JP4021368B2 - Method and apparatus for separating volatile organic compounds from wastewater - Google Patents

Method and apparatus for separating volatile organic compounds from wastewater Download PDF

Info

Publication number
JP4021368B2
JP4021368B2 JP2003134250A JP2003134250A JP4021368B2 JP 4021368 B2 JP4021368 B2 JP 4021368B2 JP 2003134250 A JP2003134250 A JP 2003134250A JP 2003134250 A JP2003134250 A JP 2003134250A JP 4021368 B2 JP4021368 B2 JP 4021368B2
Authority
JP
Japan
Prior art keywords
temperature
sealed container
waste water
wastewater
saturated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134250A
Other languages
Japanese (ja)
Other versions
JP2004337657A5 (en
JP2004337657A (en
Inventor
三智男 三浦
利夫 香月
慶明 三保
英敏 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for Earth
Sasakura Engineering Co Ltd
Original Assignee
Research Institute of Innovative Technology for Earth
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for Earth, Sasakura Engineering Co Ltd filed Critical Research Institute of Innovative Technology for Earth
Priority to JP2003134250A priority Critical patent/JP4021368B2/en
Publication of JP2004337657A publication Critical patent/JP2004337657A/en
Publication of JP2004337657A5 publication Critical patent/JP2004337657A5/ja
Application granted granted Critical
Publication of JP4021368B2 publication Critical patent/JP4021368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,地下水又は産業廃水等の廃水にトリクロロエチレン又はテトラクロロエチレン等の揮発性有機化合物を含んでいる場合に,この揮発性有機化合物を廃水から分離する方法と,その装置とに関するものである。
【0002】
【従来の技術】
従来,地下水又は産業廃水等の廃水の浄化処理に際して,この廃水に含まれているトリクロロエチレン又はテトラクロロエチレン等の揮発性有機化合物を当該廃水から分離するに際しては,この廃水に対して空気等の気体を大量に吹き込むというバブリング(曝気)を行う方法を採用していたが,高い分離率にするためには,廃水に対して吹き込む空気等の気体の量を著しく多くしなければならないから,装置全体の大型化を避けることができないばかりか,多量の気体を圧送するブロワーの大型化による騒音の増大を招来し,しかも,バブリングした後における排気ガスは,多量であるにもかかわらず,この排気ガスに含まれる揮発性有機化合物の濃度が低いから,このバブリング後における前記排気ガスの浄化処理が厄介であった。
【0003】
そこで,本発明者は,先に特許出願した特許文献1において,前記廃水を,大気圧以下の減圧に保持した密閉容器内に,その下部から入れて上部から流出することで適宜液深さに溜めるように導入し,この密閉容器内に溜めた廃水を,当該廃水における水面から深い部分において沸騰・蒸発することにより,前記廃水に含まれている揮発性有機化合物を,前記沸騰・蒸発によって発生する蒸気と一緒に分離するという方法を提案した。
【0004】
【特許文献】
特開2002−282844号公報
【0005】
【発明が解決しようとする課題】
この先願の分離方法は,前記従来の方法よりも分離率が遥かに高いとともに,排気ガスが少ないから,装置の小型化及び騒音の低減等を達成できるというように,従来の分離方法が有する問題を解消できる利点を有する。
【0006】
しかし,この反面,前記先願による分離方法においては,減圧にした密閉容器内に溜めた廃水を,その水面から深い部分において沸騰・蒸発することのために,前記廃水を加熱することによって,その温度を,前記密閉容器内における飽和蒸気温度よりも水面より深い部分において沸騰・蒸発させる分だけ高い温度にしなければならず,この廃水の加熱のためにエネルギーを必要とするから,この加熱に要するエネルギーの分だけ,ランニングコストが嵩むという問題があった。
【0007】
本発明は,前記先願の分離方法が有する問題,つまり,ランニングコストを低減することを技術的課題とするものである。
【0008】
【課題を解決するための手段】
この技術的課題を達成するための本発明の分離方法は,第1に,請求項1に記載したように,
揮発性有機化合物を含む廃水を,大気圧より低い減圧に維持した第1密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給し,この第1密閉容器から排出される廃水を,大気圧より低い減圧に維持した第2密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給する一方,前記第2密閉容器内で発生した水蒸気を熱源の一部として,前記第1密閉容器に供給する廃水の温度を第1密閉容器内の飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持するとともに,前記第2密閉容器に供給する廃水の温度を第2密閉容器内の飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度に維持する。」
ことを特徴としている。
【0009】
また,本発明の分離方法は,第2に,請求項2に記載したように,
前記請求項1の記載において,前記第2密閉容器から排出される廃水を,大気圧より低い減圧に維持され且つ前記第1密閉容器及び第2密閉容器に対して後段を成す密閉容器の 内部に,当該廃水に空気等の気体を溶解し且つ前記後段の密閉容器内の飽和蒸気温度に対して当該飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度差を維持した状態で噴出するように供給する。」
ことを特徴としている。
【0010】
更にまた,本発明の分離装置は,第1に,請求項3に記載したように,
内部が大気圧より低い減圧に維持され且つ内部に揮発性有機化合物を含む廃水が噴出するように供給される第1密閉容器と,内部が大気圧より低い減圧に維持された第2密閉容器と,前記第1密閉容器から排出される廃水をこれに空気等の気体を溶解したのち前記第2密閉容器の内部に噴出するように供給する手段とを備え,更に,前記第1密閉容器に供給される廃水の温度を前記第2密閉容器内で発生する水蒸気を熱源の一部として前記第1密閉容器内の飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持する手段と,前記第2密閉容器に供給する廃水の温度を前記第2密閉容器内で発生する水蒸気を熱源の一部として第2密閉容器内の飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度に維持する手段とを備えている。」
ことを特徴としている。
【0011】
一方,本発明の分離装置は,第2に,請求項4に記載したように,
前記請求項3の記載において,前記大気圧より低い減圧に維持され且つ前記第1密閉容器及び第2密閉容器に対して後段を成す密閉容器を備え,更に,前記第2密閉容器から排出される廃水を,前記後段の密閉容器の内部に,当該廃水に空気等の気体を溶解し且つ後段の密閉容器内の飽和蒸気温度に対してその飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度差を維持した状態で噴出するように供給する手段を備えている。」
ことを特徴としている。
【0012】
【0013】
【発明の実施の形態】
図1は,本発明における前提をなす装置を示す。
【0014】
この装置は,内部が真空ポンプ2等の真空発生装置にて大気圧より低い減圧に維持される密閉容器1を備え,この密閉容器1内の上部にスプレーノズル3を設け,このスプレーノズル3に,地下水又は産業廃水等のようにトリクロロエチレン等の揮発性有機化合物を含む廃水を,供給管路4を介して供給することにより,廃水を下向きに噴出することにより,前記廃水に対する脱気を行うように構成する一方,前記密閉容器1の底部に,脱気が終わった廃水を外に取り出すための排出管路5を設ける。
【0015】
また,前記廃水の供給管路4には,廃水をこれに熱エネルギーを加えて適宜温度に維持するための加熱手段6を設ける。また,前記供給管路4にて供給される前記廃水に予め含まれている空気等の気体の溶解量が充分でない場合においては,前記廃水の供給管路4に,二点鎖線で示すように,空気等の気体の混合手段7を設けて,廃水に充分な量の気体を溶解するようにする。
【0016】
そして,この装置において,前記供給管路4の廃水におけるトリクロロエチレン濃度と,前記排出管路5の廃水におけるトリクロロエチレン濃度とを測定するとによって,前記トリクロロエチレンの分離効率を求めることを実際に実施した。
【0017】
この実施は,前記供給管路4における廃水の温度と,前記密閉容器1内における減圧度とのうちいずれか一方又は両方を適宜調節することにより,前記供給管路4を供給する廃水の温度T1と,前記密閉容器1内における飽和蒸気温度T2との温度差ΔTを種々変えて行ったもので,その結果は,図2の通りであった。
【0018】
この図2において,前記温度差ΔTが零よりも高いプラス側の温度領域のとき,つまり,廃水の温度T1が密閉容器1内における飽和蒸気温度T2よりも高いときには,廃水は,密閉容器1内にスプレーノズル3より噴出したときにおいて,フラッシュ蒸発するとともに脱気が行われるが,前記温度差ΔTが零のとき及び零よりも低いマイナス側の温度領域のとき,つまり,廃水の温度T1が,密閉容器A内における飽和蒸気温度T2と等しいか,密閉容器1内における飽和蒸気温度T2よりも低いときには,廃水は,密閉容器1内にスプレーノズル3により噴出したときにおいて,フラッシュ蒸発することなく脱気のみが行われる。
【0019】
この図2から明らかなように,廃水中におけるトリクロロエチレンの分離効率は,前記温度差ΔTが零より5℃だけ高いとき,つまり+5℃のときにおいて約92%であるのに対して,前記温度差ΔTが前記+6℃になっても分離効率の向上は殆ど認められず,前記+5℃を越えた領域での分離効率の向上は横ばいの状態を呈するものである一方,前記分離効率は,前記温度差ΔTが零より4℃だけ低い領域において65%以下になるというように大幅に低下することが認められるのであった。
【0020】
そこで,前記した装置において,供給管路4を介して送られて来る廃水を,当該廃水に空気等の気体を溶解し且つ当該廃水の温度を前記密閉容器内の飽和蒸気温度よりも5℃だけ高い温度から前記飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持した状態で,前記スプレーノズル3に供給して,密閉容器1の内部に噴出することにより,廃水中におけるトリクロロエチレンを,65〜92%という高い分離効率のもとで分離することができるのである。
【0021】
次に,図3は,本発明における第1の実施の形態を示す。
【0022】
この第1の実施の形態は,以下のように構成されている。
【0023】
すなわち,第1密閉容器11と第2密閉容器12との二つの密閉容器を備え,この両密閉容器11,12の内部には,後述する脱気及びフラッシュ蒸発を促進するためのラシヒリング等の充填物11a,12aが充填されている。
【0024】
トリクロロエチレン等の揮発性有機化合物を含み温度が15℃以下の廃水を,供給管路14を介して前記第1密閉容器11内における上部に設けたスプレーノズル13に供給することにより,このスプレーノズル13から前記第1密閉容器11内に下向きに噴出したのち,前記第1密閉容器11の底部から排出ポンプ15にて取り出す。
【0025】
この排出ポンプ15にて取り出した廃水を,移送管路16を介して前記第2密閉容器12内における上部に設けたスプレーノズル17に供給することにより,このスプレーノズル17から前記第2密閉容器12内に下向きに噴出したのち,前記第2密閉容器12の底部から排出ポンプ18にて取り出す。
【0026】
前記供給管路14から送られて来る廃水に,空気等の気体が予め充分に含まれている場合には,そのまま前記第1密閉容器11内に噴出するように供給するが,前記廃水に予め溶解されている空気等の気体が少ない場合には,前記供給管路14中に,二点鎖線で示すように,空気等の気体の混合手段19を設けて,廃水に充分な量の空気等の気体を溶解するようにする一方,前記第1密閉容器11から第2密閉容器12への廃水の移送管路16中には,空気等の気体の混合手段20を設けて,廃水に充分な量の空気等の気体を溶解するようにする。
【0027】
前記第1密閉容器1内への廃水の供給管路14中には第1熱交換器21を,前記第2密閉容器12内への廃水の移送管路16中には第2熱交換器22を各々設け,前記第1熱交換器21に,前記第2密閉容器12内にで発生した水蒸気をダクト23を介して導入して,前記水蒸気にて第1密閉容器11への廃水の温度を,前記第1熱交換器21において,高めるように構成する。
【0028】
前記第1熱交換器21内における水蒸気及び不凝縮性ガスを,ダクト24を介して真空ポンプ25にて吸引することにより,前記両密閉容器11,12内を,その内部の飽和蒸気温度が前記供給管路14における廃水の温度よりも高い温度(例えば,少なくとも5℃程度だけ高い温度),例えば,約20℃になるように,大気圧よりも低い減圧に維持する一方,前記真空ポンプ25にて吸引して圧縮することによってエネルギーを加えた水蒸気及び不凝縮性ガスを,ダクト26を介して前記第2熱交換器22に供給することにより,前記第2密閉容器12への廃水の温度を,前記第2熱交換器22における加熱,及び前記排水ポンプ15でのエネルギーの供給によって,例えば,最高で約25℃に高めるように構成する。
【0029】
この構成において,供給管路14から第1密閉容器11に供給される廃水の温度は,第1熱交換器21において,前記第2密閉容器12内で発生する水蒸気を熱源として前記両密閉容器11,12内における飽和蒸気温度,つまり約20℃に近づくように,例えば,約19℃に高められたのち,前記第1密閉容器11内にスプレーノズル14から噴出して脱気が行われることにより,この廃水中に含まれているトリクロロエチレン等の揮発性有機化合物が廃水から分離される。
【0030】
前記第1密閉容器11から排出ポンプ15にて取り出された廃水は,第2熱交換器22において約25℃に高められ,更に,これに混合手段20にて空気等の気体が混合・溶解されたのち,前記第2密閉容器12内にスプレーノズル17から噴出して,フラッシュ蒸発するとともに脱気が行われることにより,この廃水中に含まれているトリクロロエチレン等の揮発性有機化合物が廃水から分離される。
【0031】
すなわち,この第1の実施の形態は,廃水からのトリクロロエチレン等の揮発性有機化合物の分離を,先ず,第1密閉容器11内において,廃水の温度が第1密閉容器11内における飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度,この実施の形態では,前記飽和蒸気温度よりも約1℃だけ低い状態での脱気と,第2密閉容器12内において,廃水の温度が第2密閉容器12内における飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度,この実施の形態では,前記飽和蒸気温度よりも約5℃だけ高い状態でのフラッシュ蒸発及び脱気との二段階にわたって行うものである。
【0032】
次に,図4は,本発明における第2の実施の形態を示す。
【0033】
この第2の実施の形態は,前記第2の実施の形態のように,第1密閉容器11における分離及び第2密閉容器12における分離に,更に,第3密閉容器27における分離,第4密閉容器28における分離,第5密閉容器29における分離を加えることにより,廃水からのトリクロロエチレン等の揮発性有機化合物の分離を,合計で五段階にわたって行うように構成したものである。
【0034】
すなわち,前記第3密閉容器27,第4密閉容器28及び第5密閉容器29は,その内部の各々に脱気及びフラッシュ蒸発を促進するためのラシヒリング等の充填物27a,28a,29aが充填され,且つ,前記真空ポンプ25に繋がる前記第1熱交換器21へのダクト23に接続されていることにより,その内部が,前記第1密閉容器11及び第2密閉容器12と同様に,約20℃の飽和蒸気温度になるような減圧に維持されている。
【0035】
前記第2密閉容器12から排出ポンプ18にて取り出した廃水を,移送管路30を介して,前記第3密閉容器27内における上部に設けたスプレーノズル31に供給することにより,このスプレーノズル31から前記第3密閉容器27内に下向きに噴出したのち,前記第3密閉容器27の底部から排出ポンプ32にて取り出す。
【0036】
この排出ポンプ32にて取り出した廃水を,移送管路33を介して,前記第4密閉容器28内における上部に設けたスプレーノズル34に供給することにより,このスプレーノズル34から前記第4密閉容器28内に下向きに噴出したのち,前記第4密閉容器28の底部から排出ポンプ35にて取り出す。
【0037】
この排出ポンプ35にて取り出した廃水を,移送管路36を介して,前記第5密閉容器29内における上部に設けたスプレーノズル37に供給することにより,このスプレーノズル37から前記第5密閉容器29内に下向きに噴出したのち,前記第5密閉容器29の底部から排出ポンプ38にて取り出す。
【0038】
前記第3密閉容器17への廃水の移送管路30,前記第4密閉容器28への廃水の移送管路33及び前記第5密閉容器29への廃水の移送管路36中の各々に,空気等の気体の混合手段39,40,41を設けて,各廃水に充分な量の空気等の気体を溶解するようにする。
【0039】
一方,前記第3密閉容器27への廃水の移送管路30中に,前記真空ポンプ25にて圧縮された水蒸気及び不凝縮性ガスを熱源とする第3熱交換器42を設けて,前記第3密閉容器27への廃水の温度を,約22℃に高めるように構成する。
【0040】
なお,この第3熱交換器42は,前記第2熱交換器22と同様に前記真空ポンプ25にて圧縮された水蒸気及び不凝縮性ガスを熱源とすることから,前記第2熱交換器22と一体化した一体型の熱交換器に構成することができる。
【0041】
この構成において,前記第2密閉容器12内においてフラッシュ蒸発と脱気が行われ,この第2密閉容器12から排出ポンプ18にて取り出された廃水は,第3熱交換器42において約22℃に高められ,更に,これに混合手段39にて空気等の気体が混合されたのち,前記第3密閉容器27内にスプレーノズル31から噴出して,フラッシュ蒸発するとともに脱気が行われることにより,この廃水中に含まれているトリクロロエチレン等の揮発性有機化合物が廃水から分離される。
【0042】
前記第3密閉容器27内から排出ポンプ32にて取り出された廃水は,これに混合手段40にて空気等の気体が混合されたのち,前記第4密閉容器28内にスプレーノズル34から噴出して,脱気が行われることにより,この廃水中に含まれているトリクロロエチレン等の揮発性有機化合物が廃水から分離される。
【0043】
そして,前記第4密閉容器28内から排出ポンプ35にて取り出された廃水は,これに混合手段41にて空気等の気体が混合されたのち,前記第5密閉容器29内にスプレーノズル37から噴出して,脱気が行われることにより,この廃水中に含まれているトリクロロエチレン等の揮発性有機化合物が廃水から分離される。
【0044】
この第2の実施の形態は,廃水のフラッシュ蒸発と脱気とを行う密閉容器を,第2密閉容器12と,第3密閉容器27との二つに構成する一方,これより後段において廃水の脱気を行うための後段の密閉容器を,第4密閉容器28と,第5密閉容器29との二つに構成した場合である。
【0045】
なお,前記第1及び第2の実施の形態において,前記第2熱交換器22及び第3熱交換器42からは,トリクロロエチレン等の揮発性有機化合物を含んだ状態の凝縮水及び不凝縮性ガスが管路43,44より排出されるが,これらは,例えば,以下にようにして処理される。
【0046】
すなわち,凝縮水は,超音波分解槽に導いて,超音波を照射することにより,これに含まれている揮発性有機化合物を分解する一方,前記不凝縮性ガスは,これを加熱炉に導いて,これに揮発性有機化合物を熱分解したのち大気中に放出する。
【0047】
【発明の効果】
本発明は,請求項1に記載したように,揮発性有機化合物を含む廃水を,大気圧より低い減圧に維持した第1密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給し,この第1密閉容器から排出される廃水を,大気圧より低い減圧に維持した第2密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給する一方,前記第2密閉容器内で発生した水蒸気を熱源の一部として,前記第1密閉容器に供給する廃水の温度を第1密閉容器内の飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持するとともに,前記第2密閉容器に供給する廃水の温度を第2密閉容器内の飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度に維持することを特徴とするものであることにより,廃水の温度を前記した温度範囲内のうち任意の温度に維持するだけで良く,廃水を前記温度範囲内のうち任意の温度に維持することに加えるエネルギーを,前記した先願の分離方法のように水面より深い部分で沸騰・蒸発する場合によりも遥かに少なくできるから,揮発性有機化合物を高い分離効率で,且つ,低いランニングコストで分離することができる効果を有する。
【0048】
また,前記請求項1及び3においては,前記した分離を,複数段にわたって行うことにより,揮発性有機化合物の分離効率をより高めることができるほか,第2密閉容器内でのフラッシュ蒸発にて発生した水蒸気を,廃水の温度を前記温度に維持することの熱源に利用することにより,前記温度に維持することに加えるエネルギーをより少なくできるから,ランニングコストを更に低減できる。
【図面の簡単な説明】
【図1】本発明における前提をなす装置を示す図である。
【図2】前記図1の装置において,廃水の温度と密閉容器内の飽和蒸気温度との温度差と,揮発性有機化合物の分離効率との関係を示す図である。
【図3】本発明の第1の実施の形態による装置を示す図である。
【図4】本発明の第2の実施の形態による装置を示す図である。
【符号の説明】
1 密閉容器
2 真空ポンプ
3,13,17,31,34,37 スプレーノズル
4,14 廃水の供給管路
6 加熱手段
7,19,20,39,40,41 気体の混合手段
11 第1密閉容器
12 第2密閉容器
21 第1熱交換器
22 第2熱交換器
25 真空ポンプ
27 第3密閉容器
28 第4密閉容器
29 第5密閉容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating a volatile organic compound from wastewater when the wastewater such as groundwater or industrial wastewater contains a volatile organic compound such as trichlorethylene or tetrachloroethylene, and an apparatus therefor.
[0002]
[Prior art]
Conventionally, when purifying wastewater such as groundwater or industrial wastewater, when separating volatile organic compounds such as trichlorethylene or tetrachloroethylene contained in the wastewater from the wastewater, a large amount of gas such as air is added to the wastewater. However, in order to achieve a high separation rate, the amount of gas such as air that is blown into the wastewater must be significantly increased. In addition to increasing the noise due to the increase in the size of the blower that pumps a large amount of gas, the exhaust gas after bubbling is included in this exhaust gas even though the amount is large. Since the concentration of the volatile organic compound is low, the exhaust gas purification process after bubbling has been troublesome.
[0003]
In view of this, the present inventor in Patent Document 1 previously filed the patent, put the waste water into a sealed container kept at a reduced pressure below atmospheric pressure from the lower part and flow out from the upper part to appropriately adjust the liquid depth. The waste water collected in the sealed container is boiled and evaporated at a deep part from the surface of the waste water to generate volatile organic compounds contained in the waste water by boiling and evaporation. The method of separating together with steam is proposed.
[0004]
[Patent Literature]
Japanese Patent Laid-Open No. 2002-282844
[Problems to be solved by the invention]
The separation method of this prior application has a far higher separation rate than the conventional method and has less exhaust gas, so that the downsizing of the apparatus and noise reduction can be achieved. It has the advantage that can be eliminated.
[0006]
On the other hand, in the separation method according to the previous application, the waste water stored in a sealed container whose pressure has been reduced is heated and heated in order to boil and evaporate in a deep part from the water surface. The temperature must be higher than the saturated steam temperature in the closed vessel by the boiling and evaporation in the part deeper than the water surface, and energy is required for heating this wastewater. There was a problem that running costs increased by the amount of energy.
[0007]
The present invention has a technical problem to reduce the running cost, that is, the problem of the prior application separation method.
[0008]
[Means for Solving the Problems]
In order to achieve this technical problem, the separation method of the present invention firstly, as described in claim 1,
Supply the waste water containing the volatile organic compound into the first sealed container maintained at a reduced pressure lower than the atmospheric pressure so as to be ejected in a state in which a gas such as air is dissolved in the waste water. The waste water discharged from the inside of the second sealed container maintained at a reduced pressure lower than the atmospheric pressure is supplied so as to be ejected in a state where a gas such as air is dissolved in the waste water. A temperature range in which the temperature of waste water supplied to the first sealed container with the generated steam as a part of the heat source is equal to the saturated steam temperature in the first sealed container to a temperature lower by 4 ° C. than the saturated steam temperature The temperature of the waste water supplied to the second sealed container is kept within a temperature range from the saturated steam temperature in the second sealed container to a temperature higher by 5 ° C. than the saturated steam temperature. Maintain any temperature To. "
It is characterized by that.
[0009]
The separation method of the present invention is secondly as described in claim 2,
“In the first aspect of the present invention, the waste water discharged from the second sealed container is maintained at a reduced pressure lower than the atmospheric pressure, and the interior of the sealed container that is subsequent to the first sealed container and the second sealed container. In addition, a gas such as air is dissolved in the waste water and the temperature is within a temperature range from a temperature equal to the saturated vapor temperature to a temperature lower by 4 ° C. than the saturated vapor temperature with respect to the saturated vapor temperature in the latter-stage sealed container. The spray is supplied in a state where an arbitrary temperature difference is maintained . "
It is characterized by that.
[0010]
Furthermore, the separation device of the present invention is firstly as described in claim 3,
“A first sealed container in which the inside is maintained at a reduced pressure lower than atmospheric pressure and a waste water containing a volatile organic compound is ejected, and a second sealed container in which the interior is maintained at a reduced pressure lower than atmospheric pressure. And means for supplying the waste water discharged from the first sealed container so as to be jetted into the second sealed container after dissolving a gas such as air in the first sealed container. The temperature of waste water to be supplied is from a temperature equal to the saturated steam temperature in the first sealed container to a temperature lower by 4 ° C. than the saturated steam temperature, using steam generated in the second sealed container as part of the heat source. Means for maintaining any temperature within the temperature range, and saturated steam in the second sealed container with the temperature of the waste water supplied to the second sealed container as a part of the heat source generated in the second sealed container Temperature to the saturated steam temperature And a means for maintaining an arbitrary temperature of a temperature range of only up to a temperature remote 5 ° C.. "
It is characterized by that.
[0011]
On the other hand, the separation device of the present invention, the second, as described in claim 4,
“In the third aspect of the invention, there is provided a sealed container that is maintained at a reduced pressure lower than the atmospheric pressure and is subsequent to the first sealed container and the second sealed container, and is further discharged from the second sealed container. The waste water is dissolved in the latter closed vessel from a temperature equal to the saturated vapor temperature with respect to the saturated vapor temperature in the latter closed vessel and dissolved from the saturated vapor temperature in the latter closed vessel. There is provided means for supplying the liquid so as to be ejected in a state where an arbitrary temperature difference is maintained within the temperature range up to 4 ° C.
It is characterized by that.
[0012]
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an apparatus which is a premise in the present invention.
[0014]
This apparatus includes a sealed container 1 whose inside is maintained at a reduced pressure lower than atmospheric pressure by a vacuum generator such as a vacuum pump 2, and a spray nozzle 3 is provided in the upper part of the sealed container 1. By supplying wastewater containing volatile organic compounds such as trichlorethylene, such as groundwater or industrial wastewater, through the supply line 4, the wastewater is jetted downward so that the wastewater is degassed. On the other hand, a discharge pipe 5 is provided at the bottom of the hermetic container 1 for taking out the dewatered waste water.
[0015]
The waste water supply line 4 is provided with heating means 6 for maintaining the temperature of the waste water at an appropriate temperature by applying heat energy thereto. When the amount of dissolved gas such as air previously contained in the wastewater supplied through the supply pipeline 4 is not sufficient, the wastewater supply pipeline 4 is indicated by a two-dot chain line. A gas mixing means 7 such as air is provided to dissolve a sufficient amount of gas in the waste water.
[0016]
In this apparatus, the separation efficiency of the trichlorethylene was actually determined by measuring the trichlorethylene concentration in the wastewater of the supply line 4 and the trichlorethylene concentration in the wastewater of the discharge line 5.
[0017]
In this implementation, the temperature T1 of the wastewater supplied to the supply line 4 is adjusted by appropriately adjusting one or both of the temperature of the wastewater in the supply line 4 and the degree of decompression in the sealed container 1. The temperature difference ΔT with the saturated steam temperature T2 in the sealed container 1 was changed in various ways, and the result was as shown in FIG.
[0018]
In FIG. 2, when the temperature difference ΔT is in a positive temperature range higher than zero, that is, when the temperature T1 of the wastewater is higher than the saturated steam temperature T2 in the sealed container 1, the wastewater is contained in the sealed container 1. When sprayed from the spray nozzle 3, flash evaporation and deaeration are performed, but when the temperature difference ΔT is zero and in a negative temperature range lower than zero, that is, the temperature T1 of the waste water is When the saturated steam temperature T2 in the sealed container A is equal to or lower than the saturated steam temperature T2 in the sealed container 1, the waste water is removed without flash evaporation when ejected into the sealed container 1 by the spray nozzle 3. Only qi is done.
[0019]
As is apparent from FIG. 2, the separation efficiency of trichlorethylene in wastewater is about 92% when the temperature difference ΔT is higher than zero by 5 ° C., that is, + 5 ° C., whereas the temperature difference Even when ΔT reaches + 6 ° C., almost no improvement in the separation efficiency is observed, and the improvement in the separation efficiency in the region exceeding + 5 ° C. is in a flat state. It was observed that the difference ΔT was greatly reduced to 65% or less in a region 4 ° C. lower than zero.
[0020]
Therefore, in the above-described apparatus, the wastewater sent through the supply pipe 4 is dissolved into a gas such as air in the wastewater, and the temperature of the wastewater is 5 ° C. higher than the saturated steam temperature in the sealed container. By supplying to the spray nozzle 3 in a state where it is maintained at an arbitrary temperature within a temperature range from a high temperature to a temperature lower by 4 ° C. than the saturated vapor temperature, Trichlorethylene in waste water can be separated with a high separation efficiency of 65 to 92%.
[0021]
Next, FIG. 3 shows a first embodiment of definitive to the present invention.
[0022]
The first embodiment is configured as follows.
[0023]
That is, two sealed containers, a first sealed container 11 and a second sealed container 12, are provided, and the inside of both the sealed containers 11 and 12 is filled with Raschig rings or the like for promoting deaeration and flash evaporation described later. The objects 11a and 12a are filled.
[0024]
By supplying waste water containing a volatile organic compound such as trichlorethylene and having a temperature of 15 ° C. or less to the spray nozzle 13 provided in the upper part of the first sealed container 11 through the supply pipe 14, the spray nozzle 13 From the bottom of the first airtight container 11 and is taken out by the discharge pump 15.
[0025]
The waste water taken out by the discharge pump 15 is supplied to the spray nozzle 17 provided at the upper portion in the second sealed container 12 through the transfer pipe 16, so that the second sealed container 12 is supplied from the spray nozzle 17. After being ejected downward, it is taken out by the discharge pump 18 from the bottom of the second hermetic container 12.
[0026]
When the wastewater sent from the supply pipe 14 contains a gas such as air in advance, it is supplied so as to be jetted into the first sealed container 11 as it is. When the gas such as dissolved air is small, as shown by a two-dot chain line, a gas mixing means 19 such as air is provided in the supply pipe 14 to provide a sufficient amount of air or the like for waste water. In the waste water transfer line 16 from the first sealed container 11 to the second sealed container 12, a gas mixing means 20 such as air is provided so as to be sufficient for the waste water. An amount of air or other gas is dissolved.
[0027]
A first heat exchanger 21 is disposed in the waste water supply line 14 into the first sealed container 1, and a second heat exchanger 22 is disposed in the waste water transfer line 16 into the second sealed container 12. The steam generated in the second sealed container 12 is introduced into the first heat exchanger 21 through the duct 23, and the temperature of the waste water to the first sealed container 11 is controlled by the steam. The first heat exchanger 21 is configured to be increased.
[0028]
By sucking the water vapor and the non-condensable gas in the first heat exchanger 21 with the vacuum pump 25 through the duct 24, the saturated vapor temperature inside the both hermetic containers 11 and 12 is increased. While maintaining the pressure lower than the atmospheric pressure so that the temperature of the waste water in the supply line 14 is higher than the temperature of the waste water (for example, at least about 5 ° C.), for example, about 20 ° C., the vacuum pump 25 By supplying the steam and non-condensable gas to which energy has been added by suction and compression to the second heat exchanger 22 through the duct 26, the temperature of the waste water to the second sealed container 12 is increased. , By the heating in the second heat exchanger 22 and the supply of energy from the drainage pump 15, for example, the maximum temperature is raised to about 25 ° C.
[0029]
In this configuration, the temperature of the waste water supplied from the supply line 14 to the first sealed container 11 is determined by using the steam generated in the second sealed container 12 in the first heat exchanger 21 as a heat source. , 12 is raised to, for example, about 19 ° C. so as to approach the saturated vapor temperature, that is, about 20 ° C., and then degassed by being sprayed from the spray nozzle 14 into the first sealed container 11. , Volatile organic compounds such as trichlorethylene contained in the wastewater are separated from the wastewater.
[0030]
Waste water taken out from the first sealed container 11 by the discharge pump 15 is raised to about 25 ° C. in the second heat exchanger 22, and further, a gas such as air is mixed and dissolved in the mixing means 20. After that, the volatile organic compound such as trichlorethylene contained in the waste water is separated from the waste water by being ejected from the spray nozzle 17 into the second sealed container 12 and flashing and degassing. Is done.
[0031]
That is, in this first embodiment, separation of volatile organic compounds such as trichlorethylene from wastewater is first performed in the first sealed container 11 so that the temperature of the wastewater becomes the saturated vapor temperature in the first sealed container 11. Any temperature within a temperature range from the equal temperature to a temperature lower by 4 ° C. than the saturated steam temperature, in this embodiment, degassing in a state lower by about 1 ° C. than the saturated steam temperature, 2 In the sealed container 12, any temperature within the temperature range from the saturated steam temperature in the second sealed container 12 to a temperature higher by 5 ° C. than the saturated steam temperature, in this embodiment, This is performed in two steps, flash evaporation and deaeration at a temperature higher by about 5 ° C. than the saturated vapor temperature.
[0032]
Next, FIG. 4 shows a second embodiment of the present invention .
[0033]
In the second embodiment, as in the second embodiment, the separation in the first sealed container 11 and the separation in the second sealed container 12, and the separation in the third sealed container 27, the fourth sealed By adding the separation in the container 28 and the separation in the fifth sealed container 29, the separation of the volatile organic compound such as trichlorethylene from the waste water is performed in a total of five stages.
[0034]
That is, the third sealed container 27, the fourth sealed container 28, and the fifth sealed container 29 are filled with fillers 27a, 28a, 29a such as Raschig rings for promoting degassing and flash evaporation. And, by being connected to the duct 23 to the first heat exchanger 21 connected to the vacuum pump 25, the inside thereof is about 20 like the first sealed container 11 and the second sealed container 12. ℃ of being maintained in so that a reduced pressure, such a saturated vapor temperature.
[0035]
By supplying the waste water taken out from the second sealed container 12 by the discharge pump 18 to the spray nozzle 31 provided in the upper part in the third sealed container 27 through the transfer pipe 30, the spray nozzle 31 From the bottom of the third hermetic container 27 and is taken out by the discharge pump 32.
[0036]
The waste water taken out by the discharge pump 32 is supplied to the spray nozzle 34 provided at the upper part in the fourth sealed container 28 via the transfer pipe 33, so that the fourth sealed container is supplied from the spray nozzle 34. After ejecting downward into the interior 28, it is taken out by the discharge pump 35 from the bottom of the fourth sealed container 28.
[0037]
The waste water taken out by the discharge pump 35 is supplied to the spray nozzle 37 provided at the upper part in the fifth sealed container 29 via the transfer pipe 36, so that the fifth sealed container is supplied from the spray nozzle 37. After being ejected downward into 29, it is taken out by the discharge pump 38 from the bottom of the fifth sealed container 29.
[0038]
In each of the waste water transfer line 30 to the third closed container 17, the waste water transfer line 33 to the fourth closed container 28, and the waste water transfer line 36 to the fifth closed container 29, The gas mixing means 39, 40, and 41 are provided so that a sufficient amount of gas such as air is dissolved in each waste water.
[0039]
On the other hand, a third heat exchanger 42 that uses water vapor and non-condensable gas compressed by the vacuum pump 25 as heat sources is provided in the waste water transfer line 30 to the third sealed container 27, and 3 The temperature of the waste water to the sealed container 27 is increased to about 22 ° C.
[0040]
The third heat exchanger 42 uses the water vapor and non-condensable gas compressed by the vacuum pump 25 as the heat source in the same manner as the second heat exchanger 22, and therefore the second heat exchanger 22. And an integrated heat exchanger.
[0041]
In this configuration, flash evaporation and deaeration are performed in the second sealed container 12, and waste water taken out from the second sealed container 12 by the discharge pump 18 is heated to about 22 ° C. in the third heat exchanger 42. Furthermore, after a gas such as air is mixed with this by the mixing means 39, it is ejected from the spray nozzle 31 into the third sealed container 27, and is flash evaporated and deaerated. Volatile organic compounds such as trichlorethylene contained in the wastewater are separated from the wastewater.
[0042]
The waste water taken out from the third sealed container 27 by the discharge pump 32 is mixed with gas such as air by the mixing means 40 and then ejected from the spray nozzle 34 into the fourth sealed container 28. By deaeration, volatile organic compounds such as trichlorethylene contained in the wastewater are separated from the wastewater.
[0043]
The waste water taken out from the fourth sealed container 28 by the discharge pump 35 is mixed with a gas such as air by the mixing means 41, and then is sprayed from the spray nozzle 37 into the fifth sealed container 29. By ejecting and degassing, volatile organic compounds such as trichlorethylene contained in the wastewater are separated from the wastewater.
[0044]
In this second embodiment, the sealed container for performing flash evaporation and degassing of waste water is constituted by two, the second sealed container 12 and the third sealed container 27, and the waste water is disposed in the subsequent stage. This is a case where the latter sealed container for performing deaeration is constituted by two, a fourth sealed container 28 and a fifth sealed container 29.
[0045]
In the first and second embodiments, the second heat exchanger 22 and the third heat exchanger 42 have condensed water and non-condensable gas containing a volatile organic compound such as trichlorethylene. Are discharged from the pipes 43 and 44, which are processed as follows, for example.
[0046]
That is, the condensed water is guided to an ultrasonic decomposition tank and irradiated with ultrasonic waves to decompose volatile organic compounds contained therein, while the non-condensable gas guides it to a heating furnace. The volatile organic compounds are thermally decomposed and released into the atmosphere.
[0047]
【The invention's effect】
In the first aspect of the present invention, the waste water containing the volatile organic compound is maintained at a reduced pressure lower than the atmospheric pressure, and a gas such as air is dissolved in the waste water. The wastewater discharged from the first sealed container is supplied so as to be ejected, and is ejected into the second sealed container maintained at a reduced pressure lower than the atmospheric pressure in a state where a gas such as air is dissolved in the wastewater. On the other hand, the temperature of the waste water supplied to the first sealed container is changed from the temperature equal to the saturated steam temperature in the first sealed container by using the steam generated in the second sealed container as a part of the heat source. The temperature is maintained at an arbitrary temperature within a temperature range of 4 ° C. lower than the temperature, and the temperature of the waste water supplied to the second sealed container is changed from the saturated steam temperature in the second sealed container to the saturated steam temperature. Up to 5 ℃ By the is characterized in that to maintain any temperature of the temperature range, the temperature of the waste water need only be maintained at any temperature of the temperature range mentioned above, in the waste water the temperature range Among them, the energy added to maintaining any temperature can be much less than when boiling and evaporating deeper than the water surface as in the previous method of separation, so that volatile organic compounds can be separated with high efficiency. In addition, it has the effect of being able to be separated at a low running cost.
[0048]
Further, in the first and third aspects , by performing the above-described separation in a plurality of stages, the separation efficiency of the volatile organic compound can be further increased, and it is generated by flash evaporation in the second sealed container. By using the water vapor as a heat source for maintaining the temperature of the waste water at the above temperature, the energy added to maintaining the temperature can be reduced, so that the running cost can be further reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a premise apparatus in the present invention.
2 is a graph showing the relationship between the temperature difference between the temperature of waste water and the saturated vapor temperature in the sealed container and the separation efficiency of volatile organic compounds in the apparatus of FIG.
FIG. 3 shows a device according to a first embodiment of the invention.
FIG. 4 shows an apparatus according to a second embodiment of the invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Vacuum pump 3,13,17,31,34,37 Spray nozzle 4,14 Waste water supply line 6 Heating means 7,19,20,39,40,41 Gas mixing means 11 First airtight container 12 2nd airtight container 21 1st heat exchanger 22 2nd heat exchanger 25 Vacuum pump 27 3rd airtight container 28 4th airtight container 29 5th airtight container

Claims (4)

揮発性有機化合物を含む廃水を,大気圧より低い減圧に維持した第1密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給し,この第1密閉容器から排出される廃水を,大気圧より低い減圧に維持した第2密閉容器の内部に,当該廃水に空気等の気体を溶解した状態で噴出するように供給する一方,前記第2密閉容器内で発生した水蒸気を熱源の一部として,前記第1密閉容器に供給する廃水の温度を第1密閉容器内の飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持するとともに,前記第2密閉容器に供給する廃水の温度を第2密閉容器内の飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度に維持することを特徴とする廃水中の揮発性有機化合物を分離する方法。 A waste water containing a volatile organic compound is supplied into the first sealed container maintained at a reduced pressure lower than the atmospheric pressure so as to be ejected in a state where a gas such as air is dissolved in the waste water. Discharged wastewater is supplied to the inside of the second sealed container maintained at a reduced pressure lower than the atmospheric pressure so as to be jetted in a state where a gas such as air is dissolved in the wastewater, while being generated in the second sealed container. The temperature of the waste water supplied to the first sealed container with the steam as a part of the heat source is within a temperature range from a temperature equal to the saturated steam temperature in the first sealed container to a temperature lower by 4 ° C. than the saturated steam temperature. The temperature of the waste water supplied to the second sealed container is kept within a temperature range from the saturated steam temperature in the second sealed container to a temperature higher by 5 ° C. than the saturated steam temperature. Maintain at any temperature Method for separating volatile organic compounds in the waste water, characterized in that that. 前記請求項1の記載において,前記第2密閉容器から排出される廃水を,大気圧より低い減圧に維持され且つ前記第1密閉容器及び第2密閉容器に対して後段を成す密閉容器の内部に,当該廃水に空気等の気体を溶解し且つ前記後段の密閉容器内の飽和蒸気温度に対して当該飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度差を維持した状態で噴出するように供給することを特徴とする廃水中の揮発性有機化合物を分離する方法。 2. The waste water discharged from the second sealed container according to claim 1, wherein the waste water discharged from the second sealed container is maintained at a reduced pressure lower than an atmospheric pressure, and is disposed inside the sealed container that is subsequent to the first sealed container and the second sealed container. , A gas such as air is dissolved in the waste water and within a temperature range from a temperature equal to the saturated steam temperature to a temperature lower by 4 ° C. than the saturated steam temperature with respect to the saturated steam temperature in the latter sealed container A method for separating a volatile organic compound in wastewater, characterized in that it is supplied so as to be ejected while maintaining an arbitrary temperature difference . 内部が大気圧より低い減圧に維持され且つ内部に揮発性有機化合物を含む廃水が噴出するように供給される第1密閉容器と,内部が大気圧より低い減圧に維持された第2密閉容器と,前記第1密閉容器から排出される廃水をこれに空気等の気体を溶解したのち前記第2密閉容器の内部に噴出するように供給する手段とを備え,更に,前記第1密閉容器に供給される廃水の温度を前記第2密閉容器内で発生する水蒸気を熱源の一部として前記第1密閉容器内の飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度に維持する手段と,前記第2密閉容器に供給する廃水の温度を前記第2密閉容器内で発生する水蒸気を熱源の一部として第2密閉容器内の飽和蒸気温度から当該飽和蒸気温度よりも5℃だけ高い温度までの温度範囲内のうち任意の温度に維持する手段とを備えていることを特徴とする廃水中の揮発性有機化合物を分離する装置。A first sealed container whose interior is maintained at a reduced pressure lower than atmospheric pressure and supplied so that waste water containing a volatile organic compound is ejected; and a second sealed container whose interior is maintained at a reduced pressure lower than atmospheric pressure; And a means for supplying the waste water discharged from the first sealed container so as to be jetted into the second sealed container after a gas such as air is dissolved therein, and further supplied to the first sealed container The temperature from the temperature equal to the saturated steam temperature in the first sealed container to a temperature lower by 4 ° C. than the saturated steam temperature, using the steam generated in the second sealed container as a part of the heat source. Means for maintaining any temperature within the range, and the temperature of the waste water supplied to the second sealed container, the steam generated in the second sealed container as a part of the heat source, the saturated steam temperature in the second sealed container To the saturated steam temperature Apparatus for separating volatile organic compounds in the waste water, characterized in that it comprises a means for maintaining an arbitrary temperature of a temperature range up to a temperature just higher 5 ° C.. 前記請求項3の記載において,前記大気圧より低い減圧に維持され且つ前記第1密閉容器及び第2密閉容器に対して後段を成す密閉容器を備え,更に,前記第2密閉容器から排出される廃水を,前記後段の密閉容器の内部に,当該廃水に空気等の気体を溶解し且つ後段の密閉容器内の飽和蒸気温度に対してその飽和蒸気温度に等しい温度から当該飽和蒸気温度よりも4℃だけ低い温度までの温度範囲内のうち任意の温度差を維持した状態で噴出するように供給する手段を備えていることを特徴とする廃水中の揮発性有機化合物を分離する装置。4. The method according to claim 3, further comprising a sealed container that is maintained at a reduced pressure lower than the atmospheric pressure and that is subsequent to the first sealed container and the second sealed container, and is further discharged from the second sealed container. The waste water is dissolved in the waste container in the latter stage, and a gas such as air is dissolved in the waste water. An apparatus for separating a volatile organic compound in wastewater, characterized by comprising means for supplying so that an arbitrary temperature difference is maintained within a temperature range up to a temperature as low as ° C.
JP2003134250A 2003-05-13 2003-05-13 Method and apparatus for separating volatile organic compounds from wastewater Expired - Fee Related JP4021368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134250A JP4021368B2 (en) 2003-05-13 2003-05-13 Method and apparatus for separating volatile organic compounds from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134250A JP4021368B2 (en) 2003-05-13 2003-05-13 Method and apparatus for separating volatile organic compounds from wastewater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007214656A Division JP2007296529A (en) 2007-08-21 2007-08-21 Method and apparatus for separating volatile organic compound in waste water

Publications (3)

Publication Number Publication Date
JP2004337657A JP2004337657A (en) 2004-12-02
JP2004337657A5 JP2004337657A5 (en) 2006-04-20
JP4021368B2 true JP4021368B2 (en) 2007-12-12

Family

ID=33524865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134250A Expired - Fee Related JP4021368B2 (en) 2003-05-13 2003-05-13 Method and apparatus for separating volatile organic compounds from wastewater

Country Status (1)

Country Link
JP (1) JP4021368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593729B1 (en) * 2018-10-02 2019-10-23 和幸 前田 Separation equipment for mixture in liquid
CN111561982B (en) * 2020-06-17 2024-06-25 烟台创为新能源科技股份有限公司 Liquid level detection device and box with same

Also Published As

Publication number Publication date
JP2004337657A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4021368B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
JP4257781B2 (en) Purification method for underground soil contaminated with organochlorine compounds
JP2007296529A (en) Method and apparatus for separating volatile organic compound in waste water
JP3795796B2 (en) Equipment for separating and decomposing volatile organic compounds in wastewater
JP4021167B2 (en) Equipment for separating and treating volatile organic compounds in wastewater
JPH08175810A (en) Purification apparatus for waste sulfuric acid
JP4351594B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
KR102062062B1 (en) Ejector-vacuum-preheater for evaporative concentration apparatus and evaporative concentration method thereof
JP3925778B2 (en) Method for separating volatile organic compounds in wastewater
JP2004041850A (en) Evaporative manufacturing method for highly pure water and apparatus therefor
KR20090018403A (en) Apparatus and method for purifying waste-water using a distillation under reduced pressure
JP4371375B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
US20070107748A1 (en) Vacuum cavitational streaming
JP2002336841A (en) Method for vaporizing and treating oily waste water
JP3992130B2 (en) Method and apparatus for separating and decomposing volatile organic compounds in wastewater
CN216863895U (en) Landfill leachate processing apparatus of low energy consumption
JP4043199B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
CN217264918U (en) Evaporation system suitable for contain isopropanol and contain salt waste water
JP5024693B2 (en) Vacuum deaerator
CN116854043A (en) Hydrogen peroxide solution concentration and extraction method and device
JP4351589B2 (en) Method and apparatus for purifying exhaust gas in purification of groundwater containing volatile organic compounds
JPH03229688A (en) Method for evaporative concentration of waste photographic processing solution and defoaming agent added to same waste solution
JP6979848B2 (en) Ammonia-containing wastewater treatment method and treatment equipment
JP2004337657A5 (en)
KR200242657Y1 (en) food and drink vapor apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4021368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees