JP3795796B2 - Equipment for separating and decomposing volatile organic compounds in wastewater - Google Patents

Equipment for separating and decomposing volatile organic compounds in wastewater Download PDF

Info

Publication number
JP3795796B2
JP3795796B2 JP2001364994A JP2001364994A JP3795796B2 JP 3795796 B2 JP3795796 B2 JP 3795796B2 JP 2001364994 A JP2001364994 A JP 2001364994A JP 2001364994 A JP2001364994 A JP 2001364994A JP 3795796 B2 JP3795796 B2 JP 3795796B2
Authority
JP
Japan
Prior art keywords
gas
waste water
volatile organic
wastewater
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364994A
Other languages
Japanese (ja)
Other versions
JP2003164856A (en
Inventor
三智男 三浦
利夫 香月
慶明 三保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2001364994A priority Critical patent/JP3795796B2/en
Publication of JP2003164856A publication Critical patent/JP2003164856A/en
Application granted granted Critical
Publication of JP3795796B2 publication Critical patent/JP3795796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Physical Water Treatments (AREA)
  • Treating Waste Gases (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,地下水又は産業廃水等の廃水にトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を含んでいる場合に,この揮発性有機化合物を,廃水から分離したのち無害な状態に分解処理するための装置に関するものである。
【0002】
【従来の技術】
従来,地下水又は産業廃水等の廃水の処理に際して,これに含まれているトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を,前記廃水から分離した
のち分解処理するには,この廃水に対して空気等の気体を多量に吹き込むというバブリング(曝気)を行い,廃水中における揮発性有機化合物を,この廃水に吹き込んだ気体中に揮発させることにより,廃水から分離し,次いで,この揮発性有機化合物を含む排出ガスをガス浄化装置に導くことにより,有害な揮発性有機化合物を活性炭に吸着させるか,揮発性有機化合物を紫外線の照射にて酸化分解するとか,或いは,高温加熱にて揮発性有機化合物を分解するという方法が採用されている。
【0003】
【発明が解決しようとする課題】
しかし,このバブリング方法においては,廃水に対して揮発性有機化合物を分離することのために吹き込んだ多量の空気が,揮発性有機化合物を含む排出ガスとして多量に排出されることに加えて,この排気ガスにおける揮発性有機化合物の濃度が極めて低いから,この排出ガスの浄化処理に際しては,多量の排出ガスを取り扱うことのために,その浄化装置が著しく大型化になるという問題がある。
【0004】
これに加えて,前記した各浄化方法のうち活性炭に吸着させる方法は,吸着した後の活性炭の廃棄処分が厄介であるという問題があり,また,紫外線の照射にて酸化分解する方法は,ハロゲン化酢酸等が生成し,これを処理するための,エアーレーションタンクを含んだ生物処理装置等の新たな処理装置が必要となり,装置が複雑・高価になるという問題があり,更にまた,高温加熱する方法は,多量の排出ガスを均一に加熱することができず,加熱温度むらができるから,有害な二次生成物が発生するばかりか,安定して分解処理できず,しかも,排出ガスの加熱に多量の熱源を必要とし,ランニングコストが大幅に嵩むという問題がある。
【0005】
本発明は,廃水に含まれている揮発性有機化合物を廃水から分離したのち分解処理することを,ランニングコストのアップ及び装置の大型化等を招来することなく,安定して確実にできるようにした装置を提供することを技術的課題とするものである。
【0006】
【課題を解決するための手段】
この技術的課題を達成するため本発明は,第1に,
「揮発性有機化合物を含む廃水を大気圧以下の減圧状態にして沸騰・蒸発する蒸発缶と,この蒸発缶内で発生した水蒸気に対する凝縮器と,この凝縮器からの排出ガスを900℃以上の温度に加熱する加熱手段と,この加熱した排出ガスをアルカリ水溶液に直接的に接触する手段とを備え,前記蒸発缶を,その内部に充填層を設けて,当該蒸発缶内への前記廃水をこの充填層の下方に導入し,この充填層の上面よりも高い水面位置まで溜めたのち排出するように構成するとともに,この溜めた廃水をその水面からの液深さが前記充填層の上面よりも深い部分において沸騰・蒸発するように構成した。」
ことを特徴としている。
【0007】
また,本発明は,第2に,
「揮発性有機化合物を含む廃水に空気等のガスを吸収させるガス吸収容器と,このガス吸収容器からの廃水を大気圧以下の減圧状態で脱気する脱気容器と,この脱気容器からの排出ガスを900℃以上の温度に加熱する加熱手段と,この加熱した排出ガスをアルカリ水溶液に直接的に接触する手段とを備え,前記脱気容器を,その内部に充填層を設けて,前記ガス吸収容器から当該脱気容器内への廃水をこの充填層の下方に導入し,この充填層の上面よりも高い水面位置まで溜めたのち排出するように構成するとともに,この溜めた廃水をその水面からの液深さが前記充填層の上面よりも深い部分において脱気するように構成した。」
とを特徴としている。
【0008】
【発明の実施の形態】
以下,本発明の実施の形態を図面について説明する。
【0009】
図1は,第1の実施の形態を示す。
【0010】
この図において,符号1は,廃水に含まれている揮発性有機化合物を廃水から分離するための蒸発式の分離装置を示し,この分離装置1は,内部にラシヒリング等による充填層2aを内蔵した減圧式の蒸発缶2を備え,廃水供給管路3より送られて来るトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を含む廃水を,前記蒸発缶2内のうち前記充填層2aより下方の底部に導入し,前記充填層2aの上面よりも高い適宜液深さH1に溜めたのち,排出口4から流出するように構成する。
【0011】
前記廃水供給管路3の途中には,凝縮器を兼ねた間接熱交換式の給水加熱器5が設けられ,この給水加熱器5に,前記蒸発缶2内での沸騰・蒸発で発生した水蒸気及び不凝縮性のガスを,電動モータにて回転駆動されるブロワー等の圧縮機6に吸引して圧縮したのち導入することにより,前記廃水供給管路3を通って蒸発缶2に導入される廃水を加熱(給水加熱)する一方,この給水加熱器5における凝縮水及び不凝縮性のガスを,気液分離容器7に導いて,凝縮水と,不凝縮性のガスとに分離し,凝縮水を気液分離容器7の外に取り出す一方,不凝縮性のガスを,真空ポンプ8等の真空発生源にて吸引して,前記蒸発缶2内を大気圧以下の減圧に保持することにより,前記蒸発缶2内に溜めた廃水を,その水面からの液深さが前記充填層2aの上面よりも深い部分において沸騰・蒸発するように構成する。
【0012】
この蒸発缶2内での廃水の沸騰・蒸発により,この廃水の一部が水蒸気になると同時に,この廃水中に含まれている揮発性有機化合物は,廃水の沸騰・蒸発と同時に揮発し気体になって廃水から分離するから,前記蒸発缶2内には,水蒸気,及び前記揮発性有機化合物の気体と空気等とを含む不凝縮性のガスが発生する一方,この蒸発缶1内で揮発性有機化合物を分離したあとにおける処理済の廃水は,排出口4から排出される。
【0013】
この場合,蒸発缶2内での廃水の沸騰・蒸発を,当該廃水の水面からの液深さが深い部分において行うように構成することにより,廃水中から揮発性有機化合物を蒸発にて分離するときにおける分離率を,廃水の沸騰・蒸発を廃水の水面のみにおいて行うように構成した場合に比べて,大幅に向上できる。これに加えて,蒸発缶2の内部に,ラシヒリング等による充填層2aを設けて,この充填層2aの上面よりも深い部分において沸騰・蒸発することにより,前記蒸発缶2内での更なる分離率のアップを図ることができる。
【0014】
そして,前記蒸発缶2内における水蒸気及び不凝縮性のガスは,給水加熱器6において凝縮され,水蒸気は凝縮水として取り出される一方,不凝縮性のガスは真空ポンプ8にて吸引され,排出ガスとして排出される。
【0015】
この真空ポンプ8からの排出ガスは,減圧状態の蒸発缶2内等の漏れて流入した空気と,廃水から分離した揮発性有機化合物の気化物の略合計であり,その量は,従来のバブリングによる分離方法よりも遥かに少ないとともに,当該排出ガスにおける揮発性有機化合物の濃度も遥かに高いから,この排出ガスを,後述するガス分解装置10に導いて分解処理する。
【0016】
このガス分解装置10は,前記分離装置1からの排出ガスを,電熱ヒータ又は赤外線ランプ等にて900℃以上の温度,好ましくは1100℃以上の温度に加熱するための加熱手段11と,この加熱手段11にて加熱した排出ガスを,アルカリ水溶液と直接的に接触する気液接触手段12とで構成されている。
【0017】
前記気液接触手段12は,本実施の形態の場合,PHを約11に調整したアルカリ水溶液を入れたタンク12aと,このタンク12a内から循環ポンプ12bにて汲み出したアルカリ水溶液で,前記加熱手段11からの排出ガスを吸引・混合するエゼクター12cと,ラシヒリング等の充填層12eを内蔵し,且つ,大気へのガス排出口12fを備えた気液接触塔12dとによって構成されている。
【0018】
前記分離装置1からの排出ガスを,加熱手段11にて900℃以上の温度,好ましくは1100℃以上の温度に加熱することにより,この排出ガス中におけるトリクロロエチレン(Cl2 C=CHCl)は,酸素の存在のともに,有害なホスゲン(COCl2 ),塩化水素ガス(HCl),塩素ガス(Cl2 )及び炭酸ガス(CO2 ,CO)に熱分解する。
【0019】
この場合において,前記分離装置1からの排出ガスの量は,従来のバブリングによる分離方法よりも遥かに少ないことにより,比較的簡単な加熱手段にて温度むらを少なくするように加熱できるから,この排出ガス中におけるトリクロロエチレンの殆ど総てを安定して熱分解できる。
【0020】
このように加熱手段11にて熱分解した排出ガスは,この後におけるエゼクター12cにおけるアルカリ水溶液との直接的な接触により急冷されるとともに,前記熱分解した成分のうち塩化水素ガス(HCl),塩素ガス(Cl2 )は,アルカリ水溶液にて中和されることにより,この塩化水素ガス(HCl),塩素ガス(Cl2 )が有害なホスゲン(COCl2 )に化合することを防止できる。
【0021】
一方,有害なホスゲン(COCl2 )は,エゼクター12cにおけるアルカリ水溶液との直接的な接触及びその後における気液接触塔12dでのアルカリ水溶液との直接的な接触により,アルカリ水溶液にて,
COCl2 +H2 0→CO2 +2HCl
の反応により加水分解し,この加水分解にて発生する塩化水素ガス(HCl)は,アルカリ水溶液にて中和されるというように分解されるから,ガス排出口12fから大気中に放出される有害成分を大幅に低減することができる。
【0022】
本発明者達の実験によると,加熱手段11を通過した後においてエゼクター12cでのPH11のアルカリ水溶液との直接的な接触により,ホスゲンの濃度を20ppmから0.1ppmに,塩化水素の濃度を1000ppmから20〜30ppmにまで下げることができるのであった。
【0023】
なお,前記気液接触手段12におけるエゼクター12cの下流側には,気液接触塔12dを設けることにより,前記した加水分解及び中和を更に促進するように構成されており,この気液接触塔12dの内部には,水滴を捕捉しその大気中に飛散を防止するためのデミスター12gが設けられている。
【0024】
また,前記気液接触塔12dにおける充填層12e,12gを,活性炭による充填層12e,12gにして,ホスゲンを活性炭に吸着しておいて,アルカリ水溶液にて加水分解するようにしても良い。
【0025】
更にまた,前記気液接触手段12におけるタンク12aのアルカリ水溶液は,常時,PHが11になるように調整されるとともに,前記蒸発缶2から排出される処理済廃水の一部を管路12hにて導入し,余剰のアルカリ水溶液を管路12iを介して前記蒸発缶2への廃水供給管路3に戻すことにより,アルカリ水溶液を更新することと,前記加熱手段11において加えた熱を蒸発缶2での蒸発促進に回収することとを図るように構成されている。
【0026】
次に,図2は,第2の実施の形態を示す。
【0027】
この第2の実施の形態は,ガス吸収・脱気式の分離装置20にした場合である。
【0028】
すなわち,この分離装置20は,ラシヒリング等の充填層22を内蔵したガス吸収容器21と,同じくラシヒリング等の充填層23aを内蔵した密閉型の脱気容器23とを備え,前記ガス吸収容器21内のうち前記充填層22の上方に,廃水供給管路24にて送られて来るトリクロロエチレン又はテトラクロロエチレン等のような揮発性有機化合物を含む廃水を散布する一方,前記ガス吸収容器21内のうち前記充填層22の下方に,コンプレッサー25にて圧縮された空気をガス供給管路26を介して吹き込むことにより,前記廃水に空気を吸収させる。
【0029】
なお,この廃水に対する空気の吸収率は,圧力に比例するから,大気圧より高い圧力の状態で行うことが好ましい。
【0030】
また,廃水に吸収するガスとしては,前記空気に限らず,有害性のない炭酸ガス,窒素ガス及び酸素ガス等の他のガスを使用しても良い。
【0031】
このように,ガス吸収容器21において空気等のガスを吸収した廃水は,管路27を介して前記脱気容器23内のうち前記充填層23aより下方の底部に送られ,この脱気容器23内に前記充填層23aの上面よりも高い適宜液深さH2に溜められたのち,排水管路28から排出される。
【0032】
このとき,前記脱気容器23内を,真空ポンプ29等の真空発生源による吸引にて大気圧以下の減圧状態にすることにより,この脱気容器23内に溜めた廃水を,その水面からの液深さが前記充填層23aの上面よりも深い部分において脱気を行うように構成する。
【0033】
この脱気容器23内での廃水の脱気により,この廃水中に含まれている揮発性有機化合物は,廃水の脱気と同時に揮発し気体になって廃水から分離するから,この脱気容器23における排水管路28からは,揮発性有機化合物を分離したあとにおける処理済の廃水が排出される。
【0034】
この場合,脱気容器23内での廃水の脱気及び発泡を,当該廃水の水面からの液深さが深い部分において行うように構成することにより,廃水中から揮発性有機化合物を脱気によって分離するときにおける分離率を,廃水の脱気及び発泡を廃水の水面のみにおいて行うように構成した場合に比べて,大幅に向上できる。これに加えて,脱気容器23の内部に,ラシヒリング等による充填層23aを設けて,この充填層23aの上面よりも深い部分において脱気及び発泡することで,前記脱気容器23内での更なる分離率のアップを図ることができる。
【0035】
そして,前記脱気容器23内において廃水から脱気され,揮発性有機化合物をを含むガスは,真空ポンプ29にて吸引され,排出ガスとして排出される。
【0036】
この真空ポンプ29からの排出ガスは,その量が廃水に対して最初に吸収するガス量と略等しくて,従来のバブリングよりも遥かに少ないことに加えて,揮発性有機化合物の濃度も高いから,前記した第1の実施の形態の場合と同様に構成したガス分解装置10に供給することにより,ガス排出口12fから大気中に放出される有害成分を大幅に低減することができる。
【0037】
この場合においても,前記脱気容器23から排出される処理済廃水の一部を管路12h′にて導入し,余剰のアルカリ水溶液を管路12i′を介して前記脱気容器23への廃水管路27に戻すことにより,アルカリ水溶液を更新することと,前記加熱手段11において加えた熱を脱気容器23での脱気・発泡の促進に回収することとを図るように構成されている。
【0038】
また,本発明は,廃水からの揮発性有機化合物の分離を,前段階として図2に示すガス吸収・脱気による分離を行い,次いで,前記図1に示す蒸発による分離を行う場合にも同様に適用できることはいうまでもない。
【0039】
【発明の作用・効果】
このように,本発明は,廃水に含まれている揮発性有機化合物を,廃水の減圧状態における水面下での沸騰・蒸発,又は,廃水へのガス吸収とこれに続く減圧状態における水面下での脱気にて,少ない排出ガスで,且つ,揮発性有機化合物の濃度が高い状態で廃水から分離し,次いで,これを加熱したのちアルカリ水溶液と直接的な接触して分解処理するものであることにより,廃水からの分離及び分解処理を,従来のバブリングによる分離,及び多量の排出ガスに対する分解処理に比べて,低いランニングコストで,且つ,使用済み活性炭の廃棄処分の問題を招来することなく,安定して達成でき,しかも,装置を大幅に小型化できる効果を有する。
【図面の簡単な説明】
【図1】 本発明における第1の実施の形態を示すフローシートである。
【図2】 本発明における第2の実施の形態を示すフローシートである。
【符号の説明】
1 蒸発式分離装置
2 蒸発缶
2a 充填層
3 廃水供給管路
4 排出口
5 凝縮器
6 圧縮機
8 真空ポンプ
10 ガス分解装置
11 加熱手段
12 気液接触手段
12a アルカリ水溶液タンク
12c エゼクター
12d 気液接触塔
20 ガス吸収・脱気式分離装置
21 ガス吸収容器
23 脱気容器
23a 充填層
24 廃水供給管路
26 ガス供給管路
29 真空ポンプ
[0001]
BACKGROUND OF THE INVENTION
In the case where wastewater such as groundwater or industrial wastewater contains a volatile organic compound such as trichlorethylene or tetrachloroethylene, the present invention decomposes the volatile organic compound into a harmless state after separation from the wastewater. It is related with the apparatus of.
[0002]
[Prior art]
Conventionally, when treating wastewater such as groundwater or industrial wastewater, a volatile organic compound such as trichlorethylene or tetrachloroethylene contained therein is separated from the wastewater and then decomposed. The volatile organic compound in the waste water is separated from the waste water by volatilizing the volatile organic compound in the waste water, and then the volatile organic compound is removed. Leading exhaust gas containing gas to a gas purification device to adsorb harmful volatile organic compounds on activated carbon, oxidative decomposition of volatile organic compounds by ultraviolet irradiation, or volatile organic compounds by high-temperature heating The method of disassembling is adopted.
[0003]
[Problems to be solved by the invention]
However, in this bubbling method, a large amount of air blown to separate volatile organic compounds from the wastewater is discharged as a large amount of exhaust gas containing volatile organic compounds. Since the concentration of the volatile organic compound in the exhaust gas is extremely low, there is a problem that the purification device becomes remarkably large in order to handle a large amount of the exhaust gas when the exhaust gas is purified.
[0004]
In addition, among the purification methods described above, the method of adsorbing on activated carbon has the problem that the disposal of the activated carbon after adsorption is troublesome, and the method of oxidative decomposition by irradiation with ultraviolet rays is halogenated. A new treatment device such as a biological treatment device including an aeration tank is required to produce and treat acetoacetate, which has the problem that the device becomes complicated and expensive. In this method, a large amount of exhaust gas cannot be heated uniformly, and the heating temperature is uneven. Not only does it produce harmful secondary products, but it cannot be stably decomposed. There is a problem that a large amount of heat source is required for heating and the running cost is greatly increased.
[0005]
In the present invention, the volatile organic compound contained in the wastewater can be separated from the wastewater and then decomposed stably and without increasing the running cost and increasing the size of the apparatus. It is a technical problem to provide such a device.
[0006]
[Means for Solving the Problems]
In order to achieve this technical problem, the present invention firstly
“Vaporizers that boil and evaporate wastewater containing volatile organic compounds under reduced pressure below atmospheric pressure, a condenser for water vapor generated in the evaporator, and an exhaust gas from the condenser of over 900 ° C. Heating means for heating to a temperature, and means for directly contacting the heated exhaust gas with an alkaline aqueous solution, the evaporator is provided with a packed bed therein, and the waste water into the evaporator is discharged. It is constructed so as to be introduced below the packed bed, discharged to a level higher than the upper surface of the packed bed , and then discharged, and the depth of the accumulated waste water from the upper surface of the packed bed is higher than that of the packed bed. It was designed to boil and evaporate in the deep part. "
It is characterized by that.
[0007]
In addition, the present invention secondly,
“A gas absorption container that absorbs gas such as air into wastewater containing volatile organic compounds, a deaeration container that degass the wastewater from this gas absorption container at a reduced pressure below atmospheric pressure, A heating means for heating the exhaust gas to a temperature of 900 ° C. or higher; and a means for directly contacting the heated exhaust gas with the alkaline aqueous solution, wherein the degassing vessel is provided with a packed bed therein, and The waste water from the gas absorption container into the deaeration container is introduced below the packed bed, and the waste water is configured to be discharged after being stored up to a level above the upper surface of the packed bed. The liquid depth from the water surface was configured to be deaerated at a portion deeper than the upper surface of the packed bed .
It is characterized by.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
FIG. 1 shows a first embodiment.
[0010]
In this figure, reference numeral 1 denotes an evaporative separation device for separating volatile organic compounds contained in wastewater from the wastewater, and this separation device 1 has a packed bed 2a built therein by Raschig ring or the like. A wastewater containing a volatile organic compound such as trichlorethylene or tetrachloroethylene, etc., which is provided with a decompression type evaporator 2 and is sent from a wastewater supply line 3, is a bottom part of the inside of the evaporator 2 below the packed bed 2a. Then, the liquid is stored at an appropriate liquid depth H1 higher than the upper surface of the packed bed 2a, and then flows out from the discharge port 4.
[0011]
An indirect heat exchange type feed water heater 5 that also serves as a condenser is provided in the middle of the waste water supply pipe 3, and water vapor generated by boiling and evaporation in the evaporator 2 is provided in the feed water heater 5. The non-condensable gas is introduced into the evaporator 2 through the waste water supply line 3 by sucking and compressing the non-condensable gas into a compressor 6 such as a blower rotated by an electric motor. While the waste water is heated (feed water heating), the condensed water and the non-condensable gas in the feed water heater 5 are led to the gas-liquid separation container 7 to be separated into condensed water and non-condensable gas. By taking out water out of the gas-liquid separation vessel 7 and sucking non-condensable gas with a vacuum generation source such as a vacuum pump 8 to keep the inside of the evaporator 2 at a reduced pressure below atmospheric pressure. the wastewater was collected in the evaporator 2, the liquid depth is the filling layer from the water surface 2 Configured to boiling and evaporation in a portion deeper than the upper surface.
[0012]
As a result of boiling and evaporation of the waste water in the evaporator 2, a part of the waste water becomes water vapor. At the same time, the volatile organic compounds contained in the waste water are volatilized into a gas simultaneously with the boiling and evaporation of the waste water. Since the waste water is separated from the waste water, water and non-condensable gas including the gas of the volatile organic compound and air are generated in the evaporator 2. The treated waste water after separating the organic compound is discharged from the discharge port 4.
[0013]
In this case, the volatile organic compound is separated from the waste water by evaporation, by configuring the waste water to boil and evaporate in the evaporator 2 at a portion where the depth of the waste water is deep. The separation rate can be greatly improved compared to the case where the waste water is boiled and evaporated only on the surface of the waste water. In addition to this, a packed layer 2a by Raschig ring or the like is provided inside the evaporator 2, and further boiling and evaporating in a portion deeper than the upper surface of the packed layer 2a , further separation in the evaporator 2 is achieved. The rate can be increased.
[0014]
The water vapor and non-condensable gas in the evaporator 2 are condensed in the feed water heater 6 and the water vapor is taken out as condensed water, while the non-condensable gas is sucked out by the vacuum pump 8 and discharged. As discharged.
[0015]
The exhaust gas from the vacuum pump 8 is substantially the sum of the leaked air in the evaporator 2 under reduced pressure and the vaporized volatile organic compound separated from the waste water. This is far less than the separation method by the above method, and the concentration of the volatile organic compound in the exhaust gas is much higher. Therefore, the exhaust gas is led to a gas decomposition apparatus 10 to be described later and decomposed.
[0016]
The gas decomposition apparatus 10 includes heating means 11 for heating the exhaust gas from the separation apparatus 1 to a temperature of 900 ° C. or higher, preferably 1100 ° C. or higher, using an electric heater or an infrared lamp, The exhaust gas heated by the means 11 is composed of gas-liquid contact means 12 that comes into direct contact with the alkaline aqueous solution.
[0017]
In the case of the present embodiment, the gas-liquid contact means 12 is a tank 12a containing an alkaline aqueous solution whose pH is adjusted to about 11, and an alkaline aqueous solution pumped from the tank 12a by a circulation pump 12b. 11 includes an ejector 12c that sucks and mixes exhaust gas from the gas generator 11 and a gas-liquid contact tower 12d that includes a packed bed 12e such as a Raschig ring and has a gas exhaust port 12f to the atmosphere.
[0018]
By heating the exhaust gas from the separation device 1 to a temperature of 900 ° C. or higher, preferably 1100 ° C. or higher by the heating means 11, trichlorethylene (Cl 2 C═CHCl) in the exhaust gas is oxygenated. In addition to the presence of hydrogen, it decomposes into harmful phosgene (COCl 2 ), hydrogen chloride gas (HCl), chlorine gas (Cl 2 ) and carbon dioxide gas (CO 2 , CO).
[0019]
In this case, since the amount of the exhaust gas from the separation device 1 is much smaller than the conventional separation method by bubbling, it can be heated so as to reduce the temperature unevenness by a relatively simple heating means. Almost all of the trichlorethylene in the exhaust gas can be thermally decomposed stably.
[0020]
The exhaust gas thus thermally decomposed by the heating means 11 is rapidly cooled by direct contact with the alkaline aqueous solution in the ejector 12c thereafter, and among the thermally decomposed components, hydrogen chloride gas (HCl), chlorine By neutralizing the gas (Cl 2 ) with an alkaline aqueous solution, the hydrogen chloride gas (HCl) and chlorine gas (Cl 2 ) can be prevented from combining with harmful phosgene (COCl 2 ).
[0021]
On the other hand, harmful phosgene (COCl 2 ) is produced in the alkaline aqueous solution by direct contact with the alkaline aqueous solution in the ejector 12c and the subsequent direct contact with the alkaline aqueous solution in the gas-liquid contact tower 12d.
COCl 2 + H 2 0 → CO 2 + 2HCl
The hydrogen chloride gas (HCl) generated by this reaction is decomposed so that it is neutralized with an alkaline aqueous solution, and is therefore released into the atmosphere from the gas outlet 12f. Ingredients can be greatly reduced.
[0022]
According to the experiments by the present inventors, the phosgene concentration is changed from 20 ppm to 0.1 ppm and the hydrogen chloride concentration is 1000 ppm by direct contact with the alkaline aqueous solution of PH11 in the ejector 12c after passing through the heating means 11. To 20 to 30 ppm.
[0023]
In the gas-liquid contact means 12, a gas-liquid contact tower 12d is provided on the downstream side of the ejector 12c so as to further promote the hydrolysis and neutralization. The gas-liquid contact tower A demister 12g for capturing water droplets and preventing scattering in the atmosphere is provided inside 12d.
[0024]
Further, the packed beds 12e and 12g in the gas-liquid contact tower 12d may be changed to packed beds 12e and 12g of activated carbon so that phosgene is adsorbed on the activated carbon and hydrolyzed with an alkaline aqueous solution.
[0025]
Furthermore, the alkaline aqueous solution in the tank 12a in the gas-liquid contact means 12 is always adjusted so that the pH is 11, and a part of the treated wastewater discharged from the evaporator 2 is transferred to the pipe line 12h. The excess alkaline aqueous solution is returned to the waste water supply pipe 3 to the evaporator 2 through the pipe 12i to renew the alkaline aqueous solution, and the heat applied in the heating means 11 is evaporated to the evaporator. 2 for recovery of evaporation in step 2.
[0026]
Next, FIG. 2 shows a second embodiment.
[0027]
In the second embodiment, a gas absorption / deaeration type separation device 20 is used.
[0028]
That is, the separation device 20 includes a gas absorption container 21 containing a packed bed 22 such as a Raschig ring and a sealed deaeration container 23 containing a packed bed 23a such as a Raschig ring. The waste water containing a volatile organic compound such as trichlorethylene or tetrachloroethylene sent through a waste water supply line 24 is sprayed above the packed bed 22 among the packed bed 22, Below the layer 22, the air compressed by the compressor 25 is blown through the gas supply line 26, so that the waste water absorbs air.
[0029]
In addition, since the absorption rate of the air with respect to this wastewater is proportional to a pressure, it is preferable to carry out in the state of a pressure higher than atmospheric pressure.
[0030]
The gas absorbed in the wastewater is not limited to the air, and other gases such as carbon dioxide, nitrogen gas and oxygen gas which are not harmful may be used.
[0031]
As described above, the waste water that has absorbed the gas such as air in the gas absorption container 21 is sent to the bottom of the deaeration container 23 below the packed bed 23 a through the pipe line 27. After being stored at an appropriate liquid depth H2 higher than the upper surface of the packed bed 23a , it is discharged from the drain pipe 28.
[0032]
At this time, the inside of the deaeration container 23 is brought into a depressurized state below the atmospheric pressure by suction by a vacuum generation source such as a vacuum pump 29, so that the waste water stored in the deaeration container 23 is discharged from the water surface. Degassing is performed at a portion where the liquid depth is deeper than the upper surface of the packed bed 23a .
[0033]
The degassing of the wastewater in the degassing container 23 causes the volatile organic compounds contained in the wastewater to volatilize and form a gas simultaneously with the degassing of the wastewater. From the drain line 28 at 23, the treated waste water after the separation of the volatile organic compounds is discharged.
[0034]
In this case, the degassing and foaming of the wastewater in the degassing container 23 are configured so as to be performed at a portion where the liquid depth from the water surface is deep, thereby removing the volatile organic compound from the wastewater by degassing. The separation rate at the time of separation can be greatly improved as compared with the case where the waste water is degassed and foamed only on the surface of the waste water. In addition to this, a packed bed 23a by Raschig ring or the like is provided in the inside of the degassing container 23, and degassing and foaming in a portion deeper than the upper surface of the packed bed 23a . The separation rate can be further increased.
[0035]
The gas degassed from the waste water in the deaeration container 23 and containing a volatile organic compound is sucked by the vacuum pump 29 and discharged as an exhaust gas.
[0036]
The exhaust gas from the vacuum pump 29 is substantially equal to the amount of gas that is first absorbed into the wastewater, and is much less than conventional bubbling, and also has a high concentration of volatile organic compounds. By supplying the gas decomposition apparatus 10 configured in the same manner as in the first embodiment described above, harmful components released into the atmosphere from the gas discharge port 12f can be greatly reduced.
[0037]
Also in this case, a part of the treated waste water discharged from the deaeration container 23 is introduced through the pipe line 12h ′, and the excess alkaline aqueous solution is supplied to the deaeration container 23 through the pipe line 12i ′. By returning to the conduit 27, the alkaline aqueous solution is renewed, and the heat applied in the heating means 11 is recovered to promote deaeration and foaming in the deaeration vessel 23. .
[0038]
The present invention also applies to the separation of volatile organic compounds from wastewater by the gas absorption / degassing separation shown in FIG. 2 as the previous step, and then the evaporation separation shown in FIG. Needless to say, it can be applied to the above.
[0039]
[Operation and effect of the invention]
As described above, the present invention can be used for volatile organic compounds contained in wastewater under the surface of the water in the reduced pressure state of boiling / evaporation under the reduced pressure state of the wastewater or gas absorption into the wastewater and the subsequent reduced pressure state. Is degassed, separated from wastewater with low exhaust gas and high concentration of volatile organic compounds, and then heated and decomposed by direct contact with alkaline aqueous solution Therefore, separation and decomposition from wastewater can be performed at lower running costs and without causing the problem of disposal of used activated carbon compared to separation by conventional bubbling and decomposition for a large amount of exhaust gas. It can be achieved stably, and the device can be greatly downsized.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a first embodiment of the present invention.
FIG. 2 is a flow sheet showing a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaporative separator 2 Evaporator 2a Packing layer 3 Waste water supply line 4 Outlet 5 Condenser 6 Compressor 8 Vacuum pump 10 Gas decomposition apparatus 11 Heating means 12 Gas-liquid contact means 12a Alkaline aqueous solution tank 12c Ejector 12d Gas-liquid contact Tower 20 Gas absorption / deaeration type separator 21 Gas absorption container 23 Deaeration container 23a Packing layer 24 Waste water supply line 26 Gas supply line 29 Vacuum pump

Claims (2)

揮発性有機化合物を含む廃水を大気圧以下の減圧状態にして沸騰・蒸発する蒸発缶と,この蒸発缶内で発生した水蒸気に対する凝縮器と,この凝縮器からの排出ガスを900℃以上の温度に加熱する加熱手段と,この加熱した排出ガスをアルカリ水溶液に直接的に接触する手段とを備え,前記蒸発缶を,その内部に充填層を設けて,当該蒸発缶内への前記廃水をこの充填層の下方に導入し,この充填層の上面よりも高い水面位置まで溜めたのち排出するように構成するとともに,この溜めた廃水をその水面からの液深さが前記充填層の上面よりも深い部分において沸騰・蒸発するように構成したことを特徴とする廃水中の揮発性有機化合物を分離・分解処理する装置。An evaporator that boiles and evaporates wastewater containing volatile organic compounds under a reduced pressure of less than atmospheric pressure, a condenser for water vapor generated in the evaporator, and an exhaust gas from the condenser at a temperature of 900 ° C. or higher. Heating means, and means for directly contacting the heated exhaust gas with the alkaline aqueous solution, the evaporator is provided with a packed layer therein, and the waste water into the evaporator is supplied to the evaporator. It is configured to be introduced below the packed bed and discharged after being stored up to a higher water level than the upper surface of the packed bed , and the depth of the collected waste water from the water surface is higher than the upper surface of the packed bed. An apparatus for separating and decomposing volatile organic compounds in wastewater, which is configured to boil and evaporate in a deep part. 揮発性有機化合物を含む廃水に空気等のガスを吸収させるガス吸収容器と,このガス吸収容器からの廃水を大気圧以下の減圧状態で脱気する脱気容器と,この脱気容器からの排出ガスを900℃以上の温度に加熱する加熱手段と,この加熱した排出ガスをアルカリ水溶液に直接的に接触する手段とを備え,前記脱気容器を,その内部に充填層を設けて,前記ガス吸収容器から当該脱気容器内への廃水をこの充填層の下方に導入し,この充填層の上面よりも高い水面位置まで溜めたのち排出するように構成するとともに,この溜めた廃水をその水面からの液深さが前記充填層の上面よりも深い部分において脱気するように構成したことを特徴とする廃水中の揮発性有機化合物を分離・分解処理する装置。A gas absorption container that absorbs gas such as air into waste water containing volatile organic compounds, a deaeration container that degass the waste water from the gas absorption container at a reduced pressure below atmospheric pressure, and a discharge from the deaeration container A heating means for heating the gas to a temperature of 900 ° C. or higher; and a means for directly contacting the heated exhaust gas with the alkaline aqueous solution, wherein the degassing vessel is provided with a packed bed therein, and the gas The waste water from the absorption container into the deaeration container is introduced below the packed bed, and the waste water is stored after being stored at a level higher than the upper surface of the packed bed and then discharged. An apparatus for separating and decomposing volatile organic compounds in wastewater, wherein the apparatus is configured to deaerate at a portion deeper than the upper surface of the packed bed .
JP2001364994A 2001-11-29 2001-11-29 Equipment for separating and decomposing volatile organic compounds in wastewater Expired - Fee Related JP3795796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364994A JP3795796B2 (en) 2001-11-29 2001-11-29 Equipment for separating and decomposing volatile organic compounds in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364994A JP3795796B2 (en) 2001-11-29 2001-11-29 Equipment for separating and decomposing volatile organic compounds in wastewater

Publications (2)

Publication Number Publication Date
JP2003164856A JP2003164856A (en) 2003-06-10
JP3795796B2 true JP3795796B2 (en) 2006-07-12

Family

ID=19175094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364994A Expired - Fee Related JP3795796B2 (en) 2001-11-29 2001-11-29 Equipment for separating and decomposing volatile organic compounds in wastewater

Country Status (1)

Country Link
JP (1) JP3795796B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805937B2 (en) * 2010-08-16 2015-11-10 オルガノ株式会社 Waste water treatment method and waste water treatment equipment
EP2644264A1 (en) * 2012-03-28 2013-10-02 Aurotec GmbH Pressure-controlled multi-reactor system
CN106277527B (en) * 2016-08-31 2019-07-19 南京大学 A kind of processing of vinylidene chloride neutralized ratio and utilize method
CN106925076A (en) * 2017-04-20 2017-07-07 宁波检验检疫科学技术研究院 A kind of organic waste gas treatment system
CN107716486B (en) * 2017-09-30 2023-06-23 河南省农业科学院农业质量标准与检测技术研究所 Acid and alkali resistant stewing and ultra-clean cleaning device and cleaning fluid thereof
CN111099677A (en) * 2020-01-22 2020-05-05 哈尔滨工大金涛科技股份有限公司 VOCs separation and collection system containing volatile gas industrial wastewater

Also Published As

Publication number Publication date
JP2003164856A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
US6585897B2 (en) Apparatus for treating gas containing substance to be decomposed and method of treating its gas
AU2004275443A1 (en) Improved ozone sterilization method
JP2007203290A (en) Method for treating exhaust gas
JP3795796B2 (en) Equipment for separating and decomposing volatile organic compounds in wastewater
JP2008049305A (en) Volatile organic chlorine compound decomposition system and volatile organic chlorine compound decomposition method
JP4257781B2 (en) Purification method for underground soil contaminated with organochlorine compounds
JP2003205221A (en) Chlorinated organic compound treating method and apparatus and soil restoring method and apparatus
JP3384464B2 (en) Method for treating volatile organic chlorine compounds
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP2009056355A (en) Method for purifying contaminated ground water
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
JPH08175810A (en) Purification apparatus for waste sulfuric acid
JP2006247580A (en) Recycling method of adsorbent and purification apparatus for photodegradable chloro substance-containing fluid
JP4043199B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP2002336841A (en) Method for vaporizing and treating oily waste water
JP3992130B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in wastewater
JP2007075795A (en) Method for separating volatile organic compound in waste water and equipment for the same
JP3739169B2 (en) Organochlorine compound decomposition equipment
JP3958126B2 (en) Method for decomposing pollutants and apparatus used therefor
JP2007296529A (en) Method and apparatus for separating volatile organic compound in waste water
JP4351589B2 (en) Method and apparatus for purifying exhaust gas in purification of groundwater containing volatile organic compounds
JP2004298853A (en) Ammonia recovery system for odor gas in poultry house
KR20010081325A (en) A method of recovering methylene chloride by using selectively permeable membrane
JP2001124323A (en) Method and device for removing very small amount of organic compounds in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees