JP3848841B2 - 表面プラズモンレーザ構造を有する装置 - Google Patents
表面プラズモンレーザ構造を有する装置 Download PDFInfo
- Publication number
- JP3848841B2 JP3848841B2 JP2001046367A JP2001046367A JP3848841B2 JP 3848841 B2 JP3848841 B2 JP 3848841B2 JP 2001046367 A JP2001046367 A JP 2001046367A JP 2001046367 A JP2001046367 A JP 2001046367A JP 3848841 B2 JP3848841 B2 JP 3848841B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- active region
- surface plasmon
- metal
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 239000010931 gold Substances 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 20
- 230000005855 radiation Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 230000035515 penetration Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000000603 solid-source molecular beam epitaxy Methods 0.000 description 1
- 238000012306 spectroscopic technique Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3401—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
- H01S5/3402—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/185—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
- H01S5/187—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1046—Comprising interactions between photons and plasmons, e.g. by a corrugated surface
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Semiconductor Lasers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
【発明の属する技術分野】
本発明は、表面プラズモンレーザ構造に関し、特に、長波長シングルモード動作を行う分布帰還(DFB)構造を有する表面プラズモンレーザに関する。
【0002】
【従来の技術】
III−V半導体材料におけるバンド間遷移に基づく長波長注入レーザに関する従来技術は、一般に、λ<5μmに制限されているため、中ないし遠赤外スペクトルのかなりの部分は鉛塩レーザによってしかアクセスできずに残されている。しかし、InGaAs/AlInAsヘテロ構造における伝導体状態間のサブバンド間遷移で動作する量子カスケード(QC)レーザは、きわめて広範囲で有用であり、2つの大気窓の波長の範囲(3.4〜13μm)をカバーし、室温で高い光パワーを提供することがこれまでにわかっている。分布帰還(DFB)デバイス(活性領域に隣接して光導波路に埋め込まれたグレーティング構造を含む)として形成すると、シングルモード動作が可能である。光導波は、周囲の(外部)クラッド領域よりも高い屈折率を有する内部コア(活性)領域により達成される。しかし、長波長では、導波路層(コア+クラッド)の全厚は扱いが困難となり、さらに、自由キャリアによる光吸収(特に、比較的高濃度でドープされたn型QCクラッド層における)は、さらに大きい信号損失を生じる。また、長波長で動作するDFB構造は、グレーティング構造を形成するのに非常に深いエッチングを必要とするため、再成長には問題が多く、活性領域から遠く離れた弱結合グレーティングしか選択の余地がなくなる。これらのすべての問題点のため、DFB構造は、長波長アプリケーションにとって有望でない候補となっている。
【0003】
しかし、電磁気学のマクスウェルの法則により、2つの異なる均一材料の間の界面には、別のタイプの光閉込めが起こり得る。2つの材料の誘電率(ε)の実部が逆符号である場合、界面に垂直な2つの向きに指数関数的に減衰する強度により特徴づけられた光波が存在する。与えられた放射周波数に対して、単一の閉込めモードが存在し、磁界は、界面に平行で、伝播方向に垂直に偏波する(すなわち、TM(transverse magnetic)偏波)。
【0004】
実部が負の誘電率は、一般に、荷電調和振動子の電磁応答、特に、振動子共鳴ω0より上で、ε(ωL)=0となる周波数ωL(純粋縦モードが伝播可能)までの周波数に現れる。金属や高濃度ドープ半導体では、既存の準自由電子は、横励起に対して厳密にゼロ共鳴周波数の単振動子としてふるまうが、同時に、非常に高いωLを示し、これは一般に、可視あるいはさらにUVの波長範囲にある。これは「プラズマ周波数」ωPと呼ばれる、電荷密度発振の周波数である。このように、金属は、Re[ε]<0となるきわめて広い波長範囲を示し、この範囲で、金属は、界面に閉じ込められた電磁波を有することができる。この電磁波を「表面プラズモン」という。光周波数における従来の多層誘電体導波路の代わりに、表面プラズモンを使用する可能性が、中赤外半導体レーザの分野で最近活用されている。しかし、このような表面プラズモンデバイスの性能はあまり高くなく、従来の多層構造の性能と競合するほどではない。
【0005】
【発明が解決しようとする課題】
したがって、従来技術において、DFBデバイスのように極度に厚くなることや製造が技術的に困難になることのない、比較的長波長のレーザ(すなわち、λ>15μm)が必要とされている。
【0006】
【課題を解決するための手段】
