JP3846348B2 - ディーゼルエンジンの燃焼制御装置 - Google Patents

ディーゼルエンジンの燃焼制御装置 Download PDF

Info

Publication number
JP3846348B2
JP3846348B2 JP2002092240A JP2002092240A JP3846348B2 JP 3846348 B2 JP3846348 B2 JP 3846348B2 JP 2002092240 A JP2002092240 A JP 2002092240A JP 2002092240 A JP2002092240 A JP 2002092240A JP 3846348 B2 JP3846348 B2 JP 3846348B2
Authority
JP
Japan
Prior art keywords
combustion
engine
egr
exhaust gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092240A
Other languages
English (en)
Other versions
JP2003286876A (ja
Inventor
一司 片岡
保幸 寺沢
寛 林原
智明 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2002092240A priority Critical patent/JP3846348B2/ja
Publication of JP2003286876A publication Critical patent/JP2003286876A/ja
Application granted granted Critical
Publication of JP3846348B2 publication Critical patent/JP3846348B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直噴式ディーゼルエンジンの燃焼制御装置に関し、特に、エンジンの燃焼状態を切換えるときの過渡的な燃料噴射制御等の技術分野に属する。
【0002】
【従来の技術】
一般に、直噴式ディーゼルエンジンでは、気筒の圧縮上死点近傍で高温高圧の燃焼室に燃料を噴射して、自着火により燃焼させるようにしている。このとき、燃焼室に噴射された燃料は高密度の空気との衝突によって微細な液滴に分裂(霧化)しながら進行し、略円錐状の燃料噴霧を形成するとともに、その燃料液滴の表面から気化しつつ燃料噴霧の主に先端側や外周側で周囲の空気を巻き込んで混合気を形成し、この混合気の濃度及び温度が着火に必要な状態になったところで燃焼を開始する(予混合燃焼)。そして、そのようにして着火、即ち燃焼を開始した部分が核となり、周囲の燃料蒸気及び空気を巻き込みながら拡散燃焼すると考えられている。
【0003】
そのような通常のディーゼルエンジンの燃焼(以下、単にディーゼル燃焼ともいう)では、初期の予混合燃焼に続いて大部分の燃料が拡散燃焼することになるが、この際、濃度の不均質な燃料噴霧(混合気)の中において空気過剰率λが1に近い部分では急激な熱発生に伴い窒素酸化物(NOx)が生成され、また、燃料の過濃な部分では酸素不足によって煤が生成されることになる。この点について、NOxや煤を低減するために排気の一部を吸気に還流させる(Exhaust Gas recirculation:以下、単にEGRという)ことや燃料の噴射圧力を高めることが従来から行われている。
【0004】
そのようにEGRによって不活性な排気を吸気系に還流させると、燃焼温度が低下してNOxの生成が抑えられる一方で、吸気中の酸素が減ることになるから、多量のEGRは煤の生成を助長する結果となる。また、燃料噴射圧力を高めることは燃料噴霧の微粒化を促進するとともに、その貫徹力を大きくして空気利用率を向上するので、煤の生成は抑制されるが、NOxはむしろ生成し易い状況になる。つまり、ディーゼル燃焼においてはNOxの低減と煤の低減とがトレードオフの関係にあり、両者を同時に低減することは難しいのが実状である。
【0005】
これに対し、近年、燃料の噴射時期を大幅に進角させて、予混合燃焼が主体の燃焼状態とすることにより、NOxと煤とを同時に且つ格段に低減できる新しい燃焼の形態が提案されており、一般に予混合圧縮着火燃焼と呼ばれるものが公知である。特開2000−110669号公報に記載のディーゼルエンジンでは、EGRによって多量の排気を還流させるとともに、気筒の圧縮行程で燃料を噴射して空気と十分に混合し、この予混合気を圧縮行程の終わりに自着火させて、燃焼させるようにしている。
【0006】
そのような予混合燃焼(予混合圧縮着火燃焼)のときには、EGRによって吸気中に還流させる排気の割合(EGR率)を上述したディーゼル燃焼のときよりも一段、高くするのが好ましい。すなわち、空気に比べて熱容量の大きい排気を吸気中に多量に混在させ、予混合気中の燃料及び酸素の密度を低下させることで、着火遅れ時間を延長して予混合気の着火タイミングを圧縮上死点(TDC)近傍に制御することができる。しかも、その予混合気中では燃料及び酸素の周囲に不活性な排気が略均一に分散し、これが燃焼熱を吸収することになるので、NOxの生成が大幅に抑制されるのである。
【0007】
但し、EGRによって吸気中の排気の還流割合が多くなるということは、その分、空気の量が少なくなるということなので、予混合圧縮着火燃焼をエンジンの高負荷側で実現することは困難であると考えられている。このため、従来は、低負荷側の運転領域では前記の如く予混合圧縮着火燃焼とし、この際、EGR率は比較的高い第1の設定値以上に制御する一方、高負荷側の運転領域では燃料の噴射態様を切換えてディーゼル燃焼となるようにTDC近傍で噴射させるようにしており、この際、EGR率は、煤の増大を回避すべく前記第1の設定値よりも小さい第2の設定値以下に制御するようにしている。
【0008】
【発明が解決しようとする課題】
ところで、前記の如くエンジンの燃焼形態を予混合圧縮着火燃焼とディーゼル燃焼との間で切換えるようにした場合、その切換えの際に過渡的に排気の状態が悪化したり、大きな騒音を生じるという問題がある。すなわち、例えば、予混合圧縮着火燃焼からディーゼル燃焼に切換えるときには、EGRによる排気の還流量を減少させてEGR率が第1設定値以上の状態から第2設定値以下の状態へと変更するのであるが、この排気還流量の調節にはある程度の時間が必要なので、仮に燃料の噴射態様だけを直ちにディーゼル燃焼のためのTDC近傍での噴射に切換えると、EGR率の過大な状態で拡散燃焼が主体の燃焼が行われることになり、煤の生成が著しく増大するのである。
【0009】
また、反対にディーゼル燃焼から予混合圧縮着火燃焼に切換えるときに、吸気中の還流排気の割合が十分に高くない状態で燃料噴射態様だけを早期噴射に切換えると、燃焼室に形成された予混合気が過早なタイミングで一斉に着火してしまい、燃焼音が極めて大きくなったり、あるいはNOxの生成量が急増しさらに煤の生成量も増大する。
【0010】
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、予混合燃焼割合が主体の第1の燃焼状態(例えば予混合圧縮着火燃焼)と拡散燃焼が主体の第2の燃焼状態(例えばディーゼル燃焼)とに切換えるようにしたディーゼルエンジンにおいて、その切換えの際の燃料噴射及びEGRの制御手順に工夫を凝らして、過渡的な排気状態の悪化や騒音の発生を防止することにある。
【0011】
【課題を解決するための手段】
前記の目的を達成するために、本発明では、ディーゼルエンジンの運転状態が相対的に予混合燃焼割合の多い第1の燃焼状態と相対的に拡散燃焼割合の多い第2の燃焼状態とのうちの一方から他方に移行するとき、まず、燃焼室への排気の還流量を変更して、これが所定の状態になった後に燃料噴射弁による燃料の噴射態様を切換えるようにした。
【0012】
具体的に、請求項1の発明では、エンジンの気筒内の燃焼室に臨む燃料噴射弁と、その燃焼室への排気の還流量を調節する排気還流量調節手段と、エンジンが第1の運転状態のときに前記燃料噴射弁により燃料を少なくとも気筒の吸気行程ないし圧縮行程で噴射させて、予混合燃焼の割合が拡散燃焼の割合よりも多い第1の燃焼状態とする一方、第2の運転状態のときには拡散燃焼の割合が予混合燃焼の割合よりも多い第2の燃焼状態となるよう、燃料を少なくとも圧縮上死点近傍で噴射させる燃料噴射制御手段と、エンジンが前記第1運転状態のときに排気の還流量に関するEGR値が第1の設定値以上になる一方、第2運転状態のときには前記EGR値が前記第1の設定値よりも少ない第2の設定値以下になるように前記排気還流量調節手段を制御する排気還流制御手段と、を備えたディーゼルエンジンの燃焼制御装置を前提とする。そして、前記燃料噴射制御手段は、エンジンの運転状態が前記第1及び第2運転状態の一方から他方に移行するとき、前記排気還流制御手段による排気還流量調節手段の制御が行われてEGR値が前記第1及び第2設定値の間の所定値になった後に、燃料噴射弁による燃料の噴射態様を切換えるものであって、前記第1運転状態から第2運転状態への移行時にエンジンが所定以上の加速運転状態にあれば、それ以外のときに比べて高いEGR値で燃料の噴射態様を切換える構成とする。
【0013】
前記の構成により、まず、エンジンが第1運転状態のときには、燃料噴射制御手段による燃料噴射弁の制御によって燃料が少なくとも気筒の吸気行程ないし圧縮行程で噴射されるとともに、排気還流制御手段による排気還流量調節手段の制御によって排気の還流割合が所定以上に多い状態(EGR値≧第1設定値)になる。このことで、気筒内の燃焼室に早期に噴射された燃料が当該燃焼室において比較的広く分散し且つ空気及び還流排気と十分に混合して、均質度合いの高い混合気を形成し、これが圧縮行程の終盤に自着火して相対的に予混合燃焼の割合が多い第1の燃焼状態になる。この燃焼は従来例(特開2000−110669号公報)のものと同様の低温燃焼になり、NOxや煤の生成が非常に少ない。
【0014】
一方、エンジンが第2運転状態のときには燃料が少なくとも気筒の圧縮上死点近傍で噴射されて、相対的に拡散燃焼の割合が多い第2の燃焼状態になる。この際、吸気への排気の還流によってNOxや煤の生成がある程度、抑制されるとともに、排気の還流割合が所定以下とされることで(EGR値≦第2設定値)、空気の供給量が確保されて十分な出力が得られる。
【0015】
さらに、エンジンの運転状態が前記第1及び第2運転状態の一方から他方に移行するときには、まず、前記排気還流量調節手段の制御が行われてEGR値が第1及び第2設定値の間の所定値になった後に、前記燃料噴射弁による燃料の噴射態様が切換えられる。すなわち、エンジンが第1運転状態から第2運転状態に移行するときには、排気の還流量が減少してEGR値が所定値以下になった後に拡散燃焼が主体の燃焼状態になるので、吸気中への排気の還流割合が過大な状態で拡散燃焼が行われることはなくなり、過渡的な煤の増大を抑制できる。
【0016】
その際、エンジンが所定以上の加速運転状態にあるときには、そうでないときに比べて高いEGR値で、即ち早めに燃料の噴射態様を切換えるようにしているため、相対的に燃料噴射量や吸気流量の少ない状態で燃料噴射態様が切換わることになり、仮に煤の濃度は高くなっても、その排出量はあまり多くはならない。
【0017】
一方、エンジンの運転状態が第2燃焼状態から第1運転状態に移行するときには、排気の還流量が増大してEGR値が所定値以上になった後に予混合燃焼が主体の燃焼状態になる。このことで、早期噴射した燃料の過早着火を所定以上の還流排気によりある程度、抑えることができ、過渡的な燃焼音の増大や排気状態の悪化を抑制できる。
【0018】
請求項2の発明では、エンジンの実際のEGR値を推定するEGR推定手段を備え、燃料噴射制御手段は前記EGR推定手段によるEGR値の推定結果に基づいて、燃料噴射弁による燃料の噴射態様を切換えるものとする。こうすれば、EGR推定手段による推定結果に基づいて、エンジンの実際のEGR値が第1及び第2設定値の間の所定値になった後に、燃料噴射弁による燃料の噴射態様を切換えることができる。よって、請求項1の発明の作用効果が十分に得られる。
【0019】
請求項3の発明では、エンジンの気筒の実圧縮比は、少なくとも当該エンジンの運転状態が第2運転状態から第1運転状態へ移行するときに略17以下になるものとする。ここで、実圧縮比というのは、気筒の吸気弁が閉じるまでに気筒内に吸入された気体が圧縮上死点において圧縮されたときの実質的な圧縮比率のことであり、気筒の上死点及び下死点における燃焼室の幾何学的な容積比率とは異なり、概ね、吸気弁が閉じたときの燃焼室容積に対する圧縮上死点での燃焼室容積の比率に近いものである。
【0020】
また、前記実圧縮比が、少なくともエンジンの運転状態の移行時に略17以下となるというのは、実圧縮比を変更可能な機構を備えない場合を含み、この場合にはエンジンの運転状態に拘わらず気筒の実圧縮比は略17以下の略一定の値になる。一方、実圧縮比を変更可能な機構として、例えば吸気弁の開閉時期又はリフト量の少なくとも一方を変更する可変動弁機構を備える場合には、この可変動弁機構を少なくともエンジンの運転状態の移行時に実圧縮比が略17以下となるように作動させる。すなわち、例えば、吸気弁の閉弁時期を気筒の下死点よりも大幅に遅角させることにより、幾何学的な圧縮比が同じであっても実際の気体の圧縮比率(実圧縮比)が低くなるようにすればよい。
【0021】
そして、例えば、エンジンの運転状態が第2燃焼状態から第1運転状態に移行するときに前記の如く気筒の実圧縮比を低くすれば、このことによって気筒の圧縮行程での温度上昇が相対的に抑えられて、早期噴射した燃料の過早着火を抑えることができるので、燃焼音の増大や排気状態の悪化をさらに効果的に抑制できる。
【0022】
請求項4の発明では、エンジンの吸気通路と排気通路とを連通させる排気還流通路と、少なくともエンジンの運転状態が第1及び第2運転状態の間で移行するときに、前記排気還流通路の排気を冷却する冷却手段とを備えるものとする。ここで、少なくともエンジンの運転状態の移行時に排気還流通路の排気を冷却するというのは、それ以外のときにも排気を冷却するものを含む意味である。
【0023】
そして、例えば、エンジンの運転状態が第2燃焼状態から第1運転状態に移行するときに前記の如く還流排気を冷却するようにすれば、相対的に温度状態の低い排気によって燃料の着火遅れ時間を効果的に延長し、これにより早期噴射した燃料の過早着火を抑えることができる
【0024】
【発明の実施の形態】
以下、本発明の実施形態を図面に基いて説明する。
【0025】
(全体構成)
図1は本発明の実施形態に係るディーゼルエンジンの燃焼制御装置Aの一例を示し、1は車両に搭載されたディーゼルエンジンである。このエンジン1は複数の気筒2,2,…(1つのみ図示する)を有し、その各気筒2内に往復動可能にピストン3が嵌挿されていて、このピストン3により各気筒2内に燃焼室4が区画されている。また、燃焼室4の天井部にはインジェクタ5(燃料噴射弁)が配設されていて、その先端部の噴口から高圧の燃料を燃焼室4に直接、噴射するようになっている。一方、各気筒2毎のインジェクタ5の基端部は、それぞれ分岐管6a,6a,…(1つのみ図示する)により共通の燃料分配管6(コモンレール)に接続されている。このコモンレール6は、燃料供給管8により高圧供給ポンプ9に接続されていて、該高圧供給ポンプ9から供給される燃料を前記インジェクタ5,5,…に任意のタイミングで供給できるように高圧の状態で蓄えるものであり、その内部の燃圧(コモンレール圧力)を検出するための燃圧センサ7が配設されている。
【0026】
前記高圧供給ポンプ9は、図示しない燃料供給系に接続されるとともに、歯付ベルト等によりクランク軸10に駆動連結されていて、燃料をコモンレール6に圧送するとともに、その燃料の一部を電磁弁を介して燃料供給系に戻すことにより、コモンレール6への燃料の供給量を調節するようになっている。この電磁弁の開度が前記燃圧センサ7による検出値に応じてECU40(後述)により制御されることによって、燃圧がエンジン1の運転状態に対応する所定値に制御される。
【0027】
また、エンジン1の上部には、図示しないが、吸気弁及び排気弁をそれぞれ開閉させる動弁機構が配設されていて、各気筒2毎の吸気弁及び排気弁の閉弁時期は、当該気筒2の実圧縮比、即ち、気筒2内に吸入された気体が圧縮上死点において圧縮されたときの実質的な圧縮比率が、略17以下になるように設定されている。一方、エンジン1の下部には、クランク軸10の回転角度を検出するクランク角センサ11と、冷却水の温度を検出するエンジン水温センサ13とが設けられている。前記クランク角センサ11は、詳細は図示しないが、クランク軸端に設けた被検出用プレートとその外周に相対向するように配置した電磁ピックアップとからなり、前記被検出用プレートの外周部全周に亘って等間隔に形成された突起部が通過する度に、パルス信号を出力するものである。
【0028】
エンジン1の一側(図の右側)の側面には、各気筒2の燃焼室4に対しエアクリーナ15で濾過した空気(新気)を供給するための吸気通路16が接続されている。この吸気通路16の下流端部にはサージタンク17が設けられ、このサージタンク17から分岐した各通路がそれぞれ吸気ポートにより各気筒2の燃焼室4に連通しているとともに、サージタンク17には吸気の圧力状態を検出する吸気圧センサ18が設けられている。
【0029】
また、前記吸気通路16には、上流側から下流側に向かって順に、外部からエンジン1に吸入される空気の流量を検出するホットフィルム式エアフローセンサ19と、後述のタービン27により駆動されて吸気を圧縮するコンプレッサ20と、このコンプレッサ20により圧縮した吸気を冷却するインタークーラ21と、バタフライバルブからなる吸気絞り弁22とが設けられている。この吸気絞り弁22は、弁軸がステッピングモータ23により回動されて、全閉から全開までの間の任意の状態とされるものであり、全閉状態でも吸気絞り弁22と吸気通路16の周壁との間には空気が流入するだけの間隙が残るように構成されている。
【0030】
一方、エンジン1の反対側(図の左側)の側面には、各気筒2の燃焼室4からそれぞれ燃焼ガス(排気)を排出するように、排気通路26が接続されている。この排気通路26の上流端部は各気筒2毎に分岐して、それぞれ排気ポートにより燃焼室4に連通する排気マニホルドであり、該排気マニホルドよりも下流の排気通路26には上流側から下流側に向かって順に、排気中の酸素濃度を検出するリニアO2センサ29と、排気流を受けて回転されるタービン27と、排気中の有害成分(HC、CO、NOx、煤等)を浄化可能な触媒コンバータ28とが配設されている。
【0031】
前記タービン27と吸気通路16のコンプレッサ20とからなるターボ過給機30は、可動式のフラップ31,31,…によりタービン27への排気の通路断面積を変化させるようにした可変ターボ(以下VGTという)であり、前記フラップ31,31,…は各々、図示しないリンク機構を介してダイヤフラム32に駆動連結されていて、そのダイヤフラム32に作用する負圧の大きさが負圧制御用の電磁弁33により調節されることで、該フラップ31,31,…の回動位置が調節されるようになっている。尚、ターボ過給機は可変ターボでなくてもよい。
【0032】
前記排気通路26には、タービン27よりも排気上流側の部位に臨んで開口するように、排気の一部を吸気側に還流させるための排気還流通路(以下EGR通路という)34の上流端が接続されている。このEGR通路34の下流端は吸気絞り弁22及びサージタンク17の間の吸気通路16に接続されていて、排気通路26から取り出された排気の一部を吸気通路16に還流させるようになっている。また、EGR通路34の途中には、その内部を流通する排気を冷却するためのEGRクーラ37(冷却手段)と、開度調節可能な排気還流量調節弁(以下EGR弁という)35とが配置されている。このEGR弁35は負圧応動式のものであり、前記VGT30のフラップ31,31,…と同様に、ダイヤフラムへの負圧の大きさが電磁弁36によって調節されることにより、EGR通路34の断面積をリニアに調節して、吸気通路16に還流される排気の流量を調節するものである。尚、前記EGRクーラ37はなくてもよい。
【0033】
そして、前記各インジェクタ5、高圧供給ポンプ9、吸気絞り弁22、VGT30、EGR弁35等は、いずれもコントロールユニット(Electronic Contorol Unit:以下ECUという)40からの制御信号を受けて作動する。一方、このECU40には、前記燃圧センサ7、クランク角センサ11、エンジン水温センサ13、吸気圧センサ18、エアフローセンサ19、リニアO2センサ29等からの出力信号がそれぞれ入力され、さらに、図示しないアクセルペダルの踏み操作量(アクセル開度)を検出するアクセル開度センサ39からの出力信号が入力される。
【0034】
(エンジンの燃焼制御の概要)
前記ECU40によるエンジン1の基本的な制御は、主にアクセル開度に基づいて基本的な目標燃料噴射量を決定し、インジェクタ5の作動制御によって燃料の噴射量や噴射時期を制御するとともに、高圧供給ポンプ9の作動制御により燃圧、即ち燃料の噴射圧力を制御するというものである。また、吸気絞り弁22やEGR弁35の開度の制御によって燃焼室4への排気の還流割合を制御し、さらに、VGT30のフラップ31,31,…の作動制御(VGT制御)によって吸気の過給効率を向上させる。
【0035】
具体的には、例えば図2の制御マップ(燃焼モードマップ)に示すように、エンジン1の温間の全運転領域のうちの相対的に低負荷側には、予混合燃焼領域(H)が設定されていて(第1の運転状態)、ここでは、図3(a)〜(c)に模式的に示すように、インジェクタ5により気筒2の圧縮行程中期から後期にかけて燃料を噴射させ、予めできるだけ均質な混合気を形成した上で自着火により燃焼させるようにしている。このような燃焼形態は、従来より予混合圧縮着火燃焼と呼ばれており、気筒の1サイクル当たりの燃料噴射量があまり多くないときにその燃料の噴射時期を適切に設定して、燃料を適度に広く分散させ且つ空気と十分に混合した上で、その大部分を略同じ着火遅れ時間の経過後に自着火させて、一斉に燃焼させるものである。つまり、予混合圧縮着火燃焼は、予混合燃焼の割合が拡散燃焼の割合よりも多い燃焼状態(第1の燃焼状態)である。
【0036】
尚、前記インジェクタ5による燃料の噴射は、図3(a)に示すように1回で行うようにしてもよく、或いは同図(b)、(c)に示すように複数回に分けて行うようにしてもよい。これは、気筒2の圧縮行程中期から後期にかけて、即ち圧縮上死点近傍よりも気体の圧力や密度状態が低い燃焼室4に燃料を噴射する場合に、燃料噴霧の貫徹力が強くなり過ぎることを避けるためであり、従って、燃料噴射量が多いほど燃料噴射の回数(分割回数)を増やすのが好ましい。
【0037】
前記予混合圧縮着火燃焼の際には、EGR通路34のEGR弁35を相対的に大きく開いて吸気通路16に多量の排気を還流させるようにする。こうすることで、新気、即ち外部から供給される新しい空気に不活性で熱容量の大きい排気が多量に混合され、これに対して燃料の液滴及び蒸気が混合されることになるから、予混合気自体の熱容量が大きくなるとともに、その中の燃料及び酸素の密度は比較的低くなる。このことで、着火遅れ時間を延長して空気と排気と燃料とを十分に混合した上で、圧縮上死点(TDC)近傍の最適なタイミングで着火させて燃焼させることができる。
【0038】
具体的に、図4に示すグラフは、エンジン1の低負荷域で圧縮上死点前(BTDC)の所定のクランク角(例えばBTDC30°CA)に燃料を噴射して予混合圧縮着火燃焼させたときに、熱発生のパターンがEGR率(新気量と還流排気量とを合わせた全吸気量に対する還流排気量の割合)に応じてどのように変化するかを示した実験結果である。同図に仮想線で示すように、EGR率が低いときには燃料はTDCよりもかなり進角側で自着火してしまい、サイクル効率の低い過早な熱発生のパターンとなる。一方、EGR率が高くなるに連れて自着火のタイミングは徐々に遅角側に移動し、図に実線で示すようにEGR率が略55%のときには、熱発生のピークが略TDCになってサイクル効率の高い熱発生パターンとなる
また、前記図4のグラフによれば、EGR率が低いときには熱発生のピークがかなり高くなっていて、燃焼速度の高い激しい燃焼であることが分かる。このときには燃焼に伴うNOxの生成が盛んになり、また、極めて大きな燃焼音が発生する。一方、EGR率が高くなるに連れて熱発生の立ち上がりが徐々に緩やかになり、そのピークも低下する。これは、前記の如く混合気中に多量の排気が含まれる分だけ、燃料及び酸素の密度が低くなることと、その排気によって燃焼熱が吸収されることとによると考えられる。そして、そのように熱発生の穏やかないわゆる低温燃焼ではNOxの生成が大幅に抑制される。
【0039】
具体的に、図5に示すグラフは、前記の実験においてEGR率の変化に対する燃焼室4の空気過剰率λ、排気中のNOx及び煤の濃度の変化を示し、同図(a)によれば、この実験条件においてEGR率が0%のときには空気過剰率λがλ≒2.7と大きく、EGR率が大きくなるに従い空気過剰率λが徐々に小さくなって、EGR率が略55〜60%のときに略λ=1になっている。すなわち、排気の還流割合が多くなるに連れて混合気の平均的な酸素過剰率λが1に近づくのであるが、たとえ燃料及び酸素の比率が略λ=1であっても、それらの周囲には多量の排気が存在しているから、燃料や酸素の密度自体はあまり高くはないのである。従って、同図(b)に示すように、排気中のNOxの濃度はEGR率の増大とともに一様に減少していて、EGR率が45%以上ではNOxは殆ど生成しなくなる。
【0040】
一方、煤の生成については、同図(c)に示すように、EGR率が0〜略30%では殆ど煤が見られず、EGR率が略30%を超えると煤の濃度が急激に増大するが、EGR率が略50%を超えると再び減少し、EGR率が略55%以上になると略零になる。これは、まず、EGR率が低いときには一般的なディーゼル燃焼と同じく、予混合燃焼の割合よりも拡散燃焼の割合が多い燃焼状態(第2の燃焼状態)になり、しかも、吸気中には燃料に対して酸素が過剰に存在することから、激しい燃焼の際にも煤は殆ど生成しないが、EGR率が増大して吸気中の酸素が少なくなると、拡散燃焼の状態が悪化して煤の生成量が急増するということである。一方、EGR率が略55%以上になると、上述したように、新気と排気と燃料とが十分に混合された上で燃焼するようになり、このときには煤は殆ど生成しないと考えられる。
【0041】
以上、要するに、この実施形態では、エンジン1が低負荷側の予混合燃焼領域(H)にあるときに、燃料を比較的早期に噴射するとともに、EGR弁35の開度を制御して、EGR率を予め設定した所定値(第1設定値:前記の実験例では略55%くらいであり、一般的には略50〜略60%くらいの範囲に設定するのが好ましい)以上とすることで、NOxや煤の殆ど生成しない予混合燃焼が主体の低温燃焼を実現するものである。
【0042】
これに対し、前記図2の制御マップに示すように、予混合燃焼領域(H)以外の高速ないし高負荷側の運転領域(D)(第2の運転状態)では、混合気の拡散燃焼の割合が予混合燃焼の割合よりも多い一般的なディーゼル燃焼を行うようにしている。すなわち、図3(d)に示すように、インジェクタ5により主に気筒2のTDC近傍で燃料を噴射させて、初期の予混合燃焼に続いて大部分の混合気を拡散燃焼させるようにする(以下、この運転領域(D)を拡散燃焼領域というが、この運転領域では気筒2の圧縮上死点近傍以外でも燃料を噴射するようにしてもよい)。
【0043】
その際、EGR弁35の開度は、前記した予混合燃焼領域(H)に比べれば小さくして、EGR率が予め設定した所定値(第2設定値)以下になるようにする。これは、拡散燃焼が主体の一般的なディーゼル燃焼において煤の増大を招かない範囲で、NOxの生成をできるだけ抑制するように設定されていて、具体的には図6のグラフに一例を示すように、拡散燃焼領域(D)におけるEGR率の上限は、例えば略30〜略40%の範囲に設定するのが好ましい。また、エンジン1の負荷が高くなるほど気筒2への新気の供給量を確保する必要があるので、高負荷側ほどEGR率は低くなり、しかも、高速ないし高負荷側ではターボ過給機30による吸気の過給圧が高くなるので、排気の還流は実質的に行われない。
【0044】
ところで、前記の如くエンジン1の燃焼状態を切換えるようにした場合、その切換えの際に過渡的に排気状態の悪化等の問題が生じる虞れがある。すなわち、予混合圧縮着火燃焼のときとディーゼル燃焼のときとでそれぞれEGR率の変化に対する煤の濃度の変化を表した図7,8において、例えば、エンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)に移行する場合について説明すると、このときにはインジェクタ5による燃料の噴射態様を早期噴射(予混合圧縮着火燃焼)からTDC近傍での噴射(ディーゼル燃焼)に切換えるとともに、EGR弁35の開度を変更してEGR率が前記第1設定値以上の状態から第2設定値以下の状態へと移行する。つまり、同図(a)において実線で示す予混合圧縮着火燃焼(図には予混合燃焼と略記する)の状態から破線で示すディーゼル燃焼の状態へと移行するのであるが、この際、排気の還流量の変化にはある程度の時間が必要になるから、仮に燃料の噴射態様だけを直ちにTDC近傍での噴射に切換えるとすると、EGR率の過大な状態で拡散燃焼が主体のディーゼル燃焼に切り換わることになり、図に太線の矢印で示すように煤の生成が著しく増大してしまう。
【0045】
また、反対に、拡散燃焼領域(D)から予混合燃焼領域(H)に移行するときには、図8(a)に矢印で示すように、ディーゼル燃焼の状態(破線で示す)から予混合圧縮着火燃焼の状態(実線で示す)へと移行するのであるが、このときに燃料の噴射態様だけを直ちにTDC近傍での噴射から早期噴射へと切換えるとすると、吸気中の還流排気の割合が不十分な状態で予混合圧縮着火燃焼に切り換わることになるので、予混合気の過早着火による急激な燃焼によって(図4参照)極めて大きな燃焼音が発生し、NOxの生成量が急増するとともに、図8(a)に示すように煤の生成量も増大することになる。
【0046】
これに対し、この実施形態の燃焼制御装置Aでは、本発明の特徴部分として、エンジン1の運転状態が予混合燃焼領域(H)と拡散燃焼領域(D)との間で移行するときに、前記の如き過渡的な排気状態の悪化や騒音の発生を防止すべく、まず、EGR弁35の開度を変更し、これにより燃焼室4への排気の還流状態が所定の状態になった後に燃料の噴射態様を切換えるようにしている。
【0047】
具体的に、エンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)に移行するときには、まずEGR弁35の開度を小さくして排気の還流量を減少させ、これによりEGR率が低下して第1設定値と第2設定値との間の所定値以下になったときに、燃料の噴射態様を早期噴射からTDC近傍での噴射に切換えるようにする。すなわち、図7(b)に示すように、2つの燃焼状態における煤の生成量が略同じになるEGR率を目安として、それよりも少しだけ高いEGR率EGR1のときに燃料の噴射態様を切換えることで、同図(a)と比較して煤の濃度を大幅に低減することができる。
【0048】
また、エンジン1が拡散燃焼領域(D)から予混合燃焼領域(H)に移行するときにも、まずEGR弁35の開度を大きくして排気の還流量を増大させ、これによりEGR率が高くなって第1設定値と第2設定値との間の所定値よりも大きくなったときに、燃料の噴射態様をTDC近傍での噴射から早期噴射に切換えるようにする。すなわち、図8(b)に示すように、2つの燃焼状態における煤の生成量が略同じになるEGR率よりも少しだけ低いEGR率EGR2のときに燃料の噴射態様を切換えることで、同図(a)と比較して煤の濃度を大幅に低減することができる。このときには予混合気の過早着火も抑制されるので、NOxの生成量が急増するとともなく、また、過大な燃焼音の発生も回避される。
【0049】
尚、前記2つの所定値EGR1,EGR2は、燃焼室4への排気の還流状態が燃料噴射態様を切換えるのに適した所定の状態になったことを判定するための基準となるものであり、以下、切換EGR率と呼ぶことにする。また、2つの所定値EGR1,EGR2を少しだけ異ならせているのは、制御のハンチングを防止するためであるが、2つの燃焼状態における煤の生成量が略同じになるEGR率=EGR1=EGR2とすることも可能である。さらに、この実施形態では、主に煤の生成量に着目して、エンジン1の運転状態の移行時に煤の生成を最も効果的に抑えられるように、前記切換EGR率の値EGR1,EGR2を設定しているが、これに限らず、騒音が最も小さくなるように設定することも可能である。
【0050】
(燃料噴射制御)
以下に、前記ECU40によるインジェクタ5の具体的な制御手順を図9及び図10のフローチャート図に基づいて説明する。まず、図9に示すフローのスタート後のステップSA1において、少なくとも、燃圧センサ7からの信号、クランク角センサ11からの信号、吸気圧センサ18からの信号、エアフローセンサ19からの信号、アクセル開度センサ39からの信号等を入力し(データ入力)、また、ECU40のメモリに記憶されている各種フラグの値を読み込む。続いて、ステップSA2において、クランク角信号から求めたエンジン回転速度neとアクセル開度Accとに基づいてエンジン1の目標トルクTrqを目標トルクマップから読み込んで、設定する。この目標トルクマップは、アクセル開度Accとエンジン回転速度neとに対応する最適な値を予め実験的に求めて設定して、ECU40のメモリに電子的に格納したものであり、図11(a)に一例を示すように、アクセル開度Accが大きいほど、またエンジン回転速度neが高いほど、目標トルクTrqが大きくなっている。
【0051】
続いて、ステップSA3において、燃焼モードマップ(図2参照)を参照してエンジン1の燃焼モードを判定する。すなわち、目標トルクTrqとエンジン回転速度neとに基づいてエンジン1が予混合燃焼領域(H)にあるかどうか判定し、この判定がNOで拡散燃焼領域(D)ならば後述のステップSA11に進む一方、判定がYESならばステップSA4に進んで、今度は前回の制御サイクルにおいてエンジン1が拡散燃焼領域(D)にあったかどうか判定する。この判定は、例えば、前回の制御サイクルのステップSA3における判定結果に応じて運転領域を表すフラグの値を更新し、これをECU40のメモリに記憶するようにしておいて、そのフラグの値に基づいて判定するようにすればよい。そして、判定がYESであれば、拡散燃焼領域(D)から予混合燃焼領域(H)への移行時であるから、ステップSA5に進んで移行フラグFHをオンにして(FH←1)ステップSA6に進み、ここで、切換EGR率EGR*の値を所定値EGR2として、後述する図10のステップSB7に進む。
【0052】
また、前記ステップSA4の判定がNOであればステップSA7に進んで、前記移行フラグFHがオンかどうか判定し(FH=1?)、判定がYESならば前記ステップSA6に進む一方、判定がNOであればステップSA8に進んで、今度は、エンジン1が所定の急加速状態かどうか判定する。この判定は、例えばアクセル開度Accが増大していて且つその変化量が予め設定した基準値よりも大きいときに急加速状態と判定する。そして、判定がYESであればステップSA9に進んで移行フラグFHをオンにして(FH←1)ステップSA10に進み、ここでは切換EGR率EGR*の値を所定値EGRacとして、後述する図10のステップSB7に進む。
【0053】
一方、前記ステップSA8において急加速状態でないNOと判定したときには、図10に示すフローのステップSB1〜SB6に進んで、予混合圧縮着火燃焼状態になるようにインジェクタ5により燃料を早期噴射させる。すなわち、まず、ステップSB1において、目標トルクTrqとエンジン回転速度neとに基づいて、図11(b)に示すような噴射量マップの予混合燃焼領域(H)から基本噴射量QHbを読み込み、また、同様に同図(c)に示すような噴射時期マップから基本噴射時期ITHb(インジェクタ5の針弁が開くクランク角位置)を読み込む。前記噴射量マップや噴射時期マップは、目標トルクTrqとエンジン回転速度neとに対応する最適な値を予め実験的に求めて設定して、ECU40のメモリに電子的に格納したものであり、前記噴射量マップにおける基本噴射量QHbの値は、予混合燃焼領域(H)においてアクセル開度Accが大きいほど、またエンジン回転速度neが高いほど大きくなっている。
【0054】
また、前記噴射時期マップにおいて基本噴射時期ITHbの値は、予混合燃焼領域(H)においてアクセル開度Accが大きいほど、またエンジン回転速度neが高いほど進角側になっていて、燃料噴霧の殆どが空気と十分に混合されてから燃焼するよう、気筒2の圧縮行程における所定のクランク角範囲(例えばBTDC90°〜30°CA)において燃料噴射量や燃圧に対応付けて設定されている。
【0055】
続いて、ステップSB2において噴射時期の補正係数c1を補正テーブルから読み込む。この補正テーブルは、燃焼室4への排気の還流状態に基づいてインジェクタ5にによる燃料噴射時期を補正するために、EGR率に対応する最適な補正係数c1の値を予め実験的に求めて設定し、ECU40のメモリに電子的に格納したものであり、例えば、EGR率が高いほど噴射時期が遅角するように設定されている。そして、ステップSB3において燃料噴射量や噴射時期の補正演算を行う。これは、例えば前記基本噴射時期QHbをエンジン水温や吸気圧等に応じて補正して目標噴射量QHtを求めるとともに、前記基本噴射時期ITHbに前記補正係数c1を乗じて目標噴射時期ITHtを求める。
【0056】
続いて、ステップSB4において目標噴射量QHt及び目標噴射時期ITHtをそれぞれ設定し、続くステップSB5において移行フラグFHをクリアし(FH←0)、続くステップSB6において、エンジン1の各気筒2毎に気筒2の圧縮行程の前記設定した燃料噴射時期ITHtになれば、インジェクタ5による燃料の噴射作動を実行し、しかる後にリターンする。
【0057】
つまり、アクセル開度Acc及びエンジン回転速度neに基づいてエンジン1が予混合燃焼領域(H)にあると判定され、しかも、拡散燃焼領域(D)からの移行時でも急加速状態でもなければ、このときには、各気筒2毎のインジェクタ5により圧縮行程の所定クランク角範囲で早期に燃料を噴射させ、吸気と十分に混合した上で着火させて燃焼させるようにしている(予混合圧縮着火燃焼)。
【0058】
一方、前記図9のフローのステップSA3において、エンジン1が拡散燃焼領域(D)にあるNOと判定されて進んだステップSA11では、前回の制御サイクルにおいてエンジン1が予混合燃焼領域(H)にあったかどうか判定し、判定がYESであれば、ステップSA12に進んで移行フラグFDをオンにしてから(FD←1)ステップSA13に進み、前記ステップSA6と同様に切換EGR率EGR*の値を所定値EGR1として、後述する図10のステップSB7に進む。一方、前記ステップSA11において判定がNOであればステップSA14に進み、移行フラグFDがオンかどうか判定する(FD=1?)。この判定がYESならば前記ステップSA13に進む一方、判定がNOであれば図10のフローのステップSB9〜SB13に進んで、ディーゼル燃焼状態になるようにインジェクタ5により燃料をTDC近傍で噴射させる。
【0059】
すなわち、まずステップSB9では、目標トルクTrqとエンジン回転速度neとに基づいて噴射量マップ(図11(b)参照)の拡散燃焼領域(D)から基本噴射量QDbを読み込み、同様に噴射時期マップ(同図(c)参照)の拡散燃焼領域(D)から基本噴射時期ITDbを読み込む。前記噴射量マップにおける基本噴射量QDbの値は、拡散燃焼領域(D)においてアクセル開度Accが大きいほど、またエンジン回転速度neが高いほど大きくなるように設定されている。また、前記噴射時期マップの拡散燃焼領域(D)における基本噴射時期ITDbの値は、燃料噴射の終了時期(インジェクタ5の針弁が閉じるクランク角位置)が圧縮上死点後の所定の時期になって、燃料噴霧が良好に拡散燃焼するように燃料噴射量や燃圧(コモンレール圧)に対応付けて設定されている。
【0060】
続いて、ステップSB10において噴射量及び噴射時期の各補正係数c2,c3を補正テーブルから読み込む。この補正テーブルは、燃焼室4への排気の還流状態に基づいて燃料噴射量及び噴射時期をそれぞれ補正するために、EGR率に対応する補正係数c2,c3の最適値を予め実験的に求めて設定し、ECU40のメモリに電子的に格納したものであり、例えば、EGR率が相対的に高いときに噴射量を減量するとともに、EGR率が高いときほど噴射時期を遅角するように設定すればよい。続いて、ステップSB11において燃料噴射量や噴射時期の補正演算を行う。これは、前記基本噴射時期QDbに前記補正係数c2を乗じて目標噴射量QDtを求めるとともに、前記基本噴射時期ITDbに前記補正係数c3を乗じて目標噴射時期ITDtを求める。
【0061】
そして、ステップSB12において目標噴射量QDt及び目標噴射時期ITDtをそれぞれ設定し、続くステップSB13において移行フラグFDをクリアして(FD←0)、前記ステップSB6に進んでエンジン1の各気筒2毎に気筒2の圧縮行程の前記設定した燃料噴射時期ITDtになれば、インジェクタ5による燃料の噴射作動を実行して、しかる後にリターンする。
【0062】
つまり、アクセル開度Acc及びエンジン回転速度neに基づいてエンジン1が拡散燃焼領域(D)にあると判定され、且つ予混合燃焼領域(H)からの移行時でなければ、一般的なディーゼル燃焼となるようにTDC近傍でインジェクタ5により燃料を噴射させるようにしている。尚、拡散燃焼領域(D)における燃料の噴射形態としては、噴射時期ITDtにおいてインジェクタ5を開弁させて燃料噴射量QDtに対応する分量の燃料を一括して噴射させるようにしてもよいし、その噴射時期ITDtよりも進角側から燃料を複数回に分割して噴射させるようにしてもよい。また、それらに加えて、気筒2の膨張行程で少量の燃料を追加で噴射するようにしてもよい。
【0063】
また、エンジン1が予混合燃焼領域(H)及び拡散燃焼領域(D)の間で移行するときには、燃焼室4への排気の還流状態に基づいて燃料の噴射態様を切換える。すなわち、前記図9のフローのステップSA6又はステップSA13のいずれかに続いて、図10のフローのステップSB7においてエンジン1の実際のEGR率を推定し、この推定値(実EGR率EGR)が切換EGR率EGR*以上であるかどうかをステップSB8にて判定する。そして、EGR≧EGR*でYESであれば前記ステップSB1〜SB5に進んで予混合圧縮着火燃焼とする一方、EGR<EGR*でNOであれば前記ステップSB9〜SB12に進んでディーゼル燃焼とする。尚、前記実EGR率EGRの推定方法としては、例えば、エアフローセンサ19からの信号に基づいて求められる吸入空気量と、リニアO2センサ29からの信号に基づいて求められる酸素濃度と、目標燃料噴射量QHt,QDtとに基づいて所定の計算により推定するようにすればよい。
【0064】
つまり、エンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)に移行するときには、実EGR率EGRが切換EGR率EGR*(所定値EGR1)以下になってから、燃料の噴射態様をTDC近傍での噴射に切換える(図7(b)参照)。一方、拡散燃焼領域(D)から予混合燃焼領域(H)への移行時には、実EGR率EGRが切換EGR率EGR*(所定値EGR2)を超えてから燃料の噴射態様を早期噴射に切換えるようにしている(図8(b)参照)。
【0065】
さらに、エンジン1が予混合燃焼領域(H)にあって且つ急加速状態のときには、高負荷側の拡散燃焼領域(D)への移行を見越して、吸気量や燃料噴射量の少ないうちに先にディーゼル燃焼に切換える。その際、前記の如くエンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)へ移行するときと同様に、実EGR率EGRが第1設定値及び第2設定値の間の所定値以下になってから、燃料噴射の態様を切換えるようにする。すなわち、前記図9のフローのステップSA10において切換EGR率EGR*の値を所定値EGRacとした後に、ステップSB7において実EGR率EGRを求め、続くステップSB8において実EGR率EGRが切換EGR率EGR*以上であるかどうか判定し、EGR≧EGR*でYESであれば前記ステップSB1〜SB5に進む一方、EGR<EGR*でNOであれば前記ステップSB9〜SB12に進む。
【0066】
ここで、前記急加速状態に対応する切換EGR率EGR*の値(所定値EGRac)は、エンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)に移行するときの切換EGR率EGR*の値(所定値EGR1)よりも高い値とされている(EGR1<EGRac)。このため、エンジン1が急加速状態になったときには、移行時に比べて早めに燃料の噴射態様が切換えられることになり、燃料噴射量や吸気流量の少ない状態で燃料の噴射態様が切換わることから、仮に煤の濃度が高くなってもその排出量はそれほど多くはならない。しかも、この場合でも、図12に模式的に示すように過渡的な煤の濃度の増大は抑制されるので、排気状態の悪化は十分に抑制することができる
【0067】
前記図9及び図10に示す制御フローにより、全体として、エンジン1が低負荷側の予混合燃焼領域(H)にあるときにインジェクタ5により燃料を、予混合圧縮着火燃焼となるように気筒2の圧縮行程で早期噴射させる一方、高速ないし高負荷側の拡散燃焼領域(D)では一般的なディーゼル燃焼となるよう、燃料を少なくともTDC近傍で噴射させる噴射制御部40a(燃料噴射制御手段)が構成されている。
【0068】
また、特に図10に示すフローのステップSB7により、エンジン1の実際のEGR率を推定するEGR推定部40b(EGR推定手段)が構成されていて、噴射制御部40aは、エンジン1が前記予混合燃焼領域(H)又は拡散燃焼領域(D)の一方から他方に移行するときに、燃料の噴射態様を直ちに切換えるのではなく、前記EGR推定部40bによる実EGR率の推定値EGRに基づいて、燃焼室4への実際の排気還流状態が燃料噴射態様を切換えるのに適した所定の状態になった後に、燃料の噴射態様を切換えるように構成されている。
【0069】
さらに、前記噴射制御部40aは、エンジン1が予混合燃焼領域(H)にあって且つ所定以上の急加速状態のときにはディーゼル燃焼となるよう、燃料の噴射態様をTDC近傍での噴射に切換えるものであり、その際にも、燃料の噴射態様を直ちに切換えるのではなく、実EGR率の推定値EGRに基づいて燃焼室4への実際の排気還流状態が切換えに適した所定の状態になった後に、燃料の噴射態様を切換えるように構成されている。
【0070】
(EGR制御)
次に、前記ECU40によるEGR制御の具体的な手順について、図13のフローチャート図に基づいて説明すると、まず、スタート後のステップSC1において、少なくとも、燃圧センサ7からの信号、クランク角センサ11からの信号、吸気圧センサ18からの信号、エアフローセンサ19からの信号、アクセル開度センサ39からの信号等を入力し(データ入力)、また、ECU40のメモリに記憶されている各種フラグの値を読み込む。続いて、ステップSC2において、図9に示す燃料噴射制御フローのステップSA8と同様にしてエンジン1が急加速状態かどうか判定する。この判定がYESならば後述するステップSC7に進む一方、判定がNOであればステップSC3に進む。
【0071】
そのステップSC3では、前記燃料噴射制御フローのステップSA3と同様にしてエンジン1の燃焼モードを判定し、拡散燃焼領域(D)でNOならばステップSC6に進む一方、予混合燃焼領域(H)でYESならばステップSC4に進み、ECU40のメモリに電子的に格納されているEGRマップからエンジン1の運転状態に対応するEGR弁35の開度の目標値EGRHを読み込んで、設定する。続いて、ステップSC5において、ECU40からEGR弁35のダイヤフラムの電磁弁37に制御信号を出力して(EGR弁の作動)、しかる後にリターンする。
【0072】
一方、前記ステップSC3においてエンジン1が拡散燃焼領域(D)にあるNOと判定して進んだステップSC6では、前記EGRマップからエンジン1の拡散燃焼状態に対応するEGR弁35の開度の目標値EGRDを読み込み、前記ステップSC5に進んで、EGR弁35を作動させて、しかる後にリターンする。
【0073】
前記EGRマップは、目標トルクTrqとエンジン回転速度neとに対応する最適な値を予め実験的に求めて設定したものであり、図14(a)に一例を示すように、EGR弁35の開度の目標値EGRH,EGRDを、予混合燃焼領域(H)と拡散燃焼領域(D)とでそれぞれアクセル開度Accが大きいほど、またエンジン回転速度neが高いほど小さくなるように設定したものである。より詳しくは、低速低負荷側の所定の運転状態(同図に点Xで示す)から高速高負荷側の所定の運転状態(同図に点Yで示す)まで運転状態が変化したときに、同図(b)に示すようにEGR弁35の開度が変化するようにその目標値EGRH,EGRDが設定されている。即ち、運転状態の変化の軌跡を表す直線X−Yに沿って見たときに、EGR弁35の開度は予混合燃焼領域(H)で高速高負荷側に向かって徐々に小さくなり、拡散燃焼領域(D)との境界を超えて一段、小さくなった後に、再び高速高負荷側に向かって徐々に小さくなっている。その際、エンジン1の運転状態の変化に対するEGR弁35の開度の変化は、予混合燃焼領域(H)では極めて小さく、一方、拡散燃焼領域(D)では比較的大きくなるように設定されている。
【0074】
つまり、エンジン1が予混合燃焼領域(H)にあるときには、EGR弁35を相対的に大きく開いて、EGR通路34により多量の排気を吸気通路16に還流させ、これによりEGR率EGRを第1設定値以上として良好な予混合圧縮着火燃焼を実現する。一方、エンジン1が拡散燃焼領域(D)にあるときには、エンジン1を一般的なディーゼル燃焼の状態にし、このときにはEGR弁35の開度を相対的に小さくして、EGR率EGRを第2設定値以下の適度な状態とすることで、煤の増大を招くことなく、NOxの生成を抑制するようにしている。
【0075】
また、前記ステップSC2においてエンジン1が急加速状態にあるYESと判定して進んだステップSC7では、予混合燃焼領域(H)であっても、EGR率EGRが第2設定値以下になるようにEGR弁35開度の目標値を所定値EGREとし、前記ステップSC5に進んでEGR弁35を作動させて、しかる後にリターンする。つまり、エンジン1が予混合燃焼領域(H)にあっても急加速状態のときには、拡散燃焼領域(D)への移行を見越して先にEGR弁35を閉じるようにしている。
【0076】
前記図13に示す制御フローによって、全体として、エンジン1が予混合燃焼領域(H)にあるときに、EGR率が第1設定値以上になるようにEGR弁35の開度を制御する一方、拡散燃焼領域(D)にあるときにはEGR率が前記第1設定値よりも少ない第2設定値以下になるように、EGR弁35の開度を制御するEGR制御部40c(排気還流制御手段)が構成されている。
【0077】
そして、EGR制御部40cは、エンジン1が所定以上の加速運転状態のときには前記予混合燃焼領域(H)であっても、EGR率EGRが前記第2設定値以下になるようにEGR弁35を制御するものである。
【0078】
(作用効果)
次に、この実施形態に係るディーゼルエンジン1の燃焼制御装置Aの作用効果を説明すると、まず、エンジン1が予混合燃焼領域(H)にあり、且つ拡散燃焼領域(D)からの移行時でも急加速状態でもないときには、EGR弁35が相対的に大きく開かれ、タービン27上流の排気通路26から取り出された排気がEGR通路34によって吸気通路16に還流される。そして、そのように還流する多量の排気が外部から供給される新気と共に気筒2内の燃焼室4へ供給されて、実EGR率EGRが第1設定値(例えば55%)以上の状態になる。
【0079】
また、前記気筒2内の燃焼室4に臨むインジェクタ5により燃料が当該気筒2の圧縮行程の所定クランク角範囲(BTDC90°〜30°CA)にて噴射開始され、この燃料が燃焼室4において比較的広く分散し且つ吸気(新気及び還流排気)と十分に混合して、均質度合いの高い混合気を形成する。この混合気中では、特に燃料蒸気や酸素の密度が高い部分で比較的低温度の酸化反応(いわゆる冷炎)が進行するが、混合気中には空気(窒素、酸素等)と比べて熱容量の大きい排気(二酸化炭素等)が多量に混在していて、その分、燃料及び酸素の密度が全体的に低くなっており、しかも、冷炎の反応熱は熱容量の大きい二酸化炭素等に吸収されることになるので、高温の酸化反応への移行(いわゆる着火)は抑制されて、着火遅れ時間が長くなる。
【0080】
そして、気筒2の圧縮上死点近傍に至り、燃焼室4の気体の温度がさらに上昇し且つ燃料及び酸素の密度が十分に高くなると、混合気は一斉に着火して燃焼する。この際、混合気中の燃料蒸気と空気及び還流排気とは既に十分に均一に分散しており、特に燃料の密度が高い部分では冷炎反応が進行しているから、混合気中には燃料の過濃な部分が殆ど存在せず、従って、煤の生成は見られない。
【0081】
また、前記の如く混合気中の燃料蒸気の分布が均一化されていて、さらに多量の二酸化炭素等が均一に分散して存在することから、この混合気全体が一斉に燃焼してもその内部で局所的に急激な熱発生の起こることがなく、さらに、燃焼熱は周囲の二酸化炭素等によって吸収されることになるから、燃焼温度の上昇が抑えられて、NOxの生成が大幅に抑制される。
【0082】
一方、エンジン1が拡散燃焼領域(D)にあり、且つ予混合燃焼領域(H)からの移行時でなければ、インジェクタ5により燃料が少なくともTDC近傍で燃焼室4に噴射され、初期の予混合燃焼に続いて良好な拡散燃焼状態になる(一般的なディーゼル燃焼)。この際、EGR弁35の開度は相対的に小さくされ、適度な分量の排気の還流によってNOxや煤の生成が抑制されるとともに、排気の還流割合が所定以下とされることで(実EGR率≦第2設定値)、新しい空気の供給量が確保されて、十分な出力が得られるようになる。
【0083】
また、エンジン1の運転状態が予混合燃焼領域(H)と拡散燃焼領域(D)との一方から他方に移行するときには、まず、EGR弁35の開度が変更されて、これにより実EGR率EGRが前記第1及び第2設定値の間の所定値になった後に、インジェクタ5による燃料の噴射態様が切換えられる。すなわち、エンジン1が予混合燃焼領域(H)から拡散燃焼領域(D)へ移行するときには、排気の還流量が減少して実EGR率EGRが切換EGR率EGR1以下になった後に、燃料の噴射態様が早期噴射からTDC近傍での噴射に切換えられて、拡散燃焼が主体のディーゼル燃焼となる。このことで、吸気中への排気の還流割合が過大な状態でディーゼル燃焼が行われることはなくなり、図7(b)に示すように過渡的な煤の増大を抑制することができる。
【0084】
反対に、エンジン1が拡散燃焼領域(D)から予混合燃焼領域(H)に移行するときには、排気の還流量が増大して実EGR率EGRが切換EGR率EGR2を超えた後に、燃料の噴射態様がTDC近傍での噴射から早期噴射に切換えられて、予混合燃焼が主体の予混合圧縮着火燃焼となる。このことで、早期噴射した燃料の過早着火を所定以上の還流排気により抑制して、過渡的な燃焼音の増大や排気状態の悪化を抑制することができる。
【0085】
しかも、この実施形態のエンジン1では、気筒2の実圧縮比が略17以下と相対的に低めに設定されている上に、EGR通路34により還流する排気をEGRクーラ37により冷却するようにしており、このことによっても着火遅れ期間を長くして、過早着火を抑制できるので、燃焼音の増大や煤の生成を効果的に抑制することができる。すなわち、図15に一例を示すように、低速低負荷(エンジン回転速度1500rpm)でBTDC30°CAで燃料の一括噴射を開始するという条件下で、気筒の実圧縮比εを18.3又は16.0(ε=16.0では還流排気を冷却した場合と冷却しない場合との2種類)の何れかにして、それぞれEGR率と煤の生成との関係を調べたところ、EGR率が略30〜55%のときには煤の生成が盛んになるものの、圧縮比が小さいときには煤が格段に少なくなり、特に圧縮比の小さいとき(ε=16.0)に還流排気を冷却すれば、煤の生成を極めて効果的に抑制できることが分かる。
【0086】
さらに、エンジン1が予混合燃焼領域(H)にあっても、急加速状態になったときには、その後の拡散燃焼領域(D)への移行を見越して先にディーゼル燃焼の状態に切換える。このことで、その切り換えの際には未だ吸気量や燃料噴射量が少ないから、たとえ煤の濃度が高くなってもその排出量自体はあまり多くはならない。また、このときにも、前記した予混合燃焼領域(H)から拡散燃焼領域(D)への移行時と同様に、実EGR率EGRが切換EGR率(所定値EGRac)になった後に燃料の噴射態様が切換えられるので、過渡的な煤の増大が抑制され、前記の如く排気の流量が少ないこととも合わせて、排気状態の悪化を十分に抑制できる。
【0087】
(他の実施形態)
尚、本発明の構成は、前記の実施形態に限定されることはなく、その他の種々の構成をも包含するものである。すなわち、例えば、前記実施形態においては、エンジン1が運転領域(H)、(D)間で移行するときだけでなく、予混合燃焼領域(H)で急加速状態になったときにも、実EGR率EGRが所定値になった後に燃料噴射の態様を切換えるようにしているが、このような制御手順は、例えば、エンジン1が2つの運転領域(H)、(D)間で移行するときにだけ行うようにしてもよい。
【0088】
また、例えば、エンジン1が予混合燃焼領域(H)にあって、触媒コンバータ28の昇温促進やNOx吸収材への還元成分の供給のために、一時的に予混合圧縮着火燃焼の状態からディーゼル燃焼の状態へ切換えるときにも、前記の制御手順を適用可能である。
【0089】
また、前記実施形態では、エンジン1の気筒2の実圧縮比が略17以下となるように吸気弁及び排気弁の開閉時期を設定しているが、周知の可変動弁機構等を設けて、エンジン1が2つの運転領域(H)、(D)間で移行するときにのみ、気筒2の実圧縮比を略17以下とするようにしてもよい。すなわち、例えば吸気弁の開閉時期又はリフト量の少なくとも一方を変更可能な可変動弁機構を備える場合、エンジン1が運転領域(H),(D)間を移行するときに、例えば吸気弁の閉弁時期を気筒の下死点よりも大幅に遅角させることによって、実圧縮比を低下させるようにすればよい。
【0090】
さらに、前記実施形態では、エンジン1を予混合圧縮着火燃焼の状態にするときに、インジェクタ5による燃料の噴射を気筒2の圧縮行程の所定クランク角範囲で開始させるようにしているが、これに限らず、燃料の噴射は気筒2の吸気行程から開始するようにしてもよい。
【0091】
【発明の効果】
以上、説明したように、請求項1の発明に係るディーゼルエンジンの燃焼制御装置によると、エンジンをその運転状態に応じて、相対的に予混合燃焼割合の多い第1燃焼状態と拡散燃焼割合の多い第2燃焼状態とに切換えるようにしたものにおいて、前記第1及び第2燃焼状態のうちの一方から他方に移行するときに、まず、燃焼室への排気の還流量を変更してこれが所定の状態になった後に、燃料噴射弁による燃料の噴射態様を切換えることで、吸気中への排気の還流割合が過大な状態で第2の燃焼状態になることや、反対に排気還流割合が不足する状態で第1の燃焼状態になることを回避して、過渡的な燃焼音の増大や排気状態の悪化を抑制することができる。
【0092】
また、エンジンが第1運転状態から第2運転状態に移行するときであって、かつ所定以上の加速運転状態にあるときには、相対的に燃料噴射量や吸気流量の少ない状態で早めに燃料噴射態様を切換えることにより、煤の濃度は高くなっても、その排出量の増大を抑制できる。
【0093】
請求項2の発明によると、エンジンの実際のEGR値を推定するEGR推定手段を備え、これによる推定結果に基づいて燃料の噴射態様を切換えるようにすることで、請求項1の発明の効果を十分に得ることができる。
【0094】
請求項3の発明によると、エンジンの気筒の実圧縮比を少なくとも第2運転状態から第1運転状態への移行時に略17以下とすることで、圧縮行程での温度上昇を抑えて燃料の過早着火を抑制し、これにより燃焼音の増大等をさらに効果的に抑制できる。
【0095】
請求項4の発明によると、少なくともエンジンの運転状態の移行時に、排気還流通路を流通する排気を冷却することで、着火遅れ時間を効果的に延長して燃料の過早着火を抑制し、これにより燃焼音の増大等をさらに効果的に抑制できる
【図面の簡単な説明】
【図1】 本発明の実施形態に係るエンジンの燃焼制御装置の全体構成図である。
【図2】 エンジンの燃焼モードを切換える制御マップの一例を示す図である。
【図3】 インジェクタによる噴射作動の様子を模式的に示す説明図である。
【図4】 EGR率の変化に対する熱発生率の変化を示すグラフ図である。
【図5】 EGR率の変化に対して、(a)空気過剰率、(b)NOx濃度及び(c)煤の濃度の変化を互いに対応付けて示すグラフ図である。
【図6】 ディーゼル燃焼のときのEGR率の変化に対する排気中のNOx及び煤の濃度の変化をそれぞれ示すグラフ図である。
【図7】 予混合圧縮着火燃焼からディーゼル燃焼に移行するときの実EGR率の変化と、これに対応する煤の濃度の変化とを対応付けて示すグラフ図である。
【図8】 ディーゼル燃焼から予混合圧縮着火燃焼に移行するときの図7相当図である。
【図9】 燃料噴射制御の前半の手順を示すフローチャート図である。
【図10】 燃料噴射制御の後半の手順を示すフローチャート図である。
【図11】 エンジンの目標トルクマップ(a)、噴射量マップ(b)及び噴射時期マップ(c)の一例を示す説明図である。
【図12】 エンジンの急加速時に予混合圧縮着火燃焼からディーゼル燃焼に移行するときの図7相当図である。
【図13】 EGR制御の手順を示すフローチャート図である。
【図14】 EGRマップ(a)、及びそのマップ上でのEGR弁開度の変化特性(b)の一例を示す説明図である。
【図15】 気筒の圧縮比を変更して、EGR率の変化に対する煤の生成量の変化を示したグラフ図である。
【符号の説明】
A ディーゼルエンジンの燃焼制御装置
H 予混合燃焼領域(第1運転領域)
D 拡散燃焼領域(第2運転領域)
1 ディーゼルエンジン
2 気筒
4 燃焼室
5 インジェクタ(燃料噴射弁)
16 吸気通路
26 排気通路
34 EGR通路
35 EGR弁(排気還流量調節手段)
40 コントロールユニット(ECU)
40a 噴射制御部(燃料噴射制御手段)
40b EGR推定部(EGR推定手段)
40c EGR制御部(排気還流制御手段)

Claims (4)

  1. エンジンの気筒内の燃焼室に臨む燃料噴射弁と、
    前記燃焼室への排気の還流量を調節する排気還流量調節手段と、
    エンジンが第1の運転状態のときに前記燃料噴射弁により燃料を少なくとも気筒の吸気行程ないし圧縮行程で噴射させて、予混合燃焼の割合が拡散燃焼の割合よりも多い第1の燃焼状態とする一方、第2の運転状態のときには拡散燃焼の割合が予混合燃焼の割合よりも多い第2の燃焼状態となるよう、燃料を少なくとも圧縮上死点近傍で噴射させる燃料噴射制御手段と、
    エンジンが前記第1運転状態のときに排気の還流量に関するEGR値が第1の設定値以上になる一方、第2運転状態のときには前記EGR値が前記第1の設定値よりも少ない第2の設定値以下になるように、前記排気還流量調節手段を制御する排気還流制御手段とを備えたディーゼルエンジンの燃焼制御装置において、
    前記燃料噴射制御手段は、エンジンの運転状態が前記第1及び第2運転状態の一方から他方に移行するとき、前記排気還流制御手段による排気還流量調節手段の制御が行われてEGR値が前記第1及び第2設定値の間の所定値になった後に、燃料噴射弁による燃料の噴射態様を切換えるものであって、前記第1運転状態から第2運転状態への移行時にエンジンが所定以上の加速運転状態にあれば、それ以外のときに比べて高いEGR値で燃料の噴射態様を切換えるものである
    ことを特徴とするディーゼルエンジンの燃焼制御装置。
  2. 請求項1において、
    エンジンの実際のEGR値を推定するEGR推定手段を備え、
    燃料噴射制御手段は、前記EGR推定手段によるEGR値の推定結果に基づいて燃料噴射弁による燃料の噴射態様を切換えるように構成されていることを特徴とするディーゼルエンジンの燃焼制御装置。
  3. 請求項1において、
    エンジンの気筒の実圧縮比は、少なくとも当該エンジンの運転状態が第2運転状態から第1運転状態へ移行するときに略17以下となることを特徴とするディーゼルエンジンの燃焼制御装置。
  4. 請求項1において、
    エンジンの吸気通路と排気通路とを連通させる排気還流通路と、
    少なくともエンジンの運転状態が第1及び第2運転状態の間で移行するときに、前記排気還流通路の排気を冷却する冷却手段とを備えることを特徴とするディーゼルエンジンの燃焼制御装置
JP2002092240A 2002-03-28 2002-03-28 ディーゼルエンジンの燃焼制御装置 Expired - Fee Related JP3846348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092240A JP3846348B2 (ja) 2002-03-28 2002-03-28 ディーゼルエンジンの燃焼制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092240A JP3846348B2 (ja) 2002-03-28 2002-03-28 ディーゼルエンジンの燃焼制御装置

Publications (2)

Publication Number Publication Date
JP2003286876A JP2003286876A (ja) 2003-10-10
JP3846348B2 true JP3846348B2 (ja) 2006-11-15

Family

ID=29237118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092240A Expired - Fee Related JP3846348B2 (ja) 2002-03-28 2002-03-28 ディーゼルエンジンの燃焼制御装置

Country Status (1)

Country Link
JP (1) JP3846348B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039382B2 (ja) * 2004-03-31 2008-01-30 いすゞ自動車株式会社 ディーゼルエンジン
JP4492192B2 (ja) * 2004-04-13 2010-06-30 いすゞ自動車株式会社 ディーゼルエンジン
JP4343954B2 (ja) * 2004-08-13 2009-10-14 株式会社日立製作所 エンジンの制御装置
JP4506474B2 (ja) * 2005-01-14 2010-07-21 トヨタ自動車株式会社 圧縮着火内燃機関の燃焼切替制御システム
JP4525373B2 (ja) * 2005-02-03 2010-08-18 トヨタ自動車株式会社 圧縮着火内燃機関の燃焼切替制御システム
JP4591318B2 (ja) * 2005-11-08 2010-12-01 トヨタ自動車株式会社 圧縮着火内燃機関の燃焼切替制御システム
JP4752479B2 (ja) * 2005-12-13 2011-08-17 いすゞ自動車株式会社 ディーゼルエンジンの制御装置
JP4730122B2 (ja) 2006-02-07 2011-07-20 いすゞ自動車株式会社 エンジン制御方法およびエンジン制御システム
JP4788449B2 (ja) * 2006-04-06 2011-10-05 トヨタ自動車株式会社 圧縮着火内燃機関の燃焼制御システム
JP5333738B2 (ja) * 2009-02-03 2013-11-06 マツダ株式会社 ディーゼルエンジンの燃焼制御装置及び燃焼制御方法
JP5196270B2 (ja) * 2009-03-31 2013-05-15 マツダ株式会社 ディーゼルエンジンの燃焼制御装置及び燃焼制御方法
JP5540729B2 (ja) * 2010-01-27 2014-07-02 マツダ株式会社 過給機付エンジンの制御方法および制御装置
JP5445394B2 (ja) * 2010-08-20 2014-03-19 マツダ株式会社 圧縮自着火エンジンの制御装置
EP2610469B1 (en) * 2010-08-25 2019-04-10 Toyota Jidosha Kabushiki Kaisha Device for estimating diffuse combustion start time and device for controlling diffuse combustion start time for internal combustion engine
JP6156298B2 (ja) * 2014-09-16 2017-07-05 マツダ株式会社 エンジンの制御装置
JP6413562B2 (ja) * 2014-09-30 2018-10-31 三菱自動車工業株式会社 エンジン制御装置
US11480143B2 (en) 2020-08-10 2022-10-25 Ford Global Technologies, Llc Methods and systems for a ducted injector

Also Published As

Publication number Publication date
JP2003286876A (ja) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4069711B2 (ja) ディーゼルエンジンの燃焼制御装置
JP3846348B2 (ja) ディーゼルエンジンの燃焼制御装置
EP1348854B1 (en) Combustion control apparatus for a diesel engine, a diesel engine, combustion control method thereof, computer-readable storage medium, and computer program
US7677222B2 (en) Diesel engine control device
US6668792B2 (en) Control system for in-cylinder direct injection engine
EP1803918A1 (en) Diesel engine controller
JP3879672B2 (ja) エンジンの燃焼制御装置
JP2003286880A (ja) ディーゼルエンジンの燃焼制御装置
JP4114199B2 (ja) エンジンの燃焼制御装置
JP4432290B2 (ja) 過給機付火花点火式直噴エンジン
JP4048885B2 (ja) エンジンの燃焼制御装置
JP4055537B2 (ja) ディーゼルエンジンの燃焼制御装置
JP4461617B2 (ja) ディーゼルエンジンの燃焼制御装置
EP1348858B1 (en) Combustion control apparatus for an engine, an engine, combustion control method thereof, computer-readable storage medium, and computer program
JP4356163B2 (ja) ターボ過給機付エンジンの制御装置
JP4089392B2 (ja) エンジンの燃焼制御装置
JP4186344B2 (ja) 火花点火式直噴エンジンの制御装置
JP3855820B2 (ja) エンジンの制御装置
JP3900819B2 (ja) ターボ過給機付エンジンの制御装置
JP2003286909A (ja) ディーゼルエンジンの排気ガス還流装置
JPH11315739A (ja) ディ―ゼルエンジンの燃焼制御装置
JP4924280B2 (ja) ディーゼルエンジンの制御装置。
JP2001241345A (ja) ディーゼルエンジンの燃料制御装置
JP2003286886A (ja) ディーゼルエンジンの燃焼制御装置
JP4403641B2 (ja) ディーゼルエンジンの燃料噴射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees