JP4371375B2 - Method and apparatus for separating volatile organic compounds from wastewater - Google Patents

Method and apparatus for separating volatile organic compounds from wastewater Download PDF

Info

Publication number
JP4371375B2
JP4371375B2 JP2005270743A JP2005270743A JP4371375B2 JP 4371375 B2 JP4371375 B2 JP 4371375B2 JP 2005270743 A JP2005270743 A JP 2005270743A JP 2005270743 A JP2005270743 A JP 2005270743A JP 4371375 B2 JP4371375 B2 JP 4371375B2
Authority
JP
Japan
Prior art keywords
separation
container
vessel
wastewater
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005270743A
Other languages
Japanese (ja)
Other versions
JP2007075795A (en
Inventor
三智男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2005270743A priority Critical patent/JP4371375B2/en
Publication of JP2007075795A publication Critical patent/JP2007075795A/en
Application granted granted Critical
Publication of JP4371375B2 publication Critical patent/JP4371375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は,地下水又は産業廃水等の廃水にトリクロロエチレン又はテトラクロロエチレン等の揮発性有機化合物を含んでいる場合に,この揮発性有機化合物を廃水から分離する方法と,その装置とに関するものである。   The present invention relates to a method for separating a volatile organic compound from wastewater when the wastewater such as groundwater or industrial wastewater contains a volatile organic compound such as trichlorethylene or tetrachloroethylene, and an apparatus therefor.

本発明者は,この廃水から揮発性有機化合物を分離する技術について,先行技術としての特許文献1において,以下に述べる分離方法を提案した。   The present inventor proposed a separation method described below in Patent Document 1 as a prior art regarding a technique for separating a volatile organic compound from waste water.

この分離方法は,
「揮発性有機化合物を含む被処理廃水を,密閉した分離容器の内部に噴出供給する一方,前記分離容器内を,これに間接式熱交換器を介して接続した真空ポンプ等の真空発生手段にて大気圧より低い減圧に維持して,前記被処理廃水を分離容器内に脱気又はフラッシュ蒸発することによって揮発性有機化合物を被処理廃水から分離する一方,前記分離容器に対して供給する被処理廃水を,間接式熱交換器において,前記分離容器内で発生した水蒸気を熱源として,その温度を前記分離容器内における飽和蒸気温度に近づけるように加熱する。」
というものであります。
This separation method is
“To-be-processed wastewater containing volatile organic compounds is sprayed and supplied to the inside of a sealed separation vessel, while the inside of the separation vessel is connected to a vacuum generating means such as a vacuum pump connected via an indirect heat exchanger. The volatile organic compound is separated from the wastewater to be treated by degassing or flash-evaporating the wastewater to be treated into a separation vessel while maintaining the pressure lower than atmospheric pressure. The treated wastewater is heated in an indirect heat exchanger using steam generated in the separation vessel as a heat source so that its temperature approaches the saturated vapor temperature in the separation vessel.
It is something.

この先行技術の分離方法によると,分離容器内で発生した水蒸気が有する熱を前記分離容器に対して供給する被処理廃水の加熱に回収することができるから,廃水中の揮発性有機化合物を,高い熱効率のもとで分離することができる。
特開2004−337567号公報
According to this prior art separation method, the heat of water vapor generated in the separation vessel can be recovered by heating the wastewater to be treated supplied to the separation vessel. Separation is possible with high thermal efficiency.
JP 2004-337567 A

しかし,前記した間接式熱交換器において,その加熱側と被加熱側との間には,伝熱体を介して所定量の熱伝達を行うための温度差を常時保つことが必要であるから,前記先行技術における分離方法のように,分離容器内で発生した水蒸気が有する熱を,間接式熱交換器によって,被処理廃水の加熱に回収するという構成にした場合には,前記被処理廃水の温度を,前記温度差の分だけ分離容器内における飽和蒸気温度に近づけることができない。   However, in the indirect heat exchanger described above, it is necessary to always maintain a temperature difference between the heating side and the heated side for performing a predetermined amount of heat transfer through the heat transfer body. As in the separation method in the prior art, when the heat of steam generated in the separation container is recovered by the indirect heat exchanger to be heated to the wastewater to be treated, the wastewater to be treated Cannot be brought close to the saturated steam temperature in the separation container by the temperature difference.

従って,前記分離容器内における被処理廃水における脱気又はフラッシュ蒸発が,これに噴出供給する被処理廃水の温度を当該分離容器内における飽和蒸気温度に近づけることができない分だけ低くなるから,被処理廃水からの揮発性有機化合物の分離率が低いのであった。   Therefore, the degassing or flash evaporation in the wastewater to be treated in the separation container is lowered by the amount that the temperature of the wastewater to be supplied to be supplied cannot be brought close to the saturated steam temperature in the separation container. The separation rate of volatile organic compounds from wastewater was low.

しかも,前記分離容器内における水蒸気は,間接式熱交換器においてその飽和蒸気温度にまで冷却されることなく真空ポンプ等の真空発生手段に吸引されることにより,前記真空ポンプ等の真空発生手段の吸引量が多くなるから,大容量の真空発生手段を使用しなければならないのであった。   Moreover, the water vapor in the separation vessel is sucked into the vacuum generating means such as a vacuum pump without being cooled to the saturated vapor temperature in the indirect heat exchanger, so that the vacuum generating means such as the vacuum pump Since the amount of suction increased, a large-capacity vacuum generation means had to be used.

特に,前記真空発生手段が真空ポンプである場合,この真空ポンプに,前記分離容器内で発生した水蒸気の凝縮水を一緒に吸い込むことになって,負荷が増大する等の不具合を招来するのであった。   In particular, when the vacuum generating means is a vacuum pump, the condensed water of water vapor generated in the separation container is sucked into the vacuum pump together, leading to problems such as an increase in load. It was.

本発明は,これらの問題を解消した分離方法と,その装置とを提供することを技術的課題とするものである。   An object of the present invention is to provide a separation method and an apparatus for solving these problems.

この技術的課題を達成するため本発明の分離方法は,
「密閉した分離容器の内部を,これに密閉した熱交換容器を介して接続した真空発生手段にて大気圧より低い減圧に維持し,この分離容器の内部に,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち噴出供給し、この分離容器から排出する。」
ことを特徴としている。
In order to achieve this technical problem, the separation method of the present invention comprises:
“The inside of the sealed separation vessel is maintained at a reduced pressure lower than atmospheric pressure by a vacuum generating means connected through a sealed heat exchange vessel, and the inside of the separation vessel contains a volatile organic compound. Waste water is jetted and supplied from the separation vessel after direct contact with water vapor generated in the separation vessel in the heat exchange vessel.
It is characterized by that.

また,本発明の分離方法は,
「密閉した第1の分離容器及び第2の分離容器の内部を,これらに密閉した熱交換容器を介して接続した真空発生手段にて大気圧より低い減圧に維持し,前記第1の分離容器の内部に,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記各分離容器内で発生した水蒸気と直接接触したのち噴出供給する一方,前記第1の分離容器内における被処理廃水を,前記真空発生手段からの排気を熱源として間接加熱したのち前記第2の分離容器の内部に噴出供給し、この第2の分離容器から排出する。」
ことを特徴としている。
Moreover, the separation method of the present invention comprises:
“The insides of the sealed first separation container and the second separation container are maintained at a reduced pressure lower than the atmospheric pressure by a vacuum generating means connected to them through a sealed heat exchange container, and the first separation container The waste water to be treated containing a volatile organic compound is supplied into the heat exchange vessel after being directly brought into contact with the water vapor generated in each separation vessel in the heat exchange vessel, while being treated in the first separation vessel. Waste water is indirectly heated using the exhaust from the vacuum generating means as a heat source, and then sprayed into the second separation container and discharged from the second separation container .
It is characterized by that.

次に,本発明の分離装置は,
「密閉した分離容器と,この分離容器に,当該分離容器内における水蒸気を導入するように接続した密閉型の熱交換容器と,この熱交換容器を介して前記分離容器内を大気圧より低い減圧に維持するように吸引する真空発生手段とを備え,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち前記分離容器内に噴出供給し、この分離容器から排出するように構成した。」
ことを特徴としている。
Next, the separation device of the present invention comprises:
“A sealed separation container, a sealed heat exchange container connected to the separation container so as to introduce water vapor in the separation container, and a pressure lower than atmospheric pressure through the heat exchange container. And a vacuum generating means for sucking so as to maintain the waste water to be treated, which includes a volatile organic compound, in the heat exchange container, after directly contacting the steam generated in the separation container, It was configured to supply and discharge from this separation vessel . "
It is characterized by that.

また,本発明の分離装置は,
「密閉した第1の分離容器及び第2の分離容器と,これらの各分離容器に,当該各分離容器内における水蒸気を導入するように接続した密閉型の熱交換容器と,この熱交換容器を介して前記各分離容器内を大気圧より低い減圧に維持するように吸引する真空発生手段と,この真空発生手段の排気側に接続した間接式熱交換器とを備え,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち前記第1の分離容器内に噴出供給するように構成する一方,前記第1の分離容器内における被処理廃水を,前記間接式熱交換器において前記真空発生手段からの排気を熱源として間接加熱したのち前記第2の分離容器の内部に噴出供給し、この第2の分離容器から排出するように構成した。」ことを特徴としている。
Moreover, the separation device of the present invention comprises:
“A sealed first and second separation vessel, a sealed heat exchange vessel connected to each of these separation vessels so as to introduce water vapor in each of the separation vessels, and this heat exchange vessel A vacuum generating means for sucking so that the inside of each separation container is maintained at a pressure lower than atmospheric pressure, and an indirect heat exchanger connected to the exhaust side of the vacuum generating means, and containing a volatile organic compound The waste water to be treated is configured to be directly supplied to the steam generated in the separation container in the heat exchange container and then sprayed into the first separation container. The treatment wastewater is indirectly heated by using the exhaust from the vacuum generating means as a heat source in the indirect heat exchanger, and then jetted and supplied to the inside of the second separation container, and is discharged from the second separation container. did "It is characterized in that.

請求項1及び3に記載したように構成することにより,分離容器に供給される被処理廃水は,予め,熱交換容器内において,前記分離容器内での脱気又はフラッシュ蒸発にて発生した水蒸気と直接接触することになって,この被処理廃水を,前記分離容器内における飽和蒸気温度により近い温度になるように加熱することができ,換言すると,前記被処理廃水の温度を,前記先行技術のように間接加熱する場合よりも更に前記分離容器内における飽和蒸気温度に近づけるように,被処理廃水の温度と飽和蒸気温度との間の温度差を殆どなくすることができるから,前記分離容器内における被処理廃水の脱気又はフラッシュ蒸発が旺盛になり,前記分離容器内における揮発性有機化合物の分離率を大幅に向上することができる。   By configuring as described in claims 1 and 3, the wastewater to be treated to be supplied to the separation vessel is a water vapor generated by degassing or flash evaporation in the separation vessel in advance in the heat exchange vessel. The wastewater to be treated can be heated to a temperature close to the saturated steam temperature in the separation vessel, in other words, the temperature of the wastewater to be treated Thus, the temperature difference between the temperature of the wastewater to be treated and the saturated steam temperature can be almost eliminated so as to be closer to the saturated steam temperature in the separation container than in the case of indirect heating. The deaeration or flash evaporation of the wastewater to be treated in the inside becomes vigorous, and the separation rate of the volatile organic compound in the separation container can be greatly improved.

ところで,前記した先行技術においては,分離容器内における揮発性有機化合物の分離率が低いことにより,この分離率を高めるために,この分離容器に供給する被処理廃水に,予め,空気等の気体を溶解するようにしていたが,本発明においては,前記したように,分離容器内における揮発性有機化合物の分離率を大幅に向上できることから,場合によっては,被処理廃水に対して空気等の気体を溶解するのを省略することができる。   In the prior art described above, since the separation rate of volatile organic compounds in the separation vessel is low, in order to increase this separation rate, the wastewater to be treated supplied to this separation vessel is preliminarily supplied with a gas such as air. However, in the present invention, the separation rate of volatile organic compounds in the separation container can be greatly improved as described above. Dissolving the gas can be omitted.

一方,前記分離容器内において発生した水蒸気は,前記熱交換容器内において被処理廃水と直接接触することにより,被処理廃水中に凝縮されることになるから,真空発生手段への吸引量は,前記先行技術の場合よりも少なくなり,真空発生手段の小容量化を達成することができる。また,前記真空発生手段が真空ポンプである場合,この真空ポンプに凝縮水を吸引することを回避できる。   On the other hand, the water vapor generated in the separation container is condensed in the wastewater to be treated by directly contacting the wastewater to be treated in the heat exchange container. As compared with the prior art, the capacity of the vacuum generating means can be reduced. Further, when the vacuum generating means is a vacuum pump, it is possible to avoid sucking condensed water into the vacuum pump.

また,請求項2及び4に記載したように構成することにより,被処理廃水からの揮発性有機化合物の分離を二段に繰り返して行うから,その分離率を,前記請求項1及び2の効果を維持した状態のもとで,前記請求項1及び2の場合よりも向上できるのであり,しかも,前記真空発生手段から排出される排気が有する熱を,第2の分離容器への被処理廃水の加熱に熱回収できるから,前記第2の分離容器での揮発性有機化合物の分離率を向上できるとともに,全体における熱効率を向上できる。   In addition, since the separation of the volatile organic compound from the wastewater to be treated is repeated in two stages by configuring as described in the second and fourth aspects, the separation rate is determined by the effect of the first and second aspects. Therefore, the heat of the exhaust exhausted from the vacuum generating means can be converted into wastewater to be treated into the second separation container. Since the heat can be recovered by heating, the separation rate of the volatile organic compound in the second separation container can be improved, and the overall thermal efficiency can be improved.

以下,本発明の実施の形態を図面について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は,第1の実施の形態を示す。   FIG. 1 shows a first embodiment.

この図において,符号1は,密閉構造の分離容器を,符号2は,同じく密閉構造の熱交換容器を各々示し,これらの内部には,ラシヒリング等の充填物による充填層1a,2aが設けられ,前記分離容器1と,前記熱交換容器2とは,その充填層1a,2aの下側のにおいて,前記分離容器1内で発生した水蒸気を前記熱交換容器2内に導入するように通路3を介して連通している。   In this figure, reference numeral 1 denotes a sealed separation container, and reference numeral 2 denotes a heat exchange container also having a sealed structure, and inside thereof, packed layers 1a and 2a made of packing such as Raschig rings are provided. The separation vessel 1 and the heat exchange vessel 2 are provided with a passage 3 so as to introduce water vapor generated in the separation vessel 1 into the heat exchange vessel 2 below the packed beds 1a and 2a. It communicates through.

符号4は,トリクロロエチレン等の揮発性有機化合物を含む被処理廃水を受け入れておくための廃水タンクを示し,この廃水タンク4内における被処理廃水を被処理廃水供給ポンプ5にて汲み出し,被処理廃水供給管路6を介して,前記熱交換容器2内における上部に設けたスプレーノズル7に供給することにより,このスプレーノズル7から前記充填層2aに噴出したのちこの充填層2aの下部からポンプ8にて汲み出し,このポンプ8にて前記熱交換容器2から汲み出した被処理廃水を,管路9を介して,前記分離容器1内における上部に設けたスプレーノズル10に供給することにより,このスプレーノズル10から前記充填層1aに噴出したのちこの充填層1aの下部から処理済廃水ポンプ11にて分離容器1の外に汲み出す(排出する)ように構成している。 Reference numeral 4 denotes a wastewater tank for receiving treated wastewater containing a volatile organic compound such as trichlorethylene. The treated wastewater in the wastewater tank 4 is pumped out by the treated wastewater supply pump 5 and treated wastewater. By supplying to the spray nozzle 7 provided in the upper part in the said heat exchange container 2 via the supply line 6, after ejecting from this spray nozzle 7 to the said packed bed 2a, the pump 8 from the lower part of this packed bed 2a The waste water to be treated pumped out from the heat exchange container 2 by the pump 8 is supplied to the spray nozzle 10 provided in the upper part in the separation container 1 through the pipe 9, thereby pumping from the nozzle 10 to the outside of the separation container 1 in the process from the lower completion wastewater pump 11 of the filling layer 1a After ejection the filling layer 1a (discharge That) is configured so as.

符号12は,真空発生手段としての真空ポンプを示し,この真空ポンプ12は,前記熱交換容器2の上部から吸引することにより,前記熱交換容器2内及び前記分離容器1内を,大気圧より低い減圧に維持するように構成している。   Reference numeral 12 denotes a vacuum pump as a vacuum generating means. The vacuum pump 12 sucks from the upper part of the heat exchange vessel 2 so that the inside of the heat exchange vessel 2 and the inside of the separation vessel 1 are brought to atmospheric pressure. It is configured to maintain a low vacuum.

この構成において,廃水タンク4内の被処理廃水は,ポンプ5にて熱交換容器2内に,その上部におけるスプレーノズル7から噴出することにより,この熱交換容器2内において,分離容器1内における脱気又はフラッシュ蒸発にて発生した水蒸気と直接接触して,その温度が,熱交換容器2内及び前記分離容器1内における飽和蒸気温度に近づくように高められる。   In this configuration, the waste water to be treated in the waste water tank 4 is ejected from the spray nozzle 7 in the upper part of the heat exchange container 2 by the pump 5, so that in the heat exchange container 2, in the separation container 1. In direct contact with water vapor generated by degassing or flash evaporation, the temperature is raised so as to approach the saturated vapor temperature in the heat exchange vessel 2 and in the separation vessel 1.

次いで,前記熱交換容器2内で温度が高められた被処理廃水は,ポンプ8にて分離容器1内に,その上部におけるスプレーノズル10から噴出して,脱気又はフラッシュ蒸発することにより,この被処理廃水中に含まれているトリクロロエチレン等の揮発性有機化合物は,被処理廃水から分離され,このとき発生する水蒸気に同伴して,熱交換容器2を経て真空ポンプ12に吸引される。   Next, the wastewater to be treated whose temperature has been raised in the heat exchange vessel 2 is ejected from the spray nozzle 10 in the upper portion of the separation vessel 1 by the pump 8 and degassed or flash evaporated. Volatile organic compounds such as trichlorethylene contained in the wastewater to be treated are separated from the wastewater to be treated and are sucked into the vacuum pump 12 through the heat exchange container 2 along with the water vapor generated at this time.

前記分離容器1に供給される被処理廃水を,前記したように,予め,熱交換容器2内において,前記分離容器1内で発生した水蒸気と直接接触することになって,前記被処理廃水を,前記分離容器1内における飽和蒸気温度により近い温度になるように加熱することができ,換言すると,前記被処理廃水の温度を,前記先行技術のように間接加熱する場合によりも更に前記分離容器1内における飽和蒸気温度に近づけるように,被処理廃水の温度と飽和蒸気温度との間の温度差を殆どなくすることができるから,前記分離容器1内における被処理廃水の脱気又はフラッシュ蒸発が旺盛になり,前記分離容器1内における揮発性有機化合物の分離率を大幅に向上できる。   As described above, the wastewater to be treated supplied to the separation container 1 is brought into direct contact with water vapor generated in the separation container 1 in the heat exchange container 2 in advance. , And can be heated to a temperature closer to the saturated steam temperature in the separation container 1, in other words, the temperature of the wastewater to be treated is further increased even when the temperature is indirectly heated as in the prior art. Since the temperature difference between the temperature of the wastewater to be treated and the saturated steam temperature can be almost eliminated so as to approach the saturated steam temperature in 1, the degassing or flash evaporation of the wastewater to be treated in the separation vessel 1 can be eliminated. As a result, the separation rate of volatile organic compounds in the separation container 1 can be greatly improved.

一方,前記分離容器1内において発生した水蒸気は,前記熱交換容器2内において被処理廃水と直接接触することにより,被処理廃水中に凝縮されることになるから,真空ポンプ12への吸引量は,前記先行技術の場合よりも少なくなり,真空ポンプ12の小容量化を達成することができるとともに,真空ポンプ12に凝縮水を吸引することを回避できる。   On the other hand, the water vapor generated in the separation container 1 is condensed in the wastewater to be treated by directly contacting the wastewater to be treated in the heat exchange container 2. Is smaller than in the case of the prior art, and it is possible to reduce the capacity of the vacuum pump 12 and to avoid sucking condensed water into the vacuum pump 12.

なお,前記真空ポンプ12から排気管路12aより排出される排気は,気液分離器13に導かれて液体と気体とに分離され,分離した液体は後処理層14に受け入れられる。   The exhaust gas discharged from the vacuum pump 12 through the exhaust pipe 12a is guided to the gas-liquid separator 13 to be separated into a liquid and a gas, and the separated liquid is received by the post-treatment layer 14.

分離した気体は,光触媒による分解器15に導かれて,ここで当該気体中の揮発性有機化合物が光触媒の作用で無害に分解処理されたのち,前記後処理槽14の上部に導かれ,この後処理層4において,その上部に設けた充填層14aとの間をポンプ14bにて循環する液体によって中和処理される一方,充填層14aを通過する間に洗浄されたのち煙突16から大気中に放出される。   The separated gas is guided to the photocatalyst decomposer 15 where the volatile organic compound in the gas is harmlessly decomposed by the action of the photocatalyst and then guided to the upper part of the post-treatment tank 14. The post-treatment layer 4 is neutralized by the liquid circulated by the pump 14b between the packed bed 14a provided above the post-treated layer 4, while being washed while passing through the packed bed 14a. To be released.

また,前記分離容器1の底部から処理済廃水ポンプ11にて汲み出された(排出された)処理済廃水は,前記処理済廃水ポンプ11からの移送管路17に設けたバルブ等の切換手段18にて,前記廃水タンク4に戻される場合と,これ以外の箇所に送り出する場合とに選択的に切り換えるように構成されている。 Further, the treated waste water pumped out (discharged) from the bottom of the separation container 1 by the treated waste water pump 11 is a switching means such as a valve provided in a transfer pipe 17 from the treated waste water pump 11. at 18, the the case is returned to the waste water tank 4, and is configured to selectively switched between when the output sent to other locations.

更にまた,前記後処理槽14において中和処理された液体は,管路19を介して,前記熱交換容器2への被処理廃水に適宜混合するように構成している。   Furthermore, the liquid neutralized in the post-treatment tank 14 is configured to be appropriately mixed with the wastewater to be treated to the heat exchange vessel 2 via the pipe line 19.

次に,図2は,第2の実施の形態を示す。   Next, FIG. 2 shows a second embodiment.

この第2の実施の形態は,前記第1の実施の形態における分離容器として,第1の分離容器1′と,第2の分離容器1″との二つを使用して,この両分離容器1′,1″内に充填層1a′,1a″と,スプレーノズル10′,10″とを設け,この両分離容器1′,1″のうち第1の分離容器1′内の上部におけるスプレーノズル10′に,廃水タンク4内における被処理廃水を供給して噴出する一方,この第1の分離容器1′の底部に溜まる被処理廃水をポンプ20にて汲み出したのち,被処理廃水供給管路21を介して,前記第2の分離容器1″内の上部におけるスプレーノズル10″に,供給して噴出する一方,前記両分離容器1′,1″内における水蒸気を,前記熱交換容器2内に導入する。   In the second embodiment, two separation containers, that is, a first separation container 1 ′ and a second separation container 1 ″ are used as the separation containers in the first embodiment. 1 ', 1 "are provided with packed beds 1a', 1a" and spray nozzles 10 ', 10 ", and the spray in the upper part of the first separation container 1' out of the two separation containers 1 ', 1". The wastewater to be treated in the wastewater tank 4 is supplied to the nozzle 10 ′ and ejected, while the wastewater to be treated that collects at the bottom of the first separation container 1 ′ is pumped out by the pump 20, and then the treated wastewater supply pipe Through the passage 21, the water is supplied to the spray nozzle 10 ″ in the upper part of the second separation container 1 ″ and ejected, while the water vapor in both the separation containers 1 ′ and 1 ″ is supplied to the heat exchange container 2. Introduce in.

更に,前記真空ポンプ12からの排気管路12aと,前記第2の分離容器1″への被処理廃水供給管路21の途中に,間接式の熱交換器22を設け,この間接式の熱交換器22において,前記第2の分離容器1″への被処理廃水を,前記真空ポンプ12からの排気を熱源として間接加熱するよう構成したものであり,その他の構成は,前記第1の実施の形態と同様である。   Further, an indirect heat exchanger 22 is provided in the middle of the exhaust pipe 12a from the vacuum pump 12 and the wastewater supply pipe 21 to be treated to the second separation container 1 ″. In the exchanger 22, waste water to be treated to the second separation container 1 ″ is configured to be indirectly heated by using the exhaust from the vacuum pump 12 as a heat source, and other configurations are the same as those in the first embodiment. It is the same as the form.

この第2の実施の形態によると,被処理廃水からの揮発性有機化合物の分離を,第1の分離容器1′と,第2の分離容器1″との二段階にわたって行うことができるから,分離率を更に向上できる一方,前記真空ポンプ12からの排気が有する熱を,第2の分離容器1″への被処理廃水の加熱に回収することができるから,熱効率をより向上できるとともに,前記第2の分離容器1″内における揮発性有機化合物の分離率を向上できる。   According to the second embodiment, the separation of the volatile organic compound from the wastewater to be treated can be performed in two stages of the first separation container 1 ′ and the second separation container 1 ″. While the separation rate can be further improved, the heat of the exhaust from the vacuum pump 12 can be recovered by heating the wastewater to be treated to the second separation container 1 ″, so that the thermal efficiency can be further improved, and The separation rate of the volatile organic compound in the second separation container 1 ″ can be improved.

第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment. 第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment.

符号の説明Explanation of symbols

1 分離容器
1′ 第1の分離容器
1″ 第2の分離用器
2 熱交換容器
3 蒸気ダクト
4 廃水タンク
5 被処理廃水供給ポンプ
6 被処理廃水供給管路
7,10 スプレーノズル
12 真空ポンプ
12a 真空ポンプからの排気管路
22 間接式熱交換器
DESCRIPTION OF SYMBOLS 1 Separation container 1 '1st separation container 1 "2nd separation device 2 Heat exchange container 3 Steam duct 4 Waste water tank 5 Untreated waste water supply pump 6 Untreated waste water supply line 7, 10 Spray nozzle 12 Vacuum pump 12a Exhaust line from vacuum pump 22 Indirect heat exchanger

Claims (4)

密閉した分離容器の内部を,これに密閉した熱交換容器を介して接続した真空発生手段にて大気圧より低い減圧に維持し,この分離容器の内部に,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち噴出供給し、この分離容器から排出することを特徴とする廃水中の揮発性有機化合物を分離する方法。 The inside of the sealed separation container is maintained at a pressure lower than atmospheric pressure by a vacuum generating means connected to the sealed separation container, and the wastewater to be treated containing a volatile organic compound is contained inside the separation container. In the heat exchange vessel after directly contacting with the water vapor generated in the separation vessel and then discharged from the separation vessel, and separating the volatile organic compounds in the waste water. 密閉した第1の分離容器及び第2の分離容器の内部を,これらに密閉した熱交換容器を介して接続した真空発生手段にて大気圧より低い減圧に維持し,前記第1の分離容器の内部に,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記各分離容器内で発生した水蒸気と直接接触したのち噴出供給する一方,前記第1の分離容器内における被処理廃水を,前記真空発生手段からの排気を熱源として間接加熱したのち前記第2の分離容器の内部に噴出供給し、この第2の分離容器から排出することを特徴とする廃水中の揮発性有機化合物を分離する方法。 The inside of the sealed first separation container and the second separation container is maintained at a reduced pressure lower than the atmospheric pressure by a vacuum generating means connected to the first and second separation containers through a sealed heat exchange container. The wastewater to be treated containing volatile organic compounds is supplied into the heat exchange vessel after being directly brought into contact with the water vapor generated in each of the separation vessels, and then supplied to the wastewater in the first separation vessel. Volatile organic compounds in waste water, wherein the exhaust gas is indirectly heated using the exhaust from the vacuum generating means as a heat source, jetted into the second separation container, and discharged from the second separation container How to isolate. 密閉した分離容器と,この分離容器に,当該分離容器内における水蒸気を導入するように接続した密閉型の熱交換容器と,この熱交換容器を介して前記分離容器内を大気圧より低い減圧に維持するように吸引する真空発生手段とを備え,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち前記分離容器内に噴出供給し、この分離容器から排出するように構成したことを特徴とする廃水中の揮発性有機化合物を分離する装置。 A sealed separation vessel, a sealed heat exchange vessel connected to the separation vessel so as to introduce water vapor in the separation vessel, and the pressure inside the separation vessel is reduced to a pressure lower than atmospheric pressure via the heat exchange vessel. A vacuum generating means for sucking so as to maintain the waste water to be treated containing volatile organic compounds after being brought into direct contact with water vapor generated in the separation container in the heat exchange container and then sprayed into the separation container And the apparatus which isolate | separates the volatile organic compound in a wastewater characterized by being comprised so that it may discharge | emit from this separation container . 密閉した第1の分離容器及び第2の分離容器と,これらの各分離容器に,当該各分離容器内における水蒸気を導入するように接続した密閉型の熱交換容器と,この熱交換容器を介して前記各分離容器内を大気圧より低い減圧に維持するように吸引する真空発生手段と,この真空発生手段の排気側に接続した間接式熱交換器とを備え,揮発性有機化合物を含む被処理廃水を,前記熱交換容器内において前記分離容器内で発生した水蒸気と直接接触したのち前記第1の分離容器内に噴出供給するように構成する一方,前記第1の分離容器内における被処理廃水を,前記間接式熱交換器において前記真空発生手段からの排気を熱源として間接加熱したのち前記第2の分離容器の内部に噴出供給し、この第2の分離容器から排出するように構成したことを特徴とする廃水中の揮発性有機化合物を分離する装置。 The sealed first and second separation containers, a sealed heat exchange container connected to each of these separation containers so as to introduce water vapor in each of the separation containers, and the heat exchange container Vacuum generating means for sucking each separation container so as to maintain a reduced pressure lower than atmospheric pressure, and an indirect heat exchanger connected to the exhaust side of the vacuum generating means, and containing a volatile organic compound. The treatment wastewater is configured to be sprayed and supplied into the first separation container after directly contacting the steam generated in the separation container in the heat exchange container, while being treated in the first separation container The waste water is indirectly heated using the exhaust from the vacuum generating means as a heat source in the indirect heat exchanger, and then jetted into the second separation container and discharged from the second separation container . This Apparatus for separating volatile organic compounds in the waste water characterized by.
JP2005270743A 2005-09-16 2005-09-16 Method and apparatus for separating volatile organic compounds from wastewater Expired - Fee Related JP4371375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270743A JP4371375B2 (en) 2005-09-16 2005-09-16 Method and apparatus for separating volatile organic compounds from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270743A JP4371375B2 (en) 2005-09-16 2005-09-16 Method and apparatus for separating volatile organic compounds from wastewater

Publications (2)

Publication Number Publication Date
JP2007075795A JP2007075795A (en) 2007-03-29
JP4371375B2 true JP4371375B2 (en) 2009-11-25

Family

ID=37936614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270743A Expired - Fee Related JP4371375B2 (en) 2005-09-16 2005-09-16 Method and apparatus for separating volatile organic compounds from wastewater

Country Status (1)

Country Link
JP (1) JP4371375B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827816B2 (en) * 2007-10-03 2011-11-30 株式会社ササクラ Concentration apparatus and concentration method
JP4723002B2 (en) * 2008-06-02 2011-07-13 Gold Lock株式会社 Diluted oil concentration processing equipment
JP5923265B2 (en) * 2011-09-22 2016-05-24 株式会社ササクラ Evaporation concentration apparatus and evaporation concentration method

Also Published As

Publication number Publication date
JP2007075795A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
WO2016056036A1 (en) Exhaust gas processing device
JP4371375B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP5938340B2 (en) Carbon dioxide recovery system and operation method thereof
US20120193301A1 (en) Vacuum-evaporation-based voc recovery device and method therefor
KR20150019394A (en) Apparatus for carbon dioxide separation and removal
JP2012077350A (en) Closed type cleaning device and method
JP4344945B2 (en) Concentrator
JP2008023438A (en) Carbon dioxide recovery system and carbon dioxide recovery method
JP4351594B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
KR20090018403A (en) Apparatus and method for purifying waste-water using a distillation under reduced pressure
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP3795796B2 (en) Equipment for separating and decomposing volatile organic compounds in wastewater
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP2005270902A (en) Aqueous waste liquid treatment apparatus and washing method therefor
JP2006283988A (en) Deaerating system
JP4043199B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP3992130B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in wastewater
JP2007296529A (en) Method and apparatus for separating volatile organic compound in waste water
JP4827816B2 (en) Concentration apparatus and concentration method
JP6671210B2 (en) Apparatus for treating liquid to be treated and method for treating liquid to be treated
JP2014240075A (en) Vacuum-evaporation-based voc recovery apparatus and method
JP2006026608A (en) Mobile clarifying treatment apparatus of waste water containing volatile organic compound
JP2005193148A (en) Method and apparatus for separating volatile organic compound in wastewater
JP3643979B2 (en) Purification equipment for water containing volatile organic compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees