JP3863454B2 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP3863454B2
JP3863454B2 JP2002120152A JP2002120152A JP3863454B2 JP 3863454 B2 JP3863454 B2 JP 3863454B2 JP 2002120152 A JP2002120152 A JP 2002120152A JP 2002120152 A JP2002120152 A JP 2002120152A JP 3863454 B2 JP3863454 B2 JP 3863454B2
Authority
JP
Japan
Prior art keywords
strain
layer
active layer
laser device
embedded member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120152A
Other languages
English (en)
Other versions
JP2003318482A (ja
Inventor
満 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002120152A priority Critical patent/JP3863454B2/ja
Priority to US10/366,607 priority patent/US6853661B2/en
Priority to EP03008036A priority patent/EP1363368B1/en
Priority to DE60306579T priority patent/DE60306579T2/de
Publication of JP2003318482A publication Critical patent/JP2003318482A/ja
Application granted granted Critical
Publication of JP3863454B2 publication Critical patent/JP3863454B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体レーザ装置に関し、特に歪多重量子井戸構造に回折格子を形成した利得結合分布帰還型の半導体レーザ装置に関する。
【0002】
【従来の技術】
近年、インターネットの急速な普及と情報処理技術の急速な進展によって情報通信量が急増し、大容量化に適した波長分割多重(WDM)方式の光通信網の構築が急務となっている。WDM方式の光源に用いられる分布帰還型(DFB)レーザには、単一波長性と高出力動作はいうまでもなく、高速化及び低コスト化が要求されている。低コスト化を実現するためには、半導体レーザ装置、変調器、光増幅器、及び合分波器等の光部品をモノリシックに集積化することが好ましいが、このような光部品がモノリシックに集積化された光装置に使用される半導体レーザ装置には、反射戻り光に対して強い耐性が要求される。
【0003】
単一波長性に優れた半導体レーザ装置として、λ/4位相シフトDFBレーザ装置が実用化されている。このレーザ装置は、屈折率結合型で、基板または活性層の近傍に形成した回折格子の位相を、途中でπ(媒質内波長の1/4に相当)だけシフトさせた構造を有する。光共振器の両端面に反射防止膜を設けることにより、安定な単一波長発振を実現することができる。しかしながら、両端面に反射防止膜が設けられるため、片方の端面からの出力が低くなり、高出力化を図ることが困難である。
【0004】
一方、歪多重量子井戸構造を有する活性層自体に回折格子を形成し、光の伝搬方向に関して利得を周期的に変化させた利得結合分布帰還型レーザ装置(利得結合DFBレーザ装置)が注目されている。このレーザ装置では、活性層の厚さ方向の一部分が、光の伝搬方向に関して周期的に除去されており、残された凸部が周期的に配列することによって回折格子が構成される。
【0005】
このレーザ装置においては、利得の大きい部分(活性層の凸部)に定在波の腹が位置するため、回折格子を位相シフトさせなくても安定に単一波長で発振させることができる。また、光共振器の片方の端面を高反射コーティングしても単一波長で発振するため、高出力化に適している。さらに、利得結合DFBレーザ装置は、反射戻り光に対する特性の変化も小さいことが実験的に確認されている。このように、利得結合DFBレーザ装置は、単一波長性、高出力動作、及び反射戻り光耐性に優れたレーザ装置として期待されている。
【0006】
【発明が解決しようとする課題】
従来の利得結合DFBレーザ装置において、回折格子が形成された活性層の凸部の自然放出光の波長またはフォトルミネッセンス(PL)波長が、回折格子を形成する前の活性層のそれよりも数十meV程度短波長側へシフト(ブルーシフト)することが報告されている。
【0007】
本発明の目的は、活性層に回折格子を形成しても、自然放出光の波長やPL波長のシフト量の少ない半導体レーザ装置を提供することである。
【0008】
【課題を解決するための手段】
本発明の一観点によると、
半導体基板上に形成された第1導電型の半導体材料からなる下側クラッド層と、
前記下側クラッド層の上に形成された活性層であって、該活性層は、歪を有する歪井戸層と、該歪井戸層よりも大きなバンドギャップの障壁層とが交互に積層されて構成され、該活性層の厚さ方向の一部分または全厚さ部分が、前記半導体基板の表面に平行な第1の方向に関して周期的に除去され、回折格子を構成している前記活性層と、
前記活性層の除去された部分に埋め込まれた半導体材料からなる埋込部材であって、前記歪井戸層の歪と該埋込部材の歪とが同符号である前記埋込部材と、
前記活性層及び埋込部材の上に形成され、前記第1導電型とは反対の第2導電型の半導体材料からなる上側クラッド層と
を有し、
前記埋込部材の歪量が、前記活性層の歪井戸層と障壁層との歪量を、該歪井戸層と該障壁層との厚さで重み付けして平均した平均歪量とほぼ等しい半導体レーザ装置が提供される。
【0009】
埋込部材の材料として上述の材料を用いると、活性層に回折格子を形成したときの、自然放出光の波長やPL波長のシフト量を少なくすることができる。
【0010】
【発明の実施の形態】
本願発明の実施例を説明する前に、従来の利得結合DFBレーザ装置において、回折格子を形成することによってPL波長がブルーシフトする原因について説明する。
【0011】
図4に、従来の利得結合DFBレーザ装置の部分断面図を示す。導電型がn型のInPからなる半導体基板1の上に、n型InPからなる厚さ300nmの下側クラッド層2が形成されている。半導体基板1の上面(主面)の結晶面方位は(001)である。XY面を半導体基板1の上面に平行にし、厚さ方向をZ軸とするXYZ直交座標系を導入する。半導体基板1の〔110〕方向をX軸の方向とし、〔−110〕方向をY軸方向とする。このとき、Z軸方向が〔001〕方向になる。ここで、マイナス符号が付されたミラー指数は、当該数字のオーババーであることを意味する。
【0012】
下側クラッド層2の上に、アンドープのInGaAsPからなる厚さ50nmの下側光ガイド層3が形成されている。下側光ガイド層3のPL波長は1.15μmである。下側光ガイド層3の上に、回折格子が設けられた多重量子井戸構造を有する活性層6が形成されている。
【0013】
活性層6は、下側光ガイド層3側の活性層平坦部4及びその上に配置された複数の活性層凸部5により構成されている。活性層凸部5は、X方向に周期的に分布している。活性層凸部5の分布する周期は、発振波長であるブラッグ波長と、光導波路の等価屈折率とから求まる。
【0014】
活性層平坦部4は、厚さ10nmの障壁層6aと厚さ6nmの歪量子井戸層6bとが交互に積層された構造を有する。同様に、活性層凸部5も、厚さ10nmの障壁層6aと厚さ5nmの歪量子井戸層6bとが交互に積層された構造を有する。歪量子井戸層6bは、波長1.56μmに相当するバンドギャップのInGaAsPで形成され、障壁層6aは、波長1.3μmに相当するバンドギャップのInGaAsPで形成されている。活性層凸部5の上面の上に、アンドープのInPからなる厚さ20nmのカバー膜7が形成されている。
【0015】
相互に隣り合う活性層凸部5の間に凹部が画定される。この凹部内に、アンドープのInPからなる埋込部材8が埋め込まれている。埋込部材8の上面は、カバー膜7の上面とほぼ面一である。
【0016】
カバー膜7及び埋込部材8の上に、アンドープのInGaAsPからなる厚さ50nmの上側光ガイド層9、p型InPからなる厚さ3μmの上側クラッド層10、及びp型InGaAsからなる厚さ500nmのコンタクト層11が順番に積層されている。少なくとも活性層6及びそれよりも上の層は、X方向に長い直線状メサ構造とされている。図4には現れていないが、このメサ構造の両側(図4の紙面の手前と奥)に、電流狭窄構造が形成されている。電流狭窄構造は、例えばp型InP層、n型InP層、及びp型InP層がこの順番に積層された構造、または鉄(Fe)がドープされた高抵抗InP層で構成される。
【0017】
コンタクト層11の上に、AuZnからなる上側電極12が形成され、半導体基板1の底面上に、AuGeからなる下側電極13が形成されている。上側電極12と下側電極13とに、上側電極12が正電圧になる向きの電圧を印加すると、上側電極12を通して活性層6に正孔が注入され、下側電極13を通して活性層6に電子が注入される。
【0018】
歪量子井戸層6b及び障壁層6aは、下地の半導体基板1にコヒーレント成長している。ここで、コヒーレント成長とは、歪量子井戸層6b及び障壁層6aのX方向及びY方向の格子定数が、下地表面の格子定数に一致するような結晶成長を意味する。このため、歪量子井戸層6b及び障壁層6aは、そのX方向とY方向の格子定数が半導体基板1の格子定数と等しくなるように歪む。活性層平坦部4はZ方向に関して応力を受けないため、Z方向に関して、その材料のポアッソン比で決定される格子変形が生ずる。
【0019】
例えば、歪量子井戸層6bのポアッソン比をνW、無歪時の格子定数をaW、下地表面の格子定数をaSとすると、格子変形後のZ方向の格子定数aZWは、
【0020】
【数1】
ZW=aW+(aW−aS)νW
となる。
【0021】
歪量子井戸層6b及び障壁層6aのバルク状態(無歪状態)の格子定数が半導体基板1の格子定数よりも大きい場合、歪量子井戸層6b及び障壁層6aは、X方向及びY方向に圧縮応力を受けて縮み、Z方向に伸びる。逆に、歪量子井戸層6b及び障壁層6aのバルク状態の格子定数が半導体基板1の格子定数よりも小さい場合、歪量子井戸層6b及び障壁層6aは、X方向及びY方向に引っ張り応力を受けて伸び、Z方向に縮む。図4の例では、歪量子井戸層6bがZ方向に伸びている。
【0022】
ところが、活性層凸部5は、そのZ方向の格子定数が埋込部材8のZ方向の格子定数に一致するように、Z方向の応力も受ける。上述の例では、埋込部材8が下地表面に格子整合しているため、埋込部材8のZ方向の格子定数が、活性層凸部5のZ方向の格子定数よりも小さい。このため、活性層凸部5が埋込部材8からZ方向の圧縮応力を受け、Z方向に縮む。Z方向の縮み歪の影響を受けて、活性層凸部5のX方向の格子定数が半導体基板1の格子定数より長くなるように歪む。すなわち、活性層凸部5の歪が緩和される。
【0023】
活性層凸部5の歪が緩和されるため、活性層凸部5のPL波長が、歪緩和前のPL波長からブルーシフトするものと考えられる。このブルーシフト量は、歪緩和量に依存する。また、歪緩和量は、回折格子の周期及びデューティ(活性層凸部5のX方向の長さを回折格子の周期で除した値)に依存すると考えられる。
【0024】
この歪緩和現象により、種々の問題が生じうる。第1は、ディチューニング制御性が困難になるということである。DFBレーザ装置では、発振波長と利得のピーク波長との差で定義されるディチューニングを制御することにより、広い温度範囲での動作特性が保証される。しかしながら、歪多重量子井戸層の歪量、回折格子の周期やデューティが製造工程時に高精度に制御されていないと、埋込部材8を埋め込んだ後のPL波長がばらつき、ディチューニング制御性が低下してしまう。
【0025】
第2は、素子特性が低下してしまうということである。元来、歪多重量子井戸構造や歪補償多重量子井戸構造を有するレーザ装置においては、歪の効果を利用して価電子帯の縮退を解いてバンド構造を変化させ、低閾値電流や高効率を実現している。活性層凸部5の歪が緩和されることによって、この効果が低減してしまう。
【0026】
第3は、素子の信頼性が低下してしまうということである。活性層凸部5の歪緩和過程で転位が発生しやすい。転位が発生すると、素子の信頼性が低下してしまう。
【0027】
次に、上記課題を解決することが可能な本発明の実施例によるレーザ装置について説明する。
図1(A)に、本発明の実施例による半導体レーザ装置の断面図を示す。半導体基板1の上に、下側クラッド層2、下側光ガイド層3、活性層6、上側光ガイド層9、上側クラッド層10、コンタクト層11がこの順番に積層されている。コンタクト層11の上に上側電極12が形成され、半導体基板1の底面上に下側電極13が形成されている。この積層構造については、後に図2を参照して詳細に説明する。
【0028】
半導体基板1の表面に平行な面をXY面とし、厚さ方向をZ軸とするXYZ直交座標系を導入する。ここで、〔110〕方向をX方向、〔−110〕方向をY方向、〔001〕方向をZ方向とする。X方向が光の伝搬方向に相当する。半導体基板1からコンタクト層11までの積層構造の、X方向の一方の端面に反射防止膜20が形成され、他方の端面に高反射膜21が形成されている。活性層6の発振波長域において、高反射膜21が形成された端面の反射率が、反射防止膜20が形成された端面の反射率よりも高い。
【0029】
図1(B)に、図1(A)の一点鎖線B1−B1における断面図を示す。図1(B)の一点鎖線A1−A1における断面図が図1(A)に相当する。半導体基板1の表層部から上側クラッド層10の一部までの積層構造が、X方向に伸びる直線状のメサ構造とされている。このメサ構造の両側に、電流狭窄構造体28が配置されている。
【0030】
電流狭窄構造体28は、p型InP層25、n型InP層26、及びp型InP層(上側クラッド層)10がこの順番に積層された積層構造を有する。コンタクト層11の上に、上側電極12が形成されている。
【0031】
図2に、図1(B)の一点鎖線A1−A1における詳細な部分断面図を示す。ここでは、図4に示した従来の利得結合DFB型レーザ装置との相違点について説明する。
【0032】
従来は、埋込部材8がInPで形成され、InP半導体基板1に格子整合していた。これに対し、実施例による利得結合DFBレーザ装置の埋込部材8は、InAs0.10.9で形成されている。また、埋込部材8の上面の高さは、活性層凸部5とカバー膜7との界面の高さに一致している。これにより、活性層凸部5の歪緩和を効果的に抑制することができる。
【0033】
以下、図2を参照しながら、実施例による利得結合DFB型レーザ装置の製造方法について説明する。
n型InPからなる半導体基板1の上面(主面)の上に、n型InPからなる厚さ300nmの下側クラッド層2を、有機金属気相エピタキシャル成長(MOVPE)により形成する。なお、以下、特に断らない限り、化合物半導体層はMOVPEにより形成される。下側クラッド層2の上に、アンドープのInGaAsPからなる下側光ガイド層3を形成する。下側光ガイド層3の厚さは50nmであり、そのPL波長は1.15μmである。
【0034】
下側光ガイド層3の上に、アンドープのInGaAsPからなる障壁層6aとアンドープのInGaAsPからなる歪量子井戸層6bとを交互にコヒーレント成長させる。
【0035】
障壁層6a及び歪量子井戸層6bの層数は、それぞれ6層及び5層である。歪量子井戸層6bの厚さは6nmであり、障壁層6aの厚さは10nmである。歪量子井戸層6bの歪量εWは−0.8%である。ここで、負の歪量は圧縮歪であることを意味する。逆に、引っ張り歪を正とする。このとき、Z方向に関しては、ポアッソン比で決定される格子変形が生じ、歪量子井戸層6bのZ方向の格子定数が伸びる。また、障壁層6aは下地のInPに格子整合しており、その歪量εBは0%である。
【0036】
歪多重量子井戸構造の平均歪量εMを、
【0037】
【数2】
εM=(LB×εB+LW×εW)/(LB+LW
と定義する。ここで、LB及びLWは、それぞれ障壁層6aの厚さ及び歪量子井戸層6bの厚さである。すなわち、平均歪量εMは、障壁層6aの歪量εBと歪量子井戸層6bの歪量εWとを、障壁層6a及び歪量子井戸層6bの厚さで重み付けして平均したものである。
【0038】
上記実施例の場合には、LB=10nm、LW=6nm、εB=0%、εW=−0.8%であるため、平均歪量εMは−0.3%になる。
最も上の障壁層6aの上に、アンドープのInPからなる厚さ20nmのカバー層7を形成する。このカバー層7は、活性層6の保護膜として機能する。カバー層7の上にフォトレジストを塗布し、二光束干渉露光を用いたフォトリソグラフィにより、X方向に関して周期240nmの回折格子状レジストパターンを形成する。
【0039】
このレジストパターンをマスクとし、ドライエッチングとウェットエッチングを用いて、上から3番目の歪量子井戸層6bまでをエッチングする。このエッチングにより、活性層平坦部4及び活性層凸部5からなる活性層6が形成される。活性層凸部5の高さ(回折格子の深さ)は、約48nmになる。
【0040】
レジストパターンを剥離した後、相互に隣り合う活性層凸部5の間の凹部に、InAs0.10.9からなる埋込部材8を、その上面が活性層5とカバー層7との界面に達するまで成長させる。MOVPEの成膜条件を制御すると、カバー層7の上にはほとんど成長せず、凹部内に優先的にInAsPを成長させることができる。埋込部材8が下地表面に対してコヒーレント成長すると、その歪量は−0.3%になる。この歪量は、活性層6の平均歪量と等しい。InAsPはV族混晶のため、凹部に埋め込まれたInAsPは組成変調が小さく、結晶品質も良好である。
【0041】
カバー層7及び埋込部材8の上に、アンドープのInGaAsPからなる厚さ50nmの上側光ガイド層9を形成する。なお、この光ガイド層の代わりに、クラッド層の一部として機能するアンドープのInP層を形成してもよい。上側光ガイド層9の上に、p型のInPからなる第1の上側クラッド層(厚さ0.5μm)を形成する。
【0042】
SiO2パターンをマスクにして、第1の上側クラッド層から半導体基板1の表層部までを部分的にエッチングし、図1(B)に示した直線状のメサ構造を形成する。このメサ構造の両側に、p型InP層25、n型InP層26を埋め込む。SiO2マスクを除去した後に、p型InPからなる第2の上側クラッド層(厚さ2.5μm)を追加成長させ(これにより上側クラッド層10の厚さが3μmになる。)、その上にp型InGaAsからなる厚さ500nmのコンタクト層11を形成する。これにより、メサ構造の両側には、pnpn型の電流狭窄構造体28が形成される。コンタクト層11の表面にAuZnを蒸着して上側電極12を形成する。半導体基板1の底面にAuGeを蒸着して下側電極13を形成する。
【0043】
図1(C)に、電流狭窄構造体28をFeドープの高抵抗InPで形成した半導体レーザ装置の断面図を示す。以下、図1(C)に示した半導体レーザ装置の製造方法について説明する。
【0044】
図2に示した上側光ガイド層9を形成するまでの工程は、図1(B)に示した半導体レーザ装置の製造工程と同じである。上側光ガイド層9の上に、p型のInPからなる厚さ1.5μmの上側クラッド層10を形成する。上側クラッド層10の上に、p型InGaAsからなる厚さ500nmのコンタクト層11を形成する。
【0045】
SiO2パターンをマスクにして、コンタクト層11から半導体基板1の表層部までを部分的にエッチングし、図1(C)の紙面に垂直な方向に延在する直線状のメサ構造を形成する。このメサ構造の両側に、Feをドープした高抵抗のInPからなる電流狭窄構造体28を埋め込む。コンタクト層11及び電流狭窄構造体28の表面に、AuZnを蒸着して上側電極12を形成する。半導体基板1の底面にAuGeを蒸着して下側電極13を形成する。
【0046】
FeがドープされたInPからなる電流狭窄構造体28が高抵抗であるため、活性層6に優先的にキャリアを注入することができる。
次に、図3(A)〜(C)を参照して、図2に示した活性層凸部5の歪量について説明する。図3(A)〜(C)は、活性層凸部5のXZ面内における結晶格子の様子を模式的に示す。
【0047】
図3(A)に示すように、活性層平坦部4の上に活性層凸部5が配置されている。活性層平坦部4及び活性層凸部5は、InP基板上にコヒーレント成長しているため、これらのX方向及びY方向の格子定数は、InP基板の格子定数aSと等しい。障壁層6aはInP基板に格子整合しているため、そのZ方向の格子定数aZBは、無歪時の格子定数に等しい。
【0048】
歪量子井戸層6bの無歪時の格子定数は、InP基板の格子定数よりも大きい。このため、コヒーレント成長している歪量子井戸層6bはX方向及びY方向に関して圧縮応力を受け、X方向及びY方向の格子定数がInP基板の格子定数aSに等しくなるまで歪む。この歪量は既に説明したように−0.8%である。これにより、歪量子井戸層6bのZ方向の格子定数が伸び、Z方向の格子定数aZWが無歪時の格子定数よりも大きくなる。
【0049】
図3(B)に、障壁層6aと歪量子井戸層6bとを、両者の歪量を厚さで重み付けして平均した平均歪量を持つ1つの層と仮定したときの格子状態を示す。この平均歪量は、既に説明したように−0.3%である。このため、活性層凸部5は、X方向及びY方向の歪量が−0.3%の均一な1つの層と仮定することができる。活性層凸部5を1つの層と仮定した時のZ方向の平均格子定数aZMは、図3(A)に示したZ方向の格子定数aZBとaZWを使用して、
【0050】
【数3】
ZM=(LBZB+LWZW)/(LB+LW
となる。ここで、LB及びLWは、それぞれ障壁層6a及び歪量子井戸層6bの厚さである。
【0051】
図3(C)に示すように、活性層凸部5の側面にInAs0.10.9の埋込部材8が接している。埋込部材8の歪量も−0.3%であるため、埋込部材8のZ方向の格子定数は、図3(B)に示した活性層凸部5のZ方向の平均格子定数aZMと等しくなる。活性層凸部5内の障壁層6a及び歪量子井戸層6bの各々は、埋込部材8からZ方向の応力を受けるが、活性層凸部5のZ方向の平均格子定数aZMが埋込部材8のZ方向の格子定数と等しいため、活性層凸部5全体で平均すると、活性層凸部5のZ方向に受ける応力はほぼ0になる。このため、活性層凸部5は、埋込部材8を形成したことによって歪緩和がほとんど生じない。すなわち、活性層凸部5は、活性層平坦部4とほぼ同一の歪状態に維持される。従って、活性層自体に回折格子を形成することによるPL波長のブルーシフトは、ほとんど生じない。
【0052】
上記実施例による利得結合DFB型レーザ装置を作製したところ、埋込部材8を埋め込んだ後のPL波長及びX線回折パターンのピーク位置は、埋め込み前とほとんど変わらなかった。このことから、埋込部材8を埋め込んだ後も、活性層凸部5の歪状態が活性層平坦部4の歪状態で保存されていることが確認された。また、埋込部材8をInPで形成した従来のレーザ装置に比べて、発振閾値電流や発光効率等の素子特性が向上した。さらに、通電劣化試験を行ったところ、動作中の劣化はほとんど見られなかった。
【0053】
上記実施例では、活性層6の平均歪量と埋込部材8の歪量とをほぼ一致させたが、必ずしも両者を一致させる必要はない。両者の符合が同じであれば、活性層凸部5の歪緩和量を低減させることができるであろう。また、埋込部材8の歪量が、活性層6の平均歪量の0.8倍以上、かつ1.2倍以下になるようにすれば、ひずみ緩和量をより低減させることができるであろう。
【0054】
上記実施例では、図1(B)に示した直線状メサの延在する方向、すなわち光の伝搬方向をInP半導体基板1の〔110〕方向としたが、これと直交する〔−110〕方向としてもよいし、これらの方向に対して斜めの方向としてもよい。
【0055】
また、上記実施例では、活性層6をInGaAsPで形成したが、他の化合物半導体を用いることも可能である。基板材料がInPである場合、活性層6の材料として、InGaAs、AlInGaAs等を使用することができる。このとき、埋込部材8の材料として、InGaAsP、AlGaInAs等を使用することができる。基板材料がInPであって、歪量子井戸層の歪が圧縮歪である場合には、埋込部材の材料としてInAsPを使用することができる。また、基板材料がInPであって、歪量子井戸層の歪が引張り歪である場合には、埋込部材の材料としてInGaPを使用することができる。
【0056】
また、基板材料がGaAsである場合、活性層6の材料としてAlGaAs、InGaP、AlGaInP等を使用することができる。このとき、埋込部材8の材料として、InGaAsP、AlGaInP、InGaP等を使用することができる。
【0057】
また、上記実施例では、活性層6の上層部のみに回折格子を形成したが、活性層6の全厚さ部分をエッチングして、貫通型回折格子にしてもよい。この場合には、図2に示した活性層平坦部4が存在せず、活性層凸部5が下側光ガイド層3の表面上に直接配置されることになる。
【0058】
上記実施例では、一例として利得結合DFB型レーザ装置について説明したが、上記実施例の活性層6及び埋込部材8の構成は、回折格子周期を量子効果が現れるまで程度まで短くした量子細線レーザ装置に適用することも可能である。
【0059】
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
【0060】
【発明の効果】
以上説明したように、本発明によれば、歪量子井戸層を含む活性層に回折格子を形成し、この回折格子を埋め込む際の歪緩和を抑制することができる。これにより、自然放出光やPL光のブルーシフトを低減させることができ、従来の利得結合DFBレーザ装置に比べ、素子特性や信頼性の向上を図ることができる。
【図面の簡単な説明】
【図1】 (A)は、本発明の実施例による半導体レーザ装置の光の伝搬方向に平行な断面図であり、(B)は光の伝搬方向に垂直な断面図である。
【図2】 本発明の実施例による半導体レーザ装置の光の伝搬方向に平行な部分断面図である。
【図3】 本発明の実施例による半導体レーザ装置の活性層凸部の格子変形状態を説明するために、格子を模式的に表した図である。
【図4】 従来の利得結合DFBレーザ装置の光の伝搬方向に平行な部分断面図である。
【符号の説明】
1 半導体基板
2 下側クラッド層
3 下側光ガイド層
4 活性層平坦部
5 活性層凸部
6 活性層
6a 障壁層
6b 歪量子井戸層
7 カバー層
8 埋込部材
9 上側光ガイド層
10 上側クラッド層
11 コンタクト層
12 上側電極
13 下側電極
20 反射防止膜
21 高反射膜
28 電流狭窄構造体

Claims (9)

  1. 半導体基板上に形成された第1導電型の半導体材料からなる下側クラッド層と、
    前記下側クラッド層の上に形成された活性層であって、該活性層は、歪を有する歪井戸層と、該歪井戸層よりも大きなバンドギャップの障壁層とが交互に積層されて構成され、該活性層の厚さ方向の一部分または全厚さ部分が、前記半導体基板の表面に平行な第1の方向に関して周期的に除去され、回折格子を構成している前記活性層と、
    前記活性層の除去された部分に埋め込まれた半導体材料からなる埋込部材であって、前記歪井戸層の歪と該埋込部材の歪とが同符号である前記埋込部材と、
    前記活性層及び埋込部材の上に形成され、前記第1導電型とは反対の第2導電型の半導体材料からなる上側クラッド層と
    を有し、
    前記埋込部材の歪量が、前記活性層の歪井戸層と障壁層との歪量を、該歪井戸層と該障壁層との厚さで重み付けして平均した平均歪量とほぼ等しい半導体レーザ装置。
  2. 半導体基板上に形成された第1導電型の半導体材料からなる下側クラッド層と、
    前記下側クラッド層の上に形成された活性層であって、該活性層は、歪を有する歪井戸層と、該歪井戸層よりも大きなバンドギャップの障壁層とが交互に積層されて構成され、該活性層の厚さ方向の一部分または全厚さ部分が、前記半導体基板の表面に平行な第1の方向に関して周期的に除去され、回折格子を構成している前記活性層と、
    前記活性層の除去された部分に埋め込まれた半導体材料からなる埋込部材と、
    前記活性層及び埋込部材の上に形成され、前記第1導電型とは反対の第2導電型の半導体材料からなる上側クラッド層と
    を有し、前記埋込部材の歪量が、前記活性層の歪井戸層と障壁層との歪量を、該歪井戸層と該障壁層との厚さで重み付けして平均した平均歪量の0.8倍以上、かつ1.2倍以下である半導体レーザ装置。
  3. 前記半導体基板がInPで形成されており、前記埋込部材がInGaAsPまたはAlGaInAsで形成されている請求項1または2に記載の半導体レーザ装置。
  4. 前記半導体基板がInPで形成されており、前記歪井戸層の歪が圧縮歪であり、前記埋込部材がInAsPで形成されている請求項1または2に記載の半導体レーザ装置。
  5. 前記半導体基板がInPで形成されており、前記歪井戸層の歪が引張り歪であり、前記埋込部材がInGaPで形成されている請求項1または2に記載の半導体レーザ装置。
  6. 前記半導体基板がGaAsで形成されており、前記埋込部材がInGaAsP、AlGaInP、及びInGaPからなる群より選択された1つの半導体材料で形成されている請求項1または2に記載の半導体レーザ装置。
  7. 前記埋込部材の厚さが、前記活性層の除去された部分の深さと等しい請求項1〜6のいずれかに記載の半導体レーザ装置。
  8. 少なくとも前記活性層及び前記上側クラッド層が、前記第1の方向に長いメサ構造とされており、
    さらに、該メサ構造の一方の第1の端面に形成された反射防止膜と、
    該メサ構造の他方の第2の端面に形成され、前記活性層の発振波長域において、該第2の端面における反射率が前記第1の端面における反射率よりも高くなるように構成された高反射膜と
    を有する請求項1〜7のいずれかに記載の半導体レーザ装置。
  9. 前記歪井戸層の歪と前記埋込部材の歪とが同符号である請求項2に記載の半導体レーザ装置。
JP2002120152A 2002-04-23 2002-04-23 半導体レーザ装置 Expired - Fee Related JP3863454B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002120152A JP3863454B2 (ja) 2002-04-23 2002-04-23 半導体レーザ装置
US10/366,607 US6853661B2 (en) 2002-04-23 2003-02-14 Gain-coupled semiconductor laser device lowering blue shift
EP03008036A EP1363368B1 (en) 2002-04-23 2003-04-11 Gain-coupled semiconductor laser device lowering blue shift
DE60306579T DE60306579T2 (de) 2002-04-23 2003-04-11 Verstärkungsgekoppelter Halbleiterlaser mit verminderter Blauverschiebung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120152A JP3863454B2 (ja) 2002-04-23 2002-04-23 半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2003318482A JP2003318482A (ja) 2003-11-07
JP3863454B2 true JP3863454B2 (ja) 2006-12-27

Family

ID=29207992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120152A Expired - Fee Related JP3863454B2 (ja) 2002-04-23 2002-04-23 半導体レーザ装置

Country Status (4)

Country Link
US (1) US6853661B2 (ja)
EP (1) EP1363368B1 (ja)
JP (1) JP3863454B2 (ja)
DE (1) DE60306579T2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7801194B2 (en) * 2002-07-01 2010-09-21 Sharp Kabushiki Kaisha Semiconductor laser device and optical disk unit using the same
JP2007510302A (ja) * 2003-10-31 2007-04-19 ブッカム テクノロジー ピーエルシー 容易に酸化する半導体材料中に回折格子を製造する方法
ITVA20050018A1 (it) * 2005-03-15 2006-09-16 St Microelectronics Srl Commutatore controllato
JP2007035784A (ja) * 2005-07-25 2007-02-08 Sumitomo Electric Ind Ltd 分布帰還型半導体レーザ
JP4983790B2 (ja) 2006-02-20 2012-07-25 富士通株式会社 光半導体装置とその製造方法
JP4816260B2 (ja) * 2006-06-02 2011-11-16 住友電気工業株式会社 半導体発光素子の製造方法
JP5284036B2 (ja) * 2007-11-14 2013-09-11 キヤノン株式会社 発光装置
JP5217598B2 (ja) * 2008-04-21 2013-06-19 住友電気工業株式会社 半導体発光素子の製造方法
JP5098878B2 (ja) * 2008-08-01 2012-12-12 住友電気工業株式会社 半導体発光素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69315872T2 (de) * 1992-03-23 1998-05-20 Canon Kk Optische Vorrichtung und Methode unter Benutzung dieser Vorrichtung, welche die Änderung einer über die beiden Anschlussenden eines verstärkenden Bereichs abfallenden Spannung ausnutzt
US6026110A (en) * 1997-10-16 2000-02-15 Nortel Networks Corporation Distributed feedback semiconductor laser with gain modulation
US6614059B1 (en) * 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
JP3842976B2 (ja) * 2000-03-17 2006-11-08 富士通株式会社 分布帰還型半導体レーザとその製造方法

Also Published As

Publication number Publication date
EP1363368A2 (en) 2003-11-19
US20030198266A1 (en) 2003-10-23
EP1363368A3 (en) 2005-07-06
JP2003318482A (ja) 2003-11-07
DE60306579D1 (de) 2006-08-17
EP1363368B1 (en) 2006-07-05
DE60306579T2 (de) 2006-11-09
US6853661B2 (en) 2005-02-08

Similar Documents

Publication Publication Date Title
US6426515B2 (en) Semiconductor light-emitting device
KR100760548B1 (ko) 광도파로를 전파하는 광과 회절격자를 결합시킨 광소자
JP5182362B2 (ja) 光素子及びその製造方法
US20120002285A1 (en) Optical element and method for manufacturing the same
US6594298B2 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JP2001332809A (ja) 分布帰還型半導体レーザとその製造方法
JP3863454B2 (ja) 半導体レーザ装置
JP2010161329A (ja) 二次元フォトニック結晶を備えた面発光レーザ
JP2003309322A (ja) 自己形成量子ドットを用いた半導体発光素子
JP2009054721A (ja) 半導体素子及び半導体素子の製造方法
JP2006196805A (ja) 半導体レーザ
JPH08274404A (ja) 多重量子井戸レーザダイオード
JPH03151684A (ja) 多波長集積化半導体レーザの製造方法
JP4447222B2 (ja) 分布帰還型半導体レーザ
JP5163355B2 (ja) 半導体レーザ装置
JPH0555689A (ja) 波長制御機能付分布反射型半導体レーザ
JP4992451B2 (ja) 半導体レーザ、および半導体レーザを作製する方法
JP2012033975A (ja) 半導体レーザの作製方法
JP4927769B2 (ja) 半導体レーザの作製方法及び半導体レーザ
JP3274710B2 (ja) 分布帰還型半導体レーザ素子および分布帰還型半導体レーザ素子の製造方法
JP2010109237A (ja) 光位相制御素子および半導体発光素子
JPH0927653A (ja) 半導体レーザ素子
US20040151224A1 (en) Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method
JP2009194290A (ja) 半導体レーザの作製方法及び半導体レーザ
JP2005317659A (ja) 集積型半導体光デバイス及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Ref document number: 3863454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees