JP2009056355A - Method for purifying contaminated ground water - Google Patents
Method for purifying contaminated ground water Download PDFInfo
- Publication number
- JP2009056355A JP2009056355A JP2007223999A JP2007223999A JP2009056355A JP 2009056355 A JP2009056355 A JP 2009056355A JP 2007223999 A JP2007223999 A JP 2007223999A JP 2007223999 A JP2007223999 A JP 2007223999A JP 2009056355 A JP2009056355 A JP 2009056355A
- Authority
- JP
- Japan
- Prior art keywords
- groundwater
- water
- contaminated
- hydrogen
- contaminated groundwater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Degasification And Air Bubble Elimination (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本発明は汚染地下水の浄化方法に関し、特に高濃度の揮発性有機化合物(VOC)で汚染された地下水の浄化方法に関する。 The present invention relates to a method for purifying contaminated groundwater, and more particularly to a method for purifying groundwater contaminated with a high concentration volatile organic compound (VOC).
汚染地下水の浄化方法としては種々の方法が提案されている。
その一つに特許文献1及び特許文献2がある。特許文献1には、揚水井、曝気槽、注水井及び吸着塔を備え、揮発性有機化合物に汚染された地下水・土壌を過酸化水素により浄化する方法において、曝気をマイクロバブルで行う点に特徴をもつ地下水・土壌の浄化方法の発明が記載されており、特許文献2には、汲み上げた汚染地下水を2層構造の曝気槽の上部から散水細粒化した後、下部の充填層で気液接触させてVOCを除去する方法の発明が記載されている。いずれも特別の装置や薬剤を使用する点で必ずしも経済的且つ効果的な方法とはいえない。
One of them is Patent Document 1 and Patent Document 2. Patent Document 1 includes a pumping well, an aeration tank, a water injection well, and an adsorption tower, and is characterized in that aeration is performed with microbubbles in a method of purifying groundwater / soil contaminated with volatile organic compounds with hydrogen peroxide. The patent discloses a method for purifying groundwater / soil having water, and in Patent Document 2, water from the contaminated groundwater is sprinkled from the upper part of the two-layered aeration tank, and then the liquid is separated in the lower packed bed. An invention of a method for contacting to remove VOC is described. Neither of these is necessarily an economical and effective method in terms of using special devices or drugs.
本発明の目的は、一般的に入手容易な装置を用いて経済的且つ効果的に揮発性有機化合物で汚染された地下水を浄化することが可能な汚染地下水の浄化方法を提供することにある。 The objective of this invention is providing the purification method of the contaminated groundwater which can purify the groundwater contaminated with the volatile organic compound economically and effectively using the apparatus which is generally easily available.
本発明は、第1に、揮発性有機化合物で汚染された地下水を汲み上げて浄化処理する方法において、汲み上げた汚染地下水を加熱手段を通して加熱してから曝気槽に送り、曝気槽中の加熱汚染地下水に空気を送り込んで曝気処理することを特徴とする汚染地下水の浄化方法である。 The present invention firstly relates to a method for pumping up groundwater contaminated with volatile organic compounds and purifying the heated groundwater that has been pumped through a heating means and then sending it to an aeration tank. This is a method for purifying contaminated groundwater, characterized in that air is fed into the aeration treatment.
本発明は、第2に、加熱手段が水の電気分解による水素酸素発生装置である上記第1の方法である。 The second aspect of the present invention is the first method, wherein the heating means is a hydrogen-oxygen generator by electrolysis of water.
本発明は、第3に、加熱手段により汚染地下水の温度を40〜70℃に加熱する上記第1または第2の方法である。 Thirdly, the present invention is the first or second method in which the temperature of the contaminated groundwater is heated to 40 to 70 ° C. by the heating means.
本発明は、第4に、水素酸素発生装置で発生させた水素ガスおよび/または酸素ガスの一部を曝気槽に供給する上記第2または第3の方法である。 Fourthly, the present invention is the above-described second or third method for supplying a part of the hydrogen gas and / or oxygen gas generated by the hydrogen oxygen generator to the aeration tank.
本発明は、第5に、浄化された地下水の一部を水素酸素発生装置における電気分解用の水として用いる上記第2〜第4のいずれかの方法である。 Fifth, the present invention is any one of the second to fourth methods described above, wherein a part of the purified groundwater is used as water for electrolysis in a hydrogen oxygen generator.
市販され且つ実用されている汎用の小型の曝気槽を用いて予め加熱した汚染地下水を処理することで高濃度の揮発性有機化合物で汚染された地下水を極めて効率的に浄化することができる。また本発明方法は狭い敷地でも実施できることから、浄化処理全体の経済性が大幅に向上する。 By treating contaminated groundwater heated in advance using a commercially available and practical general-purpose small aeration tank, groundwater contaminated with a high concentration volatile organic compound can be purified very efficiently. Further, since the method of the present invention can be carried out even in a small site, the economic efficiency of the entire purification process is greatly improved.
また加熱手段として水の電気分解による水素酸素発生装置を用いる場合には、二酸化炭素が発生せず環境負荷を低減することができる。この場合、本発明方法で浄化した地下水の一部を電気分解用の水として利用することもでき、浄化処理全体をクローズドシステム化することができる。 When a hydrogen oxygen generator using water electrolysis is used as the heating means, carbon dioxide is not generated and the environmental load can be reduced. In this case, a part of the ground water purified by the method of the present invention can be used as electrolysis water, and the entire purification process can be made into a closed system.
また、水素酸素発生装置から発生する水素を汚染地下水に通して曝気することもでき、それにより脱塩素反応によるVOCの除去を促進できる。同じく発生する酸素を汚染地下水に通して曝気することもでき、それによりベンゼン等を好気的に除去することも可能である。 In addition, hydrogen generated from the hydrogen oxygen generator can be aerated through contaminated groundwater, thereby promoting the removal of VOC by dechlorination reaction. Similarly, the generated oxygen can be aerated through the contaminated groundwater, and benzene and the like can be removed aerobically.
本発明の浄化処理に供する地下水は揮発性有機化合物で汚染された地下水であるが、特に排水基準値(ベンゼンの場合は0.1mg/l)の100倍以上といった高濃度の揮発性有機化合物で汚染された地下水が好ましく用いられる。揮発性有機化合物の例としては、ベンゼン、トリクロロエチレン、トルエン等地下水を汚染する適宜の揮発性有機化合物があり、通常は予め地下水の汚染物質を分析し、原位置処理が困難な高濃度の揮発性有機化合物を含有していることを確認した上で、本発明方法に供する。 The groundwater to be subjected to the purification treatment of the present invention is groundwater contaminated with volatile organic compounds. In particular, it is a volatile organic compound with a high concentration such as 100 times or more of the wastewater standard value (0.1 mg / l in the case of benzene). Contaminated groundwater is preferably used. Examples of volatile organic compounds include volatile organic compounds that contaminate groundwater, such as benzene, trichlorethylene, and toluene. Usually, high-concentration volatile compounds that are difficult to process in-situ by analyzing groundwater contaminants in advance. After confirming that it contains an organic compound, it is subjected to the method of the present invention.
汚染地下水を含む汚染領域に達する揚水井戸を通して汚染地下水を汲み上げ、通常一旦原水槽に貯留してから曝気槽に送るが、本発明ではその間に加熱手段を配して汚染地下水を加熱する。この加熱手段としては、水素バーナ、ガスバーナ、オイルバーナ、電気加熱装置、スチーム加熱装置などの適宜の加熱装置を用いることができるが、本発明では特に水の電気分解によって水素ガスと酸素ガスとを発生させる水素酸素発生装置が好ましく用いられる。この水素酸素発生装置は水を電気分解して水素ガスと酸素ガスを生成するものであり、コンパクトな構造をもつと共に、生成ガスを燃料として用いる場合には、燃焼に最適な比率で水素ガスと酸素ガスを混合した混合ガスを特段の制御なしに得ることができる。この装置は環境にやさしいクリーンなエネルギー源であることはよく知られているが、従来この種用途には実用されていない。また本発明では電気分解によって生成した水素ガスおよび/または酸素ガスを曝気槽に供給することによって汚染地下水の浄化を一層促進させることが可能となる。更には本発明方法によって浄化された地下水の一部を電気分解用の水として利用することも可能となることから、全体をクローズドシステムとして一層効果的に汚染地下水の浄化を行うことが可能となる。 The contaminated groundwater is pumped up through a pumping well that reaches the contaminated area including the contaminated groundwater, and is usually once stored in the raw water tank and then sent to the aeration tank. As the heating means, an appropriate heating device such as a hydrogen burner, a gas burner, an oil burner, an electric heating device, a steam heating device or the like can be used. A hydrogen oxygen generator to be generated is preferably used. This hydrogen oxygen generator electrolyzes water to produce hydrogen gas and oxygen gas, and has a compact structure. When the produced gas is used as fuel, hydrogen gas and hydrogen gas are mixed at an optimum ratio for combustion. A mixed gas in which oxygen gas is mixed can be obtained without special control. Although it is well known that this device is an environmentally friendly clean energy source, it has not been practically used for this type of application. Further, in the present invention, it becomes possible to further promote the purification of contaminated groundwater by supplying hydrogen gas and / or oxygen gas generated by electrolysis to the aeration tank. Furthermore, since a part of the groundwater purified by the method of the present invention can be used as electrolysis water, it becomes possible to purify contaminated groundwater more effectively as a closed system as a whole. .
この加熱処理によって汚染地下水の温度を40〜70℃に加熱し、加熱された汚染地下水を曝気槽に送液する。この加熱による温水化が所定の曝気槽の使用との組合せにより、顕著な効果をもたらす。 By this heat treatment, the temperature of the contaminated groundwater is heated to 40 to 70 ° C., and the heated contaminated groundwater is sent to the aeration tank. This warming by heating brings about a remarkable effect in combination with the use of a predetermined aeration tank.
本発明で用いる曝気槽は、汚染地下水を貯留して、そこに空気を導入して曝気する周知タイプの曝気槽である。このような曝気槽はコンパクトな構造で安価なものが種々実用されており、それらを適宜用いることができる。曝気槽の大きさや性能さらには汚染地下水の汚染の程度などに応じ2つ以上の曝気槽を用いることもできる。 The aeration tank used in the present invention is a well-known type aeration tank that stores contaminated groundwater and introduces air into the aerated tank. Various aeration tanks having a compact structure and low cost have been put into practical use, and they can be used as appropriate. Two or more aeration tanks can be used according to the size and performance of the aeration tank and the degree of contamination of the contaminated groundwater.
曝気槽上部から出る汚染物質を含有する空気は通常気液分離装置によって気体と液体とに分離され、気体分を揮発性有機化合物を吸着分離する能力をもつ活性炭などの吸着剤層を通した後排気される。
一方、曝気処理した地下水は通常一部残存する可能性のある汚染物質の除去のために、好ましくは活性炭などの吸着剤層を通して清浄水とされる。
Air containing pollutants from the upper part of the aeration tank is usually separated into gas and liquid by a gas-liquid separator, and after passing through an adsorbent layer such as activated carbon that has the ability to adsorb and separate volatile organic compounds from the gas component Exhausted.
On the other hand, the aerated groundwater is usually made clean water through an adsorbent layer such as activated carbon in order to remove contaminants that may partially remain.
次に図1〜図3に基いて、本発明の好ましい実施態様について説明する。
図1は本発明の汚染地下水の浄化方法を示す模式図、図2は本発明の方法に用いる水処理設備を示す模式図、図3は本発明で用いる水処理設備を構成する加熱手段である温水装置を示す模式図である。
Next, a preferred embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram showing a method for purifying contaminated groundwater of the present invention, FIG. 2 is a schematic diagram showing a water treatment facility used in the method of the present invention, and FIG. 3 is a heating means constituting the water treatment facility used in the present invention. It is a schematic diagram which shows a hot water apparatus.
図中3は汚染土壌1に設けられた揚水井戸であり、揚水井戸3は揮発性有機化合物で汚染された地下水(汚染地下水)を含む汚染領域2に達している。汚染地下水を揚水井戸3からポンプで汲み上げて水処理設備10の原水槽11に貯留し、温水装置12を経由して第一曝気槽13へ送る。このとき第一曝気槽13へ送られる汚染地下水は温水装置12により水温が40〜70℃に適宜調節されるようになっている。 In the figure, 3 is a pumping well provided in the contaminated soil 1, and the pumping well 3 reaches a contaminated area 2 including groundwater (contaminated groundwater) contaminated with volatile organic compounds. Contaminated groundwater is pumped from the pumping well 3, stored in the raw water tank 11 of the water treatment facility 10, and sent to the first aeration tank 13 via the hot water device 12. At this time, the water temperature of the contaminated groundwater sent to the first aeration tank 13 is appropriately adjusted to 40 to 70 ° C. by the hot water device 12.
ここで、温水装置12のしくみを図3に基いて説明する。温水装置12の内部には図3に示すように配管14が配置されており、原水槽11から送られてきた汚染地下水が図中矢印イから配管14の内部に流入して、図中矢印ロから流出して第一曝気槽13へ送られるようになっている。配管14の周囲には空間15が設けられており、この空間15は温水装置12の図中左下の給排気口16から水素加熱装置17に連通している(図2参照)。水素加熱装置17は、水素酸素発生装置から供給される水素酸素混合ガスをバーナで燃焼させる装置であり、この水素加熱装置17により加熱された空気が空間15に流入することにより、配管14の内部の汚染地下水が適温まで加熱されるようになっている。このとき水素酸素発生装置から供給される水素酸素混合ガスには炭素が含まれていないので、水素加熱装置17による燃焼では二酸化炭素が発生せず環境負荷を低減することができるという効果がある。なお、本発明の方法に用いる温水装置12としては、水素加熱装置のほかに水素バーナ、ガスバーナ、オイルバーナ、電気加熱装置、スチーム加熱装置などの適宜の加熱装置を用いることができる。 Here, the mechanism of the hot water apparatus 12 will be described with reference to FIG. As shown in FIG. 3, a pipe 14 is arranged inside the hot water device 12, and contaminated groundwater sent from the raw water tank 11 flows into the pipe 14 from the arrow a in the figure, and the arrow b in the figure. The first aeration tank 13 flows out from the first aeration tank 13. A space 15 is provided around the pipe 14, and this space 15 communicates with the hydrogen heating device 17 from a supply / exhaust port 16 at the lower left in the drawing of the hot water device 12 (see FIG. 2). The hydrogen heating device 17 is a device that burns the hydrogen-oxygen mixed gas supplied from the hydrogen-oxygen generating device with a burner. When the air heated by the hydrogen heating device 17 flows into the space 15, The contaminated groundwater is heated to an appropriate temperature. At this time, since the hydrogen-oxygen mixed gas supplied from the hydrogen-oxygen generator does not contain carbon, the combustion by the hydrogen heater 17 does not generate carbon dioxide and has an effect of reducing the environmental load. As the hot water device 12 used in the method of the present invention, an appropriate heating device such as a hydrogen burner, a gas burner, an oil burner, an electric heating device, or a steam heating device can be used in addition to the hydrogen heating device.
第一曝気槽13は、原水槽11から温水装置12を経由して送られてきた汚染地下水を貯留する貯水槽であり、貯留された汚染地下水に送風機18から空気が供給されて曝気が行われる。汚染地下水が曝気されると汚染地下水に溶解しているベンゼンが気化して水蒸気と共に気液分離塔19に送られて、ここで気液分離されて気体のベンゼンがブロア20により吸引されて活性炭素吸着塔21に送られ、活性炭素吸着塔21の中に配置された活性炭素に吸着される。このとき、温水装置12から第一曝気槽13に送られる汚染地下水の温度を40〜70℃に加熱すると、汚染地下水の曝気が従来の方法と比較して効率よく行なわれてベンゼンの回収率が高くなる。特に、汚染地下水の温度を60度以上に加熱すると、汚染地下水の曝気効率が飛躍的に向上する。これは、本発明の浄化対象となる汚染物質であるトリクロロエチレン(沸点86.7℃)やベンゼン(沸点80℃)の沸点付近まで汚染地下水を加熱することにより、これらの汚染物質の気化が促進されることによる。そして、これにより揮発性有機化合物(ベンゼン)の除去効率を著しく向上することができるので、従来の方法と比較して小型または少数の曝気槽により汚染地下水を処理することができ、狭い敷地においても汚染地下水の浄化処理を行うことが可能になるという効果がある。 The first aeration tank 13 is a water storage tank that stores contaminated groundwater sent from the raw water tank 11 via the hot water device 12, and aeration is performed by supplying air from the blower 18 to the stored contaminated groundwater. . When the contaminated groundwater is aerated, benzene dissolved in the contaminated groundwater is vaporized and sent to the gas-liquid separation tower 19 together with water vapor, where it is gas-liquid separated and gaseous benzene is sucked by the blower 20 and activated carbon. It is sent to the adsorption tower 21 and is adsorbed by the activated carbon arranged in the activated carbon adsorption tower 21. At this time, if the temperature of the contaminated groundwater sent from the hot water device 12 to the first aeration tank 13 is heated to 40 to 70 ° C., the aeration of the contaminated groundwater is performed more efficiently than the conventional method, and the recovery rate of benzene is increased. Get higher. In particular, when the temperature of the contaminated groundwater is heated to 60 degrees or more, the aeration efficiency of the contaminated groundwater is dramatically improved. This is because vaporization of these pollutants is promoted by heating the contaminated ground water to the vicinity of the boiling points of trichloroethylene (boiling point 86.7 ° C.) and benzene (boiling point 80 ° C.), which are the pollutants to be purified according to the present invention. By. And since the removal efficiency of volatile organic compounds (benzene) can be remarkably improved by this, it is possible to treat contaminated groundwater with a small or a small number of aeration tanks compared with conventional methods, even in a narrow site There is an effect that it becomes possible to purify contaminated groundwater.
第一曝気槽13で曝気処理された汚染地下水は、第一活性炭槽22に送られてここで汚染地下水に溶解しているベンゼンが活性炭に吸着されて、汚染地下水中のベンゼン濃度がさらに低減される。第一活性炭槽22で吸着処理された汚染地下水は第二曝気槽23へ送られて、第一曝気槽13における処理と同様にして送風機18から供給される空気により曝気され汚染地下水に溶解しているベンゼンがさらに気化する。そして、気化したベンゼンは気液分離塔19に送られて、ここで気液分離されて気体のベンゼンがブロア20により吸引されて活性炭素吸着塔21に送られ、活性炭素吸着塔21において活性炭素に吸着される。 The contaminated groundwater aerated in the first aeration tank 13 is sent to the first activated carbon tank 22 where benzene dissolved in the contaminated groundwater is adsorbed by the activated carbon, and the concentration of benzene in the contaminated groundwater is further reduced. The The contaminated groundwater adsorbed in the first activated carbon tank 22 is sent to the second aeration tank 23 and is aerated by the air supplied from the blower 18 in the same manner as the process in the first aeration tank 13 and dissolved in the contaminated groundwater. The benzene is vaporized further. The vaporized benzene is sent to the gas-liquid separation tower 19 where it is gas-liquid separated, and the gaseous benzene is sucked by the blower 20 and sent to the activated carbon adsorption tower 21 where the activated carbon adsorption tower 21 reacts with activated carbon. To be adsorbed.
第二曝気槽23で曝気処理された汚染地下水は、第二活性炭槽24に送られてここで汚染地下水に溶解しているベンゼンが活性炭に吸着されて、汚染地下水中のベンゼン濃度が排水基準値である0.1mg/l以下まで低減される。第二活性炭槽24でベンゼン濃度が排水基準値以下まで低減された地下水(浄化水)は、冷却塔25に送られて冷却されたのち河川などの公共水域へ放流するか、または復水として注水井戸4から汚染土壌1の地盤中へ注入される。 Contaminated groundwater aerated in the second aeration tank 23 is sent to the second activated carbon tank 24 where benzene dissolved in the contaminated groundwater is adsorbed by the activated carbon, and the concentration of benzene in the contaminated groundwater is the drainage standard value. Is reduced to 0.1 mg / l or less. Groundwater (purified water) whose benzene concentration has been reduced to below the drainage standard value in the second activated carbon tank 24 is sent to the cooling tower 25 and cooled, and then discharged into public water areas such as rivers or injected as condensate. It is injected from the well 4 into the ground of the contaminated soil 1.
なお、この実施態様における曝気処理は汚染地下水に送風機18から空気を供給する方法で行ったが、本発明はこれに限定されるものではなく、たとえば水素酸素発生装置から発生する水素や酸素を曝気槽に供給して行う方法などとすることができる。水素酸素発生装置から発生する水素を曝気槽に供給して曝気を行うと、汚染地下水に含まれる揮発性有機化合物が塩素を含む揮発性有機塩素化合物の場合には、脱塩素反応により揮発性有機塩素化合物に含まれる塩素が水素と置換されて揮発性有機塩素化合物が無害化される。また、水素酸素発生装置から発生する酸素を曝気槽に供給して曝気を行うと、揮発性有機化合物を好気的に除去することができる。さらに、本発明の水処理設備10によって浄化された浄化水を水素酸素発生装置に供給して電気分解を行うようにすれば、外部から水を供給する必要がなく非常に効率がよい。 In addition, although the aeration process in this embodiment was performed by the method of supplying air from the air blower 18 to polluted groundwater, this invention is not limited to this, For example, hydrogen and oxygen which generate | occur | produce from a hydrogen oxygen generator are aerated. For example, the method may be performed by supplying to a tank. When aeration is performed by supplying hydrogen generated from a hydrogen oxygen generator to an aeration tank, if the volatile organic compound contained in the contaminated groundwater is a volatile organic chlorine compound containing chlorine, a volatile organic Chlorine contained in the chlorine compound is replaced with hydrogen to detoxify the volatile organic chlorine compound. In addition, when aeration is performed by supplying oxygen generated from a hydrogen oxygen generator to an aeration tank, volatile organic compounds can be removed aerobically. Furthermore, if the purified water purified by the water treatment facility 10 of the present invention is supplied to the hydrogen-oxygen generator and electrolysis is performed, it is not necessary to supply water from the outside, which is very efficient.
[実施例および比較例]
本発明の効果を確認するために、図2に示す水処理設備10を用いて試験を行った。温水装置12における水温を変えて水処理設備10を運転させ、それぞれの場合の水温とベンゼン濃度を図2に示す測定位置で測定した。結果を図4に示す。また図5は第二活性炭槽24で吸着処理した直後の排出側におけるベンゼン濃度と水温との関係を表すグラフである。なお、ここでいう水温は、温水装置12における水温を示している。
[Examples and Comparative Examples]
In order to confirm the effect of the present invention, a test was conducted using the water treatment facility 10 shown in FIG. The water treatment facility 10 was operated by changing the water temperature in the hot water device 12, and the water temperature and the benzene concentration in each case were measured at the measurement positions shown in FIG. The results are shown in FIG. FIG. 5 is a graph showing the relationship between the benzene concentration on the discharge side immediately after the adsorption treatment in the second activated carbon tank 24 and the water temperature. In addition, the water temperature here has shown the water temperature in the hot water apparatus 12. FIG.
この試験結果より、温水装置における水温を40℃以上にすると、汚染地下水が水処理設備を通過し終わった時点でのベンゼン濃度が排水基準値である0.1mg/lを下回っている(実施例A〜C)。特に温水装置における水温を60℃以上にすると、汚染地下水が第一曝気槽を通過し終わった時点でベンゼン濃度が排水基準値を下回っており、水処理設備を簡略化することが可能である(実施例A)。しかし、温水装置における水温を40℃以下にすると、汚染地下水が水処理設備を通過し終わった時点でのベンゼン濃度が排水基準値である0.1mg/l以上となり、十分な効果が得られない(比較例D)。 From this test result, when the water temperature in the hot water apparatus is 40 ° C. or higher, the benzene concentration at the time when the contaminated groundwater has passed through the water treatment facility is lower than the wastewater standard value of 0.1 mg / l (Example) AC). In particular, when the water temperature in the hot water apparatus is set to 60 ° C. or higher, the concentration of benzene is below the drainage standard value when the contaminated groundwater has passed through the first aeration tank, and the water treatment facility can be simplified ( Example A). However, when the water temperature in the hot water apparatus is 40 ° C. or lower, the concentration of benzene at the time when the contaminated groundwater has passed through the water treatment facility becomes 0.1 mg / l or more, which is the drainage standard value, and a sufficient effect cannot be obtained. (Comparative Example D).
本発明の方法によれば、汚染地下水の水温を40℃以上にすることにより汚染地下水の曝気効果が高められるので、従来技術と比較して小規模な設備を用いて揮発性有機化合物で汚染された地下水を十分に浄化することが可能である。 According to the method of the present invention, since the aeration effect of the contaminated groundwater is enhanced by setting the temperature of the contaminated groundwater to 40 ° C. or higher, it is contaminated with a volatile organic compound using a small-scale facility as compared with the prior art. It is possible to sufficiently purify the groundwater.
1 汚染土壌
2 汚染領域
3 揚水井戸
4 注水井戸
10 水処理設備
11 原水槽
12 温水装置
13 第一曝気槽
14 配管
15 空間
16 給排気口
17 水素加熱装置
18 送風機
19 気液分離塔
21 活性炭素吸着塔
22 第一活性炭槽
23 第二曝気槽
24 第二活性炭槽
25 冷却塔
DESCRIPTION OF SYMBOLS 1 Contaminated soil 2 Contaminated area 3 Pumping well 4 Water injection well 10 Water treatment equipment 11 Raw water tank 12 Hot water apparatus 13 First aeration tank 14 Piping 15 Space 16 Air supply / exhaust port 17 Hydrogen heater 18 Blower 19 Gas-liquid separation tower 21 Activated carbon adsorption Tower 22 First activated carbon tank 23 Second aeration tank 24 Second activated carbon tank 25 Cooling tower
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007223999A JP2009056355A (en) | 2007-08-30 | 2007-08-30 | Method for purifying contaminated ground water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007223999A JP2009056355A (en) | 2007-08-30 | 2007-08-30 | Method for purifying contaminated ground water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009056355A true JP2009056355A (en) | 2009-03-19 |
Family
ID=40552599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007223999A Pending JP2009056355A (en) | 2007-08-30 | 2007-08-30 | Method for purifying contaminated ground water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009056355A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013075263A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2013075262A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2020062623A (en) * | 2018-10-19 | 2020-04-23 | 三菱ケミカルアクア・ソリューションズ株式会社 | Water treatment device |
CN114873716A (en) * | 2022-03-10 | 2022-08-09 | 昆明理工大学 | Wind-solar coupling new energy river water purification system |
-
2007
- 2007-08-30 JP JP2007223999A patent/JP2009056355A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013075263A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2013075262A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2020062623A (en) * | 2018-10-19 | 2020-04-23 | 三菱ケミカルアクア・ソリューションズ株式会社 | Water treatment device |
CN114873716A (en) * | 2022-03-10 | 2022-08-09 | 昆明理工大学 | Wind-solar coupling new energy river water purification system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7377959B2 (en) | Process and apparatus for decomposition treatment of volatile chlorinated organic compound | |
JP3461328B2 (en) | Gas processing apparatus and method | |
JP2009056355A (en) | Method for purifying contaminated ground water | |
JP6393965B2 (en) | Wastewater treatment system | |
KR101815916B1 (en) | Activated carbon regeneration method using ozone, hydroxyl radical and strong base | |
JP5795323B2 (en) | Method and apparatus for treating waste by means of injection into an immersed plasma | |
JP2015134319A (en) | Water treatment system | |
CN103272464B (en) | A kind of processing method of ozone tail gas and device | |
JP2010253416A (en) | System for cleaning contaminated soil and sand | |
JP2006247580A (en) | Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid | |
JP2004105870A (en) | Method and apparatus for purification of soil and groundwater | |
JP2003164856A (en) | Method for separating and decomposing volatile organic compound in waste water and device therefor | |
JP2011036772A (en) | Mechanism for deodorizing and cleaning voc gas | |
JP7140350B2 (en) | Contaminant diffusion suppression method | |
JP3499782B2 (en) | Method and apparatus for removing trace organic compounds in water | |
JP2004321919A (en) | Soil decontaminating method | |
JP2004025107A (en) | Pollution decontamination system | |
JP2007260611A (en) | Method of cleaning contaminated soil | |
JP2003181448A (en) | Method and apparatus for treating water polluted with voc | |
US20230035152A1 (en) | Gasification system and wastewater treatment method | |
KR100195687B1 (en) | Indirect-heated fluidized bed apparatus having interposed heat pipe for remediation of petroleum contaminated soils | |
JP2011156453A (en) | In-situ cleaning method of contaminated soil and contaminated underground water | |
KR20010081325A (en) | A method of recovering methylene chloride by using selectively permeable membrane | |
JP2024065541A (en) | Method for treating waste or wastewater | |
JP2006075677A (en) | Treatment method and treatment device for contaminant |