従来技術における課題は、本発明によって解決される。本発明は、表面プラズモンレーザ構造に関し、特に、シングルモード長波長(例えば、λ=17μm)発光を行う分布帰還(DFB)構造を有する表面プラズモンレーザに関する。
【0007】
表面プラズモンレーザは、絶縁リッジ構造として形成された活性領域とを有するとともに、リッジに沿って活性領域に隣接して長軸方向に配置された金属表面層を有する。この構造により、表面プラズモン伝播が形成され、15μmより長波長では、金属内への侵入深さ(すなわち、表皮厚さ)に伴うパワー損失が大幅に低減されることがわかっている。その結果得られる、導波路層の低減された厚さ(従来の厚さ約9μmから、4μm以下に低減される)での大きいモード閉込めΓを利用して、長波長レーザを作成する。
【0008】
本発明によれば、金属表面層は、金属製のグレーティング(すなわち、周期的)表面構造を有し、これにより、シングルモード発光が可能なDFB表面プラズモンレーザを形成する。一実施例では、まず、チタンのストライプを活性領域の露出表面に堆積した後、金の連続層を堆積する。その結果得られるTi/Au−Auグレーティングは、シングルモードプラズモン放射を出力する。その出力波長は、デバイスの動作温度を変えることにより「同調」することができる。
【0009】
本発明の特定実施例では、DFB表面プラズモンレーザの活性領域は、量子カスケード(QC)構造を有する。この構造は、複数のほぼ同一の繰返し単位を有し、各繰返し単位は、1個以上の量子井戸を有する。高エネルギー状態から低エネルギー状態への連続キャリア遷移により光子が放出され、その光子エネルギーは、繰返し単位の構造および組成に依存する。
【0010】
【発明の実施の形態】
中〜遠赤外半導体レーザは一般に、ガス検知アプリケーションで使用されている。このようなアプリケーションでは、高い分解能および感度を有する分光技術が実装されなければならない。この目的のためには、シングルモードデバイスが好ましい。ほとんどの場合、DFB共振器(適当な周期および強さのグレーティングを含む)を実装したQCレーザあるいはダイオードレーザが、このシングルモードデバイスとして用いられる。このような構造は、屈折率neffおよび減衰係数αw(または実効正味利得)の変調を引き起こし、すべての可能な縦モードのうちからグレーティング周期に最もよく一致する光モードを取り出す。
【0011】
本発明に従って形成された実施例のシングルモード表面プラズモンレーザ10の等角図を図1に示す。レーザ10は、InP基板14上に成長された、例えばInGaAs/AlInAsで形成された活性領域12を有する。活性領域12は、リッジ(稜)として(例えば、湿式化学エッチングを用いて)形成され、絶縁体16が、リッジの側面と、InP基板14の上面にわたって堆積される。二酸化ケイ素は、この目的のために用いられる絶縁体の例である。レーザ10の前部ファセットを図2に示す。この図では、活性領域12の側面と基板14の上面の絶縁体16の位置が明確に示されている。その後、上部電気コンタクト18および下部電気コンタクト20を(例えば、電子ビーム蒸発を用いて)形成し、活性領域リッジ12の上面22の広い部分を、後で金属製の表面プラズモン伝達層24を堆積するために露出させる。
【0012】
本発明によれば、電磁モードの表面プラズモン性により、エッチング手続きを用いることを必要とせずにレーザにDFB構造を組み込むことができる。表面プラズモン構造の表面金属層としてどの金属を選択するかは、モードの侵入深さに強く影響を及ぼし、そのため屈折率および減衰損失係数の両方に強く影響を及ぼす。一実施例では、金属層24は、金の層(例えば、厚さ約300nm)を有する。この場合、誘電率の実部は絶対値は比較的大きい負の値となり(λ〜17μmでRe[εAu]〜−1.1×104)、金属内への侵入深さは比較的浅くなる。別法として、チタン(これは、絶対値がずっと小さい負の誘電率(λ=17μmでRe[εTi]〜−1×103)と、大きい侵入深さを示す)を用いることも可能である。例えば、厚い金の層(例えば、300nm)の前に比較的薄いチタン(例えば、10nm)を堆積することにより、純金に対する屈折率変化Δneff/neff〜1.8×10−3および減衰損失の変化Δαw/αw〜1.5×10−2が得られる。本発明の実施例の表面プラズモンレーザのリッジにわたってこの変化に空間変調を導入することにより、シングルモード長波長DFBデバイスを形成することができる。一実施例(図1〜図3に示す)は、二重金属Ti/Au−Au構造を有する。特に、図3に示すように、光コンタクトリソグラフィ(あるいはその他の任意の適当なプロセス)を用いて、チタンストライプ30の1次ブラッググレーティング(50%の公称デューティサイクルを示す)を形成する。この場合、10nmのチタンの堆積を用いている。その後、比較的厚い(例えば、300nm)金層32を蒸着することにより、図3に示すように、活性領域12の上面22にわたって、Ti/Au(30)と純Au(32)の交互のストライプ列ができる。この特定実施例は二重金属構造を用いているが、他のさまざまな多重金属グレーティング構造も使用可能である。例えば、三重金属グレーティング構造も使用可能である。
【0013】
誘電率ε、屈折率n、および消衰係数kの間の関係Re[ε]=n2−k2は、負のRe[ε]を有する材料は通常、非常に吸収性が高いことを意味する。このため、表面プラズモン導波モードの減衰係数αは、金属製伝達層(図1および図2のデバイス10における層24)の侵入(表皮)深さδに強く依存し、これの減少とともに減少する。ε1を金属(層24)の誘電率とし、ε2を半導体(活性領域12)の誘電率とすると、侵入深さδは次のように表される。
【数1】
ただし、ω/2πは、電磁波の周波数であり、cは、真空中の光速である。上記から、絶対値の大きい負のRe[ε1](k2≫n2)は、小さいδを意味し、光損失が小さくなる。上記から、減衰係数αは、実で正のε2の場合に次のように容易に導出される。
【数2】
第1近似で、金属の周波数依存誘電率は、簡単なドルーデの自由キャリアの式によって表される。
【数3】
ただし、ε∞は背景誘電率であり、γ−1は現象論的散乱時間である。
【0014】
本発明によれば、表面プラズモン導波路は、εのローレンツ依存性により、放射波長が増大するとともに低損失となることが発見された。金属導波路は、実際に、マイクロ波アプリケーションで広く用いられており、TEおよびTEMモード伝播も可能にするためにより複雑な3次元形状を有するが、最も簡単な設計(すなわち、「マイクロストリップ」)では、この場合も基本TMモードは表面プラズモンによる。
【0015】
図4に、誘電体プロファイルと、閉込め係数Γ(活性材料にわたる光学モードの正規化積分として定義される)、導波路減衰係数αw、およびモード有効屈折率neffにより伝送行列法を用いて計算された、対応する表面プラズモンモードを示す。比較のために、従来技術の半導体クラッド導波路のモードプロファイルも示す。図4のグラフから明らかなように、エピタキシャル成長の厚さは、従来技術の約9μmという値から、4μm以下へと縮小され、同時に、活性材料に場の強度が集中することにより、Γは0.47から0.81に上昇している。
【0016】
パルスモード(パルス幅50ns、デューティサイクル5kHz)で動作する長さ1.4mm、幅34μmの深くエッチングしたリッジ導波路レーザの光出力(L)−電流(I)(実線)および電流−電圧(V)(破線)特性を図5に示す。光パワーは、約50%の収集効率で単一ファセットから測定されている。I−V特性は、温度5Kで測定し、L−I曲線は、グラフに温度が示されている。
【0017】
図6に、本発明の実施例のDFB表面プラズモンレーザの出力を示す。図示のように、シングルモードのパルス発光が、波長16.2μmで明らかであり、サイドモードは10−3のレベル以下に十分に抑圧されている。
【0018】
本発明の1つの特定実施例では、デバイスの活性領域12は、量子カスケード(QC)構造を有する。一般に、量子カスケード構造は、例えばInGaAs/AlInAs材料系では固体源MBEによって成長され、InP基板に格子整合した、多数の超格子/インジェクタ状態からなる。図7に、例示的なQC超格子/インジェクタ構造に対する例示的な伝導体ダイヤグラムを示す。具体的には、QC活性材料可変周期超格子内のエネルギーポテンシャル差は、2つの異なる半導体のナノメートル厚の層を周期的に交互に形成し、伝導体(超格子領域)を、エネルギーギャップ(ミニギャップ)によって分離された狭エネルギーバンド(ミニバンド)に分割することにより得られる。レーザ作用は、ミニバンド輸送によるユニポーラ電子注入を通じて、第1のミニギャップのエッジの端の状態間で達成される。QCデバイスの作用により、複数の超格子領域が、特別に設計されたインジェクタによって橋渡しされる。このインジェクタは、適当なバイアス条件下で、一方の超格子の下位のミニバンドから電子を抽出し、その電子を、次の超格子の第2のミニバンドに注入する。このようにして、超格子領域/キャリアインジェクタ領域を通るそれぞれの1個の電子によって、多数の格子が放出され、大きい微分量子効率(通常、1よりずっと大きい)が得られる。半導体ヘテロ構造におけるサブバンド間およびミニバンド間の遷移は、それらの選択則に由来する固有のTM偏波のため、表面プラズモン導波路に特に適している。
【0019】
図7に示した具体的ダイヤグラムは、20.5kV/cmのバイアスを加えた場合のバンド構造を示す。活性領域/インジェクタ段に対する実際の層厚(単位:ナノメートル)は、
【数4】
(最初の障壁からスタートして左から右へ)である。Al0.48In0.52As層(エネルギー障壁)は、Ga0.47In0.53As井戸と交互に、太字で示している。下線を引いた層は、ne=2.5×1017cm−3にドープされている。斜体はインジェクタ領域を示す。活性領域およびインジェクタ領域における関連する波動関数の絶対値の二乗が、レーザ遷移(活性領域における波形矢印で示す)とともに図示されている。
【0020】
上記のように、デバイスの周囲温度を変えることによってその有効屈折率を変化させることにより、DFB表面プラズモンレーザのレーザ周波数を「同調」することが可能である。図8に、実施例のDFB表面プラズモンレーザの同調曲線のプロットを示す(さまざまな波長で記録したスペクトルを挿入して示す)。図8の例では、幅23μmで長さ1.5mmのシングルモードレーザを使用した。レーザは、Ti/Au−Au周期グレーティング構造を有し、その周期は2μmである。図示のように、温度を5〜120Kの範囲にわたり変えると、約16.18μmから約16.26μmまでの波長変化を生じた。この例の依存性は明らかに非線形であるが、最高温度における線形同調係数を定義することができる。図8の具体的結果では、1nm/Kの値を有する同調係数が、受け入れられる近似である。
【0021】
理解されるべき点であるが、上記のDFB表面プラズモンレーザ構造は、本発明の原理の応用例となる多くの可能な具体的実施例を代表する単なる例示である。当業者であれば、本発明の技術思想および技術的範囲を離れることなく、他の多くのさまざまな実施例を考えることが可能である。一般に、このようなシングルモード長波長デバイスには多くの異なる応用がある。第1の応用例を図9に示す。図9は、本発明のDFB表面プラズモンレーザ40を含むポイントセンシング装置の概略図である。一般に、レーザは、粗波長同調のための温度制御ステージ(図示せず)上に設置される。DFB表面プラズモンレーザ40からの中IR(中赤外)放射42は、通常のガスセル44(あるいはマルチパスセル)を通り、通過後の放射46は、通常の検出器48に入射する。検出器48からの電気出力は、(変調信号発生器52からの適当な変調信号(例えば、1.2kHz正弦波)とともに)ロックイン増幅器50に供給され、ロックイン増幅器50からの出力は、データ解析および整形のためにコンピュータ54に供給される。その後、データは、適当な方法で(例えばビジュアルディスプレイ60に)表示あるいは記憶される。DFB表面プラズモンレーザ40は、適当な電流でポンピングされる。例えば、ランプ波電流発生器56からの低周波電流ランプ波(例えば、周期250ms)、バイアス電流発生器58からの短いバイアスパルス(例えば、パルス幅5ns、周期2μs)、および、変調電流発生器52からの変調信号が、コンバイナ62に供給され、結果として得られる、電流パルスと正弦波が重畳した電流ランプ波が、DFB表面プラズモンレーザ40にパルス入力として入力される。電流ランプ波は、所定範囲にわたりレーザ温度を掃引するように作用し、パルスは、短いレーザパルスの放出を引き起こす。パルス波長は、ある範囲の波長にわたりゆっくりと掃引され、波長の関数としての吸収が決定される。こうして、この波長範囲に吸収線を有するガスがセル内に存在することが直ちに検出され、このガスを同定することができる。当業者には認識されるように、図9には、いくつかの従来の構成は示していない。例えば、測定装置は通常コンピュータ制御下にあり、コンピュータ54への入力およびコンピュータ54からの出力がさらに必要である。また、レーザを駆動し温度/波長の同調を行うための、他のさまざまな構成が使用可能である。図9に示した構成は単なる例示であり、本発明の技術的範囲を限定するものではない。
【0022】
図10は、例示的なリモートセンシングシステム80の概略図である。排出源72(例えば、工場)が、気体排出雲64を排出する。本発明によるDFB表面プラズモンレーザ66は、放射68を放出し、放射68は、排出雲64を通って伝播し、(例えばコーナーリフレクタ67により)反射される。その後、反射された放射69は、検出器70により検出される。DFB表面プラズモンレーザ66は、(例えば、上記の図9の場合のように)適当な方法でポンピングされ、検出器70の出力は(同じく上記のような)適当な方法で利用することができる。ミラーやその他の適当な反射器を、コーナーリフレクタ67の代わりに用いることができる。反射器は、航空機や、モニタされる煙突を有する高層構造物に置くことも可能である。もちろん、検出器も、航空機や高層構造物に置くことが可能である。一般に、レーザと検出器の見通し線配置が得られる任意の構成が可能である。
【0023】
本発明のDFB表面プラズモンレーザは、一般に、保護および制御のための適当なハウジング内に設置される。パッケージは通常、冷却手段(例えば、水冷または熱電冷却)、温度制御のためのフィードバックループに用いられる温度センサ手段(例えば、熱電対)、および、レーザのポンプ電流を入力する手段を含む。レーザは、通常のようにして冷却手段に取り付けられる。オプションとして、ハウジングは、レーザ出力パワーを制御する検出器手段を含むことも可能である。ハウジングは、通常、レーザ放射に対して透明なウィンドウを有し、通常、真空排気されるか、不活性気体で充填される。
【0024】
【発明の効果】
以上述べたごとく、本発明によれば、DFBデバイスのように極度に厚くなることや製造が技術的に困難になることのない、比較的長波長のレーザが実現される。
【図面の簡単な説明】
【図1】本発明に従って形成されたDFBプラズモンレーザの等角図である。
【図2】図1のデバイスの前部ファセットの図である。
【図3】図1のシングルモードDFB表面プラズモンレーザの縦断面図である。
【図4】本発明に従って形成された実施例の表面プラズモンレーザのモード強度および誘電率の実部を、従来の誘電体導波路と比較したグラフである。
【図5】実施例の表面プラズモンレーザのL−I特性および電流−電圧特性を示すグラフである。
【図6】本発明の実施例のDFB表面プラズモンレーザからのシングルモード出力を示す図である。
【図7】本発明の実施例のDFB量子カスケード(QC)表面プラズモンレーザの活性領域の例示的な伝導体ダイヤグラムを示す図である。
【図8】レーザ周囲温度の関数として同調する、本発明のシングルモードDFB−QCプラズモンレーザの出力波長を「同調」する能力を示す図である。
【図9】本発明のDFB表面プラズモンレーザの一実施例を、この場合はポイントセンシング装置の一部として示す図である。
【図10】ガス検知装置の一部としてDFB表面プラズモンレーザを有する例示的なリモートセンシングシステムを示す図である。
【符号の説明】
10 シングルモード表面プラズモンレーザ
12 活性領域
14 InP基板
16 絶縁体
18 上部電気コンタクト
20 下部電気コンタクト
22 上面
24 表面プラズモン伝達層(金属層)
30 チタンストライプ
32 金層
40 DFB表面プラズモンレーザ
42 中赤外放射
44 ガスセル
48 検出器
50 ロックイン増幅器
52 変調信号発生器
54 コンピュータ
56 ランプ波電流発生器
58 バイアス電流発生器
60 ビジュアルディスプレイ
62 コンバイナ
64 排出雲
66 DFB表面プラズモンレーザ
67 コーナーリフレクタ
68 放射
70 検出器
72 排出源
80 リモートセンシングシステム
Claims (10)
- 表面プラズモンレーザ構造を有する装置であって、
上部主表面を有する半導体基板(例えば14)、
前記半導体基板の上部主表面の一部を被覆し、側壁および上面を有するリッジとして形成された活性領域(例えば12)、
前記活性領域の上面の一部を被覆する金属製表面プラズモン伝達層(例えば24)、
前記活性領域の側壁および前記半導体基板の上部主表面の露出領域を被覆する絶縁層(例えば18)、及び
レーザに電流を流すために前記半導体基板の下部主表面に結合した電気コンタクト(例えば20)
からなり、
前記表面プラズモンレーザがシングルモードのデバイスであり、前記金属製表面プラズモン伝達層が、周期的ブラッグ構造を示す分布帰還(DFB)グレーティング構成として形成される多層金属構成(例えば30、32)からなることを特徴とする装置。 - 前記多層金属グレーティングは、二重金属グレーティングを含むことを特徴とする請求項1記載の装置。
- 前記二重金属グレーティングは、チタンおよび金を含むことを特徴とする請求項2記載の装置。
- 前記周期的構造は、n次ブラッググレーティングを含むことを特徴とする請求項1記載の装置。
- 前記周期的構造は、1次ブラッググレーティングを含むことを特徴とする請求項4記載の装置。
- 前記周期的構造は、前記レーザの活性領域の上面の上に形成された第1金属と、第1金属のグレーティングおよび前記レーザの活性領域の残りの露出領域の両方を被覆するように配置された少なくとも1つの第2金属の層とを有する1次ブラッググレーティング層を含むことを特徴とする請求項1記載の装置。
- 前記第1金属はチタンであり、前記少なくとも1つの第2金属は金であることを特徴とする請求項6記載の装置。
- 前記活性領域は、複数のほぼ同一の多層半導体繰返し単位を含む量子カスケード活性ユニットを有し、各繰返し単位は、単位活性領域およびキャリアインジェクタ領域を有し、単位活性領域は上位および下位エネルギー状態を有し、上位エネルギー状態から下位エネルギー状態へのキャリア遷移により波長λの光子が放出されることを特徴とする請求項1記載の装置。
- それぞれの量子カスケード単位活性領域は、
上位および下位のミニバンドと、それらの間のミニギャップとを有する超格子領域を含み、
前記上位エネルギー状態は上位ミニバンドにあり、前記下位エネルギー状態は下位ミニバンドにあり、
前記キャリアインジェクタ領域は、与えられた繰返し単位の下位ミニバンドから隣の下流の繰返し単位の上位ミニバンドへのキャリア遷移が起こりやすいように選択されることを特徴とする請求項8記載の装置。 - 光子放出波長λは、DFB QC表面プラズモンレーザの周囲温度を変化させることによって調整されることを特徴とする請求項8記載の装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/512566 | 2000-02-24 | ||
US09/512,566 US6501783B1 (en) | 2000-02-24 | 2000-02-24 | Distributed feedback surface plasmon laser |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001291929A JP2001291929A (ja) | 2001-10-19 |
JP2001291929A5 JP2001291929A5 (ja) | 2004-10-14 |
JP3848841B2 true JP3848841B2 (ja) | 2006-11-22 |
Family
ID=24039644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001046367A Expired - Fee Related JP3848841B2 (ja) | 2000-02-24 | 2001-02-22 | 表面プラズモンレーザ構造を有する装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6501783B1 (ja) |
EP (1) | EP1133035A3 (ja) |
JP (1) | JP3848841B2 (ja) |
CN (1) | CN1180518C (ja) |
CA (1) | CA2331194C (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009121833A (ja) * | 2007-11-12 | 2009-06-04 | Mitsubishi Electric Corp | センシング方法およびそのセンシング方法を応用したセンサ、マーカー |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7043134B2 (en) | 1999-12-23 | 2006-05-09 | Spectalis Corp. | Thermo-optic plasmon-polariton devices |
US6782020B2 (en) * | 2000-09-08 | 2004-08-24 | The Texas A&M University System | Infrared generation in semiconductor lasers |
US6690699B2 (en) * | 2001-03-02 | 2004-02-10 | Lucent Technologies Inc | Quantum cascade laser with relaxation-stabilized injection |
JP4599546B2 (ja) * | 2001-03-12 | 2010-12-15 | 独立行政法人科学技術振興機構 | 低次元プラズモン発光装置 |
EP1283571B1 (de) | 2001-08-06 | 2015-01-14 | nanoplus GmbH Nanosystems and Technologies | Laser mit schwach gekoppeltem Gitterbereich |
ATE361565T1 (de) | 2002-03-08 | 2007-05-15 | Nanoplus Gmbh Nanosystems And | Ein halbleiterlaserarray mit seitlicher gratingstruktur |
ITTO20020274A1 (it) * | 2002-03-27 | 2003-09-29 | Infm Istituto Nazionela Per La | Laser thz a semiconduttore incorporante guida d'onda a confinamento plasmonico controllato. |
FR2845208A1 (fr) * | 2002-10-01 | 2004-04-02 | Thales Sa | Composants optoelectroniques a guidage de l'onde optique par ruban metallique |
US7151789B2 (en) | 2002-12-20 | 2006-12-19 | Spectalis Corp | External-cavity lasers |
JP4130163B2 (ja) * | 2003-09-29 | 2008-08-06 | 三洋電機株式会社 | 半導体発光素子 |
JP4326297B2 (ja) * | 2003-09-30 | 2009-09-02 | シャープ株式会社 | モノリシック多波長レーザ素子およびその製造方法 |
US7301263B2 (en) * | 2004-05-28 | 2007-11-27 | Applied Materials, Inc. | Multiple electron beam system with electron transmission gates |
US7301977B2 (en) * | 2004-06-10 | 2007-11-27 | Nanoplus Gmbh | Tuneable unipolar lasers |
US7302129B2 (en) * | 2004-10-12 | 2007-11-27 | Lockheed Martin Corporation | Optical transistor with sub-wavelength aperture |
JP4536490B2 (ja) * | 2004-11-15 | 2010-09-01 | 浜松ホトニクス株式会社 | レーザ装置及びその制御方法 |
JP4634956B2 (ja) * | 2006-04-14 | 2011-02-16 | 日本電信電話株式会社 | 光吸収測定装置 |
JP5196750B2 (ja) * | 2006-08-25 | 2013-05-15 | キヤノン株式会社 | 発振素子 |
CN100405681C (zh) * | 2006-09-08 | 2008-07-23 | 中国科学院上海微系统与信息技术研究所 | 可调谐分布反馈量子级联激光器的波导与光栅的结构及所述光栅的制备方法 |
US7583882B2 (en) * | 2006-11-10 | 2009-09-01 | University Of Alabama In Huntsville | Waveguides for ultra-long range surface plasmon-polariton propagation |
CN101730961A (zh) * | 2007-03-16 | 2010-06-09 | 哈佛大学 | 用于产生太赫兹辐射的方法和设备 |
JP4871816B2 (ja) * | 2007-08-31 | 2012-02-08 | キヤノン株式会社 | レーザ素子 |
US8009716B2 (en) | 2007-10-29 | 2011-08-30 | The Aerospace Corporation | Plasmon stabilized unimodal laser diodes |
US8238702B2 (en) * | 2008-06-05 | 2012-08-07 | Colorado School Of Mines | Hybrid dielectric/surface plasmon polariton waveguide with grating coupling |
DE102008045980A1 (de) * | 2008-09-05 | 2010-06-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Testverfahren zur On-Wafer-Charakterisierung von langwelligen Halbleiterlasern |
US8748862B2 (en) * | 2009-07-06 | 2014-06-10 | University Of Seoul Industry Cooperation Foundation | Compound semiconductors |
US8227793B2 (en) | 2009-07-06 | 2012-07-24 | University Of Seoul Industry Cooperation Foundation | Photodetector capable of detecting the visible light spectrum |
US8809834B2 (en) * | 2009-07-06 | 2014-08-19 | University Of Seoul Industry Cooperation Foundation | Photodetector capable of detecting long wavelength radiation |
US7995879B2 (en) | 2009-07-28 | 2011-08-09 | The Invention Science Fund I, Llc | Surface state gain |
US8249401B2 (en) * | 2009-07-28 | 2012-08-21 | The Invention Science Fund I Llc | Surface state gain |
US8368990B2 (en) | 2009-08-21 | 2013-02-05 | University Of Seoul Industry Cooperation Foundation | Polariton mode optical switch with composite structure |
US8023546B2 (en) * | 2009-09-22 | 2011-09-20 | Palo Alto Research Center Incorporated | Semiconductor laser with integrated contact and waveguide |
US8368047B2 (en) * | 2009-10-27 | 2013-02-05 | University Of Seoul Industry Cooperation Foundation | Semiconductor device |
CN101847828B (zh) * | 2010-05-07 | 2012-03-28 | 中国科学院半导体研究所 | 垂直发射量子级联激光器结构 |
CN101882752B (zh) * | 2010-06-28 | 2011-11-30 | 北京航空航天大学 | 一种表面等离子体纳米激光器 |
WO2012015990A2 (en) * | 2010-07-27 | 2012-02-02 | The Regents Of The University Of California | Plasmon lasers at deep subwavelength scale |
CN102148476B (zh) * | 2011-03-08 | 2012-06-27 | 东南大学 | 深度亚波长表面等离子体激元微腔激光器 |
US8805147B2 (en) * | 2011-05-17 | 2014-08-12 | Canon Kabushiki Kaisha | Waveguide, apparatus including the waveguide, and method of manufacturing the waveguide |
US9389344B2 (en) | 2011-06-28 | 2016-07-12 | Colorado School Of Mines | Spectroscopic polarimeter |
US8848756B2 (en) | 2011-09-16 | 2014-09-30 | Samsung Electronics Co., Ltd. | Surface plasmon laser |
US9088126B2 (en) | 2013-10-17 | 2015-07-21 | The Trustees Of Princeton University | Single-mode quantum cascade lasers with enhanced tuning range |
CN103532013B (zh) * | 2013-10-23 | 2015-12-30 | 中国科学院半导体研究所 | 一种低发散角的面发射量子级联激光器结构 |
ES2694699T3 (es) * | 2013-11-30 | 2018-12-26 | Thorlabs Quantum Electronics, Inc. | Láser de cascada cuántica |
DE102014106209B3 (de) * | 2014-05-05 | 2015-08-27 | Nanoplus Nanosystems And Technologies Gmbh | Interbandkaskadenlaser sowie Verfahren zur Herstellung eines Interbandkaskadenlasers umfassend ein Rückkopplungselement |
CN104157934B (zh) * | 2014-07-21 | 2016-05-04 | 南京航空航天大学 | 一种超宽带人工表面等离子滤波器 |
CN104267503B (zh) * | 2014-09-30 | 2016-08-17 | 中国科学院半导体研究所 | 一种改善面发射半导体激光器慢轴远场的金属天线结构 |
KR102360025B1 (ko) | 2014-10-16 | 2022-02-08 | 삼성전자주식회사 | 비정질 탄소원자층의 형성방법 및 비정질 탄소원자층을 포함하는 전자소자 |
EP3304660B1 (en) * | 2015-06-05 | 2022-10-26 | The Government of the United States of America as represented by the Secretary of the Navy | Interband cascade lasers with low-fill factor top contact for reduced loss |
KR102446410B1 (ko) | 2015-09-17 | 2022-09-22 | 삼성전자주식회사 | 광전소자 및 이를 포함하는 전자장치 |
KR102384228B1 (ko) | 2015-09-30 | 2022-04-07 | 삼성전자주식회사 | 반도체 레이저 공진기 및 이를 포함하는 반도체 레이저 소자 |
FR3054734B1 (fr) * | 2016-07-27 | 2018-09-07 | Universite Paris Sud | Diode laser a retroaction repartie |
KR102610832B1 (ko) | 2016-08-03 | 2023-12-06 | 삼성전자주식회사 | 메타 광학 소자 및 이의 설계방법 |
JP6669611B2 (ja) * | 2016-08-25 | 2020-03-18 | 日本電信電話株式会社 | ナノワイヤレーザ |
CN108054634B (zh) * | 2018-01-03 | 2020-12-22 | 长春理工大学 | 一种窄线宽半导体激光器 |
US10566764B2 (en) | 2018-06-18 | 2020-02-18 | International Business Machines Corporation | Plasmonic quantum well laser |
CN109244827B (zh) * | 2018-09-12 | 2020-07-24 | 南京理工大学 | 一种用于纳米激光器的高斯型金属半导体谐振腔 |
CN109830889A (zh) * | 2019-03-19 | 2019-05-31 | 北京工业大学 | 复合一维光子晶体纳米梁腔表面等离子体激光器 |
EP3879642A1 (de) * | 2020-03-13 | 2021-09-15 | nanoplus Nanosystems and Technologies GmbH | Monomodiger halbleiterlaser mit phasenkontrolle |
FR3118332B1 (fr) * | 2020-12-18 | 2023-07-14 | Commissariat Energie Atomique | Laser comprenant un miroir de Bragg distribué et procédé de réalisation |
JP2022127863A (ja) * | 2021-02-22 | 2022-09-01 | 株式会社東芝 | 面発光型半導体発光装置 |
CN113659430B (zh) * | 2021-07-20 | 2023-04-11 | 杭州电子科技大学 | 一种基于半导体增益的低阈值Tamm态等离子激光器 |
CN117075256B (zh) * | 2023-10-16 | 2024-02-13 | 潍坊先进光电芯片研究院 | 一种交错光栅的混合等离激元波导布拉格光栅偏振器 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59303906D1 (de) | 1992-12-03 | 1996-10-24 | Siemens Ag | Abstimmbare oberflächenemittierende laserdiode |
DE4240706A1 (de) | 1992-12-03 | 1994-06-09 | Siemens Ag | Oberflächenemittierende Laserdiode |
US5502787A (en) | 1995-05-22 | 1996-03-26 | At&T Corp. | Article comprising a semiconductor waveguide structure |
AU7598996A (en) | 1995-10-25 | 1997-05-15 | University Of Washington | Surface plasmon resonance probe systems based on a folded planar lightpipe |
US5901168A (en) | 1997-05-07 | 1999-05-04 | Lucent Technologies Inc. | Article comprising an improved QC laser |
US6301282B1 (en) | 1998-07-29 | 2001-10-09 | Lucent Technologies Inc. | Long wavelength semiconductor lasers incorporating waveguides based on surface plasmons |
-
2000
- 2000-02-24 US US09/512,566 patent/US6501783B1/en not_active Expired - Lifetime
-
2001
- 2001-01-17 CA CA002331194A patent/CA2331194C/en not_active Expired - Fee Related
- 2001-02-12 EP EP01301192A patent/EP1133035A3/en not_active Withdrawn
- 2001-02-22 JP JP2001046367A patent/JP3848841B2/ja not_active Expired - Fee Related
- 2001-02-23 CN CNB011049170A patent/CN1180518C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009121833A (ja) * | 2007-11-12 | 2009-06-04 | Mitsubishi Electric Corp | センシング方法およびそのセンシング方法を応用したセンサ、マーカー |
Also Published As
Publication number | Publication date |
---|---|
EP1133035A3 (en) | 2001-09-26 |
JP2001291929A (ja) | 2001-10-19 |
US6501783B1 (en) | 2002-12-31 |
CA2331194C (en) | 2004-05-04 |
CA2331194A1 (en) | 2001-08-24 |
CN1180518C (zh) | 2004-12-15 |
EP1133035A2 (en) | 2001-09-12 |
CN1322042A (zh) | 2001-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3848841B2 (ja) | 表面プラズモンレーザ構造を有する装置 | |
Tredicucci et al. | Single-mode surface-plasmon laser | |
US6400744B1 (en) | Apparatus comprising a quantum cascade laser having improved distributed feedback for single-mode operation | |
Faist et al. | Vertical transition quantum cascade laser with Bragg confined excited state | |
Sirtori et al. | GaAs/Al x Ga 1− x As quantum cascade lasers | |
Faist et al. | Distributed feedback quantum cascade lasers | |
JP3338228B2 (ja) | 単極性半導体レーザ | |
Mahler et al. | High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings | |
US5978397A (en) | Article comprising an electric field-tunable semiconductor laser | |
US6137817A (en) | Quantum cascade laser | |
US9711948B2 (en) | Terahertz quantum cascade laser implementing a {hacek over (C)}erenkov difference-frequency generation scheme | |
US6301282B1 (en) | Long wavelength semiconductor lasers incorporating waveguides based on surface plasmons | |
US7382806B2 (en) | THz semiconductor laser incorporating a controlled plasmon confinement waveguide | |
Sharma et al. | Recent advances of efficient design of terahertz quantum-cascade lasers | |
Faist et al. | Terahertz quantum cascade lasers | |
Tredicucci et al. | Advances in THz quantum cascade lasers: fulfilling the application potential | |
JP3595193B2 (ja) | 改良型超格子量子カスケードレーザから成る物品 | |
Gauthier-Lafaye et al. | High-power tunable quantum fountain unipolar lasers | |
Tredicucci et al. | Novel quantum cascade devices for long wavelength IR emission | |
Tredicucci et al. | Superlattice QC lasers towards the far-infrared | |
SIVCO et al. | ALESSANDRO TREDICUCCI, 1, 2 CLAIRE GMACHL, MICHAEL C. WANKE,'FEDERICO CAPASSO,'ALBERT L. HUTCHINSON,' | |
Kumar et al. | High-temperature and high-power operation of terahertz quantum-cascade lasers | |
Chen et al. | Single-mode operation of terahertz quantum cascade lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060116 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20060414 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20060419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060828 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |