JP3855820B2 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP3855820B2
JP3855820B2 JP2002094385A JP2002094385A JP3855820B2 JP 3855820 B2 JP3855820 B2 JP 3855820B2 JP 2002094385 A JP2002094385 A JP 2002094385A JP 2002094385 A JP2002094385 A JP 2002094385A JP 3855820 B2 JP3855820 B2 JP 3855820B2
Authority
JP
Japan
Prior art keywords
combustion
engine
fuel
exhaust gas
gas recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002094385A
Other languages
English (en)
Other versions
JP2003293817A (ja
Inventor
一司 片岡
明宏 小林
智明 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002094385A priority Critical patent/JP3855820B2/ja
Publication of JP2003293817A publication Critical patent/JP2003293817A/ja
Application granted granted Critical
Publication of JP3855820B2 publication Critical patent/JP3855820B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はエンジンの制御装置に関する。
【0002】
【従来の技術】
一般に、直噴式ディーゼルエンジンでは、気筒の圧縮行程上死点近傍で高温高圧の燃焼室に燃料を噴射して、自着火により燃焼させるようにしている。このとき、燃焼室に噴射された燃料は高密度の空気との衝突によって微細な液滴に分裂(霧化)しながら進行し、略円錐状の燃料噴霧を形成するとともに、その燃料液滴の表面から気化しつつ燃料噴霧の主に先端側や外周側で周囲の空気を巻き込んで混合気を形成し、この混合気の濃度及び温度が着火に必要な状態になったところで燃焼を開始する(予混合燃焼)。そして、そのようにして着火、即ち燃焼を開始した部分が核となり、周囲の燃料蒸気及び空気を巻き込みながら拡散燃焼すると考えられている。
【0003】
そのような通常のディーゼルエンジンの燃焼(以下、単にディーゼル燃焼ともいう)では、初期の予混合燃焼に続いて大部分の燃料が拡散燃焼することになるが、この際、濃度の不均質な燃料噴霧(混合気)の中で空気過剰率λが1に近い部分では急激な熱発生に伴い窒素酸化物(NOx)が生成され、また、燃料の過濃な部分では酸素不足によって煤が生成されることになる。この点について、NOxや煤を低減するために排気の一部を吸気に還流させる(Exhaust Gas recirculation:以下、単にEGRという)ことや燃料の噴射圧力を高めることが従来から行われている。
【0004】
そのようにEGRによって不活性な排気を吸気系に還流させると、燃焼温度が低下してNOxの生成が抑えられる一方で、吸気中の酸素が減ることになるから、多量のEGRは煤の生成を助長する結果となる。また、燃料噴射圧力を高めると、燃料噴霧の微粒化が促進されるとともに、その貫徹力が大きくなって空気利用率が向上するので、煤の生成は抑制されるが、NOxはむしろ生成し易い状況になる。つまり、ディーゼル燃焼においてはNOxの低減と煤の低減とがトレードオフの関係にあり、両者を同時に低減することは難しいのが実状である。
【0005】
これに対し、近年、燃料の噴射時期を大幅に進角させて、予混合燃焼が主体の燃焼状態とすることにより、NOxと煤とを同時に且つ格段に低減できる新しい燃焼の形態が提案されており、一般に予混合圧縮着火燃焼と呼ばれるものが公知である。特開2000−110669号公報に記載のディーゼルエンジンでは、EGRによって多量の排気を還流させるとともに、気筒の圧縮行程で燃料を噴射して空気と十分に混合し、この予混合気を圧縮行程の終わりに自着火させて、燃焼させるようにしている。
【0006】
そのような予混合燃焼(予混合圧縮着火燃焼)のときには、EGRによって吸気中に還流させる排気の割合(EGR率)を上述したディーゼル燃焼のときよりも一段、高くするのが好ましい。すなわち、空気に比べて熱容量の大きい排気を吸気中に多量に混在させ、予混合気中の燃料及び酸素の密度を低下させることで、着火遅れ時間を延長して予混合気の着火タイミングを圧縮上死点(TDC)近傍に制御することができる。しかも、その予混合気中では燃料及び酸素の周囲に不活性な排気が略均一に分散し、これが燃焼熱を吸収することになるので、NOxの生成が大幅に抑制されるのである。
【0007】
但し、EGRによって吸気中の排気の還流割合が多くなるということは、その分、空気の量が少なくなるということなので、予混合圧縮着火燃焼をエンジンの高負荷側で実現することは困難であると考えられている。このため、従来は、低負荷側の運転領域では前記の如く予混合圧縮着火燃焼とし、この際、EGR率は比較的高い第1の設定値以上に制御する一方、高負荷側の運転領域では燃料の噴射態様を切換えてディーゼル燃焼となるようにTDC近傍で噴射させるようにしており、この際、EGR率は、煤の増大を回避すべく前記第1の設定値よりも小さい第2の設定値以下に制御するようにしている。
【0008】
また、特開2000−8929号公報には、燃料の一部を吸気行程から圧縮行程にかけて筒内に噴射し空気と混合させて希薄予混合気を形成させ、残りの燃料を着火時期に筒内へ点火用燃料として噴射するようにした予混合燃焼方法において、予混合気形成用の燃料を複数回に分割して噴射することにより、正規の着火以前の自着火を防止することが記載されている。
【0009】
また、特開平11−159369号公報には、EGR率を70%以上にし且つ圧縮行程上死点前に燃料を筒内に噴射して燃焼させる第1の燃焼と、EGR率を30〜50%にし且つ圧縮行程上死点付近で燃料を筒内に噴射して燃焼させる第2の燃焼とを選択的に行なうようにした圧縮着火式内燃機関において、排気通路の触媒温度が低いときは第2の燃焼形態から第1の燃焼形態に切り換えて排気温度を上昇させることが記載されている。
【0010】
【発明が解決しようとする課題】
ところで、車両の発進性ないし加速性を向上させるトラクションコントロールでは、駆動輪の過度のスリップを抑えるためにエンジン出力を調節することが行なわれている。また、車両の旋回走行時に過度のオーバーステア傾向になったり、過度のアンダーステア傾向になることを防止して旋回走行性を高めるダイナミックスタビリティコントロールにおいても、エンジン出力を調節することが行なわれる。
【0011】
しかし、このような走行状態制御のためのエンジン出力の調節を、前記予混合圧縮着火燃焼形態をとっているときに行なうと、この燃焼形態が排気を多量に還流させて行なう低温燃焼であることから、エンジンの失火を招く懸念があり、エンジン出力の調節幅が制限され、所期の走行状態制御を行なうことが難しい、という問題がある。本発明はこのようなエンジン出力の調節による走行状態の制御を行なう場合に生ずる問題に対策することを課題とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題に対して、エンジンが予混合圧縮着火燃焼を実行すべき運転状態にあるときでも、前記走行状態制御を行なうときはディーゼル燃焼を実行してエンジン出力の調節を容易にするものである。
【0013】
すなわち、請求項1に係る発明は、エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え
前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記EGR値が前記第1の設定値以上の状態から前記第2の設定値以下の状態になるように前記排気還流量調節手段を作動させる一方、燃料が膨張行程の所定時期に噴射されて予混合燃焼の割合が拡散燃焼の割合よりも多い第3の燃焼形態となった後、燃料が圧縮行程上死点付近で噴射されて前記第2の燃焼形態に切り換わるように前記燃料噴射弁を作動させることを特徴とする。
【0014】
従って、車両の走行状態の制御のためにエンジン出力の調節、すなわち、燃料噴射量の低減ないしは増減を行なっても、エンジンの燃焼形態は燃焼性の良い拡散燃焼を主体とする第2の燃焼形態となるから、失火が避けられ、所期の走行状態を制御を行なう上で有利になる。
【0015】
また、前記第1の燃焼形態から第2の燃焼形態に移行するには、燃料噴射時期を圧縮行程上死点前の早期噴射から圧縮行程上死点付近での噴射に変更するだけでなく、排気の還流量に関するEGR値も第1の設定値以上の状態から第2の設定値以下の状態に変更する必要があるが、このEGR値の変更は遅れる。その場合、排気還流量が多いにも拘わらず、噴射時期が遅角された状態になって着火遅れ時間が確保できず、燃料と空気との混合が不充分になって煤生成量が増大するとともに、トルクショックを招き易くなる。
【0016】
そこで、本発明は、前記第1の燃焼形態から第2の燃焼形態に移行するときに途中で第3の燃焼形態を経るようにしたものである。この第3の燃焼形態では、燃料が気筒の膨張行程の所定時期に噴射されるが、膨張行程ではピストンの上死点からの下降に伴い燃焼室の容積が増大して、その温度及び圧力が低下するので、燃料の着火遅れ時間が長くなり、燃料と空気との十分な混合が図れる。よって、予混合燃焼が主体となり、前記第1の燃焼と同様にNOxや煤の生成を抑えることができる。
【0017】
尚、前記第3の燃焼状態では圧縮上死点後に燃焼が開始することになるので、サイクル効率が低下して燃費が悪化するきらいがある。そこで、EGR値が第1及び第2設定値の中間の値にあるときの全期間で第3の燃焼形態にするのではなく、例えば、特に煤の生成が盛んになる所定範囲にあるときにのみ、第3の燃焼形態にするようにしてもよい。
【0018】
請求項2に係る発明は、エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第1の設定値よりも小さい第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え、
前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記EGR値が前記第1及び第2の設定値の間の所定値になった後に、燃料が吸気行程ないし圧縮行程で噴射される噴射形態から、燃料が圧縮行程上死点付近で噴射される噴射形態に切り換わって前記第2の燃焼形態になるように、前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とする
【0019】
従って、車両の走行状態の制御のためにエンジン出力の調節、すなわち、燃料噴射量の低減ないしは増減を行なっても、エンジンの燃焼形態は燃焼性の良い拡散燃焼を主体とする第2の燃焼形態となるから、失火が避けられ、所期の走行状態を制御を行なう上で有利になる。しかも、EGR値が過大な状態で第2の燃焼形態となることが避けられ、過渡的な煤の増大を抑制できる。
【0020】
請求項3に係る発明は、エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第1の設定値よりも小さい第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え、
前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記第2の燃焼形態になるように前記燃料噴射弁及び排気還流量調節手段を制御し、前記第2の燃焼形態による燃焼開始後の膨張行程又は排気行程においてさらに燃料が後噴射されるように前記燃料噴射弁を作動させることを特徴とする
【0021】
従って、車両の走行状態の制御のためにエンジン出力の調節、すなわち、燃料噴射量の低減ないしは増減を行なっても、エンジンの燃焼形態は燃焼性の良い拡散燃焼を主体とする第2の燃焼形態となるから、失火が避けられ、所期の走行状態を制御を行なう上で有利になる。
【0022】
そうして、第1の燃焼形態から第2の燃焼形態に切り換わるとき、燃料噴射時期の切換えに対してEGR値の変更が遅れて煤の生成が一時的に多くなっても、膨張行程又は排気行程において後噴射される燃料の着火燃焼により、煤の再燃焼が図れ、煤排出量が増大することを防止することができる。また、走行状態制御のために燃料噴射量を調節してエンジン出力の増減を行なう場合、燃料噴射量の増減に対してEGR値の変化が遅れる場合でも、煤排出量が増大することを防止することができる。
【0023】
前記燃料の後噴射を圧縮行程上死点後10度〜60度のクランク角度のときに実行するようにすればよい。なお、本明細書において、「〜」はその両側に記載した数値(10度〜60度の場合は10度及び60度)を含む範囲であることを意味する。
【0024】
前記燃料の後噴射時期は、前記第2の燃焼形態による熱発生率が所定値以下になったときに、特に熱発生率が略零になった時点又は該時点から所定期間内に当該後噴射燃料の燃焼が開始するように設定することが好ましい。
【0025】
すなわち、第2の燃焼形態は拡散燃焼を主体とするが、この拡散燃焼においては、筒内において局所的に生じた過濃混合気の熱分解によって一次粒子が形成され、これが重・縮 合を繰り返すことによって煤の核が生成し、それが高温雰囲気において成長・凝集することによって所謂煤を生ずると一般には考えられている。また、このような煤核の成長・凝縮は、燃料の拡散燃焼が終わりに近付く頃まで、つまり、熱発生率が略零になるまで続いていると考えられる。
【0026】
これに対して、第2の燃焼の熱発生率が所定値以下になったときに前記後噴射燃料の燃焼が開始するようにすれば、特に熱発生率が略零になった時点又は該時点から所定期間内に当該後噴射燃料の燃焼が開始するようにすれば、拡散燃焼によって生ずる煤の再燃焼を促してその量を低減する上で有利になる。
【0027】
前記第2の燃焼の熱発生率が略零になった時点又は該時点から所定期間内に前記後噴射の燃料の燃焼が開始するとは、その熱発生率が零になった時点を中心に例えばクランク角にして±5゜程度の範囲で又は±3゜の範囲で後噴射燃料の燃焼が開始する、あるいはそれよりも少し遅れて後噴射燃料の燃焼が開始することを意味する。
【0028】
請求項4に係る発明は、請求項1乃至請求項3のいずれか一に記載されているエンジンの制御装置において、
前記走行状態制御手段は、エンジン出力による走行状態の非制御中に駆動輪に所定レベル以上のスリップを生じたときにエンジン出力を所定量低減させる制御を開始するものであり、
前記燃焼制御手段は、前記走行状態制御手段による前記エンジン出力の低減が開始されたときに前記第2の燃焼形態となるように前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とする。
【0029】
すなわち、前記走行状態制御手段は車両のトラクションをコントロールするものであり、駆動輪に過大なスリップを発生してエンジン出力の低減が開始されると、燃焼性の良い第2の燃焼形態となるから、その出力低減によるエンジンの失火が防止される。
【0030】
また、エンジン出力による走行状態の非制御中に駆動輪に所定レベル以上のスリップを生ずるのは、車両の発進時又は低回転低負荷の運転からの加速時であることが多い。従って、エンジンの低回転低負荷の運転状態において第1の燃焼形態をとり、高回転高負荷の運転状態で第2の燃焼形態をとるようにしている場合、エンジンの低回転低負荷の運転状態において前記エンジン出力の低減開始により第1の燃焼形態から第2の燃焼形態に移行することになり、煤の発生量の増大を抑える上で有利になる。すなわち、低回転低負荷時であれば、拡散燃焼を主体とする第2の燃焼形態に移行しても、その移行の際の燃料噴射量は少なく、また、排気の還流量も多くないことから、拡散燃焼によって煤の生成が盛んになっても、煤排出量はそれほど多くならない。
【0031】
請求項5に係る発明は、請求項4に記載されているエンジンの制御装置において、
前記走行状態制御手段は、前記エンジン出力の低減により、前記駆動輪のスリップ量の増大が収まった後、前記エンジン出力を調節して前記駆動輪のスリップ率が目標スリップ率になるようにフィードバック制御するものであり、
前記燃焼制御手段は、少なくとも前記走行状態制御手段による前記エンジン出力の低減開始から前記フィードバック制御の終了までは、前記第2の燃焼形態となるように前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とする。
【0032】
従って、スリップ率のフィードバック制御のために燃料噴射量の増減を行なっても、拡散燃焼を主体とする第2の燃焼形態をとっているから、エンジンの失火を招くことを避けながら、所期の走行状態制御を行なう上で有利になる。
【0033】
【発明の効果】
以上のように、請求項1に係る発明によれば、エンジンの燃焼形態として、燃料の早期噴射と多量の排気還流とによって予混合燃焼の割合が拡散燃焼の割合よりも多い第1の燃焼形態と、圧縮行程上死点付近での燃料噴射と相対的に少ない排気還流量とによって拡散燃焼の割合が予混合燃焼の割合よりも多い第2の燃焼形態とをとることができるようにしたエンジンの制御装置において、車両の走行状態制御手段がエンジン出力の調節を必要とするときには、前記第2の燃焼形態となるようにし、且つ前記第1の燃焼形態から前記第2の燃焼形態に切り換えるときに、燃料が膨張行程の所定時期に噴射されて予混合燃焼の割合が拡散燃焼の割合よりも多い第3の燃焼形態を経るようにしたから、エンジンの失火を避けながら、所期の走行状態を制御を行なう上で有利になり、しかもEGR値の変更遅れによる煤生成量の増大を防止することができる。
【0034】
請求項2に係る発明によれば、エンジンの燃焼形態として、燃料の早期噴射と多量の排気還流とによって予混合燃焼の割合が拡散燃焼の割合よりも多い第1の燃焼形態と、圧縮行程上死点付近での燃料噴射と相対的に少ない排気還流量とによって拡散燃焼の割合が予混合燃焼の割合よりも多い第2の燃焼形態とをとることができるようにしたエンジンの制御装置において、車両の走行状態制御手段がエンジン出力の調節を必要とするときには、前記第2の燃焼形態となるようにし、且つ前記第1の燃焼形態から前記第2の燃焼形態に切り換えるとき、前記EGR値が前記第1及び第2設定値の間の所定値になった後に、燃料の噴射形態を切り換えるようにしたから、エンジンの失火を避けながら、所期の走行状態を制御を行なう上で有利になり、しかもEGR値が過大な状態で第2の燃焼形態となることが避けられ、過渡的な煤の増大を抑制できる。
【0035】
請求項3に係る発明によれば、エンジンの燃焼形態として、燃料の早期噴射と多量の排気還流とによって予混合燃焼の割合が拡散燃焼の割合よりも多い第1の燃焼形態と、圧縮行程上死点付近での燃料噴射と相対的に少ない排気還流量とによって拡散燃焼の割合が予混合燃焼の割合よりも多い第2の燃焼形態とをとることができるようにしたエンジンの制御装置において、車両の走行状態制御手段がエンジン出力の調節を必要とするときには、前記第2の燃焼形態となるようにし、且つ前記第2の燃焼形態による燃焼開始後に燃料の後噴射を実行するようにしたから、エンジンの失火を避けながら、所期の走行状態を制御を行なう上で有利になり、しかも第1の燃焼形態から第2の燃焼形態に切り換わるときの煤排出量の増大防止、並びに走行状態制御のための燃料噴射量の増減に対してEGR値の変化が遅れる場合の煤排出量の増大防止にも有利になる。
【0036】
請求項4に係る発明によれば、請求項1乃至請求項3のいずれか一に記載されているエンジンの制御装置において、エンジン出力による走行状態の非制御中に駆動輪に所定レベル以上のスリップを生じたときにエンジン出力を所定量低減させる制御を開始するようにし、このエンジン出力の低減が開始されたときに前記第2の燃焼形態となるようにしたから、エンジン出力の低減によるエンジンの失火を防止する上で有利になるとともに、エンジンの低回転低負荷の運転状態において第1の燃焼形態から第2の燃焼形態に移行することができるようになり、煤の発生量の増大を抑える上で有利になる。
【0037】
請求項5に係る発明によれば、請求項4に記載されているエンジンの制御装置において、前記走行状態制御手段による前記エンジン出力の低減開始から目標スリップ率とするためのフィードバック制御の終了まで、前記第2の燃焼形態となるようにしたから、エンジンの失火を招くことを避けながら、所期の走行状態制御を行なう上で有利になる。
【0038】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0039】
(全体構成)
図1は走行状態制御手段を備えた車両を示す。同図において、1は車体、2,2,…は、前後左右の4つの車輪21FR,21FL,21RR,21RLに個別に配設された4つの液圧式ブレーキ(ホイールシリンダ)、3は上記各ブレーキ2に圧液を供給するための加圧ユニット、4は該加圧ユニット3からの圧液を上記各ブレーキ2に分配供給する液圧ユニット(Hudraulic Unit:以下HUという)である。5は加圧ユニット3及びHU4を介して各ブレーキ2の制御を行なうとともに、エンジン出力の制御を行なうメインコントローラ、6は上記各車輪の車輪速を検出する車輪速センサ、7は車両の横方向(左右方向)の加速度Yを検出する横加速度センサ、8は車両のヨーレイトψ′を検出するヨーレイトセンサ、9は前輪操舵角θH を検出する舵角センサ、10は運転者のブレーキ操作に応じた液圧を発生するマスタシリンダ、11は多気筒のディーゼルエンジン、12はオートマチックトランスミッション(AT)である。13は燃料噴射弁の作動制御を行なってエンジン運転状態を制御するエンジンコントローラである。
【0040】
(走行状態制御系)
図2に示すように、右側前輪21FR及び左側後輪21RLの各ブレーキ2,2は第1液圧管路22aによりマスタシリンダ10に接続され、左側前輪21FL及び右側後輪21RRの各ブレーキ2,2は第2液圧管路22bによりマスタシリンダ10に接続されて、所謂、X配管タイプの互いに独立した2つのブレーキ系統が構成されており、ブレーキペダル14の踏み操作に応じて各車輪に制動力が付与されるようになっている。
【0041】
上記加圧ユニット3は、液圧管路22a,22bにそれぞれ接続された液圧ポンプ31a,31bと、これらの液圧ポンプ31a,31b及びマスタシリンダ10を断続可能なように液圧管路22a,22bの各々に配設されたカットバルブ32a,32bと、これらのカットバルブ32a,32b及び上記マスタシリンダ10の間の液圧を検出する液圧センサ33とを備えている。そして、コントローラ5からの信号に応じて上記カットバルブ32a,32bが閉状態にされることで、運転者によるブレーキ操作とは無関係に、上記液圧ポンプ31a,31bから吐出される圧液がHU4を介して各ブレーキ2に供給される。
【0042】
上記HU4は、第1液圧管路22a又は第2液圧管路22bを介して加圧ユニット3から供給される圧液を各ブレーキ2に供給して増圧させる加圧バルブ41,41…と、上記各ブレーキ2をリザーバタンク42に接続し圧液を排出させて減圧する減圧バルブ43,43…とを備えている。そして、コントローラ5からの信号に応じて上記加圧バルブ41,41,…及び減圧バルブ43,43,…の開度がそれぞれ独立に増減制御されることで、上記ブレーキ2,2,…の液圧が増減されて、各車輪21FR,21FL,…に付与される制動力がそれぞれ増減変更される。
【0043】
図3に示すように、メインコントローラ5は、車輪速センサ6、横加速度センサ7、ヨーレイトセンサ8、舵角センサ9、液圧センサ33、及びブレーキペダル14の踏み込みを検出するブレーキセンサ44からの各出力信号を受け入れる一方、各輪の制動力調節のために、加圧ユニット3の液圧ポンプ31a,31b及びカットバルブ32a,32b、並びにHU4の加圧バルブ41及び減圧バルブ42にそれぞれ作動信号を出力する。また、メインコントローラ5は、エンジン出力調節のために、エンジンコントローラ13に目標トルクを出力し、エンジンコントローラ13からフィードバック信号がメインコントローラ5に入力される。
【0044】
(エンジン制御系)
図4はエンジン制御系Aを示す。ディーゼルエンジン11の各気筒52にはピストン53が往復動可能に嵌挿されていて、このピストン53とシリンダヘッドとにより各気筒52内に燃焼室54が区画形成されている。また、燃焼室54の天井部にはインジェクタ55(燃料噴射弁)が配設されていて、その先端部の噴口から高圧の燃料を燃焼室54に直接、噴射するようになっている。一方、各気筒52毎のインジェクタ55の基端部は、それぞれ分岐管56a(1つのみ図示する)により共通の燃料供給管56(コモンレール)に接続されている。このコモンレール56は、燃料供給管58により高圧供給ポンプ59に接続されていて、該高圧供給ポンプ59から供給される燃料を前記インジェクタ55に任意のタイミングで供給できるように高圧の状態で蓄えるものであり、その内部の燃圧(コモンレール圧力)を検出するための燃圧センサ57が配設されている。
【0045】
前記高圧供給ポンプ59は、図示しない燃料供給系に接続されるとともに、歯付ベルト等によりクランク軸60に駆動連結されていて、燃料をコモンレール56に圧送するとともに、その燃料の一部を電磁弁を介して燃料供給系に戻すことにより、コモンレール56への燃料の供給量を調節するようになっている。この電磁弁の開度が前記燃圧センサ57による検出値に応じてECU13(後述)により制御されることによって、燃圧がエンジン1の運転状態に対応する所定値に制御される。
【0046】
また、エンジン1の上部には、図示しないが、吸気弁及び排気弁をそれぞれ開閉させる動弁機構が配設されていて、各気筒52毎の吸気弁及び排気弁の閉弁時期は、当該気筒52の実圧縮比、即ち、気筒52内に吸入された気体が圧縮行程上死点において圧縮されたときの実質的な圧縮比率が、略17以下になるように設定されている。一方、エンジン11の下部には、クランク軸60の回転角度を検出するクランク角センサ61と、冷却水の温度を検出するエンジン水温センサ63とが設けられている。前記クランク角センサ61は、詳細は図示しないが、クランク軸端に設けた被検出用プレートとその外周に相対向するように配置した電磁ピックアップとからなり、前記被検出用プレートの外周部全周に亘って等間隔に形成された突起部が通過する度に、パルス信号を出力するものである。
【0047】
エンジン11の一側(図の右側)の側面には、各気筒52の燃焼室54に対しエアクリーナ65で濾過した空気(新気)を供給するための吸気通路66が接続されている。この吸気通路66の下流端部にはサージタンク67が設けられ、このサージタンク67から分岐した各通路がそれぞれ吸気ポートにより各気筒52の燃焼室54に連通しているとともに、サージタンク67には吸気の圧力状態を検出する吸気圧センサ68が設けられている。
【0048】
また、前記吸気通路66には、上流側から下流側に向かって順に、外部からエンジン11に吸入される空気の流量を検出するホットフィルム式エアフローセンサ69と、後述のタービン77により駆動されて吸気を圧縮するコンプレッサ70と、このコンプレッサ70により圧縮した吸気を冷却するインタークーラ71と、バタフライバルブからなる吸気絞り弁72とが設けられている。この吸気絞り弁72は、弁軸がステッピングモータ73により回動されて、全閉から全開までの間の任意の状態とされるものであり、全閉状態でも吸気絞り弁72と吸気通路66の周壁との間には空気が流入するだけの間隙が残るように構成されている。
【0049】
一方、エンジン11の反対側(図の左側)の側面には、各気筒52の燃焼室54からそれぞれ燃焼ガス(排気)を排出するように、排気通路76が接続されている。この排気通路76の上流端部は各気筒72毎に分岐して、それぞれ排気ポートにより燃焼室74に連通する排気マニホルドであり、該排気マニホルドよりも下流の排気通路76には上流側から下流側に向かって順に、排気中の酸素濃度を検出するリニアO2センサ79と、排気流を受けて回転されるタービン77と、排気中の有害成分(未燃HC、CO、NOx、煤等)を浄化可能な排気浄化手段としての触媒コンバータ78とが配設されている。
【0050】
前記タービン77と吸気通路66のコンプレッサ70とからなるターボ過給機80は、可動式のフラップ81,81,…によりタービン77への排気の通路断面積を変化させるようにした可変ターボ(以下VGTという)であり、前記フラップ81,81,…は各々、図示しないリンク機構を介してダイヤフラム82に駆動連結されていて、そのダイヤフラム82に作用する負圧の大きさが負圧制御用の電磁弁83により調節されることで、該フラップ81,81,…の回動位置が調節されるようになっている。尚、ターボ過給機は可変ターボでなくてもよい。
【0051】
前記排気通路76には、タービン77よりも排気上流側の部位に臨んで開口するように、排気の一部を吸気側に還流させるための排気還流通路(以下EGR通路という)84の上流端が接続されている。このEGR通路84の下流端は吸気絞り弁72及びサージタンク67の間の吸気通路66に接続されていて、排気通路76から取り出された排気の一部を吸気通路66に還流させるようになっている。また、EGR通路84の途中には、その内部を流通する排気を冷却するためのEGRクーラ87(冷却手段)と、開度調節可能な排気還流量調節弁(以下EGR弁という)85とが配置されている。このEGR弁85は負圧応動式のものであり、前記VGT80のフラップ81,81,…と同様に、ダイヤフラムへの負圧の大きさが電磁弁86によって調節されることにより、EGR通路84の断面積をリニアに調節して、吸気通路66に還流される排気の流量を調節するものである。尚、前記EGRクーラ87はなくてもよい。
【0052】
そして、前記各インジェクタ55、高圧供給ポンプ59、吸気絞り弁72、VGT80、EGR弁85等は、いずれも燃焼制御手段としてのコントロールユニット(Electronic Contorol Unit:以下ECUという)13からの制御信号を受けて作動する。一方、このECU13には、前記燃圧センサ57、クランク角センサ61、エンジン水温センサ63、吸気圧センサ68、エアフローセンサ69、リニアO2センサ79等からの出力信号がそれぞれ入力され、さらに、図示しないアクセルペダルの踏み操作量(アクセル開度)を検出するアクセル開度センサ89からの出力信号が入力される。
【0053】
(エンジンの燃焼制御の概要)
前記ECU13によるエンジン1の基本的な制御は、主にアクセル開度に基づいて基本的な目標燃料噴射量を決定し、インジェクタ55の作動制御によって燃料の噴射量や噴射時期を制御するとともに、高圧供給ポンプ59の作動制御により燃圧、即ち燃量の噴射圧力を制御するというものである。また、吸気絞り弁72やEGR弁85の開度の制御によって燃焼室54への排気の還流割合を制御し、さらに、VGT80のフラップ81,81,…の作動制御(VGT制御)によって吸気の過給効率を向上させる。
【0054】
具体的には、例えば図5の制御マップ(燃焼モードマップ)に示すように、エンジン11の温間の全運転領域のうちの相対的に低回転ないし低負荷側には、予混合燃焼領域(H)が設定されていて、ここでは、図6(a)〜(c)に模式的に示すように、インジェクタ55により気筒52の圧縮行程中期から後期にかけて燃料を噴射させ、予めできるだけ均質な混合気を形成した上で自着火により燃焼させるようにしている(第1の運転状態)。このような燃焼形態は、従来より予混合圧縮着火燃焼と呼ばれており、気筒の1サイクル当たりの燃料噴射量があまり多くないときにその燃料の噴射時期を適切に設定して、燃料を適度に広く分散させ且つ空気と十分に混合した上で、自着火させて一斉に燃焼させるものである。つまり、予混合圧縮着火燃焼は、予混合燃焼の割合が拡散燃焼の割合よりも多い燃焼形態(第1の燃焼形態)である。
【0055】
尚、前記インジェクタ55による燃料の噴射は、図6(a)に示すように1回で行うようにしてもよく、或いは同図(b)、(c)に示すように複数回に分けて行うようにしてもよい。これは、気筒52の圧縮行程中期から後期にかけて、即ち圧縮行程上死点近傍よりも気体の圧力や密度状態が低い燃焼室54に燃料を噴射する場合に、燃料噴霧の貫徹力が強くなり過ぎることを避けるためであり、従って、燃料噴射量が多いほど燃料噴射の回数(分割回数)を増やすのが好ましい。
【0056】
前記予混合圧縮着火燃焼の際には、EGR通路84のEGR弁85を相対的に大きく開いて吸気通路66に多量の排気を還流させるようにする。こうすることで、新気、即ち外部から供給される新しい空気に不活性で熱容量の大きい排気が多量に混合され、これに対して燃料の液滴及び蒸気が混合されることになるから、予混合気自体の熱容量が大きくなるとともに、その中の燃料及び酸素の密度は比較的低くなる。このことで、着火遅れ時間を延長して空気と排気と燃料とを十分に混合した上で、TDC近傍の最適なタイミングで着火させて燃焼させることができる。
【0057】
図7に示すグラフは、エンジン11の低負荷域でBTDCの所定のクランク角(例えばBTDC30°CA)に燃料を噴射して予混合圧縮着火燃焼させたときに、熱発生のパターンがEGR率(吸気中の新気に対する還流排気の割合)に応じてどのように変化するかを示した実験結果である。同図に仮想線で示すように、EGR率が低いときには燃料はTDCよりもかなり進角側で自着火してしまい、サイクル効率の低い過早な熱発生のパターンとなる。一方、EGR率が高くなるに連れて自着火のタイミングは徐々に遅角側に移動し、図に実線で示すようにEGR率が略55%のときには、熱発生のピークが略TDCになってサイクル効率の高い熱発生パターンとなる。
【0058】
また、前記図7のグラフによれば、EGR率が低いときには熱発生のピークがかなり高くなっていて、燃焼速度の高い激しい燃焼であることが分かる。このときには燃焼に伴うNOxの生成が盛んになり、また、極めて大きな燃焼音が発生する。一方、EGR率が高くなるに連れて熱発生の立ち上がりが徐々に緩やかになり、そのピークも低下する。これは、前記の如く混合気中に多量の排気が含まれる分だけ、燃料及び酸素の密度が低くなることと、その排気によって燃焼熱が吸収されることとによると考えられる。そして、そのように熱発生の穏やかないわゆる低温燃焼ではNOxの生成が大幅に抑制される。
【0059】
図8に示すグラフは、前記の実験においてEGR率の変化に対する燃焼室54の空気過剰率λ、排気中のNOx及び煤の濃度の変化を示し、同図(a)によれば、この実験条件においてEGR率が0%のときには空気過剰率λがλ≒2.7と大きく、EGR率が大きくなるに従い空気過剰率λが徐々に小さくなって、EGR率が略55〜60%のときに略λ=1になっている。すなわち、排気の還流割合が多くなるに連れて混合気の平均的な空気過剰率λが1に近づくのであるが、たとえ燃料及び空気の比率が略λ=1であっても、それらの周囲には多量の排気が存在しているから、燃料や酸素の密度自体はあまり高くはないのである。従って、同図(b)に示すように、排気中のNOxの濃度はEGR率の増大とともに一様に減少していて、EGR率が45%以上ではNOxは殆ど生成しなくなる。
【0060】
一方、煤の生成については、同図(c)に示すように、EGR率が0〜略30%では殆ど煤が見られず、EGR率が略30%を超えると煤の濃度が急激に増大するが、EGR率が略50%を超えると再び減少し、EGR率が略55%以上になると略零になる。これは次のように考えられる。まず、EGR率が低いときは吸気中には燃料に対して酸素が過剰に存在することから、着火遅れ時間が短くても煤は殆ど生成しない。これに対して、EGR率が増大してくると、吸気中の酸素が少なくなるにも拘わらず、着火遅れ時間は酸素と燃料とが十分に混合する時間が得られるほどには長くならず、そのために煤の生成量が急増する。一方、EGR率が略55%以上になると、上述したように、着火遅れ時間がかなり長くなるため、新気と排気と燃料とが十分に混合された上で燃焼するようになり、煤は殆ど生成しない。
【0061】
以上、要するに、この実施形態では、エンジン1が低負荷側の予混合燃焼領域(H)にあるときに、燃料を比較的早期に噴射するとともに、EGR弁85の開度を制御して、EGR率を予め設定した所定値(第1設定値:前記の実験例では略55%くらい)以上とすることで、NOxや煤の殆ど生成しない予混合燃焼が主体の低温燃焼を実現するものである。
【0062】
これに対し、前記図5の制御マップに示すように、予混合燃焼領域(H)以外の高回転ないし高負荷側の運転領域(D)では、混合気の拡散燃焼の割合が予混合燃焼の割合よりも多い一般的なディーゼル燃焼を行うようにしている(第2の運転状態)。すなわち、図6(d)に示すように、インジェクタ55により主にTDC近傍で燃料を噴射させて、初期の予混合燃焼に続いて大部分の混合気を拡散燃焼させるようにする(以下、この運転領域(D)を拡散燃焼領域というが、この運転領域では圧縮行程上死点近傍以外でも燃料を噴射するようにしてもよい)。このように拡散燃焼が主体の燃焼形態により、高い出力が得られる。
【0063】
その際、EGR弁85の開度は、前記した予混合燃焼領域(H)に比べれば小さくして、EGR率が予め設定した所定値(第2設定値)以下になるようにする。これは、拡散燃焼が主体の一般的なディーゼル燃焼において煤の増大を招かない範囲で、NOxの生成をできるだけ抑制するように設定されていて、具体的には図9のグラフに一例を示すように、拡散燃焼領域(D)におけるEGR率の上限は、例えば略30〜略40%の範囲に設定されている。また、エンジン1の負荷が高くなるほど気筒2への新気の供給量を確保する必要があるので、高負荷側ほどEGR率は低くなり、しかも、高速ないし高負荷側ではターボ過給機80による吸気の過給圧が高くなるので、排気の還流は実質的に行われない。
【0064】
なお、ディーゼル燃焼としては、EGR率を予混合圧縮着火燃焼のときよりは少ないが、比較的多い状態(例えばEGR率が約40〜50%)とし、燃料噴射時期を膨張行程で且つ失火を招かない範囲でできるだけ遅らせて(例えば圧縮行程上死点後10゜CA程度として)着火燃焼させるものであってもよい。
【0065】
<本発明の特徴の詳細説明>
本発明の特徴とするところは、エンジン出力の調節によって車両の走行状態を制御する場合に、エンジンの燃焼形態を適切なものにして、そのエンジン出力の調節に容易にし、所期の走行状態制御を効率良く行なうことができるようにした点にある。特に、エンジンの失火や煤排出量の増大を招くことなく、走行状態の制御のためのエンジン出力調節を可能にしている。以下、具体的に説明する。
【0066】
(走行状態制御(トラクション制御))
車両発進時又は加速時に駆動輪に過大なスリップを発生したとき、このスリップをエンジン出力の調節によって抑制し、目標スリップ率となるようにするトラクション制御について、図10に示す制御フローに従って説明する。
【0067】
スタート後のステップSA1では、車輪速センサ6からの信号、ブレーキセンサ44からの信号等を入力し(データ入力)、また、ECU13のメモリに記憶されている各種フラグの値を読み込む。続くステップSA2で駆動輪21RR,21RLの実スリップ率SLを算出する。この実スリップ率SLには、車体速(従動輪21FR,21FLの車輪速の略平均値)に対する各駆動輪21RR,21RLの車輪速の比のうちの大きい方が与えられる。
【0068】
続くステップSA3では、実スリップ率SLが所定の制御開始閾値SL1を越えているか否かを判定する。この制御開始閾値SL1は、路面摩擦係数(以下、路面μという。)と車体速とに基づいて、路面μが高くなるほど、また車体速が低くなるほど高くなるように設定するものであり、後述する目標スリップ率SL2よりは高めに設定されている。図11には参考のために制御開始閾値SL1に対応する車輪速SL1と、目標スリップ率SL2に対応する車輪速SL2とを示している。また、路面μは、トラクション非制御中の実スリップ率等に基づいて周知の手法により求める。
