JP2007260611A - Method of cleaning contaminated soil - Google Patents

Method of cleaning contaminated soil Download PDF

Info

Publication number
JP2007260611A
JP2007260611A JP2006091390A JP2006091390A JP2007260611A JP 2007260611 A JP2007260611 A JP 2007260611A JP 2006091390 A JP2006091390 A JP 2006091390A JP 2006091390 A JP2006091390 A JP 2006091390A JP 2007260611 A JP2007260611 A JP 2007260611A
Authority
JP
Japan
Prior art keywords
soil
contaminated
injection
groundwater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006091390A
Other languages
Japanese (ja)
Inventor
Tetsuhisa Yada
哲久 矢田
Takashi Ohashi
貴志 大橋
Toru Watanabe
徹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Nippo Corp Inc
Original Assignee
Nippon Oil Corp
Nippo Corp Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp, Nippo Corp Inc filed Critical Nippon Oil Corp
Priority to JP2006091390A priority Critical patent/JP2007260611A/en
Publication of JP2007260611A publication Critical patent/JP2007260611A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of cleaning contaminated soil accomplishing shortening of a cleaning period. <P>SOLUTION: The method of cleaning the contaminated soil is provided with a soil heating step for pouring a steam into the soil G to heat it such that a temperature of the soil becomes 20-60°C and activating a microorganism in the soil G. Thereby, an activity of the microorganism in the soil G is enhanced and decomposition of the contamination substance by the microorganism is accelerated. As a result, shortening of the cleaning period of the soil can be accomplished. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機化合物によって汚染された土壌を原位置で浄化する汚染土壌の浄化方法に関する。   The present invention relates to a method for purifying contaminated soil in which soil contaminated with an organic compound is purified in situ.

近年、産業活動に伴う土壌汚染に対する関心が高まるとともに、土壌汚染対策法が施行され、土壌汚染による影響を低減することが求められている。この土壌汚染対策法の規制対象はベンゼンであるが、生活環境の保全を目的として、その他の石油類による油膜、油臭に対する対策も望まれている。   In recent years, interest in soil contamination accompanying industrial activities has increased, and the Soil Contamination Countermeasures Law has been enforced to reduce the impact of soil contamination. Benzene is the subject of regulation of the Soil Contamination Countermeasures Law, but countermeasures against oil films and oily odors from other petroleums are also desired for the purpose of preserving the living environment.

従来、揮発性有機化合物(VOC)等によって汚染された土壌を浄化する技術として、現場内(on−site)処理、原位置(in−site)処理がある。現場内処理としては、熱処理、化学処理、生物処理、抽出処理等が挙げられる。原位置処理としては、抽出法、分解法、洗浄法があり、抽出法として、土壌ガス吸引法、地下水揚水法、エアスパージング法が挙げられ、分解法として、化学処理(酸化分解、還元分解)、生物処理(バイオレメディエーション、ファイトレメディエーションなど)が挙げられる。   Conventionally, techniques for purifying soil contaminated with volatile organic compounds (VOC) and the like include on-site processing and in-site processing. Examples of on-site treatment include heat treatment, chemical treatment, biological treatment, and extraction treatment. In-situ treatment includes extraction method, decomposition method, and washing method. Extraction methods include soil gas suction method, groundwater pumping method, and air sparging method. Decomposition methods include chemical treatment (oxidative decomposition, reductive decomposition). , Biological treatment (bioremediation, phytoremediation, etc.).

汚染土壌を原位置で浄化する技術として、下記の特許文献に示すようなものがある。特許文献に記載の汚染土壌の原位置浄化方法では、汚染土壌に窒素、リン等の栄養塩を供給し、微生物の分解能力によって土壌中の油分を分解して、汚染土壌を浄化する技術が提案されている。
特開2004−298830号公報 特開2000−317436号公報
As a technique for purifying contaminated soil in-situ, there are those shown in the following patent documents. The in-situ purification method for contaminated soil described in the patent literature proposes a technology that purifies contaminated soil by supplying nutrient salts such as nitrogen and phosphorus to the contaminated soil and decomposing oil in the soil by the ability of microorganisms to decompose. Has been.
JP 2004-298830 A JP 2000-317436 A

しかしながら、上記特許文献1に記載の従来技術では、土壌中の微生物の活性が上がらず、浄化期間が長くなるといった問題がある。上記特許文献2に記載の従来技術では、土壌を殺菌した後に浄化を行っているため、時間が掛かってしまうといった問題がある。   However, the conventional technique described in Patent Document 1 has a problem that the activity of microorganisms in the soil does not increase and the purification period becomes longer. The conventional technique described in Patent Document 2 has a problem that it takes time because the soil is sterilized and then purified.

本発明は、このような課題を解決するために成されたものであり、浄化期間の短縮を図った汚染土壌の浄化方法を提供することを目的とする。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for purifying contaminated soil in which the purification period is shortened.

本発明による汚染土壌の浄化方法は、有機化合物によって汚染された土壌を原位置で微生物を用い浄化する汚染土壌の浄化方法において、土壌にスチームを注入して土壌の温度が20〜60℃になるように加熱する土壌加熱工程を備えることを特徴としている。   The method for purifying contaminated soil according to the present invention is a method for purifying contaminated soil in which soil contaminated with an organic compound is purified in situ using microorganisms, and the temperature of the soil is 20 to 60 ° C. by injecting steam into the soil. It is characterized by providing the soil heating process heated.

このような汚染土壌の浄化方法によれば、土壌にスチームを注入して、土壌を20〜60℃に加熱することで、土壌中の微生物の活性を向上させることができる。これにより、微生物による汚染物質の分解が加速されて、土壌の浄化期間を短縮することができる。一般に、土壌の温度が20℃未満の場合、微生物の増殖に必要な酵素反応速度が低く微生物が増殖不能となり、土壌の温度が60℃を超える場合、酵素(たんぱく質)及び細胞壁が熱変性を起こし、微生物が増殖不能となる。   According to such a purification method of contaminated soil, the activity of microorganisms in the soil can be improved by injecting steam into the soil and heating the soil to 20 to 60 ° C. Thereby, decomposition | disassembly of the pollutant by microorganisms is accelerated and the purification | cleaning period of soil can be shortened. In general, when the temperature of the soil is less than 20 ° C, the enzyme reaction rate required for the growth of microorganisms is low and the microorganisms cannot grow. When the temperature of the soil exceeds 60 ° C, the enzyme (protein) and the cell wall undergo thermal denaturation. Microorganisms cannot grow.

ここで、土壌内に栄養塩及び/又は空気を供給する供給工程を更に備えることが好ましい。これにより、栄養塩及び/又は空気が土壌内に供給されて、土壌中の微生物の活性を一層向上させることができる。   Here, it is preferable to further include a supplying step of supplying nutrient salt and / or air into the soil. Thereby, nutrient salt and / or air are supplied in the soil, and the activity of microorganisms in the soil can be further improved.

また、土壌加熱工程におけるスチームの注入と、供給工程における栄養塩及び/又は空気の供給とを、土壌内に形成された同一の注入孔を用いて行うことが好ましい。これにより、スチームを注入する注入孔と、栄養塩及び/又は空気を供給する注入孔とを、同一とすることで、注入孔を別々に形成する必要が無くなり、低コスト化を図ることができる。なお、スチームの注入と栄養塩及び/又は空気の供給は、同時に行ってもよく、交互に行ってもよい。   Moreover, it is preferable to perform the injection | pouring of the steam in a soil heating process, and the supply of the nutrient salt and / or air in a supply process using the same injection hole formed in soil. Accordingly, by making the injection hole for injecting steam the same as the injection hole for supplying nutrient salt and / or air, it is not necessary to form the injection holes separately, and the cost can be reduced. . The injection of steam and the supply of nutrient salt and / or air may be performed simultaneously or alternately.

また、土壌内の地下水を揚水する揚水工程と、土壌内から揚水された地下水を曝気する曝気工程と、を更に備えることが好ましい。これにより、土壌内の地下水を揚水し、揚水された地下水を曝気することで、地下水を浄化することができる。   Moreover, it is preferable to further include a pumping process for pumping up groundwater in the soil and an aeration process for aeration of groundwater pumped from the soil. Thereby, groundwater can be purified by pumping up the groundwater in the soil and aeration of the pumped-up groundwater.

また、土壌加熱工程では、土壌の温度が25〜40℃になるように加熱することが好ましい。このように、土壌の温度を25〜40℃になるように加熱することで、土壌中における微生物の活性をより一層向上させることができる。なお、土壌温度が25〜40℃の場合には、一般微生物(常温菌)の生育に適した環境となる。   Moreover, it is preferable to heat so that the temperature of soil may become 25-40 degreeC in a soil heating process. Thus, the activity of microorganisms in soil can be further improved by heating so that the temperature of soil may become 25-40 degreeC. In addition, when soil temperature is 25-40 degreeC, it becomes an environment suitable for growth of a general microorganism (room temperature microbe).

本発明の汚染土壌の浄化方法によれば、土壌中における微生物の活性を向上させることができるため、浄化期間の短縮を図ることができる。   According to the method for purifying contaminated soil of the present invention, the activity of microorganisms in the soil can be improved, so that the purification period can be shortened.

以下、本発明による汚染土壌の浄化方法の好適な実施形態について図面を参照しながら説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。図1は、本発明の実施形態に係る土壌浄化装置を示す概略構成図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a method for purifying contaminated soil according to the present invention will be described with reference to the drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a schematic configuration diagram illustrating a soil purification apparatus according to an embodiment of the present invention.

土壌浄化装置1は、例えば、有機化合物によって汚染された土壌を原位置で浄化するものであり、土壌内の微生物による分解能力を利用して、有機化合物を分解させて汚染土壌を浄化するものである。図1に示す汚染土壌は、地下水位Lを挟んで上方に不飽和層(非帯水層)2が形成され、下方に飽和層(帯水層)3が形成され、この飽和槽3内に有機化合物を含有する汚染層4が形成されている。なお、有機化合物としては、例えば、揮発油、灯油、軽油等の石油類が挙げられる。   The soil purification apparatus 1 is for purifying soil contaminated with an organic compound in situ, for example, and purifies the contaminated soil by decomposing the organic compound using the decomposition ability of microorganisms in the soil. is there. In the contaminated soil shown in FIG. 1, an unsaturated layer (non-aquifer) 2 is formed on the upper side of the groundwater level L, and a saturated layer (aquifer) 3 is formed on the lower side. A contamination layer 4 containing an organic compound is formed. Examples of the organic compound include petroleum oils such as volatile oil, kerosene, and light oil.

この土壌浄化装置1は、土壌G内に微生物を活性化させる栄養塩を注入する栄養塩注入設備5、地表から飽和層3内まで延在する注入井戸(注入孔)6及び揚水井戸7、揚水井戸7を介して汲み上げられた地下水を浄化する浄化設備8を具備している。   The soil purification apparatus 1 includes a nutrient injection facility 5 that injects nutrient salts that activate microorganisms into soil G, an injection well (injection hole) 6 and a pumping well 7 that extend from the ground surface to the saturated layer 3, pumping water A purification facility 8 for purifying the groundwater pumped up through the well 7 is provided.

注入井戸6,6は、土壌G内の汚染層(浄化領域)4の周囲に複数本形成され、揚水井戸7は、汚染層4の略中央に形成されている。   A plurality of the injection wells 6 and 6 are formed around the contaminated layer (purification region) 4 in the soil G, and the pumping well 7 is formed at substantially the center of the contaminated layer 4.

栄養塩注入設備5は、例えば、窒素、リン等の栄養塩(例えば、栄養塩の水溶液)、及び空気を、土壌G内に注入するものであり、これらの栄養塩及び空気は、注入井戸6を介して飽和層3に供給される。   The nutrient salt injection facility 5 injects, for example, nutrient salts such as nitrogen and phosphorus (for example, an aqueous solution of nutrient salts) and air into the soil G. These nutrient salts and air are injected into the injection well 6. Is supplied to the saturated layer 3 via

浄化設備8は、揚水井戸7に接続されて地下水を汲み上げる揚水ポンプ9と、汲み上げられた地下水から油分を分離する油水分離槽10と、この油水分離槽10で油分(回収油)が除去された地下水を曝気処理する曝気槽11と、この曝気槽11で発生したガス中の汚染物質を除去する吸着塔12とを備えている。   The purification facility 8 is connected to a pumping well 7 and pumps a pump 9 that pumps up groundwater, an oil / water separator 10 that separates oil from the pumped-up groundwater, and oil (recovered oil) is removed in the oil / water separator 10. An aeration tank 11 for aeration treatment of groundwater and an adsorption tower 12 for removing contaminants in the gas generated in the aeration tank 11 are provided.

曝気槽11は、栄養塩注入設備5と接続され、栄養塩及び空気が供給される。また、曝気槽11は、注入井戸6に接続され、曝気処理された処理水を土壌G内に注入可能な構成となっている。   The aeration tank 11 is connected to the nutrient salt injection facility 5 and is supplied with nutrient salt and air. In addition, the aeration tank 11 is connected to the injection well 6 and is configured to be able to inject the aerated treated water into the soil G.

ここで、本実施形態の土壌浄化装置1は、土壌G内を加温するスチームを発生させるスチーム発生設備13、土壌の温度を計測する検温手段14を有している。そして、スチーム発生設備13で発生されたスチームは、注入井戸6を介して、土壌G内に供給される。   Here, the soil purification apparatus 1 of the present embodiment includes a steam generating facility 13 that generates steam for heating the inside of the soil G, and a temperature measuring means 14 that measures the temperature of the soil. Then, the steam generated in the steam generating facility 13 is supplied into the soil G through the injection well 6.

次に、このように構成された土壌浄化装置1を用いて、油汚染土壌を浄化する方法について説明する。まず、注入井戸6,6を介して土壌G内にスチームを注入して土壌Gを加熱する土壌加熱工程を実施する。ここでは、スチーム発生設備13で発生させたスチームを、注入井戸6を介して飽和層3に注入し、土壌温度が適正な温度(20〜60℃)となるように加熱し、土壌内の微生物を活性化させる。なお、この「土壌の適正な温度(20〜60℃)」とは、土壌内における微生物の活性に最適な温度であり、より好ましくは25〜40℃である。そして、検温手段14により、土壌の温度が検知されて、20〜60℃となったらスチームの供給を停止する。   Next, a method for purifying oil-contaminated soil using the soil purification apparatus 1 configured as described above will be described. First, a soil heating process is performed in which steam is injected into the soil G through the injection wells 6 and 6 to heat the soil G. Here, the steam generated in the steam generating facility 13 is injected into the saturated layer 3 through the injection well 6 and heated so that the soil temperature becomes an appropriate temperature (20 to 60 ° C.). To activate. In addition, this "appropriate temperature of soil (20-60 degreeC)" is a temperature optimal for the activity of the microorganisms in soil, More preferably, it is 25-40 degreeC. Then, when the temperature of the soil is detected by the temperature measuring means 14 and reaches 20 to 60 ° C., the supply of steam is stopped.

次に、微生物によって土壌G内の有機化合物を分解するバイオ処理工程を実施する。このバイオ処理工程では、まず、土壌G内に栄養塩及び空気を供給する供給工程を行う。この供給工程では、栄養塩注入設備5を用いて、注入井戸6,6を介して栄養塩及び空気を飽和層3内に供給する。更に、土壌G内の地下水を揚水する揚水工程を行う。この揚水工程では、揚水ポンプ9を用いて、地下水を汲み上げる。これにより、飽和層3内において、注入井戸6から揚水井戸7に向かう動水勾配が形成され、栄養塩及び空気を効率的に供給して、微生物の活性を向上させることができる。そして、活性の向上された微生物により、効率良く汚染物質を分解することができる。   Next, a biotreatment process for decomposing organic compounds in the soil G by microorganisms is performed. In this biotreatment process, first, a supply process for supplying nutrient salts and air into the soil G is performed. In this supply process, nutrient salt and air are supplied into the saturated layer 3 through the injection wells 6 and 6 using the nutrient salt injection facility 5. Furthermore, a pumping process for pumping up ground water in the soil G is performed. In this pumping process, groundwater is pumped up using a pumping pump 9. Thereby, in the saturated layer 3, the hydrodynamic gradient which goes to the pumping well 7 from the injection well 6 is formed, nutrient salt and air can be supplied efficiently and the activity of microorganisms can be improved. Then, the pollutant can be efficiently decomposed by the microorganism having improved activity.

揚水工程で汲み上げられた地下水は、浄化工程によって処理されて、汚染物質が除去される。この浄化工程では、地下水中の油分を分離除去する油水分離工程と、油分が除去された地下水を曝気処理する曝気工程と、曝気処理で発生したガスを浄化するガス浄化工程とを有している。   The groundwater pumped up in the pumping process is treated by the purification process to remove contaminants. This purification process includes an oil / water separation process for separating and removing oil from groundwater, an aeration process for aeration treatment of groundwater from which oil has been removed, and a gas purification process for purifying gas generated by the aeration process. .

油水分離工程では、油水分離槽10を用いて地下水中の油分を分離除去し、油分が除去された地下水は、曝気槽11に供給される。   In the oil / water separation step, oil in the groundwater is separated and removed using the oil / water separation tank 10, and the groundwater from which the oil has been removed is supplied to the aeration tank 11.

曝気工程では、曝気槽11を用いて曝気処理し地下水を浄化する。このとき、曝気槽11には、栄養塩注入設備によって、栄養塩及び空気が供給されている。浄化された処理水は、残存した栄養塩と共に注入井戸6,6を介して、土壌G内に再注入される。このように、栄養塩を再利用することで低コスト化が図られている。また、曝気処理中に発生したガスは、吸着塔12に供給される。   In the aeration process, the aeration tank 11 is used for aeration treatment to purify the groundwater. At this time, nutrient salt and air are supplied to the aeration tank 11 by the nutrient salt injection facility. The purified treated water is reinjected into the soil G through the injection wells 6 and 6 together with the remaining nutrient salts. Thus, cost reduction is achieved by reusing the nutrient salt. Further, the gas generated during the aeration process is supplied to the adsorption tower 12.

ガス浄化工程では、吸着塔を用いてガス中の汚染物質を吸着除去し、汚染物質が除去されたガスは大気中に排気される。   In the gas purification step, the pollutant in the gas is adsorbed and removed using an adsorption tower, and the gas from which the pollutant has been removed is exhausted to the atmosphere.

そして、土壌G内の汚染濃度が所定の値に低下するまで、バイオ処理工程、浄化工程を継続する。さらに、土壌温度に応じ土壌加熱工程を実施して、土壌温度が20〜60℃となるようにする。   Then, the biotreatment process and the purification process are continued until the contamination concentration in the soil G decreases to a predetermined value. Furthermore, a soil heating process is implemented according to soil temperature, and it is made for soil temperature to be 20-60 degreeC.

このような汚染土壌の浄化方法によれば、土壌にスチームを注入して土壌内の温度を20〜60℃に維持することができるため、土壌内における微生物の活性を向上させることが可能となる。その結果、効率良く汚染物質を分解することができ、土壌の浄化期間の短縮を図ることができる。   According to such a method for purifying contaminated soil, steam can be injected into the soil and the temperature in the soil can be maintained at 20 to 60 ° C., so that the activity of microorganisms in the soil can be improved. . As a result, pollutants can be efficiently decomposed and the soil purification period can be shortened.

また、注入井戸6を用いて、栄養塩、空気の注入とスチームの注入とを実施しているため、栄養塩、空気注入用の注入井戸と、スチーム注入用の注入井戸とを別々に設置する必要がない。その結果、低コスト化を図ることができる。   Moreover, since the injection of the nutrient salt and air and the injection of steam are performed using the injection well 6, the injection well for injecting the nutrient salt and air and the injection well for the steam injection are installed separately. There is no need. As a result, cost reduction can be achieved.

以上、本発明をその実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態において、浄化設備8を用いて、揚水された地下水を浄化しているが、地下水を揚水せずに地中のみで浄化してもよい。要は、スチームを用いて土壌を20〜60℃に加熱して微生物を活性化させ、土壌内の微生物によって汚染物質を原位置で分解させればよい。   As mentioned above, although this invention was concretely demonstrated based on the embodiment, this invention is not limited to the said embodiment. In the said embodiment, although the groundwater pumped up is purified using the purification equipment 8, you may purify only in the ground, without pumping up groundwater. In short, the soil may be heated to 20-60 ° C. using steam to activate the microorganisms, and the contaminants may be decomposed in situ by the microorganisms in the soil.

また、上記実施形態にあっては、曝気処理された処理水を土壌内に再注入しているが、処理水を再注入しない方法であってもよい。   Moreover, in the said embodiment, although the aerated treated water is reinjected in soil, the method of not reinjecting treated water may be used.

また、上記実施形態では、供給工程において、栄養塩及び空気を注入しているが、栄養塩又は空気の何れか一方を供給すればよい。   Moreover, in the said embodiment, although the nutrient salt and air are inject | poured in the supply process, what is necessary is just to supply either a nutrient salt or air.

本発明の実施形態に係る土壌浄化装置を示す概略構成図である。It is a schematic block diagram which shows the soil purification apparatus which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…土壌浄化装置、2…不飽和層、3…飽和層、4…汚染層、5…栄養塩注入設備、6…注入井戸(注入孔)、7…揚水井戸、8…浄化設備、9…揚水ポンプ、10…油水分離槽、11…曝気槽、12…吸着塔、13…スチーム発生設備、14…検温手段、G…土壌、L…地下水位。   DESCRIPTION OF SYMBOLS 1 ... Soil purification apparatus, 2 ... Unsaturation layer, 3 ... Saturation layer, 4 ... Contamination layer, 5 ... Nutrition salt injection equipment, 6 ... Injection well (injection hole), 7 ... Pumping well, 8 ... Purification equipment, 9 ... Pumping pump, 10 ... oil water separation tank, 11 ... aeration tank, 12 ... adsorption tower, 13 ... steam generating equipment, 14 ... temperature measuring means, G ... soil, L ... ground water level.

Claims (5)

有機化合物によって汚染された土壌を原位置で微生物を用い浄化する汚染土壌の浄化方法において、
前記土壌にスチームを注入して前記土壌の温度が20〜60℃になるように加熱する土壌加熱工程を備えることを特徴とする汚染土壌の浄化方法。
In the purification method of contaminated soil, in which soil contaminated with organic compounds is purified in situ using microorganisms,
A method for purifying contaminated soil, comprising a soil heating step of injecting steam into the soil and heating the soil to a temperature of 20 to 60 ° C.
前記土壌内に栄養塩及び/又は空気を供給する供給工程を更に備えることを特徴とする請求項1記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1, further comprising a supplying step of supplying nutrient salt and / or air into the soil. 前記土壌加熱工程におけるスチームの注入と、前記供給工程における栄養塩及び/又は空気の供給とを、前記土壌内に形成された同一の注入孔を用いて行うことを特徴とする請求項2記載の汚染土壌の浄化方法。   The injection of steam in the soil heating step and the supply of nutrient salt and / or air in the supply step are performed using the same injection hole formed in the soil. Purification method for contaminated soil. 前記土壌内の地下水を揚水する揚水工程と、
前記土壌内から揚水された地下水を曝気する曝気工程と、を更に備えることを特徴とする請求項1〜3の何れか一項に記載の汚染土壌の浄化方法。
A pumping process for pumping groundwater in the soil;
The method for purifying contaminated soil according to any one of claims 1 to 3, further comprising an aeration step of aeration of groundwater pumped from the soil.
前記土壌加熱工程では、前記土壌の温度が25〜40℃になるように加熱することを特徴とする請求項1〜4の何れか一項に記載の汚染土壌の浄化方法。   In the said soil heating process, it heats so that the temperature of the said soil may be 25-40 degreeC, The purification method of the contaminated soil as described in any one of Claims 1-4 characterized by the above-mentioned.
JP2006091390A 2006-03-29 2006-03-29 Method of cleaning contaminated soil Pending JP2007260611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091390A JP2007260611A (en) 2006-03-29 2006-03-29 Method of cleaning contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091390A JP2007260611A (en) 2006-03-29 2006-03-29 Method of cleaning contaminated soil

Publications (1)

Publication Number Publication Date
JP2007260611A true JP2007260611A (en) 2007-10-11

Family

ID=38634130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091390A Pending JP2007260611A (en) 2006-03-29 2006-03-29 Method of cleaning contaminated soil

Country Status (1)

Country Link
JP (1) JP2007260611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173108A (en) * 2012-02-27 2013-09-05 Hokushin Sangyo Kk Oil-contaminated soil cleaning method
JP2015024401A (en) * 2013-07-29 2015-02-05 Dowaエコシステム株式会社 Soil and groundwater purifying method, and soil and groundwater purifying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173108A (en) * 2012-02-27 2013-09-05 Hokushin Sangyo Kk Oil-contaminated soil cleaning method
JP2015024401A (en) * 2013-07-29 2015-02-05 Dowaエコシステム株式会社 Soil and groundwater purifying method, and soil and groundwater purifying apparatus

Similar Documents

Publication Publication Date Title
KR100798763B1 (en) The method to remediate pol(petroleum, oil, lubricant) contaminated soil by in-situ thermal desorption approach, and the apparatus for the same
JP2007253059A (en) In situ cleaning method of oil-contaminated soil
CN112642854A (en) Method for repairing heavy metal organic compound polluted soil by combining electric, aeration and liquid injection
KR101070706B1 (en) Purification system and method for petroleum and heavy metal contaminated soils
JP2010075887A (en) Cleaning method of contaminated soil and groundwater
JP2007260611A (en) Method of cleaning contaminated soil
JP2008279403A (en) In situ cleaning method of contaminated soil and contaminated underground water
JP2005279548A (en) Method for purifying contaminated soil
JP2009056355A (en) Method for purifying contaminated ground water
JP2012035181A (en) In situ purification method of contaminated soil and groundwater
JP7140350B2 (en) Contaminant diffusion suppression method
JP2010240594A (en) Decomposition treatment method of contaminated soil and contaminated ground water
JP4292921B2 (en) Purification method and system for hardly air permeable and contaminated soil
JP4055076B2 (en) Contaminated soil purification equipment
JP2008200598A (en) In situ purification method of contaminated soil and groundwater
JP2006026552A (en) Water flow anaerobic biosystem and treating method therefor
JP4988989B2 (en) Soil purification method
JP2011156455A (en) In-situ purification method for contaminated underground water
JP2608493B2 (en) Method and apparatus for cleaning soil and groundwater contaminated with organochlorine compounds
KR101341822B1 (en) Aerobic dechlorination system and process thereof
JP2010075883A (en) Cleaning method of contaminated soil and groundwater
JP3374229B2 (en) How to restore contaminated groundwater and soil
JP2000140828A (en) Purification of waste water containing volatile contamination substance and device therefor
JP2011156454A (en) In-situ purification method for contaminated underground water
JP2006026574A (en) Rust prevention method for pumped well water by improvement of water quality