JP3846906B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP3846906B2
JP3846906B2 JP16073193A JP16073193A JP3846906B2 JP 3846906 B2 JP3846906 B2 JP 3846906B2 JP 16073193 A JP16073193 A JP 16073193A JP 16073193 A JP16073193 A JP 16073193A JP 3846906 B2 JP3846906 B2 JP 3846906B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16073193A
Other languages
English (en)
Other versions
JPH06264798A (ja
Inventor
山下  幸宏
賢治 生田
磯村  重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP16073193A priority Critical patent/JP3846906B2/ja
Publication of JPH06264798A publication Critical patent/JPH06264798A/ja
Application granted granted Critical
Publication of JP3846906B2 publication Critical patent/JP3846906B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Description

【0001】
【産業上の利用分野】
本発明は内燃機関の空燃比制御装置に関するもので、特に、触媒の上流側と下流側に排気ガスの空燃比を検出するセンサを設けて、上流側のセンサの検出値に基づく空燃比フィードバック制御に加えて、下流側のセンサの検出値に基づく空燃比フィードバック制御を行なう内燃機関の空燃比制御装置に関するものである。
【0002】
【従来の技術】
従来のこの種の内燃機関の空燃比制御装置として、特開平2−238147号公報に記載のものを挙げることができる。
【0003】
図46はこの従来の内燃機関の空燃比制御装置の空燃比制御時における空燃比補正係数及び下流側O2 センサの出力電圧を示すタイムチャートである。
【0004】
この従来の空燃比制御装置は、触媒の上流側と下流側にそれぞれ酸素濃度センサ(以下、単に『O2 センサ』という)を設けて、上流側のO2 センサの出力電圧に基づき排気ガスの空燃比がリッチ側とリーン側のいずれに変動しているかを判別し、予め設定された積分定数KIR,KILにて空燃比補正係数FAFを空燃比の変動方向の反対側に補正し、また、検出された空燃比がリッチ側からリーン側、またはリーン側からリッチ側に理論空燃比を横切って反転したときには、前記積分定数KIR,KILより大きな値として設定されたスキップ量RSR,RSLにて空燃比補正係数FAFを空燃比の変動方向の反対側にスキップ的に補正し、よって、実際の空燃比を理論空燃比に収束させるように構成されている。更に、下流側のO2 センサの出力電圧VOX2が予め設定されたリッチ側許容値VRLやリーン側許容値VLLを越えて大きく変動したときには、空燃比の補正を速やかに完了すべく、前記スキップ量RSR,RSLを増加させて空燃比補正係数FAFを大きく補正している。
【0005】
また、上記した空燃比制御装置とは別に、特開平3−185244号公報に記載の空燃比制御装置を挙げることができる。
【0006】
図47はこの従来の別の内燃機関の空燃比制御装置の空燃比制御時におけるO2 センサの出力電圧及び目標空燃比を示すタイムチャートである。
【0007】
この従来の別の空燃比制御装置は、触媒の上流側に空燃比センサ(以下、単に『A/Fセンサ』という)を設けるとともに、下流側にO2 センサを設け、O2 センサの出力電圧VOX2に基づいて排気ガスの空燃比が理論空燃比を境界としたリッチ側とリーン側のいずれに変動しているかを判別して、予め設定されたリッチ積分量λIRやリーン積分量λILにて目標空燃比を空燃比の変動方向の反対側に一定速度で補正している。そして、この補正後の目標空燃比と、A/Fセンサにて検出された実際の空燃比との差に基づいて空燃比補正係数FAFを所定の更新速度で算出し、よって、実際の空燃比を理論空燃比に収束させるように構成されている。
【0008】
【発明が解決しようとする課題】
従来の図46に示す空燃比制御装置は、上記のように上流側のO2 センサの出力電圧に基づくスキップ量RSR,RSLを、下流側のO2 センサの出力電圧VOX2に基づいて増減しているため、下流側のO2 センサによる補正量が実際に空燃比補正係数FAFに反映されるのは、上流側のO2 センサにて検出された空燃比が理論空燃比を横切り、スキップ量RSR,RSLが用いられるタイミングに限定される。したがって、図46のaの時点で下流側のO2 センサにて空燃比がリッチ側許容値VRLを越えたことが検出されても、その検出値に基づいて増加したスキップ量RSLにて実際に空燃比補正係数FAFが補正されるのは、かなり遅延したbの時点となってしまう。そして、この補正の遅れによって生じた過補正で、空燃比がリッチ側とリーン側とを周期的に変動して理論空燃比に収束せず、COやHC或いはNOX を交互に排出してしまう場合があった。
【0009】
また、図47に示す空燃比制御装置は、上記のようにO2 センサの出力電圧VOX2による補正後の目標空燃比と、A/Fセンサにて検出された実際の空燃比との差に基づいて空燃比補正係数FAFを所定の更新速度で算出しているため、リッチ積分量λIRやリーン積分量λILは直ちに空燃比補正係数FAFに反映される。しかしながら、本来、三元触媒を含めて内燃機関は大きな遅れを有する系であることから、下流側のO2 センサの出力電圧VOX2に基づいて排気ガスの空燃比の変動方向がリッチとリーンの間で反転した時点では、既に上流側の空燃比は理論空燃比からいずれかの方向に大きく乱れており、前記したリッチ積分量λIRやリーン積分量λILによる微妙な補正では、その後に下流側に生じる空燃比λの乱れを抑制しきれない。したがって、前記した場合と同じく補正の遅れによって空燃比が過補正されて理論空燃比に収束せず、COやHC或いはNOX を交互に排出してしまう場合があった。
【0010】
そこで、本発明は、触媒の下流側の空燃比に基づく補正処理の遅れを回避し、常に確実に空燃比を理論空燃比付近に収束させて、有害成分の大気中への排出を未然に防止することができる内燃機関の空燃比制御装置の提供を課題とするものである。
【0011】
【課題を解決するための手段】
請求項1の発明にかかる内燃機関の空燃比制御装置は、図1に示すように、内燃機関M1の排気経路の触媒M2の上流側に設けられ、前記内燃機関M1から排出された排気ガスの空燃比を検出する上流側空燃比検出手段M3と、前記触媒M2の下流側に設けられ、触媒M2を通過した排気ガスの空燃比を検出する下流側空燃比検出手段M4と、前記下流側空燃比検出手段M4にて検出された空燃比が理論空燃比を経てリッチ側とリーン側との間で反転したときに、反転方向を判別する反転方向判別手段M5と、前記反転方向判別手段M5にて前記下流側空燃比検出手段M4により検出された空燃比の反転方向が判別されたときに、目標空燃比をスキップ的に補正するためのスキップ量にて、該反転方向に対して反対側に目標空燃比を補正し、前記下流側空燃比検出手段M4により検出される空燃比が反転しないときに、前記下流側空燃比検出手段M4により検出される空燃比の変動方向に対して反対側に前記スキップ量より小さい値として設定された積分量にて目標空燃比を補正する目標空燃比設定手段M6と、前記上流側空燃比検出手段M3にて検出された空燃比と、前記目標空燃比設定手段M6にて設定された目標空燃比との差に基づき、燃料噴射弁M7の噴射量を算出する噴射量算出手段M8とを具備したものである。
【0013】
請求項の発明にかかる内燃機関の空燃比制御装置は、目標空燃比設定手段M6を、触媒劣化検出手段にて検出された触媒M2の劣化状態の進行に応じて、目標空燃比を補正するスキップ量を減少させるようにしたものである。
【0014】
請求項の発明にかかる内燃機関の空燃比制御装置は、前記目標空燃比設定手段M6を、予め設定された内燃機関M1の運転領域毎に、下流側空燃比検出手段M4にて検出された空燃比が理論空燃比付近に収束しているときの目標空燃比を学習する空燃比学習手段と、内燃機関M1の運転領域を判定して対応する前記空燃比学習手段の学習値を選出し、学習値に基づいて前記目標空燃比を補正する目標空燃比補正手段とを具備するように構成したものである。
【0015】
請求項の発明にかかる内燃機関の空燃比制御装置は、前記目標空燃比設定手段M6を、前記内燃機関M1の運転状態を検出する運転状態検出手段と、前記運転状態検出手段にて検出された運転状態に応じて前記スキップ量及び/または積分量を設定する補正量設定手段とを具備するように構成したものである。
【0016】
請求項の発明にかかる内燃機関の空燃比制御装置は、前記目標空燃比設定手段M6を、下流側空燃比検出手段M4にて検出された空燃比が理論空燃比から離間するほど、目標空燃比を補正するスキップ量及び/または積分量を増大させるようにしたものである。
【0017】
請求項の発明にかかる内燃機関の空燃比制御装置は、図27に示すように、内燃機関M11の排気経路の触媒M12の上流側に設けられ、前記内燃機関M11から排出された排気ガスの空燃比を検出する上流側空燃比検出手段M13と、前記触媒M12の下流側に設けられ、触媒M12を通過した排気ガスの空燃比を検出する下流側空燃比検出手段M14と、前記下流側空燃比検出手段M14にて検出された空燃比が理論空燃比を経てリッチ側とリーン側との間で反転したときに、反転方向を判別する反転方向判別手段M15と、前記反転方向判別手段M15にて前記下流側空燃比検出手段M14により検出された空燃比の反転方向が判別されたときに、比較値をスキップ的に補正するためのスキップ量にて、該反転方向に対して反対側に比較値を補正し、前記下流側空燃比検出手段M14により検出される空燃比が反転しないときに、前記下流側空燃比検出手段M14により検出される空燃比の変動方向に対して反対側に前記スキップ量より小さい値として設定された積分量にて比較値を補正する比較値設定手段M16と、前記上流側空燃比検出手段M13にて検出された空燃比と、前記比較値設定手段M16にて設定された比較値との比較結果に基づき、前記上流側空燃比検出手段M13により検出される空燃比が前記比較値設定手段M16にて設定された比較値となるように燃料噴射弁M17の噴射量を算出する噴射量算出手段M18とを具備したものである。
【0019】
請求項の発明にかかる内燃機関の空燃比制御装置は、比較値設定手段M16を、触媒劣化検出手段にて検出された触媒M12の劣化状態の進行に伴なって、比較値を補正するスキップ量を減少させるようにしたものである。
【0020】
請求項の発明にかかる内燃機関の空燃比制御装置は、比較値設定手段M16を、予め設定された内燃機関M11の運転領域毎に、下流側空燃比検出手段M14にて検出された空燃比が理論空燃比付近に収束しているときの比較値を学習する比較値学習手段と、内燃機関M11の運転領域を判定して対応する前記比較値学習手段の学習値を選出し、学習値に基づいて前記比較値を補正する比較値補正手段とを具備するように構成したものである。
【0023】
請求項の発明にかかる内燃機関の空燃比制御装置は、内燃機関の運転状態を検出する運転状態検出手段と、前記運転状態検出手段にて検出された運転状態において増大が予測される特定の有害成分を低減可能な方向に制御目標値を設定する制御目標値設定手段とを備え、前記反転方向判別手段を、前記下流側空燃比検出手段にて検出された空燃比が制御目標値を経てリッチ側とリーン側との間で反転したときに、反転方向を判別するようにしたものである。
【0024】
請求項10の発明にかかる内燃機関の空燃比制御装置は、制御目標値設定手段を、運転状態検出手段にて検出された内燃機関の負荷状態に基づき、負荷が高いときほど制御目標値をリッチ側に設定するようにしたものである。
【0025】
請求項11の発明にかかる内燃機関の空燃比制御装置は、制御目標値設定手段は、運転状態検出手段にて検出された排気ガス再循環用のEGR装置の作動状態に基づき、EGR装置の停止時に、作動時に比較して制御目標値をよりリッチ側に設定するようにしたものである。
【0026】
【作用】
請求項1の発明においては、下流側空燃比検出手段M4にて検出された触媒M2の下流側の空燃比が理論空燃比を経て反転すると、反転方向判別手段M5にて反転方向が判別され、目標空燃比設定手段M6にて反転方向と反対側にスキップ量にて目標空燃比が補正され、その目標空燃比と上流側空燃比検出手段M3にて検出された空燃比との差に基づいて、噴射量算出手段M8にて所定の更新速度で燃料噴射弁M7の噴射量が算出される。そして、目標空燃比設定手段M6は、反転方向判別手段M5の判別結果に基づいて目標空燃比を設定するので、噴射量算出手段M8では、この目標空燃比と上流側空燃比検出手段M3により検出される空燃比とに基づいて、燃料噴射弁M7による噴射量を算出する。故に、目標空燃比設定手段M6による目標空燃比の設定は、直ちに噴射量に反映され、空燃比の乱れに対して良好な応答性で噴射量が制御される。また、下流側空燃比検出手段M4にて検出された空燃比が反転したときには、スキップ量にて目標空燃比がスキップ的に補正されるため、その後の触媒M2下流側の空燃比の大きな乱れが確実に抑制される。
【0027】
さらに、空燃比の変動方向が反転しないときには、目標空燃比設定手段M6にて空燃比の変動方向と反対側に目標空燃比が積分量にて補正されるため、空燃比はより確実に理論空燃比付近に収束する。
【0028】
請求項の発明においては、触媒劣化検出手段にて検出された触媒M2の劣化状態の進行に応じて、目標空燃比設定手段M6にてスキップ量が減少されるため、触媒M2の吸着限界を越えた過補正が行なわれるのが未然に防止される。
【0029】
請求項の発明においては、下流側空燃比検出手段M4にて検出された触媒M2の下流側の空燃比が理論空燃比付近に収束しているとき、換言すれば、触媒M2が中立状態に保持されているときに、目標空燃比設定手段M6にて設定された目標空燃比が内燃機関M1の運転領域毎に空燃比学習手段により学習される。そして、今現在の内燃機関M1の運転領域が目標空燃比補正手段にて判定され、その運転領域に対応する学習値により目標空燃比が補正される。よって、運転領域が変化したときであっても、それに対応する学習値が読み出されて直ちに目標空燃比が補正されるため、運転領域の変化に伴う補正遅れを防止して、触媒M2をより確実に中立状態に保持し続けることが可能となる。
【0030】
請求項の発明においては、吸入空気量等のように内燃機関M1の運転状態を示すパラメータが運転状態検出手段にて検出され、その運転状態に応じて補正量設定手段によりスキップ量や積分量が設定されて、これらの補正値により目標空燃比が補正される。したがって、運転状態の変化に拘わらず、触媒M2の下流側の空燃比に対してスキップ量や積分量が常に一定の影響力を及ぼすように設定でき、これらのスキップ量や積分量にて目標空燃比を補正する際の過補正や補正遅れを防止可能となる。
【0031】
請求項の発明においては、下流側空燃比検出手段M4にて検出された触媒M2の下流側の空燃比が理論空燃比からリッチまたはリーン側に離間するほど、換言すれば、目標空燃比の大幅な補正を要するほど、目標空燃比設定手段M6にてスキップ量や積分量が増大されるため、常に適切な補正が行なわれて、下流側の空燃比をより迅速に理論空燃比に収束させることが可能となる。
【0032】
請求項6の発明においては、下流側空燃比検出手段M14にて検出された触媒M12の下流側の空燃比が理論空燃比を経て反転すると、反転方向判別手段M15にて反転方向が判別され、比較値設定手段M16にて反転方向と反対側にスキップ量にて比較値が補正され、その比較値と上流側空燃比検出手段M13にて検出された空燃比との比較結果に基づいて、噴射量算出手段M18にて燃料噴射弁M17の噴射量が算出される。そして、このように比較値を変更することで噴射量を補正しているため、空燃比の変動が速やかに噴射量に反映され、空燃比の乱れに対して良好な応答性で噴射量が制御される。
【0033】
さらに、空燃比の変動方向が反転しないときには、比較値設定手段M16にて空燃比の変動方向と反対側に比較値が積分量にて補正されるため、空燃比はより確実に理論空燃比付近に収束する。
【0034】
請求項の発明においては、触媒劣化検出手段にて検出された触媒M12の劣化状態の進行に応じて、比較値設定手段M16にてスキップ量が減少されるため、触媒M12の吸着限界を越えた過補正が行なわれるのが未然に防止される。
【0035】
請求項の発明においては、下流側空燃比検出手段M14にて検出された触媒M12の下流側の空燃比が理論空燃比付近に収束しているとき、換言すれば、触媒M12が中立状態に保持されているときに、比較値設定手段M16にて設定された比較値が内燃機関M11の運転領域毎に比較値学習手段により学習される。そして、今現在の内燃機関M11の運転領域が比較値補正手段にて判定され、その運転領域に対応する学習値により比較値が補正される。よって、運転領域が変化したときであっても、それに対応する学習値が読み出されて直ちに比較値が補正されるため、運転領域の変化に伴う補正遅れを防止して、触媒M12をより確実に中立状態に保持し続けることが可能となる。
【0038】
請求項の発明においては、運転状態検出手段にて検出された内燃機関の運転状態に応じて制御目標値設定手段により制御目標値が設定され、その制御目標値を経て触媒の下流側の空燃比が反転すると、反転方向判別手段にて反転方向が判別される。そして、判別された反転方向に基づいて、請求項1の空燃比制御装置では目標空燃比設定手段により目標空燃比が設定され、また、請求項7の空燃比制御装置では比較値設定手段により比較値が設定される。ここで、制御目標値は、今現在の運転状態において増大が予測される特定の有害成分を低減可能な方向に設定されるため、例えばCOやHCの増大が予測される場合には制御目標値がリーン側に、NOXの増大が予測される場合には制御目標値がリッチ側に設定され、その制御目標値に触媒の下流側の空燃比を収束させるように燃料噴射量が制御される。つまり、増大が予測される特定の有害成分を特に優先して抑制するため、その他の有害成分の排出量は若干増大するものの、全体としての有害成分は確実に低減される。
【0039】
請求項10の発明においては、内燃機関は高負荷時にNOXを排出し、低負荷時にHCを多く排出するため、負荷が高いときほど制御目標値をリッチ側に設定すれば、高負荷時のNOXと低負荷時のHCを共に抑制でき、このように負荷状態を目安として制御目標値を適切に設定可能である。
【0040】
請求項11の発明においては、EGR装置の作動時には燃焼温度の低下に伴ってNOXが低減され、EGR装置の停止時には燃焼温度の上昇に伴ってNOXが増大するため、EGR装置の停止時に、作動時に比較して制御目標値をよりリッチ側に設定すればNOXを抑制でき、このようにEGR装置の作動状態を目安として制御目標値を適切に設定可能である。
【0041】
【実施例】
〔第一実施例〕
以下、本発明の第一実施例を説明する。
【0042】
図2は本発明の第一実施例である内燃機関の空燃比制御装置が設けられた内燃機関とその周辺機器の概略構成図である。
【0043】
図に示すように、内燃機関1は4気筒4サイクルの火花点火式として構成され、その吸入空気は上流よりエアクリーナ2、吸気管3、スロットルバルブ4、サージタンク5及びインテークマニホールド6を通過して、インテークマニホールド6内で各燃料噴射弁7から噴射された燃料と混合され、所定空燃比の混合気として各気筒に分配供給される。また、内燃機関1の各気筒に設けられた点火プラグ8には、点火回路9から供給される高電圧がディストリビュータ10にて分配供給され、前記各気筒の混合気を所定タイミングで点火する。そして、燃焼後の排気ガスはエキゾーストマニホールド11及び排気管12を通過し、排気管12に設けられた三元触媒13にて有害成分(CO、HC、NOX 等)を浄化されて大気に排出される。
【0044】
前記吸気管3には吸気温センサ21と吸気圧センサ22が設けられ、吸気温センサ21は吸入空気の温度Tamを、吸気圧センサ22はスロットルバルブ4の下流側の吸気圧PMをそれぞれ検出する。前記スロットルバルブ4には開度THを検出するスロットルセンサ23が設けられ、このスロットルセンサ23はスロットル開度THに応じたアナログ信号と共に、スロットルバルブ4がほぼ全閉であることを検出する図示しないアイドルスイッチからのオン・オフ信号を出力する。また、内燃機関1のシリンダブロックには水温センサ24が設けられ、この水温センサ24は内燃機関1内の冷却水温Thwを検出する。前記ディストリビュータ10には内燃機関1の回転数Ne を検出する回転数センサ25が設けられ、この回転数センサ25は内燃機関1の2回転、即ち720°毎にパルス信号を24回出力する。更に、前記排気管12の三元触媒13の上流側には、内燃機関1から排出される排気ガスの空燃比λに応じたリニアな空燃比信号を出力するA/Fセンサ26が設けられ、三元触媒13の下流側には、排気ガスの空燃比λが理論空燃比λ=1に対してリッチかリーンかに応じた電圧VOX2を出力するO2 センサ27が設けられている。
【0045】
内燃機関1の運転状態を制御する電子制御装置31は、CPU32、ROM33、RAM34、バックアップRAM35等を中心に論理演算回路として構成され、前記各センサの検出信号を入力する入力ポート36及び各アクチュエータに制御信号を出力する出力ポート37等に対しバス38を介して接続されている。そして、電子制御装置31は入力ポート36を介して前記各センサから吸気温Tam、吸気圧PM、スロットル開度TH、冷却水温Thw、回転数Ne 、空燃比信号、出力電圧VOX2等を入力し、それらの各値に基づいて燃料噴射量TAU、点火時期Ig を算出して、出力ポート37を介して燃料噴射弁7及び点火回路9にそれぞれ制御信号を出力する。以下、これらの制御の内の燃料噴射量TAUに関わる空燃比制御について説明する。
【0046】
電子制御装置31は空燃比制御を実行するために次の手法で設計されている。なお、以下の設計手法は特開昭64−110853号公報に開示されている。
【0047】
▲1▼制御対象のモデリング
本実施例では内燃機関1の空燃比λを制御するシステムのモデルに、むだ時間P=3を持つ次数1の自己回帰移動平均モデルを用い、さらに外乱dを考慮して近似している。
【0048】
まず、自己回帰移動平均モデルを用いた空燃比λを制御するシステムのモデルは、
【0049】
【数1】
Figure 0003846906
【0050】
で近似できる。ここで、λは空燃比、FAFは空燃比補正係数、a、bは定数、kは最初のサンプリング開始からの制御回数を示す変数である。さらに外乱dを考慮すると制御システムのモデルは、
【0051】
【数2】
Figure 0003846906
【0052】
と近似できる。
【0053】
以上のようにして近似したモデルに対し、ステップ応答を用いて回転同期(360°CA)サンプリングで離散化して定数a、bを定めること、即ち、空燃比λを制御する系の伝達関数Gを求めることは容易である。
【0054】
▲2▼状態変数量Xの表示方法
上式(2)を状態変数量X(k)
=〔X1(k )、X2(k )、X3(k )、X4(k) 〕T
を用いて書き直すと、
【0055】
【数3】
Figure 0003846906
【0056】
を得る。
【0057】
【数4】
Figure 0003846906
【0058】
となる。
【0059】
▲3▼レギュレータの設計
次にレギュレータを設計すると、最適フィードバックゲインK=〔K1 、K2 、K3 、K4 〕と状態変数量XT (k)
=〔λ(k)、FAF(k−3)、FAF(k−2)、FAF(k−1)〕
とを用いて
【0060】
【数5】
Figure 0003846906
【0061】
となる。更に、誤差を吸収させるための積分項Z1(k )を加え、
【0062】
【数6】
Figure 0003846906
【0063】
として、空燃比λ、補正係数FAFを求めることができる。
【0064】
なお、積分項Z1(k )は目標空燃比λTGと実際の空燃比λ(k)との偏差と積分定数Kaとから決まる値であって、次式により求められる。
【0065】
【数7】
Figure 0003846906
【0066】
図3は、前述のようにモデルを設計した空燃比λを制御するシステムのブロック線図である。図3において、空燃比補正係数FAF(k)をFAF(k−1)から導くためにZ-1変換を用いて表示したが、これは過去の空燃比補正係数FAF(k−1)をRAM34に記憶しておき、次の制御タイミングで読み出して用いている。
【0067】
また、図3において一点鎖線でかこまれたブロックP1が空燃比λ(k)を目標空燃比λTGにフィードバック制御している状態において状態変数量X(k)を定める部分、ブロックP2が積分項Z1(k )を求める部分(累積部)、およびブロックP3がブロックP1で定められた状態変数量X(k)とブロックP2で求められた積分項Z1(k )とから今回の空燃比補正係数FAF(k)を演算する部分である。
【0068】
▲4▼最適フィードバックゲインK及び積分定数Kaの決定
最適フィードバックゲインK及び積分定数Kaは、例えば、次式で示される評価関数Jを最小とすることで設定できる。
【0069】
【数8】
Figure 0003846906
【0070】
ここで、評価関数Jとは空燃比補正係数FAF(k)の動きを制約しつつ、空燃比λ(k)と目標空燃比λTGとの偏差を最小にしようと意図したものであり、空燃比補正係数FAF(k)に対する制約の重み付けは、重みのパラメータQ、Rの値によって変更することができる。したがって、重みパラメータQ、Rの値を種々換えて最適な制御特性が得られるまでシュミレーションを繰り返し、最適フィードバックゲインK及び積分定数Kaを定めればよい。
【0071】
さらに、最適フィードバックゲインK及び積分定数Kaはモデル定数a、bに依存している。よって、実際の空燃比λを制御する系の変動(パラメータ変動)に対するシステムの安定性(ロバスト性)を保証するためには、モデル定数a、bの変動分を見込んで最適フィードバックゲインK及び積分定数Kaを設計する必要がある。よって、シュミレーションはモデル定数a、bの現実に生じ得る変動を加味して行ない、安定性を満足する最適フィードバックゲインK及び積分定数Kaを定める。
【0072】
以上、▲1▼制御対象のモデリング、▲2▼状態変数量の表示方法、▲3▼レギュレータの設計、▲4▼最適フィードバックゲイン及び積分定数の決定について説明したが、これらは予め決定されており、電子制御装置31ではその結果即ち、前述の(6)、(7)式のみを用いて制御を行う。
【0073】
《燃料噴射量TAUの算出処理》
次に、上記のように構成された本実施例の内燃機関の空燃比制御装置の動作を説明する。
【0074】
図4は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャートである。
【0075】
この燃料噴射量算出ルーチンは内燃機関1の回転に同期して360°CA毎に実行される。まず、CPU32はステップS101で吸気圧PM、回転数Ne 等に基づいて基本燃料噴射量TP を算出し、続くステップS102で空燃比λのフィードバック条件が成立しているか否かを判定する。ここで、周知のようにフィードバック条件とは、冷却水温Thwが所定値以上で、かつ高回転・高負荷ではないときに成立する。ステップS102で空燃比λのフィードバック条件が成立しているときには、ステップS103で目標空燃比λTGを設定し(詳細は後述する)、ステップS104で空燃比λを目標空燃比λTGとすべく空燃比補正係数FAFを設定した後に、ステップS105に移行する。即ち、ステップS104では目標空燃比λTGとA/Fセンサ26で検出された空燃比λ(K) に応じて、前記した(6)、(7)の式により空燃比補正係数FAFが算出される。また、前記ステップS102で空燃比λのフィードバック条件が成立していないときには、ステップS106で空燃比補正係数FAFを1に設定して、ステップS105に移行する。
【0076】
その後、CPU32はステップS105で次式に従って基本燃料噴射量TP 、空燃比補正係数FAF及び他の補正係数FALLから燃料噴射量TAUを設定する。
【0077】
TAU=TP ×FAF×FALL
そして、このようにして設定された燃料噴射量TAUに基づく制御信号が燃料噴射弁7に出力されて開弁時間、つまり実際の燃料噴射量が制御され、その結果、混合気が目標空燃比λTGに調整される。
【0078】
《目標空燃比λTGの設定処理》
次に、前記した目標空燃比λTGの設定処理(図4のステップS103の処理)について詳述する。
【0079】
〈定常・過渡判定処理〉
本実施例の空燃比制御装置では、内燃機関1の定常運転時(例えば、車両が定速走行中で機関回転数Ne や吸気圧PM等がほぼ一定に保持されている状態)の場合と、過渡運転時(例えば、車両が加速中で機関回転数Ne や吸気圧PM等が変動している状態)で、かつ空燃比λが理論空燃比λ=1からある程度乱れている場合とでは、目標空燃比λTGを異なる処理で設定する。そこで、まず、定常運転時と過渡運転時との判定処理を説明する。
【0080】
図5は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する定常・過渡判定ルーチンを示すフローチャート、図6は本発明の第一実施例である内燃機関の空燃比制御装置の空燃比から物質濃度を算出するためのROMに格納されたマップを示す説明図、図7は本発明の第一実施例である内燃機関の空燃比制御装置の空燃比のサンプリング時及びパージ制御時におけるA/Fセンサ出力、吸着量及び目標空燃比を示すタイムチャートである。
【0081】
CPU32は図5のステップS201で吸着量算出カウンタTOSC がリセットされているか否かを判定し、カウンタTOSC はリセットされているためステップS202で前記A/Fセンサ26にて検出された空燃比λが予め設定されたリッチ側許容値λRLとリーン側許容値λLL(λRL>λ=1>λLL)との範囲内に収束しているか否かを判定する。空燃比λが範囲内に収束しているときには内燃機関1が定常運転にあるとして、ステップS203で反転スキップ制御処理を実行する。後述するように、この反転スキップ制御処理は、実際の空燃比λを理論空燃比λ=1付近に保持すべく実行される。
【0082】
また、前記ステップS202で空燃比λがリッチ側許容値λRLとリーン側許容値λLLとの範囲内に収束せずに乱れているときには、内燃機関1が過渡運転にあるとしてステップS204で吸着量算出カウンタTOSC が予め設定されたサンプリング時間Tαに達しているか否かを判定する。前記したように吸着量算出カウンタTOSC はリセットされてサンプリング時間Tαに達していないため、以下のステップS205乃至ステップS210の処理を実行して、空燃比λの乱れにより三元触媒13に吸着されつつある一酸化炭素CO、炭化水素HC、窒素酸化物NOX 等の有害成分の総量を算出する。
【0083】
まず、CPU32はステップS205で予めROM33に格納された図6に示すマップに基づいて、図7に示すように、A/Fセンサ26にて検出された実際の空燃比λ(以下、順次サンプリングするためλ(i) とする)から現時点の物質濃度を算出する。周知のように、排気ガス中の有害成分としては、空燃比λがリーン側に偏った場合にはNOX と酸素O2 が増大し、リッチ側に偏った場合にはCOとHCが増大するが、このマップでは物質濃度をO2 を基準として定めているため、リーン側ではO2 の過剰分を直接表して正の値として設定され、リッチ側ではCOやHCにより要求されるO2 の不足分を表して負の値として設定される。
【0084】
ステップS205で物質濃度の算出を完了するとステップS206に移行し、次式に従って物質濃度と吸入空気量QA (以下、順次サンプリングするためQA(i)とする)から前記三元触媒13に吸着された吸着量OST(i) を算出する。
【0085】
OST(i) =物質濃度×QA(i)
但し、このときの吸入空気量QA(i)は空気流の遅れを考慮し、物質濃度の基礎となる空燃比λ(i) が検出された空気流を対象とした検出値とする。即ち、吸入空気量QA(i)は機関回転数Ne と吸気圧PMより算出されるが、機関回転数Ne を検出する回転数センサ25及び吸気圧PMを検出する吸気圧センサ22は、空燃比λ(i) を検出したA/Fセンサ26より上流側に位置するため、機関回転数Ne については1.5回前の検出値(つまり今回と前回の平均値)を適用し、吸気圧PMについては3回前の検出値を適用して、次式により吸入空気量QA(i)が算出される。
【0086】
QA(i)∝Ne(I-1.5)×PM(I-3)
ステップS206で吸着量OST(i) の算出を完了するとステップS207に移行し、総吸着量OST←OST+OST(i) とする。次いで、ステップS208で算出した総吸着量OSTが予め設定された最小吸着量OSTmin と最大吸着量OSTmax とで定められた範囲内にあるか否かを判定する。ここで、最小吸着量OSTmin とは、空燃比λがリッチ側のときのCOやHCを対象とした三元触媒13の最大の吸着量を表し(前記したようにO2 を基準としているため負の値となり、最小値と呼んでいる)、また、最大吸着量OSTmax とは、空燃比λがリーン側のときのO2 を対象とした三元触媒13の最大の吸着量を表し、周知のように、共に三元触媒13の劣化に伴って低下する性質を有する。そして、これらの最小吸着量OSTmin と最大吸着量OSTmax は後述する吸着量学習処理により適宜算出されて、このステップS208では最新のデータが適用される。
【0087】
前記ステップS208で現時点の総吸着量OSTが最小吸着量OSTmin と最大吸着量OSTmax の範囲内にあると判定したときには、ステップS209で前記吸着量算出カウンタTOSC をインクリメント「+1」して前記ステップS201に戻り、今回は吸着量算出カウンタTOSC がリセットされていないためステップS204に移行して、吸着量算出カウンタTOSC がサンプリング時間Tαに達したか否かを判定する。未だサンプリング時間Tαに達していないときには、図7に示すように、再びステップS205乃至ステップS207の処理により新たな空燃比λ(i) から吸着量OST(i) を算出して総吸着量OSTに加算する。つまり、サンプリング時間Tαが経過するまで順次空燃比λ(i) がサンプリングされて、それに基づく吸着量OST(i) が総吸着量OSTに加算される。
【0088】
乱れた空燃比λは次第に理論空燃比λ=1に回復するが、通常の空燃比λの回復に要すると予想される時間に比較して前記サンプリング時間Tαは長く設定されており、空燃比λが理論空燃比λ=1に回復するまで吸着量OST(i) のサンプリングが継続される。その結果、各吸着量OST(i) を加算した総吸着量OSTは、空燃比λの乱れによって三元触媒13に吸着された有害成分(リーン側の乱れのときにはNOX 、リッチ側の乱れのときにはCOとHC)の総量を表すことになる。また、サンプリング中にステップS208で総吸着量OSTが最小吸着量OSTmin と最大吸着量OSTmax との範囲から外れたときには(図7に一点鎖線で示す)、三元触媒13がリッチ側またはリーン側のいずれかに飽和状態となった、即ち、それ以降はCO、HC、NOX 等の有害成分を吸着できずにエミッションとして排出するため総吸着量OSTが増加しないと見做して、ステップS210で総吸着量OSTをガードする。つまり、総吸着量OSTが最小吸着量OSTmin 以下になったときには、この最小吸着量OSTmin に制限し、総吸着量OSTが最大吸着量OSTmax 以上になったときには、最大吸着量OSTmax に制限する。
【0089】
一方、前記ステップS204で吸着量算出カウンタTOSC がサンプリング時間Tαに達したときには、ステップS211に移行して吸着量算出カウンタTOSC をリセットし、ステップS212でパージ制御処理を実行する。後述するように、このパージ制御処理は、三元触媒13に吸着された有害成分を除去すべく、前記のように算出した総吸着量OSTに基づいて実行される。
【0090】
〈反転スキップ制御処理〉
次いで、定常運転時に実行される反転スキップ制御処理を説明する。
【0091】
図8は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャート、図9は本発明の第一実施例である内燃機関の空燃比制御装置の反転スキップ制御時におけるO2 センサの出力電圧及び目標空燃比を示すタイムチャート、図10は本発明の第一実施例である内燃機関の空燃比制御装置の最小・最大吸着量からスキップ量を算出するためのROMに格納されたマップを示す説明図である。
【0092】
前記した定常・過渡判定ルーチンのステップS203で反転スキップ制御ルーチンがコールされると、CPU32はステップS301でO2 センサ27の出力電圧VOX2が理論空燃比λ=1のときの値である0.45Vより高いか低いか(リッチかリーンか)を判定し、リーン側のときにはステップS302で出力電圧VOX2が前回もリーン側であったか否かを判定する。前回もリーン側であるとき、つまり空燃比λがリーン側に維持されているときには、ステップS303で目標空燃比λTG←λTG−λIRとしてリッチ側に補正し、ステップS304で空燃比λの極性としてリーンをRAM34に格納する。このリッチ積分量λIRはごく小さな値として設定されているため、図9に示すように、目標空燃比λTGはリッチ側で漸減する。
【0093】
また、ステップS302で出力電圧VOX2が前回はリッチ側であったとき、つまり空燃比λがリッチ側からリーン側に反転したときには、ステップS305で予めROM33に格納された図10のマップに基づいて、後述する吸着量学習処理によって得られたCOやHCの吸着量を示す最小吸着量OSTmin からリッチスキップ量λSKR を算出する。ここで、図10から明らかなように、最小吸着量OSTmin に対しリッチスキップ量λSKR は正比例の関係にあり、三元触媒13が劣化して最小吸着量OSTmin が減少する程、リッチスキップ量λSKR として小さな値が設定される。その後、ステップS306で目標空燃比λTG←λTG−λIR−λSKR としてリッチ側に補正し、ステップS304でリーンをRAM34に格納する。このリッチスキップ量λSKR は前記リッチ積分量λIRに比較して十分に大きな値のため、図9に示すように、目標空燃比λTGはリーン側からリッチ側にスキップ的に激減する。
【0094】
一方、前記ステップS301でO2 センサ27の出力電圧VOX2がリッチ側であるときには、ステップS307で出力電圧VOX2が前回もリッチ側であったか否かを判定する。そして、前回もリッチ側であるときにはステップS308で目標空燃比λTG←λTG+λIL(λILはリーン積分量)として、目標空燃比λTGをリーン側で漸増させ、また、前回はリーン側であったときにはステップS309で図10のマップに基づきO2 の吸着量を示す最大吸着量OSTmax からリーンスキップ量λSKL を算出して、ステップS310でλTG←λTG+λIL+λSKL とし、目標空燃比λTGをリッチ側からリーン側にスキップ的に激増させる。なお、前記したリッチスキップ量λSKR の場合と同様に、三元触媒13が劣化して最大吸着量OSTmax が減少する程、リーンスキップ量λSKL として小さな値が設定される。そして、ステップS308とステップS310のいずれの場合でも前記ステップS304で空燃比λの極性としてリッチをRAM34に格納する。
【0095】
このように、O2 センサ27の出力電圧VOX2に基づいて、三元触媒13を通過した排気ガスの空燃比λがリーン側またはリッチ側に継続して変動しているときには、ステップS303またはステップS308で目標空燃比λTGがリッチ積分量λIRやリーン積分量λILにて空燃比λの変動方向の反対側に漸次増大される。また、空燃比λがリーン側とリッチ側との間で反転したときには、ステップS306またはステップS310で目標空燃比λTGがリッチスキップ量λSKR やリーンスキップ量λSKL にて理論空燃比λ=1を横切ってスキップ的に大きく補正される。
【0096】
そして、このようにして設定された目標空燃比λTGは、前記した図4に示す燃料噴射量算出ルーチンのステップS104で空燃比補正係数FAFの算出に用いられ、更に、その空燃比補正係数FAFからステップS105で燃料噴射量TAUが算出されて実際の燃料噴射量が制御される。前記したように、燃料噴射量算出ルーチンは内燃機関1の回転に同期して360°CA毎に実行されていることから、空燃比補正係数FAF及び燃料噴射量TAUも360°CA毎に更新され、反転スキップ制御ルーチンで設定された目標空燃比λTGは直ちに空燃比補正係数FAF及び燃料噴射量TAUに反映される。したがって、O2 センサ27にて検出された空燃比λの乱れに対して極めて良好な応答性で燃料噴射量TAUが制御される。
【0097】
また、空燃比λの変動方向が理論空燃比λ=1を横切って反転したときには、通常のリッチ積分量λIRやリーン積分量λILに比較して十分に大きな値のリッチスキップ量λSKR やリーンスキップ量λSKL にて目標空燃比λTGがスキップ的に増減される。本来、三元触媒13を含めて内燃機関1は大きな遅れを有する系であることから、三元触媒13の下流側で排気ガスの空燃比λが反転した時点では、既に上流側では空燃比λが理論空燃比λ=1からいずれかの方向に大きく乱れているが、このように目標空燃比λTGをスキップ的に増減することにより、その後の三元触媒13下流側の空燃比λの大きな乱れが確実に抑制される。
【0098】
よって、図9に示すように、O2 センサ27の出力電圧VOX2は0.45Vを中心として早い周期でごく狭い振幅で変動し、三元触媒13を通過した排気ガスの空燃比λは理論空燃比λ=1付近に収束する。なお、このときのO2 センサ27は理論空燃比λ=1付近の感度の良好な領域を用いて空燃比λを検出することになり、かつ、三元触媒13は有害成分をほとんど吸着しない状態に常に保持されるため、排気ガス中の有害成分の消費時間が大幅に短縮化され、その結果、O2 センサ27は空燃比λの僅かな乱れをも確実に検出可能となる。したがって、このO2 センサ27の感度向上も前記した空燃比λを理論空燃比λ=1付近に収束させることに役立っている。
【0099】
加えて、前記したように、空燃比λが反転せず、リーン側またはリッチ側に継続して変動しているときには、目標空燃比λTGがリッチ積分量λIRやリーン積分量λILにて空燃比λの変動方向の反対側に漸次増大される。したがって、この処理により三元触媒13の下流側の空燃比λはより確実に理論空燃比λ=1付近に収束する。
【0100】
一方、前記したように、三元触媒13の劣化によって最小吸着量OSTmin 及び最大吸着量OSTmax が減少してきたときには、図10のマップに基づいてリッチスキップ量λSKR やリーンスキップ量λSKL として次第に小さな値が算出されるため、三元触媒13の吸着限界を越えた過補正が行なわれるのが未然に防止される。
【0101】
〈パージ制御処理〉
次いで、過渡運転時で空燃比λが乱れた場合に実行されるパージ制御処理を説明する。
【0102】
図11は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行するパージ制御ルーチンを示すフローチャートである。
【0103】
前記した定常・過渡判定ルーチンのステップS212でパージ制御ルーチンがコールされると、CPU32はステップS401で、定常・過渡判定ルーチンのステップS207において算出された総吸着量OSTの極性が正か負かを判定する。つまり、このパージ制御の実行時には、空燃比λの乱れにより三元触媒13の有害成分の吸着量が増大しており、その有害成分がリーン側とリッチ側のいずれの乱れによるものかを判定しているのである。
【0104】
今、仮に図7に実線で示すように、空燃比λがリーン側に乱れたものとして説明を続けると、CPU32はステップS401でO2 を基準として算出された総吸着量OSTの極性が正、つまりリーンであると判定し、ステップS402で目標空燃比λTG←λTG−ΔλR とする。このリッチパージ補正量ΔλR は、前記した反転スキップ制御で用いられるスキップ量λSKR,λSKL より更に大きな値として設定されており、その結果、目標空燃比λTGは反転スキップ制御の状態から大きくΔλR 分だけリッチ側に補正され、それに伴いA/Fセンサ26にて検出される実際の空燃比λ(i) も次第にリッチ側に修正される。次いで、前記した定常・過渡判定ルーチンのステップS205と同じく、ステップS403で図6に示すマップに基づいて、A/Fセンサ26にて検出された空燃比λ(i) から現時点の物質濃度を算出し、ステップS404で次式に従って物質濃度と吸入空気量QA(i)から吸着量OST(i) を算出する。
【0105】
OST(i)=物質濃度×QA(i)
更に、ステップS405に移行して、前記した定常・過渡判定ルーチンで算出した総吸着量OSTを、OST←OST+OST(i)とする。ここで、図6に示すように、空燃比λ(i)がリッチ側に修正されることから物質濃度の極性としては負となり、吸着量OST(i)も負の極性を有することになって、総吸着量OSTは吸着量OST(i)にて減算される。即ち、空燃比λのリッチ側への修正により、三元触媒のO2の有害成分は次第に離脱して吸着量が減少し、その状態を空燃比λの変化に基づいて推定しているのである。そして、以下、このように空燃比制御により有害成分が中和され三元触媒13から離脱し、その吸着量が減少する現象をパージと定義する。
【0106】
その後、CPU32はステップS406で補正前の空燃比λがリッチであることを示す吸着量リッチフラグXOSTRがセットされているか否かを判定し、セットされていないためステップS407で総吸着量OSTがリーンパージ完了値OSTL より小さくなったか否かを判定する。そして、総吸着量OSTが未だ大きいときには、前記ステップS403からステップS407の処理を繰り返して総吸着量OSTを次第に減少させ、また、総吸着量OSTがリーンパージ完了値OSTL より小さくなると、ステップS408で目標空燃比λTG←λTG+ΔλR として、目標空燃比λTGを補正前の値に戻し、このパージ制御ルーチンを終了する。したがって、終了の時点では、三元触媒13の吸着量がほぼ0まで減少することになる。ここで、空気流の遅れを考慮した上でパージ制御の終了タイミングは、三元触媒13の吸着量が完全にパージされるより機関回転数Ne で3回転分だけ早めている。即ち、リーンパージ完了値OSTL としては次式で示すように、
OSTL =−物質濃度×QA(i)×3
とする。なお、物質濃度と吸入空気量QA は、このパージ制御の実行時の最新のデータを用いている。但し、パージ制御時の物質濃度は負の値であり、一方、図7から明らかなように、要求されるリーンパージ完了値OSTL は正の値であるため、物質濃度の極性を反転させて用いる。
【0107】
また、図7に二点鎖線で示すように、空燃比λがリッチ側に乱れた場合には、前記したリーン側に乱れた場合とリッチとリーンの関係を逆転した処理が行なわれる。即ち、ステップS401で総吸着量OSTの極性が負、つまりリッチであると判定し、ステップS409で補正前の空燃比λがリッチであることを示す吸着量リッチフラグXOSTRをセットし、ステップS410で目標空燃比λTG←λTG+ΔλL として、大きくリーンパージ補正量ΔλL 分だけリーン側に補正する。そして、ステップS403で現時点の物質濃度を、ステップS404で吸着量OST(i) を、ステップS405で総吸着量OSTをそれぞれ算出する。なお、この場合は空燃比λ(i) がリーン側に修正されることから物質濃度と共に吸着量OST(i) の極性が正となり、総吸着量OSTは吸着量OST(i) にて加算される。次いで、ステップS406で吸着量リッチフラグXOSTRがセットされているため、ステップS411で総吸着量OSTが、前記リーンパージ完了値OSTL と同じく予め機関回転数Ne で3回転分の遅れを見込んだリッチパージ完了値OSTR より大きくなったか否かを判定する。そして、ステップS403乃至ステップS406、ステップS411の処理を繰り返した結果、総吸着量OSTがリッチパージ完了値OSTR より大きくなると、ステップS412で目標空燃比λTG←λTG−ΔλL として補正前の値に戻し、ステップS413で吸着量リッチフラグXOSTRをクリアして、このパージ制御ルーチンを終了する。
【0108】
《吸着量学習処理》
次いで、前記定常・過渡判定ルーチンのステップS208と、反転スキップ制御ルーチンのステップS305及びステップS309で用いられる三元触媒13の最小吸着量OSTmin と最大吸着量OSTmax を算出する吸着量学習処理を説明する。
【0109】
図12は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する学習開始判定ルーチンを示すフローチャート、図13は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行するA/F変動制御ルーチンを示すフローチャート、図14は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する飽和判定ルーチンを示すフローチャート、図15は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する吸着量算出ルーチンを示すフローチャート、図16は本発明の第一実施例である内燃機関の空燃比制御装置の吸着量学習時におけるO2 センサの出力電圧及び目標空燃比を示すタイムチャートである。
【0110】
CPU32は図示しない車両の速度センサから検出信号を所定間隔で入力しており、その検出値に基づいて車両が2000km走行する毎に、図12乃至図15に示す各ルーチンを実行する。
【0111】
まず、CPU32は図12に示す学習開始判定ルーチンのステップS501でO2 センサ27の出力電圧VOX2が予め設定されたリッチ側許容値VRLとリーン側許容値VLL(VRL>λ=1>VLL)との範囲内に収束しているか否かを判定する。出力電圧VOX2が収束していないときには空燃比λが乱れており、吸着量の学習処理を実行するには適さないとして、ステップS502で待機時間カウンタTINをリセットし、ステップS503で学習実行フラグXOSTGをクリアする。また、O2 センサ27の出力電圧VOX2がリッチ側許容値VRLとリーン側許容値VLLとの範囲内に収束しているときには、ステップS504で待機時間カウンタTINをインクリメント「+1」し、ステップS505で待機時間カウンタTIN>TINL 、つまり予め設定された待機時間TINL が経過したか否かを判定する。
【0112】
ステップS505で待機時間TINL が経過すると、ステップS506で内燃機関1が定常運転状態であるか否かを判定する。なお、この判定は前記回転数センサ25にて検出された機関回転数Ne や吸気圧センサ22にて検出された吸気圧PM等に基づいて行なわれ、これらの検出値がほぼ一定のときに定常運転の判定がなされる。ステップS506で内燃機関1が定常運転状態になると、ステップS507で学習実行フラグXOSTGがクリアされてから予め設定された学習インターバル時間Tが経過したか否かを判定し、このインターバル時間Tが経過すると、ステップS508で学習実行フラグXOSTGをセットして、この学習開始判定ルーチンを終了する。また、ステップS505乃至ステップS507の各処理で肯定判断される以前に、ステップS501でO2 センサ27の出力電圧VOX2がリッチ側許容値VRLとリーン側許容値VLLとの範囲から外れたときには、ステップS502で待機時間カウンタTINがリセットされ、再びステップS501から処理が繰り返される。
【0113】
また、CPU32は前記学習開始判定ルーチンのステップS508で学習実行フラグXOSTGがセットされると、図13に示すA/F変動制御ルーチンのステップS601からステップS602に移行して補正実行カウンタTc が予め設定されたリッチ補正時間TR を越えたか否か、つまり、リッチ補正時間TR が経過したか否かを判定する。リッチ補正時間TR が経過していないときには、ステップS603で目標空燃比λTGを予め設定されたリッチ目標空燃比λRTとし、ステップS604で補正実行カウンタTc をインクリメント「+1」してステップS601に戻る。したがって、図16に示すように、ステップS602でリッチ補正時間TR が経過するまで、目標空燃比λTGが理論空燃比λ=1よりリッチ側のリッチ目標空燃比λRTに保持される。その結果、排気ガス中にはCOやHCが増加して三元触媒13に吸着され、O2 センサ27は三元触媒13の吸着量に応じたリッチ側の出力電圧VOX2を示す。
【0114】
そして、ステップS602でリッチ補正時間TR が経過すると、ステップS605で補正実行カウンタTc が、前記リッチ補正時間TR に予め設定されたリーン補正時間TL を加算した値を越えたか否か、つまり、リッチ補正時間TR の経過後に更にリーン補正時間TL が経過したか否かを判定する。リーン補正時間TL が経過していないときには、ステップS606で目標空燃比λTGを予め設定されたリーン目標空燃比λLTとし、ステップS604で補正実行カウンタTc をインクリメント「+1」してステップS601に戻る。したがって、図16に示すように、ステップS605でリーン補正時間TL が経過するまで、目標空燃比λTGが理論空燃比λ=1よりリーン側のリーン目標空燃比λLTに保持され、排気ガス中のO2 が増加して前記したリッチ側の補正により三元触媒13に吸着されたCOやHCをパージし、O2 センサ27の出力電圧VOX2は理論空燃比λ=1付近に回復する。そして、リーン補正時間TL が経過すると、ステップS607で学習実行フラグXOSTGをクリアして、このA/F変動制御ルーチンを終了する。
【0115】
一方、CPU32は前記学習開始判定ルーチンのステップS508で学習実行フラグXOSTGがセットされると、図14に示す飽和判定ルーチンのステップS701からステップS702に移行して、前記したA/F変動制御ルーチンのステップS603の目標空燃比λTGのリッチ側への補正により、O2 センサ27の出力電圧VOX2が予め設定された飽和判定レベルVSL(VSL>VRL)を越えたか否かを判定し、飽和判定レベルVSLを越えていないときには何ら処理を行なわず、飽和判定レベルVSLを越えたときにはステップS703で飽和判定フラグXOSTOVをセットして、この飽和判定ルーチンを終了する。ここで、飽和判定レベルVSLは、三元触媒13が飽和状態となったとき、換言すれば、COやHCの吸着量が吸着限界を越えて三元触媒13から排出され始めるときに、O2 センサ27が出力する出力電圧VOX2として設定されたものである。
【0116】
CPU32は前記A/F変動制御ルーチンのステップS607で学習実行フラグXOSTGがクリアされると、1回分の目標空燃比λTGの変動制御操作が完了したとして、図15に示す飽和吸着量算出ルーチンのステップS801からステップS802に移行し、飽和判定フラグXOSTOVがセットされているか否かを判定する。飽和判定フラグXOSTOVがセットされていないときには、前回の変動制御操作によって三元触媒13は吸着限界を越えなかったとして、ステップS803でリッチ補正時間TR 及びリーン補正時間TL に予め設定された加算時間Ta を加算する。
【0117】
そして、前記A/F変動制御ルーチンのステップS607で学習実行フラグXOSTGがクリアされてから学習インターバル時間Tが経過すると、CPU32は前記学習開始判定ルーチンのステップS507からステップS508に移行して学習実行フラグXOSTGをセットし、再び前記と同様に、A/F変動制御ルーチンで目標空燃比λTGの変動制御操作を実行する。このときのリッチ補正時間TR は加算時間Ta にて延長化されているため、前回より三元触媒13の吸着量が増加することになる。なお、リッチ補正時間TR に応じてリーン補正時間TL も延長化されているため、変動制御操作後の目標空燃比λTGは速やかに理論空燃比λ=1に回復する。そして、飽和判定ルーチンのステップS702でO2 センサ27の出力電圧VOX2が未だ飽和判定レベルVSLを越えていないときには、飽和吸着量算出ルーチンのステップS803でリッチ補正時間TR 及びリーン補正時間TL を更に延長化し、また、出力電圧VOX2が飽和判定レベルVSLを越えたときには、飽和判定ルーチンのステップS703で飽和判定フラグXOSTOVをセットする。
【0118】
飽和判定フラグXOSTOVのセットにより、CPU32は飽和吸着量算出ルーチンのステップS02からステップS04に移行し、次式に従って現時点の三元触媒13のCOやHCの吸着量である最小吸着量OSTminを算出する。
【0119】
OSTmin =物質濃度×QA ×TR
ここで、物質濃度としては、前記した図6に示すマップに基づいて、リッチ目標空燃比λRTに対応する値MR を算出して用いる。したがって、物質濃度は負の値となり、それに伴い最小吸着量OSTmin も負の値となる。
【0120】
更に、ステップS805で最小吸着量OSTmin の絶対値を最大吸着量OSTmax として設定し、この飽和吸着量算出ルーチンを終了する。
【0121】
以上のようにして吸着量学習処理で算出された最小吸着量OSTmin 及び最大吸着量OSTmax が、定常・過渡判定ルーチンのステップS208や、スキップ制御ルーチンのステップS305及びステップS309で用いられる。
【0122】
そして、本実施例では、内燃機関M1として内燃機関1が、触媒M2として三元触媒13が、上流側空燃比検出手段M3としてA/Fセンサ26が、下流側空燃比検出手段M4としてO2 センサ27が機能し、反転方向判別手段M5としてステップS301、ステップS302及びステップS307の処理を実行するときのCPU32が、目標空燃比設定手段M6としてステップS306及びステップS310の処理を実行するときのCPU32が、燃料噴射弁M7として燃料噴射弁7が、噴射量算出手段M8としてステップS104及びステップS105の処理を実行するときのCPU32がそれぞれ機能する。
【0123】
このように上記実施例の内燃機関1の空燃比制御装置は、内燃機関1の排気経路の三元触媒13の上流側に設けられ、前記内燃機関1から排出された排気ガスの空燃比λに応じた空燃比信号を出力するA/Fセンサ26と、前記三元触媒13の下流側に設けられ、三元触媒13を通過した排気ガスの空燃比λがリッチかリーンかを検出するO2 センサ27と、前記O2 センサ27の出力電圧VOX2が理論空燃比λ=1を横切ってリッチ側とリーン側との間で反転したときに反転方向を判別するとともに(ステップS301、ステップS302及びステップS307)、反転方向に対して反対側に予め設定されたリッチスキップ量λSKR 及びリーンスキップ量λSKL にて目標空燃比λTGをスキップ的に補正し(ステップS306及びステップS310)、前記A/Fセンサ26にて検出された空燃比λと、前記目標空燃比λTGとの差に基づき、内燃機関1の回転で360°CA毎に空燃比補正係数FAF及び燃料噴射量TAUを算出する(ステップS104及びステップS105)CPU32とを具備している。この構成は請求項1の発明の実施例に相当するものである。
【0124】
したがって、CPU32はステップS104及びステップS105で360°CA毎の更新速度で空燃比補正係数FAF及び燃料噴射量TAUを算出しているため、ステップS306及びステップS310でリッチスキップ量λSKR 及びリーンスキップ量λSKL にて補正された目標空燃比λTGは直ちに空燃比補正係数FAF及び燃料噴射量TAUに反映され、空燃比λの乱れに対して極めて良好な応答性で燃料噴射量TAUを制御することができる。また、O2 センサ27にて検出された空燃比λが理論空燃比λ=1を横切って反転したときには、リッチスキップ量λSKR やリーンスキップ量λSKL にて目標空燃比λTGがスキップ的に補正されるため、その後の三元触媒13下流側の空燃比λの大きな乱れを確実に抑制することができる。
【0125】
故に、空燃比λが乱れたときの補正の遅れを回避して、三元触媒13の下流側の空燃比λを常に確実に理論空燃比λ=1付近に収束させることができ、よって、有害成分の大気中への排出を未然に防止することができる。
【0126】
また、上記実施例の内燃機関1の空燃比制御装置は、空燃比λの反転方向を判別したときに、反転方向に対して反対側に予め設定されたリッチスキップ量λSKR及びリーンスキップ量λSKLにて目標空燃比λTGをスキップ的に補正するとともに(ステップS306及びステップS310)、空燃比λが反転しないときに、空燃比λの変動方向に対して反対側に目標空燃比λTGを設定して、リッチ積分量λIRやリーン積分量λILにて漸次増大させる(ステップS303及びステップS308)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0127】
したがって、目標空燃比λTGがリッチ積分量λIRやリーン積分量λILにて空燃比λの変動方向の反対側に漸次増大されるため、空燃比λはより確実に理論空燃比λ=1付近に収束し、前記した有害成分の排出を一層確実に防止することができる。
【0128】
更に、上記実施例の内燃機関1の空燃比制御装置は、吸着量学習ルーチンにて算出した三元触媒13の最小吸着量OSTmin及び最大吸着量OSTmaxの減少に応じて、目標空燃比λTGを補正するリッチスキップ量λSKRやリーンスキップ量λSKLを減少させる(ステップS305及びステップS309)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0129】
したがって、三元触媒13の劣化によって最小吸着量OSTmin 及び最大吸着量OSTmax が減少したときには、リッチスキップ量λSKR やリーンスキップ量λSKL として次第に小さな値が算出されるため、三元触媒13の吸着限界を越えた過補正が行なわれるのが未然に防止される。故に、三元触媒13の劣化を加味した上で、長期にわたって有害成分の大気中への排出を防止することができる。
【0130】
〔第二実施例〕
以下、本発明の第二実施例を説明する。
【0131】
なお、本実施例の空燃比制御装置の構成は、第一実施例の空燃比制御装置の構成と同一であり、相違点は内燃機関1の運転領域毎に、O2 センサ27にて検出された三元触媒13の下流側の空燃比λが理論空燃比λ=1に収束しているときの目標空燃比λTGを学習する学習処理にある。したがって、特に相違点を重点的に説明する。
【0132】
〈目標空燃比学習処理〉
図17は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャート、図18は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する目標空燃比学習ルーチンを示すフローチャート、図19は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャート、図20は本発明の第二実施例である内燃機関の空燃比制御装置の運転領域の設定の一例を示す説明図、図21は本発明の第二実施例である内燃機関の空燃比制御装置の反転スキップ制御時を示すタイムチャートである。
【0133】
図17に示すルーチンは、第一実施例で説明した図8に示すルーチンと同じく反転スキップ制御処理を実行するためのものであり、ステップS303、ステップS306、ステップS308及びステップS310の各処理で目標空燃比λTGに代えて基本目標空燃比λS を補正している点と、ステップS901乃至ステップS906が付加されている点が相違している。
【0134】
2 センサ27の出力電圧VOX2に基づき、CPU32はステップS302で空燃比λが理論空燃比λ=1を境界としてリッチ側からリーン側に反転すると、ステップS901で今現在の基本目標空燃比λS をRAM34に格納する。次いで、ステップS305でリッチスキップ量λSKR を算出し、ステップS306で基本目標空燃比λS ←λS −λIR−λSKR としてリッチ側に補正し、ステップS902でスキップの回数をカウントするスキップ数カウンタCSKIPをインクリメント「+1」する。更に、ステップS903でRAM34に格納されている基本目標空燃比λS と、前記のように算出された基本目標空燃比λS とを平均して平均空燃比λS AVを算出した後、ステップS304を経て一旦このルーチンを終了する。
【0135】
同様に、ステップS307で空燃比λがリーン側からリッチ側に反転すると、ステップS904で今現在の基本目標空燃比λS をRAM34に格納し、ステップS309でリーンスキップ量λSKL を算出し、ステップS310で基本目標空燃比λS ←λS +λIL+λSKL としてリーン側に補正し、ステップS905でスキップ数カウンタCSKIPをインクリメント「+1」し、ステップS906で平均空燃比λS AVを算出する。
【0136】
このように、三元触媒13の下流側の空燃比λがリッチとリーンの間で反転して基本目標空燃比λS のスキップが行われたときに、スキップの前後の基本目標空燃比λS を平均した平均空燃比λS AVが算出されるとともに、スキップ数カウンタCSKIPが順次インクリメントされる。
【0137】
また、CPU32は図18に示す目標空燃比学習ルーチンのステップS1001で、内燃機関1の運転領域を検出し、ステップS1002でその運転領域が前回の処理時と同一であるか否かを判定する。ここで、図20に示すように、本実施例の運転領域は、吸入空気量QA 、スロットル開度TH及び車速に基づいて設定されており、以下に説明するように、その運転領域毎に学習値λKG0 〜λKGi が学習される。
【0138】
CPU32はステップS1002で運転領域が前回の処理時と同一であるときには、ステップS1003でO2 センサ27の出力電圧VOX2が予め設定されたリッチ側許容値VRLとリーン側許容値VLL(VRL>λ=1>VLL)の範囲内に収束しているか否かを判定する。出力電圧VOX2が収束しているときには、三元触媒13の下流側の空燃比λが安定しているとして、ステップS1004でスキップ時間カウンタCCENをインクリメント「+1」する。次いで、ステップS1005でそのスキップ時間カウンタCCENが10sec に達したか否かを判定し、スキップ時間カウンタCCENが未だ10sec に達していないときには、ステップS1006でスキップ数カウンタCSKIPが10以上であるか否かを判定する。
【0139】
そして、ステップS1006でスキップ数カウンタCSKIPが10以上となる以前に、ステップS1005でスキップ時間カウンタCCENが10sec に達したときには、このルーチンを一旦終了する。このように単位時間当たりのスキップ数が少ないときには、下流側の空燃比λがリッチとリーンの間で頻繁に反転せず、理論空燃比λ=1付近に収束していないと見做すことができる。つまり、このときの目標空燃比λTGは三元触媒13を中立状態に保持できる値ではないとして、学習処理は実行されない。
【0140】
また、ステップS1005でスキップ時間カウンタCCENが10sec に達する以前に、ステップS1006でスキップ数カウンタCSKIPが10以上となったときには、ステップS1007に移行する。このように単位時間当たりのスキップ数が多いときには、下流側の空燃比λがリッチとリーンの間で頻繁に反転し、理論空燃比λ=1付近に収束していると見做すことができる。つまり、このときの目標空燃比λTGは三元触媒13を中立状態に保持できる値であるとして、ステップS1007の学習処理が実行される。
【0141】
CPU32はステップS1007で、学習値λKG←λKG+λS AV−1として、その時点で図17の反転スキップ制御ルーチンで算出されている平均空燃比λS AVを、運転領域に対応する学習値λKGに取り込むとともに、基本目標空燃比λS を1に設定する。なお、その後の基本目標空燃比λS は反転スキップ制御ルーチンで直ちに補正されるため、基本目標空燃比λS が1に保持されているのは学習値λKGの更新時のみとなる。つまり、後述する燃料噴射量算出ルーチンのステップS103では、目標空燃比λTG←λS +λKGとして、反転スキップ制御ルーチンでの基本目標空燃比λS の設定を目標空燃比λTGに反映させているが、学習値λKGの更新時には、学習値λKGによる補正が加えられて目標空燃比λTGが二重に補正されてしまうため、それを回避すべく基本目標空燃比λS を1としているのである。
【0142】
次いで、ステップS1008でスキップ時間カウンタCCEN及びスキップ数カウンタCSKIPをリセットした後に、このルーチンを終了する。このようにして下流側の空燃比λが理論空燃比λ=1付近に収束したときの基本目標空燃比λS が、その時点の運転領域に対応する学習値λKGに取り込まれる。なお、各運転領域の学習値λKGはバックアップRAM35の所定エリアに格納され、車両のイグニッションスイッチが遮断された後でもメモリ内容が保持される。
【0143】
また、前記ステップS1005でスキップ時間カウンタCCENが10sec に達する以前に、ステップS1003で出力電圧VOX2がリッチ側許容値VRLとリーン側許容値VLLの範囲内から外れると、ステップS1008でスキップ時間カウンタCCEN及びスキップ数カウンタCSKIPをリセットされて、再び学習処理の実行の可否が判定される。また、ステップS1005でスキップ時間カウンタCCENが10sec に達する以前に、ステップS1002で運転領域が前回の処理時から変化すると、ステップS1009でスキップ時間カウンタCCEN及びスキップ数カウンタCSKIPをリセットする。この場合には変化後の新たな運転領域について、学習処理の実行の可否が判定される。
【0144】
なお、ステップS1007では、基本目標空燃比λS に基づいて学習値λKGを設定する学習方法を用いたが、これ以外の方法を実施することも可能であり、例えば、学習値λKGを1ずつ増減して、そのときの下流側の空燃比λの変化に基づいて学習値λKGを学習する方法を用いてもよい。
【0145】
一方、CPU32は図19に示す燃料噴射量算出ルーチンを実行する。このルーチンは、第一実施例で説明した図4に示すルーチンと同じく燃料噴射量TAUを算出するためのものであり、ステップS103の処理内容が変更されている点と、ステップS1101及びステップS1102が付加されている点が相違している。
【0146】
CPU32はステップS102で空燃比λのフィードバック条件が成立しているときには、ステップS1101で今現在の内燃機関1の運転領域を検出し、ステップS1102でその運転領域に対応する学習値λKGを選択してバックアップRAM35から読み出す。そして、ステップS103で目標空燃比λTG←λS +λKGとして、その時点で図17の反転スキップ制御ルーチンで算出されている基本目標空燃比λS に学習値λKGを加算して、目標空燃比λTGを算出する。その後は第一実施例で説明したように、ステップS104で空燃比補正係数FAFを設定し、ステップS105で燃料噴射量TAUを設定して、このルーチンを終了する。
【0147】
なお、ステップS1102では、バックアップRAM35に格納された各学習値λKGから今現在の運転領域に対応する値を選択して、目標空燃比λTGの設定処理に用いたが、例えば、バックアップRAM35に格納された各学習値λKGを直線補間して、現在の運転領域に完全に対応する学習値λKGを算出し、目標空燃比λTGの設定処理に用いてもよい。
【0148】
また、ステップS103の目標空燃比λTGの設定処理では、基本目標空燃比λS や学習値λKG以外に各種補正係数を加味することができ、例えば、特開平3−185244号公報に記載の所謂ディザ制御を実行すべく、目標空燃比λTGを周期的に変動させる補正係数を加算したり、或いは冷却水温Thw等に応じた補正係数を加算したりしてもよい。
【0149】
以上のように本実施例では、内燃機関1の各運転領域毎に、三元触媒13の下流側の空燃比λが理論空燃比λ=1付近に収束したときの基本目標空燃比λS が学習値λKGとして学習され、その学習値λKGが目標空燃比λTGに反映される。
【0150】
ここで、本出願の発明者は、三元触媒13の温度変化に伴うガス浄化率の相違、或いは排気ガスの流量変化に伴うA/Fセンサ26のガス交換速度の相違等により、三元触媒13を中立状態に保持できる目標空燃比λTGが運転領域毎に異なることを確認している。そして、前記第一実施例のように目標空燃比λTGの学習処理が行なわれない場合には、図21に二点鎖線で示すように、運転領域の変化によりO2 センサ27の出力電圧VOX2がリーン側に変動し始めてから、目標空燃比λTG(図では基本目標空燃比λS で示す)がリッチ側に積分量λIRにて補正される。つまり、三元触媒13にリーン側の有害成分がある程度吸着されて、下流側の空燃比λが乱れ始めた後でなければ目標空燃比λTGの補正は行なわれず、また、図8の反転スキップ制御ルーチンの特性上、下流側の空燃比λが理論空燃比λ=1から一方向に乱れているときには、積分量λIR,λILによる緩やかな補正しか行なわれない。よって、目標空燃比λTGの補正遅れが発生して、下流側の空燃比λの乱れやハンチングを生じ、三元触媒13の吸着状態が中立から外れてしまう可能性がある。
【0151】
これに対して本実施例では、図21に実線で示すように、吸入空気量QA の増加により内燃機関1の運転領域が変化したときであっても、それに対応するリッチ側の学習値λKGが読み出されて直ちに目標空燃比λTGがリッチ側に補正される。その結果、運転領域の変化に伴う補正遅れが防止されて、三元触媒13はより確実に中立状態に保持され続け、下流側の空燃比λを示すO2 センサ27の出力電圧VOX2も理論空燃比λ=1付近に収束し続ける。
【0152】
そして、本実施例では、空燃比学習手段としてステップS1005乃至ステップS1007の処理を実行するときのCPU32が機能し、目標空燃比補正手段としてステップS1101、ステップS1102、ステップS103の処理を実行するときのCPU32が機能する。
【0153】
このように上記実施例の内燃機関1の空燃比制御装置は、予め設定された内燃機関1の運転領域毎に、O2センサ27にて検出された三元触媒13の下流側の空燃比λがリッチとリーンの間で頻繁に反転して理論空燃比λ=1付近に収束しているときの基本目標空燃比λSを学習値λKGとして学習するとともに(ステップS1005乃至ステップS1007)、今現在の運転領域を判定して対応する学習値λKGを選出し、学習値λKGに基づいて目標空燃比λTGを設定する(ステップS1101、ステップS1102、ステップS103)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0154】
したがって、内燃機関1の運転領域毎に、下流側の空燃比λが理論空燃比λ=1付近に収束したときの基本目標空燃比λS が学習値λKGとして学習され、今現在の運転領域に対応する学習値λKGに基づいて目標空燃比λTGが設定される。よって、運転領域が変化したときであっても、それに対応する学習値λKGが読み出されて直ちに目標空燃比λTGが補正されるため、第一実施例に比較して、運転領域の変化に伴う補正遅れが防止され、三元触媒13をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0155】
〔第三実施例〕
以下、本発明の第三実施例を説明する。
【0156】
なお、本実施例の空燃比制御装置の構成は、第一実施例の空燃比制御装置の構成と同一であり、相違点は反転スキップ制御処理で用いられる積分量λIR,λIL及びスキップ量λSKR,λSKL を吸入空気量QA の増減に応じて変化させる点にある。したがって、特に相違点を重点的に説明する。
【0157】
〈積分量・スキップ量設定処理〉
図22は本発明の第三実施例である内燃機関の空燃比制御装置のCPUが実行する積分量・スキップ量設定ルーチンを示すフローチャート、図23は本発明の第三実施例である内燃機関の空燃比制御装置の吸入空気量から積分量を設定するためのROMに格納されたマップを示す説明図、図24は本発明の第三実施例である内燃機関の空燃比制御装置の吸入空気量からスキップ量を設定するためのROMに格納されたマップを示す説明図である。
【0158】
図22に示すルーチンは、第一実施例で説明した図8に示す反転スキップ制御ルーチンと同一タイミングで実行される。CPU32はステップS1201で回転数センサ25にて検出された機関回転数Ne と吸気圧センサ22にて検出された吸気圧PMとから今現在の内燃機関1の吸入空気量QA を算出する。次いで、ステップS1202で予めROM33に格納された図23のマップに基づいて、吸入空気量QA から積分量λIR,λILを決定し、ステップS1203で同じくROM33に格納された図24のマップに基づいて、吸入空気量QA からスキップ量λSKR,λSKL を決定する。
【0159】
そして、このようにして決定された積分量λIR,λIL及びスキップ量λSKR,λSKL が、図8に示す反転スキップ制御ルーチンのステップS303、ステップS306、ステップS308及びステップS310でそれぞれ用いられる。
【0160】
図23及び図24から明らかなように、積分量λIR,λILについては吸入空気量QA の増加に伴って次第に増加して設定され、また、スキップ量λSKR,λSKL については吸入空気量QA の増加に伴って次第に減少して設定されるとともに、吸入空気量QA が所定以上の領域ではその下限を抑制される。そして、これらの特性は、吸入空気量QA の増減に拘わらず、下流側の空燃比λに対して積分量λIR,λILやスキップ量λSKR,λSKL が常に一定の影響力を及ぼすように設定されたものである。即ち、本出願の発明者は、吸入空気量QA が増減すると、三元触媒13の温度、センサ26,27のガス交換速度、燃料噴射量の補正タイミング等が変動して、目標空燃比λTGを補正したときの下流側の空燃比λの変化率(積分量λIR,λILやスキップ量λSKR,λSKL の影響力)が変動することを確認している。そこで、下流側の空燃比λに対する影響力が大きいときには積分量λIR,λILやスキップ量λSKR,λSKL を小さな値に抑制し、影響力が小さいときには大きな値に増大させることにより、図8のルーチンのステップS303、ステップS306、ステップS308及びステップS310で下流側の空燃比λに基づいて目標空燃比λTGを補正する際の過補正や補正遅れを防止しているのである。
【0161】
なお、図23及び図24に示す特性は実験により求められたものであり、内燃機関1の仕様や空燃比制御の内容によっては、吸入空気量QA の増加に伴って次第に積分量λIR,λILを減少させる等、逆の特性に設定される場合もある。
【0162】
そして、本実施例では、運転状態検出手段として回転数センサ25及び吸気圧センサ22が機能し、補正量設定手段としてステップS1201乃至ステップS1203の処理を実行するときのCPU32が機能する。
【0163】
このように上記実施例の内燃機関1の空燃比制御装置は、機関回転数Neを検出する回転数センサ25、及び吸気圧PMを検出する吸気圧センサ22と、前記機関回転数Ne及び吸気圧PMから吸入空気量QAを算出し、ROM33に格納されたマップに基づいて吸入空気量QAから積分量λIR,λIL及びスキップ量λSKR,λSKLを設定する(ステップS1201乃至ステップS1203)CPU32とを具備している。この構成は請求項の発明の実施例に相当するものである。
【0164】
したがって、吸入空気量QA の増減に拘わらず、下流側の空燃比λに対して積分量λIR,λILやスキップ量λSKR,λSKL が常に一定の影響力を及ぼすように設定される。故に、これらの積分量λIR,λILやスキップ量λSKR,λSKL にて目標空燃比λTGを補正する際の過補正や補正遅れを防止でき、三元触媒13をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0165】
〔第四実施例〕
以下、本発明の第四実施例を説明する。
【0166】
なお、本実施例の空燃比制御装置の構成は、第一実施例の空燃比制御装置の構成と同一であり、相違点は反転スキップ制御処理で用いられる積分量λI (第一実施例では積分量λIR,λILに相当する)及びスキップ量λSK(第一実施例ではスキップ量λSKR,λSKL に相当する)をO2 センサ27の出力電圧VOX2の増減に応じて変化させる点にある。したがって、特に相違点を重点的に説明する。
【0167】
〈積分量・スキップ量設定処理〉
図25は本発明の第四実施例である内燃機関の空燃比制御装置のCPUが実行する積分量・スキップ量設定ルーチンを示すフローチャート、図26は本発明の第四実施例である内燃機関の空燃比制御装置のO2 センサの出力電圧から積分量を設定するためのROMに格納されたマップを示す説明図である。
【0168】
図25に示すルーチンは、第一実施例で説明した図8に示す反転スキップ制御ルーチンと同一タイミングで実行される。CPU32はステップS1301で前回の補正からの経過時間を示すインターバルカウンタTOSB が予め設定されたインターバル時間Tβ以上になったか否かを判定し、未だインターバル時間Tβ未満のときには、ステップS1302でインターバルカウンタTOSB をインクリメント「+1」して、一旦このルーチンを終了する。
【0169】
ステップS1302の処理が繰り返されて、ステップS1301でインターバルカウンタTOSB がインターバル時間Tβ以上になると、ステップS1303に移行してO2 センサ27の出力電圧VOX2を読み込み、ステップS1304で予めROM33に格納された図26のマップに基づいて、出力電圧VOX2から積分量λI を決定する。図から明らかなように、積分量λI は、出力電圧VOX2が理論空燃比λ=1付近(0.45V)の中立領域を挟んで、出力電圧VOX2のリッチ側への変化に伴って正側に、リーン側への変化に伴って負側に増大して設定され、かつ、リッチ及びリーンの所定以上の領域ではその上限を抑制される。次いで、CPU32はステップS1305で出力電圧VOX2からスキップ量λSKを決定する。図示はしないが、この設定処理にも図26と同様の特性のマップが用いられ、スキップ量λSKは積分量λI と同じく、大略的には出力電圧VOX2が理論空燃比λ=1から離間するほど正側または負側に増大して設定される。
【0170】
更に、CPU32はステップS1306でO2 センサ27の出力電圧VOX2が反転したか否かを判定し、反転しないとき、つまり三元触媒13の下流側の空燃比λがリッチ側またはリーン側に維持されているときには、ステップS1307で目標空燃比λTG←λTG+λI として積分量λI による補正を実行し、ステップS1308でインターバルカウンタTOSB をリセットして、このルーチンを終了する。また、前記ステップS1306で出力電圧VOX2が反転したとき、つまり下流側の空燃比λが理論空燃比λ=1を境界としてリッチ側とリーン側の間で反転したときには、ステップS1309で目標空燃比λTG←λTG+λSKとしてスキップ量λSKによる補正を実行し、ステップS1308を経てこのルーチンを終了する。
【0171】
ここで、積分量λI 及びスキップ量λSKは、O2 センサ27の出力電圧VOX2がリッチ側のときには正側に設定されて目標空燃比λTGをリーン側に補正し、また、出力電圧VOX2がリーン側のときには負側に設定されて目標空燃比λTGをリッチ側に補正する。したがって、目標空燃比λTGは、第一実施例で説明した図9のタイムチャートと同様の特性に制御される。加えて、本実施例では、出力電圧VOX2が理論空燃比λ=1に対応する0.45Vから離間するほど、換言すれば、目標空燃比λTGの大幅な補正を要するほど、積分量λI 及びスキップ量λSKが正側または負側に増大して設定されるため、常に適切な補正が行なわれて、下流側の空燃比λをより迅速に理論空燃比λ=1に収束させることが可能となる。
【0172】
なお、ステップS1307またはステップS1309での目標空燃比λTGの補正後には、ステップS1308でインターバルカウンタTOSB がリセットされるため、再びステップS1301でインターバル時間Tβが経過するまでは目標空燃比λTGが補正されることはない。つまり、目標空燃比λTGの補正結果がO2 センサ27の出力電圧VOX2に反映された後に、その出力電圧VOX2に基づいて次回の目標空燃比λTGが補正されるように配慮しているのである。
【0173】
このように上記実施例の内燃機関1の空燃比制御装置は、O2センサ27の出力電圧VOX2が理論空燃比λ=1に対応する0.45Vから離間するほど、目標空燃比λTGを補正するための積分量λI及びスキップ量λSKを正側または負側に増大して設定する(ステップS1304及びステップS1305)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0174】
したがって、三元触媒13の下流側の空燃比λが理論空燃比λ=1から離間して、目標空燃比λTGを大幅に補正する必要があるときほど、積分量λI やスキップ量λSKが増大して設定される。故に、常に適切な補正が行なわれて、下流側の空燃比λをより迅速に理論空燃比λ=1に収束させることができる。
【0175】
〔第一参考例〕
以下、第一参考例を説明する。
【0176】
なお、本参考例の空燃比制御装置の構成は、第一実施例乃至第四実施例の空燃比制御装置の構成とほとんど同一であり、相違点は空燃比補正係数FAFの設定処理にある。したがって、特に相違点を重点的に説明する。
【0177】
〈空燃比補正係数の設定処理〉
図28は内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャート、図29は内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャート、図30は内燃機関の空燃比制御装置の比較電圧及び空燃比補正係数の設定状態を示すタイムチャートである。
【0178】
本参考例の空燃比制御装置は、第一実施例で説明したA/Fセンサ26に代えて、図2に示すように三元触媒13の上流側にO2センサ41を備えている。以下、下流側のO2センサ27と区別するために、それぞれを上流側O2センサ41、下流側O2センサ27と呼ぶ。
【0179】
一方、CPU32の処理を説明すると、まず、図28のステップS1401で基本燃料噴射量TP を算出し、続くステップS1402で空燃比λのフィードバック条件が成立しているか否かを判定する。フィードバック条件が成立しているときには、ステップS1403で比較電圧VOX1LEの設定処理を実行する。
【0180】
ステップS1403で比較電圧設定ルーチンがコールされると、CPU32は図29のステップS1501で下流側O2 センサ27の出力電圧VOX2が0.45Vより高いか低いか(リッチかリーンか)を判定し、リーン側のときにはステップS1502で出力電圧VOX2が前回もリーン側であったか否かを判定する。前回もリーン側のときにはステップS1503で下流側の空燃比λの極性としてリーンをRAM34に格納して、一旦このルーチンを終了する。また、ステップS1502で出力電圧VOX2が前回はリッチ側であったときには、ステップS1504で比較電圧VOX1LE←VR (VR はリッチ側電圧設定値)としてリッチ側に設定し、ステップS1503でリーンをRAM34に格納する。
【0181】
一方、前記ステップS1501で下流側O2 センサ27の出力電圧VOX2がリッチ側のときには、ステップS1505で出力電圧VOX2が前回もリッチ側であったか否かを判定し、前回もリッチ側のときにはステップS1503でリッチをRAM34に格納する。また、ステップS1505で出力電圧VOX2が前回はリーン側であったときには、ステップS1506で比較電圧VOX1LE←VL (VL はリーン側電圧設定値)としてリーン側に設定し、ステップS1503でリッチをRAM34に格納する。
【0182】
したがって、図30に示すように、下流側O2 センサ27の出力電圧VOX2がリーン側とリッチ側との間で反転したときには、ステップS1504またはステップS1506で反転方向の反対側に比較電圧VOX1LEが設定される。なお、図から明らかなように、リッチ側電圧設定値VR 及びリーン側電圧設定値VL は、理論空燃比λ=1を中心としてリッチ側とリーン側に等間隔で設定され、かつ、相互の間隔は上流側O2 センサ41による空燃比λの検出範囲より小さく設定されている。
【0183】
その後、CPU32は図28のステップS1404に移行し、上流側O2 センサ41の出力電圧VOX1が上記のように設定した比較電圧VOX1LE未満であるか否かを判定する。出力電圧VOX1が比較電圧VOX1LE未満、つまりリーン側のときには、ステップS1405で出力電圧VOX1が比較電圧VOX1LEに対して前回もリーン側であったか否かを判定する。前回もリーン側のときにはステップS1406で空燃比補正係数FAF←FAF+FIRとしてリッチ側に補正し、ステップS1407で上流側の空燃比λの極性としてリーンをRAM34に格納する。このリッチ積分量FIRはごく小さな値として設定されているため、図30に示すように、空燃比補正係数FAFはリッチ側で漸増する。更に、ステップS1408で第一実施例で説明した図4のルーチンと同じく、次式に従って基本燃料噴射量TP 、空燃比補正係数FAF及び他の補正係数FALLから燃料噴射量TAUを設定し、このルーチンを終了する。
【0184】
TAU=TP +FAF+FALL
また、ステップS1405で出力電圧VOX1が前回はリッチ側であったときには、ステップS1409で空燃比補正係数FAF←FAF+FIR+FSKR としてリッチ側に補正し、ステップS1407でリーンをRAM34に格納し、ステップS1408で燃料噴射量TAUを設定する。このリッチスキップ量FSKR は前記リッチ積分量FIRに比較して十分に大きな値のため、図30に示すように、空燃比補正係数FAFはリーン側からリッチ側にスキップ的に激増する。
【0185】
一方、前記ステップS1404で上流側O2 センサ41の出力電圧VOX1が比較電圧VOX1LE以上、つまりリッチ側のときには、ステップS1410で出力電圧VOX1が比較電圧VOX1LEに対して前回もリッチ側であったか否かを判定する。前回もリッチ側のときにはステップS1411で空燃比補正係数FAF←FAF−FIL(FILはリーン積分量)として、空燃比補正係数FAFをリーン側で漸減させ、また、前回はリーン側であったときにはステップS1412でFAF←FAF−FIL−FSKL (FSKL はリーンスキップ量)として、空燃比補正係数FAFをリッチ側からリーン側にスキップ的に激減させる。そして、ステップS1411とステップS1412のいずれの場合でも前記ステップS1407でリッチをRAM34に格納し、ステップS1408で燃料噴射量TAUを設定する。
【0186】
以上のように空燃比補正係数FAFは、積分量FIR,FIL及びスキップ量FSKR,FSKLにより比較電圧VOX1LEを中心としてリッチ側とリーン側に変動しながら制御される。そして、本参考例では、この比較電圧VOX1LEを下流側O2センサ27の出力電圧VOX2の反転方向に対して常に反対側に設定しているため、空燃比補正係数FAFも出力電圧VOX2の反転方向と反対側に補正されて、リッチ側やリーン側に乱れた下流側の空燃比λが理論空燃比λ=1に回復する。