【0069】
実スリップ率SLが所定の制御開始閾値SL1を越えているときはステップSA4に進み、トラクション制御中であることを表すフラグFが設定されているか否かを判定する。設定されていないとき(F≠1)はステップSA5に進んでフラグ設定をして(F=1)ステップSA6に進み、既にフラグ設定されているとき(制御中)はそのままステップSA6に進む。
【0070】
ステップSA6では、実スリップ率SLの変化量ΔSL(今回のスリップ率から前回の実スリップ率を減算した値)が所定値ΔSL0よりも大であるか否かを判定する。所定値ΔSL0は図11に示す駆動輪車輪速が所定速度で減少していくときの傾きΔSL0に対応する負の値である。従って、実スリップ率が増大している間はΔSL>ΔSL0であり、実スリップ率の増大が収まって減少に転じ、その減少度合が大きくなったときにΔSL≦ΔSL0となる。
【0071】
ステップSA6においてΔSL>ΔSL0であるときはステップSA7に進んで、エンジン出力をフィードフォワードで低減させるための目標トルクTrtFFを設定する。実スリップ率の増大を速やかに抑えるためである。目標トルクTrtFFは、図12に示すように、実スリップ率SLが制御開始閾値SL1になったときの実スリップ率変化量ΔSLに基づいて、ΔSLが大きいほど低い値になるように設定する。続くステップSA8で目標トルクTrtFFをトラクション制御用の目標トルクTrtとする。
【0072】
一方、ステップSA3で実スリップ率SLが所定の制御開始閾値SL1以下であるときは、ステップSA9に進み、トラクション制御中(F=1)か否かを判定し、制御中でなければリターンする。制御中であれば、ステップSA10に進み、ブレーキセンサ44の信号に基づいて運転者によりブレーキペダル14が踏まれているか否かを判定する。また、先のステップSA6でΔSL≦ΔSL0であるときもステップSA10に進む。ブレーキペダル14が踏まれている場合は、スリップ率の増大はなくなるので、ステップSA18に進んでトラクション制御を終了する。
【0073】
ステップSA10でブレーキペダル14が踏まれていないと判定されたときは、ステップSA11に進んで目標スリップ率SL2が設定されているか否かを判定し、設定されていなければ、ステップSA12に進んでその設定を行なう。設定済みのときはステップSA13に進む。目標スリップ率SL2は、路面μと車体速とに基づいて、路面μが高くなるほど、また車体速が低くなるほど高くなるように設定する。
【0074】
ステップSA13では、実スリップ率SLの目標スリップ率SL2からの偏差difSL(=SL2−SL)を算出し、続くステップSA14で偏差difSLの前回偏差difSLからの変化量が所定値以下か否かを判定する。偏差difSLの変化が小さい場合は、ステップSA15に進んで偏差difSLが所定値difSL0よりも大きいか否かを判定する。偏差difSLの変化が小さく且つ偏差difSLが所定値difSL0以下のときは、実スリップ率SLが目標スリップ率SL0に収束したとしてステップSA18に進んで制御を終了し(F=0とし)、そうでない場合はステップSA16に進んで実スリップ率SLを目標スリップ率SL0に収束させるためのフィードバック制御用の目標トルクTrtFBを設定する。
【0075】
フィードバック制御用の目標トルクTrtFBの設定にあたっては、まず、前記偏差difSLに基づいて目標トルク補正量ΔTrtを求める。この補正量ΔTrtは、図13に示すように偏差difSLがプラス(+)に大きいほどΔTrtがプラス(+)に大きくなり、偏差difSLがマイナス(−)に大きいほどΔTrtがマイナス(−)に大きくなるように設定されている。但し、プラス側及びマイナス側の各ΔTrtには限界値が設けられている。そうして、前回の目標トルクTrtFBに補正量ΔTrtを加算することにより、今回の目標トルクTrtFBを設定する。そして、続くステップSA17で当該目標トルクTrtFBをトラクション制御用の目標トルクTrtとして設定する。
【0076】
図10に示す制御フローによって、エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段、すなわち、本形態ではトラクション制御手段が構成されている。なお、上述のエンジン出力の制御と共に駆動輪に対する制動量の制御を行なう。
【0077】
(燃料噴射制御)
次に、前記ECU13によるインジェクタ5の具体的な制御手順を図14に示す制御フローに基づいて説明する。スタート後のステップSB1において、少なくとも、燃圧センサ57からの信号、クランク角センサ61からの信号、吸気圧センサ68からの信号、エアフローセンサ69からの信号、アクセル開度センサ89からの信号等を入力し(データ入力)、また、ECU13のメモリに記憶されている各種フラグの値を読み込む。続いて、ステップSB2において、クランク角信号から求めたエンジン回転速度Neとアクセル開度Accとに基づいてエンジン11の目標トルクTrを目標トルクマップから読み込んで設定する。この目標トルクマップは、アクセル開度Accとエンジン回転速度Neとに対応する最適な値を予め実験的に求めて設定して、ECU40のメモリに電子的に格納したものであり、アクセル開度Accが大きいほど、またエンジン回転速度Neが高いほど、目標トルクTrが大きくなっている。
【0078】
続いて、ステップSB3において、燃焼モードマップ(図5参照)を参照してエンジン11の燃焼モードを判定する。すなわち、目標トルクTrとエンジン回転速度Neとに基づいてエンジン11が予混合燃焼領域(H)にあるかどうか判定する。予混合燃焼領域(H)であるときはステップSB4に進み、トラクション制御中か否かをフラグFにより判定する。制御中であれば(F=1)、ステップSB5に進んでトラクション制御用の目標トルクTrtを目標トルクTrとして設定する。
【0079】
続くステップSB6では前回がトラクション制御中でない(F≠1)か否かを判定する。トラクション制御中でなければ、ステップSB7に進んで予混合圧縮着火燃焼からディーゼル燃焼への燃料噴射形態の切換えを実行するためのEGR率EGR0を設定する。この切換え実行EGR率EGR0は、トラクション制御開始時のエンジン運転状態(目標トルクTr及びエンジン回転速度Ne)に基づいて、当該噴射形態の切換えを実行したときに煤生成量が大きく増大しない値に設定する。
【0080】
すなわち、図15に例示するように、予混合圧縮着火燃焼及びディーゼル燃焼の各々における煤生成量は、EGR率によって異なるとともに、エンジン運転状態によっても異なる。予混合圧縮着火燃焼からディーゼル燃焼への燃料噴射形態の切換えは、エンジン運転状態に応じて設定される前記第1設定値と第2設定値との中間のEGR率のときに行なうことを基本とするが、この切換え時に煤生成量が大きく増大しないようにしなければならない。
【0081】
そこで、予混合圧縮着火燃焼においてEGR率を第1設定値以上の値に設定した状態から漸次減少させていったときに、煤生成量がディーゼル燃焼での煤生成量と略同じになるEGR率を目安として、それよりも若干高めのEGR率のときに燃料噴射形態の切換えを行なうようにするものである。その場合は、EGR率の変化に伴って燃焼形態は矢符で示すように切り換わることになり、煤生成量が大きく増大することが避けられる。
【0082】
そうして、前記煤生成量が略同じになるEGR率はエンジン運転状態に応じて異なることから、予め最適な切換え実行EGR率EGR0を目標トルクTr及びエンジン回転速度Neに対応付けて実験により求めてマップ化しておき、このマップににより、前記トラクション制御開始時のエンジン運転状態に基づいて切換え実行EGR率EGR0を設定するものである。
【0083】
続くステップSB8において実EGR率が前記切換え実行EGR率EGR0よりも大きいか否かを判定し、大きいときはステップSB9に進んで予混合圧縮着火燃焼用の燃料噴射形態を設定して当該形態での噴射を実行する(ステップSB10)。実EGR率が前記切換え実行EGR率EGR0以下になれば、ステップSB11に進んでディーゼル燃焼用の燃料噴射形態を設定し、すなわち、予混合圧縮着火燃焼形態からディーゼル燃焼形態に切り換えて、噴射を実行する。
【0084】
ステップSB3においてエンジン11の運転状態が拡散燃焼領域(D)にあると判定されたときも、ステップSB11に進み、ディーゼル燃焼用の燃料噴射形態を設定して噴射を実行することになる。また、ステップSBにおいてトラクション制御中(F=1)と判定されたときは、ステップSB9に進んで予混合圧縮着火燃焼用の燃料噴射形態を設定して噴射を実行することになる。
【0085】
前記実EGR率は、エアフローセンサ69からの信号により求められる吸入空気量と、リニアO2センサ79からの信号により求まる排気の酸素濃度と、燃料噴射量とに基づいて、計算により推定することができる。
【0086】
予混合圧縮着火燃焼及びディーゼル燃焼の各々の燃料噴射形態の設定は、目標トルクTrとエンジン回転速度Neとに基づいて、噴射量マップから基本噴射量を読み込んで設定し、また、噴射時期マップから基本噴射時期(インジェクタ5の針弁が開くクランク角位置)を読み込んで設定する。
【0087】
前記噴射量マップや噴射時期マップは、目標トルクTrとエンジン回転速度Neとに対応する最適な値を予め実験的に求めて設定して、ECU13のメモリに電子的に格納したものであり、前記噴射量マップにおける基本噴射量の値は、予混合燃焼領域(H)及び核酸燃焼領域(D)の各々においてアクセル開度Accが大きいほど、またエンジン回転速度Neが高いほど大きくなっている。
【0088】
また、基本噴射時期の値は、予混合燃焼領域(H)では、アクセル開度Accが大きいほど、またエンジン回転速度Neが高いほど進角側になっていて、燃料噴霧の殆どが空気と十分に混合されてから燃焼するよう、圧縮行程における所定のクランク角範囲(例えばBTDC90°〜20°CA)において燃料噴射量や燃圧に対応付けて設定されている。拡散燃焼領域(D)では、燃料噴射の終了時期(インジェクタ5の針弁が閉じるクランク角位置)が圧縮上死点後の所定の時期になって、燃料噴霧が良好に拡散燃焼するように燃料噴射量や燃圧(コモンレール圧)に対応付けて設定されている。
【0089】
図14に示す制御フローによって、エンジン1が予混合燃焼領域(H)にあるときは、燃料が吸気行程ないし圧縮行程で噴射され、エンジン1が拡散燃焼領域(D)にあるとき、又は走行状態制御手段(トラクション制御手段)によりエンジン出力の調節がされるときは燃料が圧縮行程上死点付近で噴射されるように、インジェクタ5の作動を制御する燃料噴射制御部(燃料噴射制御手段)が構成されている。
【0090】
(EGR制御)
次に前記ECU13によるEGR弁85の具体的な制御手順を図16に示す制御フローに基づいて説明する。スタート後のステップSC1において、燃圧センサ57からの信号、クランク角センサ61からの信号、吸気圧センサ68からの信号、エアフローセンサ69からの信号、アクセル開度センサ89からの信号等を入力し(データ入力)、また、ECU13のメモリに記憶されている各種フラグの値を読み込む。続くステップSC2において、フラグFに基づいてトラクション制御中か否かを判定する。
【0091】
トラクション制御中(F=1)であれば、ステップSC3に進み、トラクション制御(スリップ制御)用マップより目標トルクTr及びエンジン回転速度Neに基づいてEGR弁開度の目標値EGRbを設定する。そして、ステップSC4に進んで当該目標値EGRbとなるようにEGR弁85を駆動する。
【0092】
前記マップは、目標トルクTrとエンジン回転速度Neとに対応する最適な値を予め実験的に求めて設定したものであり、図17に一例を示すように、EGR弁開度の目標値EGRbは、拡散燃焼領域(D)では目標トルクTrが大きいほど、またエンジン回転速度Neが高いほど小さくなるように設定され、予混合燃焼領域(H)では、拡散燃焼領域(D)での最大目標値程度で略一定になるように設定されている。予混合燃焼領域(H)であっても、トラクション制御を行なう場合は拡散燃焼を主体とする前記第2の燃焼形態を採用するから、ディーゼル燃焼形態への移行を見越して速やかにEGR率を低減させるためである。
【0093】
ステップSC2においてトラクション制御中でないと判定されると、ステップSC5に進んで、通常制御用(トラクション非制御用)のマップによりEGR弁開度の目標値EGRbを設定し、ステップSC4に進んで当該目標値EGRbとなるようにEGR弁85を駆動する。
【0094】
前記通常制御用のマップは、目標トルクTrとエンジン回転速度Neとに対応する最適な値を予め実験的に求めて設定したものである。図18に一例を示すように、EGR弁開度の目標値EGRbは、拡散燃焼領域(D)ではトラクション制御用マップと同様に目標トルクTrが大きいほど、またエンジン回転速度Neが高いほど小さくなるように設定されている。予混合燃焼領域(H)では、拡散燃焼領域(D)よりも一段高い値で、目標トルクTrが大きいほど、またエンジン回転速度Neが高いほど、目標値EGRb小さくなるように設定されている。
【0095】
すなわち、予混合燃焼領域(H)では、EGR弁85を相対的に大きく開いて、多量の排気を還流させ、これによりEGR率を第1設定値以上として良好な予混合圧縮着火燃焼を実現し、拡散燃焼領域(D)では、EGR弁85の開度を相対的に小さくしてEGR率を第2設定値以下とし、煤の増大を招くことなく、NOxの生成を抑制することができるディーゼル燃焼を実現するためである。
【0096】
前記図16に示す制御フローによって、エンジン1が予混合燃焼領域(H)にあるときに、EGR率が第1設定値以上になるように、拡散燃焼領域(D)にあるときにはEGR率が前記第1設定値よりも少ない第2設定値以下になるように、さらに、予混合燃焼領域(H)にあっても、トラクション制御のためにエンジン出力の調節を必要とするときには、ディーゼル燃焼への移行のためにEGR率が前記第2設定値以下になるように、EGR弁85の開度を制御するEGR制御部(排気還流制御手段)が構成されている。
【0097】
(作用効果)
次に、この実施形態の作用効果を説明すると、まず、エンジン1が予混合燃焼領域(H)にあるときには、EGR弁85が相対的に大きく開かれ、タービン77上流の排気通路76から取り出された排気がEGR通路84によって吸気通路66に還流される。そして、そのように還流する多量の排気が外部から供給される新気と共に気筒52内の燃焼室54へ供給されて、実EGR率EGRが第1設定値(例えば55%)以上の状態になる。
【0098】
また、前記気筒52内の燃焼室54に臨むインジェクタ55により燃料が当該気筒52の圧縮行程の所定クランク角範囲(BTDC90°〜20°CA)にて分割噴射され、この燃料が燃焼室54において比較的広く分散し且つ吸気(新気及び還流排気)と十分に混合して、均質度合いの高い混合気を形成する。この混合気中では、特に燃料蒸気や酸素の密度が高い部分で比較的低温度の酸化反応(いわゆる冷炎)が進行するが、混合気中には空気(窒素、酸素等)と比べて熱容量の大きい排気(二酸化炭素等)が多量に混在していて、その分、燃料及び酸素の密度が全体的に低くなっており、しかも、冷炎の反応熱は熱容量の大きい二酸化炭素等に吸収されることになるので、高温の酸化反応への移行(いわゆる着火)は抑制されて、着火遅れ時間が長くなる。
【0099】
そして、気筒52の圧縮上死点近傍に至り、燃焼室54の気体の温度がさらに上昇し且つ燃料及び酸素の密度が十分に高くなると、混合気は一斉に着火して燃焼する。この際、混合気中の燃料蒸気と空気及び還流排気とは既に十分に均一に分散しており、特に燃料の密度が高い部分では冷炎反応が進行しているから、混合気中には燃料の過濃な部分が殆ど存在せず、従って、煤の生成は見られない。
【0100】
また、前記の如く混合気中の燃料蒸気の分布が均一化されていて、さらに多量の二酸化炭素等が均一に分散して存在することから、この混合気全体が一斉に燃焼してもその内部で局所的に急激な熱発生の起こることがなく、さらに、燃焼熱は周囲の二酸化炭素等によって吸収されることになるから、燃焼温度の上昇が抑えられて、NOxの生成が大幅に抑制される。
【0101】
そうして、エンジン11が予混合燃焼領域(H)にあるときに、トラクション制御が開始されると、まず、エンジンの目標トルクがトラクション制御用の目標トルクTrt(TrtFF)に切り換えられ、エンジン出力が低下していくことにより、駆動輪のスリップ率の増大が抑制され、やがてそのスリップ率が低下していってフィードバック制御に移行する。一方、トラクション制御の開始により、EGR弁開度の目標値が直ちに低下することから、実EGR率も応答遅れをもって低下していく。この場合、実EGR率は、その低下に応答遅れがあるといっても、エンジン出力の低減によってスリップ率が増大から減少に転じるまでよりは早く、噴射形態の切換え実行EGR率EGR0まで低下する。
【0102】
従って、トラクション制御開始からフィードバック制御に移行するまでには、エンジンの燃焼形態は予混合圧縮着火燃焼からディーゼル燃焼に切り換わっている。すなわち、インジェクタ55により燃料がTDC近傍で燃焼室54に噴射され、初期の予混合燃焼に続いて良好な拡散燃焼を生ずる状態になる(通常のディーゼル燃焼)。よって、その後にフィードバック制御のために目標トルクが増減してもエンジンの失火を招くことが避けられる。また、EGR弁85の開度は相対的に小さくされ、適度な分量の排気の還流によってNOxや煤の生成が抑制される。
【0103】
また、トラクション制御が開始するのは、車両の発進時又は低回転低負荷の運転からの加速時であることが多い。従って、エンジンの低回転低負荷の運転状態において予混合圧縮着火燃焼形態からディーゼル燃焼形態に切り換わることになり、この切り換わりの際の燃料噴射量は少なく、また、排気の還流量も多くないことから、拡散燃焼によって煤の生成が盛んになっても、煤排出量はそれほど多くならない。
【0104】
また、予混合圧縮着火燃焼形態からディーゼル燃焼形態への切換え(噴射形態の切換え)は、実EGR率が低下して第1設定値と第2設定値との間の所定値EGR0になったときに行なわれるから、煤生成量が急増することが避けられる。
【0105】
(燃焼形態切換えの他の実施形態)
予混合圧縮着火燃焼形態からディーゼル燃焼形態に切り換えるときは、実EGR率が前記第1の設定値以上の状態から前記第2の設定値以下の状態になるようにEGR弁35を作動させる一方、燃料が膨張行程の所定時期に噴射されて予混合燃焼の割合が拡散燃焼の割合よりも多い第3の燃焼形態となった後、燃料が圧縮行程上死点付近で噴射されるディーゼル燃焼形態に切り換わるように前記燃料噴射弁を作動させる。
【0106】
すなわち、予混合圧縮着火燃焼形態からディーゼル燃焼形態に移行するときに途中で第3の燃焼形態を経るようにするものである。この第3の燃焼形態では、燃料が気筒の膨張行程の所定時期に噴射されるが、膨張行程ではピストンの上死点からの下降に伴い燃焼室の容積が増大して、その温度及び圧力が低下するので、燃料の着火遅れ時間が長くなり、燃料と空気との十分な混合が図れる。よって、予混合燃焼が主体となり、前記第1の燃焼と同様にNOxや煤の生成を抑えることができる。
【0107】
前記第3の燃焼状態では圧縮上死点後に燃焼が開始することになるので、サイクル効率が低下して燃費が悪化するきらいがある。そこで、EGR値が第1及び第2設定値の中間の値にあるときの全期間で第3の燃焼形態にするのではなく、特に煤の生成が盛んになる所定範囲にあるときにのみ、第3の燃焼形態にするようにしてもよい。
【0108】
例えば、予混合圧縮着火燃焼から前記第3の燃焼形態への切換え(噴射形態の切換え)は、実EGR率が図15に示す第1設定値とEGR0との間にあるときに行ない、前記第3の燃焼形態からディーゼル燃焼形態への切換え(噴射形態の切換え)は、実EGR率が前記EGR0よりも小さくなったときに行なうようにすればよい。
【0109】
(後噴射の実行)
予混合圧縮着火燃焼形態からディーゼル燃焼形態へ切り換わったとき、煤生成量の増大に対策するために、ディーゼル燃焼開始後の膨張行程又は排気行程においてさらに燃料が後噴射されるようにインジェクタ55を作動させ、この後噴射燃料によって煤を再燃焼させることが好ましい。
【0110】
すなわち、図14に示す制御フローのステップSB11において、ディーゼル燃焼用の噴射形態を設定した後、さらに、燃料の後噴射量及び後噴射時期を設定して、主噴射及び後噴射を実行する。
【0111】
後噴射量は主噴射と後噴射とを合わせた総燃料噴射量に占める後噴射量の割合が10%〜20%程度となるように、且つエンジン回転数が高くなるほど又はエンジン負荷が高くなるほど後噴射量の割合を多くなるように設定する。エンジン回転数が高くなるほど又はエンジン負荷が高くなるほど煤の生成量が増大するからである。後噴射時期は、エンジン運転状態に応じて予め設定された後噴射時期マップにより、ATDC10゜〜60゜CAになるように設定する。
【0112】
従って、予混合圧縮着火燃焼からディーゼル燃焼に切り換わったとき、この噴射形態の切換えに対してEGR値の変更が遅れて煤の生成が一時的に多くなっても、膨張行程又は排気行程において後噴射される燃料の着火燃焼により、煤の再燃焼が図れ、煤排出量が増大することを防止することができる。また、トラクション制御のために燃料噴射量を調節してエンジン出力の増減を行なう場合、燃料噴射量の増減に対してEGR値の変化が遅れる場合でも、煤排出量が増大することを防止することができる。
【0113】
次に前記後噴射時期の好ましい態様について説明する。後噴射時期については、前記ディーゼル燃焼による熱発生率が所定値以下になったとき、特にその熱発生率が略零になった時点又は該時点から所定期間内に後噴射燃料の燃焼が開始するように設定することが好ましい。ディーゼル燃焼では、その大部分が拡散燃焼であり、この拡散燃焼で生ずる煤の再燃焼を図る上で有利になるからである。
【0114】
前記熱発生率が零になる時点は、エンジン運転状態(目標トルクTr及びエンジン回転数Ne)に応じて設定される主噴射の開始時期、主噴射量、噴射の形態(一括か分割か)、最後の噴射時期等によって異なる。また、後噴射を行なっても、直ちに着火するわけではなく、着火遅れがあり、さらにインジェクタ55に対する駆動信号の出力から実際に開弁するまでには駆動遅れがある。
【0115】
従って、予め実験により各エンジン運転状態での主燃焼(この場合はディーゼル燃焼)の熱発生率が零になる時点を求め、これに上記着火遅れ及び駆動遅れを考慮して、当該熱発生率が所定値以下になったとき、又はその熱発生率が略零になった時点、又は該時点から所定期間内に後噴射燃料の燃焼が開始するように、後噴射時期を定め、これをエンジン運転状態に対応させてマップ化して電子的に格納し、このマップにより後噴射時期をエンジン運転状態に応じて設定すればよい。
【0116】
上記各エンジン運転状態での主燃焼の熱発生率が零になる時点は、実験によって各エンジン運転状態での各クランク角毎の筒内圧力データを求め、これに基づいて熱発生率を熱力学的に計算しグラフ化することによって求めることができる。
【0117】
このようにして求めた熱発生率を図示すると、図19のようになり、燃料の主噴射による燃焼に応じて熱発生率が正の方向に大きな値を示した後、その拡散燃焼の終了に応じて熱発生率が0となるため、この熱発生率が略0となる時点t1を基準に後噴射時期を定めることになる。
【0118】
また、後噴射燃料の着火遅れ時間τfは、エンジンの排気量、燃料噴射圧力等によって異なるが、排気量1〜3Lクラスのエンジンでは、燃料噴射圧力が50〜200MPa程度のときは0.4〜0.7ms程度となる。この後噴射燃料の着火遅れ時間は、圧縮行程上死点付近で行なわれる主噴射燃料の着火遅れ時間(0.1〜0.3ms程度)よりも長いが、これは、後噴射が筒内温度が下がった時点で行なわれるためである。
【0119】
なお、燃焼室4内の温度を検出する温度センサの検出信号、燃焼光センサの検出信号、または燃焼室4内に存在する電荷が偏った反応性の高い水素や炭化水素等の量を検出するセンサの検出信号等に応じて上記拡散燃焼状態を判別する燃焼状態判別手段を設け、この燃焼状態判別手段において、燃料の主噴射後の温度が所定温度以下の低温となった否か、燃焼光の発光がなくなったか否か、または水素や炭化水素の量が急減したか否か等を判別することにより、上記拡散燃焼による熱発生率が零になる時点を求め、これに基づいて次の燃焼サイクルでの後噴射時期を設定するように構成してもよい。さらに、温度センサによって検出された気筒内温度から断熱膨張温度を減算した値の微分値を求め、この微分値がマイナスの値から0になった時点を検出することによって上記拡散燃焼による熱発生率が零になる時点を判別するようにしてもよい。
【0120】
(他の走行状態制御)
上記実施形態の走行状態制御はトラクション制御であるが、本発明は、車両の旋回走行性を高めるダイナミックスタビリティコントロール(以下、DSCという。)にも適用することができる。
【0121】
すなわち、DSCは、車体速、前輪舵角及び路面μから車両の目標ヨーレートを求め、さらに車体重量、ホイールベース等を考慮して目標横滑り角を求め、ヨーレートセンサ及び横加速度センサから求まる実際のヨーレート及び横滑り角との偏差に基づいて、それら偏差が所定の閾値を越えたときに、制御を開始し、目標ヨーレート及び目標横滑り角となるようにエンジン出力の調節及び車輪制動力の調節により、目標とする旋回走行状態を得る。
【0122】
従って、DSCの場合も、トラクション制御の場合と同様に、予混合燃焼領域(H)において制御が開始されたときは、上記実施形態と同様の手段で予混合圧縮着火燃焼形態からディーゼル燃焼形態に切換え、このディーゼル燃焼形態において、目標トルクとなるように燃料噴射量を制御することになる。
【0123】
なお、上記実施形態では、トラクション制御中はエンジンの全運転域でディーゼル燃焼を行なうマップを設定するようにしたが、これに限らず、トラクション等の走行状態を制御するトルク領域(例えば低負荷を除いた運転領域)だけディーゼル燃焼を行なうマップを設定し、低負荷運転中は予混合圧縮着火燃焼を行なうマップを設定してもよい。
【0124】
また、通常運転時(走行状態非制御中)にはエンジンの全運転域で予混合圧縮着火燃焼を行ない、トラクション等の走行状態制御時にディーゼル燃焼を行なうように制御してもよい。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る車両の構成を示す概略平面図である。
【図2】 同車両のブレーキ系統を示す平面図である。
【図3】 同車両の制御系を示すブロック図である。
【図4】 同車両のエンジン制御系の全体構成図である。
【図5】 エンジンの燃焼モードを切換える制御マップの一例を示す図である。
【図6】 インジェクタによる噴射作動の様子を模式的に示す説明図である。
【図7】 EGR率の変化に対する熱発生率の変化を示すグラフ図である。
【図8】 EGR率の変化に対して、(a)空気過剰率、(b)NOx濃度及び(c)煤の濃度の変化を互いに対応付けて示すグラフ図である。
【図9】 ディーゼル燃焼のときのEGR率の変化に対する排気中のNOx及び煤の濃度の変化をそれぞれ示すグラフ図である。
【図10】 トラクション制御のフローチャート図である。
【図11】 トラクション制御における車体速及び車輪速の経時変化を示すグラフ図である。
【図12】 スリップ率変化量ΔSLと目標トルクTrtFFとの関係を示すグラフ図である。
【図13】 スリップ率偏差difSLと目標トルク補正量ΔTrtとの関係を示すグラフ図である。
【図14】 燃料噴射制御のフローチャート図である。
【図15】 予混合圧縮着火燃焼及びディーゼル燃焼におけるEGR率の変化に対する煤生成量の変化を示すグラフ図である。
【図16】 EGR制御のフローチャート図である。
【図17】 トラクション制御時の燃焼モードマップ(a)とEGR弁開度(b)との関係を示すグラフ図である。
【図18】 通常制御時の燃焼モードマップ(a)とEGR弁開度(b)との関係を示すグラフ図である。
【図19】 インジェクタのニードルリフト量と熱発生率との関係を示すタイムチャート図である。
【符号の説明】
A エンジンの制御装置
H 予混合燃焼領域(第1運転領域)
D 拡散燃焼領域(第2運転領域)
5 メインコントローラ(走行状態制御手段)
11 ディーゼルエンジン
13 エンジンコントローラ(ECU)
52 気筒
54 燃焼室
55 インジェクタ(燃料噴射弁)
66 吸気通路
76 排気通路
78 触媒コンバータ(排気浄化手段)
84 EGR通路
85 EGR弁(排気還流量調節手段)
13 コントロールユニット(ECU)

Claims (5)

  1. エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
    前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
    エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第1の設定値よりも小さい第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
    エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え
    前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記EGR値が前記第1の設定値以上の状態から前記第2の設定値以下の状態になるように前記排気還流量調節手段を作動させる一方、燃料が膨張行程の所定時期に噴射されて予混合燃焼の割合が拡散燃焼の割合よりも多い第3の燃焼形態となった後、燃料が圧縮行程上死点付近で噴射されて前記第2の燃焼形態に切り換わるように前記燃料噴射弁を作動させることを特徴とするエンジンの制御装置。
  2. エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
    前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
    エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第1の設定値よりも小さい第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
    エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え、
    前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記EGR値が前記第1及び第2の設定値の間の所定値になった後に、燃料が吸気行程ないし圧縮行程で噴射される噴射形態から、燃料が圧縮行程上死点付近で噴射される噴射形態に切り換わって前記第2の燃焼形態になるように、前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とするエンジンの制御装置。
  3. エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
    前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
    エンジンの燃焼形態として、燃料が吸気行程ないし圧縮行程で噴射され且つ排気の還流量に関するEGR値が第1の設定値以上になって予混合燃焼が圧縮行程上死点付近から開始され且つ該予混合燃焼の割合が拡散燃焼の割合よりも多くなる第1の燃焼形態と、燃料が圧縮行程上死点付近で噴射され且つ前記EGR値が前記第1の設定値よりも小さい第2の設定値以下になって拡散燃焼の割合が予混合燃焼の割合よりも多くなる第2の燃焼形態とをとることができるように、前記燃料噴射弁及び排気還流量調節手段を制御する燃焼制御手段とを備えている車両のエンジンの制御装置において、
    エンジン出力の調節によって車両の走行状態を制御する走行状態制御手段を備え、
    前記燃焼制御手段は、前記第1の燃焼形態において前記走行状態制御手段がエンジン出力の調節を必要とするときには、前記第2の燃焼形態になるように前記燃料噴射弁及び排気還流量調節手段を制御し、前記第2の燃焼形態による燃焼開始後の膨張行程又は排気行程においてさらに燃料が後噴射されるように前記燃料噴射弁を作動させることを特徴とするエンジンの制御装置。
  4. 請求項1乃至請求項3のいずれか一に記載されているエンジンの制御装置において、
    前記走行状態制御手段は、エンジン出力による走行状態の非制御中に駆動輪に所定レベル以上のスリップを生じたときにエンジン出力を所定量低減させる制御を開始するものであり、
    前記燃焼制御手段は、前記走行状態制御手段による前記エンジン出力の低減が開始されたときに前記第2の燃焼形態となるように前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とするエンジンの制御装置。
  5. 請求項4に記載されているエンジンの制御装置において、
    前記走行状態制御手段は、前記エンジン出力の低減により、前記駆動輪のスリップ量の増大が収まった後、前記エンジン出力を調節して前記駆動輪のスリップ率が目標スリップ率になるようにフィードバック制御するものであり、
    前記燃焼制御手段は、少なくとも前記走行状態制御手段による前記エンジン出力の低減開始から前記フィードバック制御の終了までは、前記第2の燃焼形態となるように前記燃料噴射弁及び排気還流量調節手段を制御することを特徴とするエンジンの制御装置。
JP2002094385A 2002-03-29 2002-03-29 エンジンの制御装置 Expired - Fee Related JP3855820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094385A JP3855820B2 (ja) 2002-03-29 2002-03-29 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094385A JP3855820B2 (ja) 2002-03-29 2002-03-29 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2003293817A JP2003293817A (ja) 2003-10-15
JP3855820B2 true JP3855820B2 (ja) 2006-12-13

Family

ID=29238392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094385A Expired - Fee Related JP3855820B2 (ja) 2002-03-29 2002-03-29 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP3855820B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050284441A1 (en) * 2004-06-23 2005-12-29 Zhengbai Liu Strategy for fueling a diesel engine by selective use of fueling maps to provide HCCI, HCCI+CD, and CD combustion modes
JP2006336511A (ja) 2005-05-31 2006-12-14 Hitachi Ltd 内燃機関の制御装置
JP6296420B2 (ja) * 2015-10-30 2018-03-20 マツダ株式会社 ターボ過給機付きエンジンの制御装置
JP6168483B2 (ja) * 2015-10-30 2017-07-26 マツダ株式会社 エンジンの制御装置
JP6108295B1 (ja) * 2015-10-30 2017-04-05 マツダ株式会社 エンジンの制御装置
JP6296424B2 (ja) * 2016-02-15 2018-03-20 マツダ株式会社 ターボ過給機付きエンジンの制御装置
JP6296425B2 (ja) * 2016-02-15 2018-03-20 マツダ株式会社 ターボ過給機付きエンジンの制御装置
JP6658084B2 (ja) * 2016-02-26 2020-03-04 スズキ株式会社 エンジン及びこれを備えた車両

Also Published As

Publication number Publication date
JP2003293817A (ja) 2003-10-15

Similar Documents

Publication Publication Date Title
JP4069711B2 (ja) ディーゼルエンジンの燃焼制御装置
EP1348854B1 (en) Combustion control apparatus for a diesel engine, a diesel engine, combustion control method thereof, computer-readable storage medium, and computer program
JP3985083B2 (ja) ディーゼルエンジンの排気浄化装置
US6434929B1 (en) Control apparatus for direct injection engine
EP1806493A1 (en) Diesel engine controller
JP3555559B2 (ja) 内燃機関
EP1019622A1 (en) Control device for direct injection engine
EP3702595B1 (en) Compression-ignition engine, and method of controlling compression-ignition engine
US6422004B1 (en) System for controlling engine
JP3846348B2 (ja) ディーゼルエンジンの燃焼制御装置
JP3879672B2 (ja) エンジンの燃焼制御装置
JP3855820B2 (ja) エンジンの制御装置
JP4048885B2 (ja) エンジンの燃焼制御装置
JP4114199B2 (ja) エンジンの燃焼制御装置
JP4461617B2 (ja) ディーゼルエンジンの燃焼制御装置
JP2003286880A (ja) ディーゼルエンジンの燃焼制御装置
JP4055537B2 (ja) ディーゼルエンジンの燃焼制御装置
JP4356163B2 (ja) ターボ過給機付エンジンの制御装置
EP1348858B1 (en) Combustion control apparatus for an engine, an engine, combustion control method thereof, computer-readable storage medium, and computer program
JP4506001B2 (ja) ディーゼルエンジンの燃料噴射装置
JP3900819B2 (ja) ターボ過給機付エンジンの制御装置
EP1088983B1 (en) A control system for a direct injection engine of spark ignition type
JP2004156519A (ja) エンジンの燃焼制御装置
JP2003286909A (ja) ディーゼルエンジンの排気ガス還流装置
JP4403641B2 (ja) ディーゼルエンジンの燃料噴射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees