2の地下水Wとが揚水井戸1内で混合される。そして、地上に汲み上げるとともに、一方の分岐管5と他方の分岐管7によって第1循環S1と第2循環S2とに振り分けられる。このため、嫌気性分解領域P1を通過してトリクロロエチレンひいてはシス−1,2−ジクロロエチレンまで分解された揮発性有機化合物の一部は、再度第1循環S1によって嫌気性分解領域P1を通過するように循環されることになる。しかしながら、継続的に揚水井戸1で地下水Wを汲み上げ第1循環S1と第2循環S2に振り分けて循環することで、汚染領域Rのテトラクロロエチレンの全てが嫌気性分解領域P1と好気性分解領域P2を通過し、徐々に二酸化炭素まで分解されて無害化される。これにより、汚染領域R全体のテトラクロロエチレンで汚染された汚染土壌及び汚染地下水が確実に浄化処理される。また、このとき、順次揚水井戸1で汲み上げた地下水Wの揮発性有機化合物濃度を測定することで、汚染土壌及び汚染地下水の浄化処理の程度を確認することができる。   Here, in this embodiment, the groundwater W pumped up by the pumping well 1 is the groundwater W in the first circulation S1 that has passed through the anaerobic decomposition region P1, and the groundwater W in the second circulation S2 that has passed through the aerobic decomposition region P2. Are mixed in the pumping well 1. Then, the water is pumped up to the ground and distributed to the first circulation S1 and the second circulation S2 by one branch pipe 5 and the other branch pipe 7. For this reason, a part of the volatile organic compound decomposed to the trichlorethylene and thus cis-1,2-dichloroethylene through the anaerobic decomposition region P1 again passes through the anaerobic decomposition region P1 by the first circulation S1. It will be circulated. However, by continuously pumping up the groundwater W in the pumping well 1 and distributing it to the first circulation S1 and the second circulation S2, all of the tetrachlorethylene in the contaminated region R is passed through the anaerobic decomposition region P1 and the aerobic decomposition region P2. Passes through and gradually decomposes to carbon dioxide and is rendered harmless. Thereby, the contaminated soil and contaminated groundwater contaminated with tetrachlorethylene in the entire contaminated region R are reliably purified. At this time, by measuring the concentration of volatile organic compounds in the groundwater W pumped up in the pumping well 1, the degree of purification of the contaminated soil and the contaminated groundwater can be confirmed.

したがって、本実施形態の汚染土壌及び汚染地下水の原位置浄化処理方法においては、地下水Wの第1循環S1によって一方の汚染領域R1側に嫌気性分解領域P1が形成される。これにより、この領域P1で活性化した嫌気性微生物によって揮発性有機化合物を分解することができる。また、地下水Wの第2循環S2によって他方の汚染領域R2側に好気性分解領域P2が形成される。これにより、嫌気性分解領域P1で無害化されるまで分解しきれていない揮発性有機化合物がこの好気性分解領域P2に地下水Wとともに流通することで、確実に揮発性有機化合物を好気性微生物によって無害化されるまで分解することができる。   Therefore, in the in situ purification method for contaminated soil and contaminated groundwater of the present embodiment, the anaerobic decomposition region P1 is formed on the one contaminated region R1 side by the first circulation S1 of the groundwater W. Thereby, a volatile organic compound can be decomposed | disassembled by the anaerobic microorganisms activated in this area | region P1. Further, an aerobic decomposition region P2 is formed on the other contaminated region R2 side by the second circulation S2 of the groundwater W. As a result, the volatile organic compound that has not been decomposed until it is detoxified in the anaerobic decomposition region P1 flows along with the groundwater W to the aerobic decomposition region P2, so that the volatile organic compound is surely obtained by the aerobic microorganism. Can be broken down until detoxified.

そして、第2注入井戸3に循環される地下水Wに微細気泡生成槽8を用いて微細気泡を生成していることにより、地下水W内に飽和溶存酸素量よりも多くの酸素を溶存させることができる。したがって、地下水W中に酸素を長時間存在させることができ、好気性分解領域P2の好気性状態を長時間良好に維持することができるため、好気性分解領域P2における浄化処理を効率的に行うことができる。   Then, by generating fine bubbles in the ground water W circulated in the second injection well 3 using the fine bubble generating tank 8, it is possible to dissolve more oxygen than the saturated dissolved oxygen amount in the ground water W. it can. Accordingly, oxygen can be present in the groundwater W for a long time, and the aerobic state of the aerobic decomposition region P2 can be maintained well for a long time, so that the purification process in the aerobic decomposition region P2 is efficiently performed. be able to.

以上、本発明による汚染土壌及び汚染地下水の原位置浄化処理方法の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、第1注入井戸2から栄養剤を添加した地下水Wを地中に返送することで、土着の嫌気性微生物を活性化させた嫌気性分解領域P1を形成し、また、第2注入井戸3から溶存酸素濃度を上昇させた地下水Wを地中に返送することで、土着の好気性微生物を活性化させた好気性分解領域P2を形成するものとしたが、第1注入井戸2に供給する地下水Wに嫌気性微生物を添加したり、第2注入井戸3に供給する地下水Wに好気性微生物を添加して、これら地下水Wが一方の汚染領域R1と他方の汚染領域R2にそれぞれ流通することで、嫌気性分解領域P1に嫌気性微生物を、好気性分解領域P2に好気性微生物を供給するようにしてもよい。
As described above, the embodiment of the in-situ purification method for contaminated soil and contaminated groundwater according to the present invention has been described. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the present invention. is there.
For example, in this embodiment, by returning groundwater W added with nutrients from the first injection well 2 to the ground, an anaerobic decomposition region P1 in which indigenous anaerobic microorganisms are activated is formed, An aerobic decomposition region P2 in which indigenous aerobic microorganisms are activated is formed by returning groundwater W having an increased dissolved oxygen concentration from the second injection well 3 to the ground. Anaerobic microorganisms are added to the groundwater W supplied to the well 2, or aerobic microorganisms are added to the groundwater W supplied to the second injection well 3, and these groundwaters W are in one contaminated area R1 and the other contaminated area R2. The anaerobic microorganisms may be supplied to the anaerobic decomposition region P1 and the aerobic microorganisms may be supplied to the aerobic decomposition region P2.

また、本実施形態では、揚水井戸1で汲み上げた地下水Wに対し栄養剤の添加のみを施して第1注入井戸2から返送するものとしたが、例えば汲み上げた地下水Wを脱気装置などに送り、溶存酸素濃度を低下させた地下水Wを第1注入井戸2から返送するようにしてもよい。これにより、確実に第1循環S1によって嫌気性分解領域P1を形成することができるとともに、確実に嫌気性微生物を活性化させて揮発性有機化合物を分解させることができる。     In the present embodiment, the nutrient water is only added to the groundwater W pumped up in the pumping well 1 and returned from the first injection well 2. For example, the pumped-up groundwater W is sent to a deaeration device or the like. The ground water W with the dissolved oxygen concentration lowered may be returned from the first injection well 2. Accordingly, the anaerobic decomposition region P1 can be reliably formed by the first circulation S1, and the anaerobic microorganism can be reliably activated to decompose the volatile organic compound.

さらに、本実施形態では、嫌気性分解領域P1と好気性分解領域P2をそれぞれ通過した地下水Wを揚水井戸1で混合しつつ汲み上げるものとしたが、嫌気性分解領域P1を通過した地下水Wと、好気性分解領域P2を通過した地下水Wとをそれぞれ区分しながら地上に汲み上げてもよい。この場合には、嫌気性分解領域P1を通過した地下水Wを全て微細気泡生成槽8に送り、好気性分解領域P2を通過した地下水Wを全て栄養剤添加槽6に送ることが可能になる。すなわち、第1循環S1と第2循環S2とを繋げた1系統の循環で地下水Wを循環させることができる。そして、このようにした場合には、嫌気性分解領域P1でトリクロロエチレンひいてはシス−1,2−ジクロロエチレンまで分解した揮発性有機化合物を全て、次工程の好気性分解領域P2に送ることができるため、本実施形態よりもさらに効率的に浄化処理を行なうことが可能になる。     Furthermore, in this embodiment, the groundwater W that has passed through the anaerobic decomposition region P1 and the aerobic decomposition region P2 is pumped up while being mixed in the pumping well 1, but the groundwater W that has passed through the anaerobic decomposition region P1, The groundwater W that has passed through the aerobic decomposition region P2 may be pumped up to the ground while being divided. In this case, it is possible to send all the groundwater W that has passed through the anaerobic decomposition region P1 to the fine bubble generation tank 8 and to send all the groundwater W that has passed through the aerobic decomposition region P2 to the nutrient solution addition tank 6. That is, the groundwater W can be circulated by one-system circulation connecting the first circulation S1 and the second circulation S2. In this case, all the volatile organic compounds decomposed to trichlorethylene and thus cis-1,2-dichloroethylene in the anaerobic decomposition region P1 can be sent to the aerobic decomposition region P2 in the next step. The purification process can be performed more efficiently than in the present embodiment.

また、本実施形態では、第2循環S2の微細気泡生成槽8が地下水Wに微細気泡を生成するためにのみ用いられるように説明を行なったが、微細気泡生成槽8では地下水Wに微細気泡を生成するとともに、この地下水Wに含まれた少なくとも揮発性有機化合物の一部が微細気泡生成槽8内の気相中に揮発、拡散している。このため、例えば微細気泡生成槽8の気相に活性炭などの吸着剤を収容した吸着槽を接続して浄化処理装置Aを構成し、微細気泡を生成するとともに微細気泡生成槽8の気相を吸着槽に送ることで、気相中に揮発した揮発性有機化合物を吸着剤で捕集するようにしてもよい。この場合には、地中の微生物で揮発性有機化合物を分解し汚染土壌及び汚染地下水を浄化処理することができると同時に、地上においても汲み上げた地下水Wから揮発性有機化合物を除去することができるため、さらに効率的に浄化処理を行なうことが可能になる。     Further, in the present embodiment, the description has been made so that the fine bubble generating tank 8 of the second circulation S2 is used only for generating fine bubbles in the groundwater W. However, in the fine bubble generating tank 8, the fine bubbles are added to the groundwater W. And at least a part of the volatile organic compound contained in the groundwater W is volatilized and diffused in the gas phase in the fine bubble generating tank 8. For this reason, for example, an purification tank A is constructed by connecting an adsorption tank containing an adsorbent such as activated carbon to the gas phase of the fine bubble generation tank 8 to generate fine bubbles and to change the gas phase of the fine bubble generation tank 8 to You may make it collect a volatile organic compound volatilized in the gaseous phase with an adsorbent by sending to an adsorption tank. In this case, volatile organic compounds can be decomposed by underground microorganisms to purify contaminated soil and contaminated groundwater, and at the same time, volatile organic compounds can be removed from groundwater W pumped up on the ground. Therefore, the purification process can be performed more efficiently.

さらに、本実施形態では、土壌及び地下水を汚染している揮発性有機化合物がテトラクロロエチレン(トリクロロエチレン、シス−1,2−ジクロロエチレンを含む)であるものとして説明を行なったが、例えば、1,1,1−トリクロロエタン、ジクロロメタン、四塩化炭素、1,1−ジクロロエチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、1,3−ジクロロプロペン、ベンゼンなど他の揮発性有機化合物に対しても、本発明の汚染土壌及び汚染地下水の原位置浄化処理方法を適用することにより、本実施形態と同様に浄化処理することが可能である。また、例えばこれら揮発性有機化合物とともに、水銀、セレン、六価クロム、カドミウム、鉛、砒素などの重金属類が共存する複合汚染が生じている場合には、揚水井戸1で汲み上げた地下水Wに対し、不溶化処理などを施し、重金属類などの他の汚染物質を除去した地下水Wを各注入井戸2、3から地中に返送することで、他の汚染物質を除去しつつ揮発性有機化合物を分解処理することが可能である。     Further, in the present embodiment, the volatile organic compound that contaminates the soil and groundwater has been described as being tetrachloroethylene (including trichloroethylene and cis-1,2-dichloroethylene). For other volatile organic compounds such as 1-trichloroethane, dichloromethane, carbon tetrachloride, 1,1-dichloroethylene, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,3-dichloropropene, benzene, By applying the in-situ purification method of the contaminated soil and contaminated groundwater of the present invention, it is possible to perform the purification treatment in the same manner as in this embodiment. In addition, for example, in the case of complex pollution in which heavy metals such as mercury, selenium, hexavalent chromium, cadmium, lead and arsenic coexist with these volatile organic compounds, the groundwater W pumped in the pumping well 1 The groundwater W, which has been insolubilized and removed other pollutants such as heavy metals, is returned to the ground from the injection wells 2 and 3 to decompose other volatile organic compounds while removing other pollutants. Can be processed.

1 揚水井戸
1b 揚水ポンプ
2 第1注入井戸
3 第2注入井戸
6 栄養剤添加槽
8 微細気泡生成槽
A 浄化処理装置(浄化処理設備)
P1 嫌気性分解領域
P2 好気性分解領域
R 汚染領域
R1 一方の汚染領域
R2 他方の汚染領域
S1 第1循環
S2 第2循環
T1 地下水流
T2 地下水流
W 地下水
DESCRIPTION OF SYMBOLS 1 Pumping well 1b Pumping pump 2 1st injection well 3 2nd injection well 6 Nutrient addition tank 8 Fine bubble production tank A Purification processing equipment (purification processing equipment)
P1 Anaerobic decomposition region P2 Aerobic decomposition region R Contamination region R1 One contamination region R2 The other contamination region S1 First circulation S2 Second circulation T1 Groundwater flow T2 Groundwater flow W Groundwater

Claims (1)

揮発性有機化合物で汚染された土壌及び地下水を微生物によって原位置で浄化処理する方法であって、
前記揮発性有機化合物で汚染された汚染領域に揚水井戸が配設されるとともに、該揚水井戸を間に一方の汚染領域側に第1注入井戸が、他方の汚染領域側に第2注入井戸が配設され、
前記第1注入井戸から供給し前記一方の汚染領域を流通させて前記揚水井戸で汲み上げる前記地下水の第1循環によって、前記一方の汚染領域に、活性化した嫌気性微生物で前記揮発性有機化合物を分解させる嫌気性分解領域を形成するとともに、
前記第2注入井戸から供給し前記他方の汚染領域を流通させて前記揚水井戸で汲み上げる前記地下水の第2循環によって、前記他方の汚染領域に、活性化した好気性微生物で前記揮発性有機化合物を分解させる好気性分解領域を形成し、
前記第2循環において、前記地下水に微細気泡を生成することを特徴とする汚染土壌及び汚染地下水の原位置浄化処理方法。

A method of purifying soil and groundwater contaminated with volatile organic compounds in situ by microorganisms,
A pumping well is disposed in a contaminated area contaminated with the volatile organic compound, and a first injection well is provided on one contaminated area side and a second injection well is provided on the other contaminated area side. Arranged,
By the first circulation of the groundwater supplied from the first injection well and circulated through the one contaminated area and pumped up in the pumped well, the volatile organic compound is activated by activated anaerobic microorganisms in the one contaminated area. While forming an anaerobic decomposition region to decompose,
By the second circulation of the groundwater supplied from the second injection well, circulated through the other contaminated area and pumped up in the pumped well, the volatile organic compound is activated by activated aerobic microorganisms in the other contaminated area. Forming an aerobic degradation zone to decompose,
An in-situ purification method for contaminated soil and contaminated groundwater, wherein in the second circulation, fine bubbles are generated in the groundwater.

JP2010176581A 2010-08-05 2010-08-05 In situ purification method of contaminated soil and groundwater Pending JP2012035181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010176581A JP2012035181A (en) 2010-08-05 2010-08-05 In situ purification method of contaminated soil and groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010176581A JP2012035181A (en) 2010-08-05 2010-08-05 In situ purification method of contaminated soil and groundwater

Publications (1)

Publication Number Publication Date
JP2012035181A true JP2012035181A (en) 2012-02-23

Family

ID=45847798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010176581A Pending JP2012035181A (en) 2010-08-05 2010-08-05 In situ purification method of contaminated soil and groundwater

Country Status (1)

Country Link
JP (1) JP2012035181A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002302A1 (en) * 2013-07-05 2015-01-08 株式会社タカハタ電子 Method for activating oxygenase-containing composition, and contaminant detoxification method and device based on same
JP2015160175A (en) * 2014-02-27 2015-09-07 清水建設株式会社 Purification processing method of original position of contaminated soil and contaminated groundwater
CN114940527A (en) * 2022-02-28 2022-08-26 成都理工大学 Pressure-adjustable hydrodynamic cavitation underground water circulating well system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216696A (en) * 1997-02-10 1998-08-18 Shimizu Corp Method for supplying air in reconditioning contaminated soil and device therefor
JP2008200598A (en) * 2007-02-20 2008-09-04 Shimizu Corp In situ purification method of contaminated soil and groundwater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216696A (en) * 1997-02-10 1998-08-18 Shimizu Corp Method for supplying air in reconditioning contaminated soil and device therefor
JP2008200598A (en) * 2007-02-20 2008-09-04 Shimizu Corp In situ purification method of contaminated soil and groundwater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002302A1 (en) * 2013-07-05 2015-01-08 株式会社タカハタ電子 Method for activating oxygenase-containing composition, and contaminant detoxification method and device based on same
JP2015160175A (en) * 2014-02-27 2015-09-07 清水建設株式会社 Purification processing method of original position of contaminated soil and contaminated groundwater
CN114940527A (en) * 2022-02-28 2022-08-26 成都理工大学 Pressure-adjustable hydrodynamic cavitation underground water circulating well system
US11912595B2 (en) 2022-02-28 2024-02-27 Chengdu University Of Technology Groundwater circulation well system with pressure-adjustable hydrodynamic cavitation

Similar Documents

Publication Publication Date Title
JP5865166B2 (en) Purification method and apparatus for water containing oils and / or volatile organic compounds
JP2007260610A (en) Cleaning method of contaminated soil
JP5737551B2 (en) Method and apparatus for purifying contaminated soil or groundwater
JP2009045558A (en) In-situ purification method of polluted groundwater
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
JP2008279403A (en) In situ cleaning method of contaminated soil and contaminated underground water
JP5868373B2 (en) Purification method for contaminated groundwater and soil
JP4702671B2 (en) In-situ purification method for contaminated soil and contaminated groundwater
JPH10216696A (en) Method for supplying air in reconditioning contaminated soil and device therefor
JP2015160175A (en) Purification processing method of original position of contaminated soil and contaminated groundwater
JP2005279548A (en) Method for purifying contaminated soil
JP2009279489A (en) Method of purifying contaminated soil and/or ground water
JP4821097B2 (en) Water flow anaerobic biosystem and its treatment method
JP2010240594A (en) Decomposition treatment method of contaminated soil and contaminated ground water
JP2000176487A (en) Method of remediation of contaminated groundwater and contaminated bed and remediation system
JP2006075681A (en) Contaminated soil cleaning system and contaminated soil cleaning method
JP2004122049A (en) Purification method of soil and ground water
JP2010075883A (en) Cleaning method of contaminated soil and groundwater
JP4055076B2 (en) Contaminated soil purification equipment
JP2004167426A (en) Cleaning method of contamination due to chemical substance and cleaning system therefor
KR101341822B1 (en) Aerobic dechlorination system and process thereof
JP2005074297A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2007260611A (en) Method of cleaning contaminated soil
JP2002119977A (en) Method and apparatus for cleaning polluted ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729