【0187】
例えば、図30のポイントAやポイントBで比較電圧VOX1LEがリッチ側に設定されると、空燃比補正係数FAFがリッチ側にスキップする時期がポイントA''からポイントA' に早められたり、リーン側にスキップする時期がポイントB''からポイントB' に遅くされたりするため、空燃比補正係数FAFは全体としてリッチ側に制御されて、リーン側に乱れた下流側の空燃比λをリッチ側に補正する作用を奏する。また、比較電圧VOX1LEがリーン側に設定されると、前記と逆に空燃比補正係数FAFは全体としてリーン側に制御されて、リッチ側に乱れた下流側の空燃比λをリーン側に補正する作用を奏するのである。
【0188】
そして、このように比較電圧VOX1LEを変更することで空燃比補正係数FAFを補正しているため、例えば、スキップ量RSR,RSLを増減した図40に示す従来例のように空燃比補正係数FAFへの反映が遅れることはなく、出力電圧VOX2の変動が速やかに空燃比補正係数FAFに反映されて、下流側の空燃比λの乱れに対して極めて良好な応答性で燃料噴射量TAUが制御される。よって、下流側O2 センサ27の出力電圧VOX2は0.45Vを中心として速い周期でごく狭い振幅で変動し、三元触媒13を通過した排気ガスの空燃比λは理論空燃比λ=1付近に収束する。
【0189】
なお、前記ステップS1402で空燃比λのフィードバック条件が成立していないときには、ステップS1413で空燃比補正係数FAFを1に設定して、ステップS1408に移行する。
【0190】
ところで、ステップS1408の燃料噴射量TAUの設定処理では、基本燃料噴射量TP や空燃比補正係数FAF以外に各種補正係数を加味することができ、例えば、第二実施例で述べたようにディザ制御を実行すべく燃料噴射量TAUを周期的に変動させる補正係数を乗算したり、或いは冷却水温Thw等に応じた補正係数を乗算したりしてもよい。
【0192】
このように上記参考例の内燃機関1の空燃比制御装置は、内燃機関1の排気経路の三元触媒13の上流側に設けられ、前記内燃機関1から排出された排気ガスの空燃比λに応じた空燃比信号を出力する上流側O2センサ41と、前記三元触媒13の下流側に設けられ、三元触媒13を通過した排気ガスの空燃比λがリッチかリーンかを検出する下流側O2センサ27と、前記下流側O2センサ27の出力電圧VOX2が理論空燃比λ=1を横切ってリッチ側とリーン側との間で反転したときに反転方向を判別するとともに(ステップS1501、ステップS1502及びステップS1505)、反転方向に対して反対側に予め設定されたリッチ側電圧設定値VR及びリーン側電圧設定値VLにて比較電圧VOX1LEを設定し(ステップS1504及びステップS1506)、前記上流側O2センサ41にて検出された空燃比λと前記比較電圧VOX1LEとの比較結果に基づき、空燃比補正係数FAF及び燃料噴射量TAUを算出する(ステップS1404乃至ステップS1412)CPU32とを具備している。
【0193】
したがって、比較電圧VOX1LEを変更することで空燃比補正係数FAFを補正しているため、出力電圧VOX2の変動が速やかに空燃比補正係数FAFに反映されて、下流側の空燃比λの乱れに対して極めて良好な応答性で燃料噴射量TAUを制御することができる。故に、空燃比λが乱れたときの補正の遅れを回避して、三元触媒13の下流側の空燃比λを常に確実に理論空燃比λ=1付近に収束させることができ、よって、有害成分の大気中への排出を未然に防止することができる。
【0194】
第五実施例〕
以下、本発明の第五実施例を説明する
【0195】
なお、本実施例の空燃比制御装置の構成は、第一参考例の空燃比制御装置の構成と同一であり、相違点は、比較電圧VOX1LEを積分制御及びスキップ制御する点、このとき用いる積分量VIR,VIL及びスキップ量VSKR,VSKLを三元触媒13の劣化状態に応じて変更する点、及び内燃機関1の運転領域毎に、下流側O2センサ27にて検出された下流側の空燃比λが理論空燃比λ=1に収束しているときの比較電圧VOX1LEを学習する点にある。したがって、特に相違点を重点的に説明する。
【0196】
〈積分量・スキップ量設定処理及び比較電圧学習処理〉
図31及び図32は本発明の第五実施例である内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャート、図33は本発明の第五実施例である内燃機関の空燃比制御装置のCPUが実行する比較電圧学習ルーチンを示すフローチャート、図34は本発明の第五実施例である内燃機関の空燃比制御装置の三元触媒の劣化状態から積分量及びスキップ量を算出するためのマップを示す説明図、図35は本発明の第五実施例である内燃機関の空燃比制御装置の比較電圧及び空燃比補正係数の設定状態を示すタイムチャートである。
【0197】
CPU32は第一参考例で説明した図28のステップS1403で比較電圧設定ルーチンがコールされると、図31のステップS1701で出力電圧VOX2が0.45Vより高いか低いか(リッチかリーンか)を判定し、リーン側のときにはステップS1702で予めROM33に格納された図34に示すマップに基づいて、現在の三元触媒13の劣化状態からリッチ積分量VIR及びリッチスキップ量VSKRを算出する。なお、本実施例ではA/Fセンサ26に代えて上流側O2センサ41を用いているため、第一実施例で説明したように三元触媒13の上流側の空燃比λから具体的な最大吸着量OSTmaxや最小吸着量OSTminを算出することはできない。したがって、例えば特開昭61−286550号公報、或いは特開平3−253714号公報に記載されている判定方法等を利用して三元触媒13の劣化状態を判定し、図に示すように、その劣化状態が進行しているほどリッチ積分量VIR及びリッチスキップ量VSKRを小さな値として算出する。
【0198】
次いで、CPU32はステップS1703で出力電圧VOX2が前回もリーン側であったか否かを判定し、前回もリーン側のときにはステップS1704で基本比較電圧VS ←VS +VIRとしてリッチ側に補正する。更に、ステップS1705及びステップS1706で基本比較電圧VS をリッチ側許容値VRmaxにガードし、ステップS1707で下流側の空燃比λの極性としてリーンをRAM34に格納する。その後、ステップS1708で今現在の内燃機関1の運転領域を検出し、ステップS1709でその運転領域に対応する学習値VKGを選択してバックアップRAM35から読み出し、ステップS1710で比較電圧VOX1LE←VS +VKGとして、このルーチンを終了する。なお、ステップS1708の運転領域は、例えば第二実施例で説明した図20と同じく吸入空気量QA 、スロットル開度TH及び車速に基づいて設定し、後述する図33の比較電圧学習ルーチンでその運転領域毎に学習値VKGが学習される。
【0199】
また、前記ステップS1703で出力電圧VOX2が前回はリッチ側であったときには、ステップS1711で今現在の基本比較電圧VS をRAM34に格納し、ステップS1712でVS ←VS +VIR+VSKR としてリッチ側に補正し、ステップS1713及びステップS1714で基本比較電圧VS をリッチ側許容値VRmaxにガードする。更に、ステップS1715でスキップの回数をカウントするスキップ数カウンタCSKIPをインクリメント「+1」し、ステップS1716でRAM34に格納されている基本比較電圧VS と、前記のように算出された基本比較電圧VS とを平均して平均電圧VS AVを算出し、その後、前記したステップS1707以降の処理を実行する。
【0200】
一方、前記ステップS1701で出力電圧VOX2がリッチ側のときには、ステップS1717で図34のマップに基づいてリーン積分量VIL及びリーンスキップ量VSKL を算出する。そして、ステップS1718で出力電圧VOX2が前回もリッチ側であったときにはステップS1719で基本比較電圧VS ←VS −VILとしてリーン側に補正し、ステップS1720及びステップS1721で基本比較電圧VS をリーン側許容値VLmaxにガードして、前記ステップS1707に移行する。
【0201】
また、ステップS1718で出力電圧VOX2が前回はリーン側であったときには、ステップS1722で基本比較電圧VS をRAM34に格納し、ステップS1723でVS ←VS −VIL−VSKL としてリーン側に補正し、ステップS1724及びステップS1725で基本比較電圧VS をリーン側許容値VLmaxにガードする。更に、ステップS1726でスキップ数カウンタCSKIPをインクリメント「+1」し、ステップS1727で平均電圧VS AVを算出して、前記ステップS1707に移行する。
【0202】
一方、CPU32は図33の比較電圧学習ルーチンを実行する。このルーチンは第二実施例で説明した図18の目標空燃比学習ルーチンとほとんど同一であり、ステップS1007の処理がステップS1801の処理に変更されている。したがって、ステップS1005及びステップS1006でスキップ数カウンタCSKIPに基づいて単位時間当たりのスキップ数が多いと判定されたときには、ステップS1801で学習値VKG←VKG+VS AV−0.45として、その時点で図31及び図32の比較電圧設定ルーチンで算出されている平均電圧VS AVが、運転領域に対応する学習値VKGに取り込まれる。
【0203】
以上のように本実施例では、第一参考例と同じく出力電圧VOX2の反転時に比較電圧VOX1LEをスキップ制御するだけでなく、図35に破線で示すように、出力電圧VOX2がリッチ側またはリーン側に継続して変動しているときに、比較電圧VOX1LEを積分量VIR,VILにて積分制御している。したがって、比較電圧VOX1LEが反転しないときでも、この積分制御により空燃比補正係数FAFが空燃比λの変動方向の反対側に制御されるため、スキップ制御のみの場合に比較して、下流側の空燃比λをより確実に理論空燃比λ=1付近に収束させることができる。なお、図では積分制御により基本比較電圧VSがリッチ側に増大して、リッチ側許容値VRmaxにガードされた場合を示す。
【0204】
また、三元触媒13の劣化状態が進行するほど、積分量VIR,VILやスキップ量VSKR,VSKL として次第に小さな値が算出されるため、それに伴い比較電圧VOX1LEの変動幅が減少する。したがって、空燃比補正係数FAFの変動幅も減少して、第一実施例と同様に三元触媒13の吸着限界を越えた過補正が行なわれるのが未然に防止される。
【0205】
更に、前記のように内燃機関1の各運転領域毎に、三元触媒13の下流側の空燃比λが理論空燃比λ=1に収束したときの基本比較電圧VS が学習値VKGとして学習され、その学習値VKGが比較電圧VOX1LEに反映される。つまり、この処理は第二実施例で説明した目標空燃比λTGの学習処理と同様の作用を奏し、図35に示すように、吸入空気量QA の増加により内燃機関1の運転領域が変化したときであっても、それに対応するリッチ側の学習値VKGが読み出されて直ちに比較電圧VOX1LEがリッチ側に補正される。したがって、運転領域の変化に伴う補正遅れが防止されて、三元触媒13はより確実に中立状態に保持される。
【0206】
そして、本実施例では、比較値学習手段としてステップS1005、ステップS1006、ステップS1801の処理を実行するときのCPU32が機能し、比較値補正手段としてステップS1708乃至ステップS1710の処理を実行するときのCPU32が機能する。
【0207】
このように上記実施例の内燃機関1の空燃比制御装置は、下流側の空燃比λが反転したときに、反転方向に対して反対側に予め設定されたリッチスキップ量VSKR及びリーンスキップ量VSKLにて比較電圧VOX1LEをスキップ的に補正するとともに、空燃比λが反転しないときに、空燃比λの変動方向に対して反対側に比較電圧VOX1LEを設定して、リッチ積分量VIRやリーン積分量VILにて漸次増大させる(ステップS1704及びステップS1719)CPU32を具備している。この構成は請求項6の発明の実施例に相当するものである。なお、本実施例において、比較電圧VOX1LEが請求項6における比較値に相当する。
【0208】
したがって、下流側の空燃比λが反転しないときでも、リッチ積分量VIRやリーン積分量VILにて比較電圧VOX1LEが積分制御されて、空燃比補正係数FAFが空燃比λの変動方向の反対側に制御されるため、スキップ制御のみの場合に比較して、下流側の空燃比λをより確実に理論空燃比λ=1付近に収束させて、有害成分の排出を一層確実に防止することができる。
【0209】
また、上記実施例の内燃機関1の空燃比制御装置は、三元触媒13の劣化状態が進行するほど、比較電圧VOX1LEを補正する積分量VIR,VILやスキップ量VSKR,VSKLを減少させる(ステップS1702及びステップS1717)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0210】
したがって、三元触媒13の劣化状態が進行するほど、積分量VIR,VILやスキップ量VSKR,VSKL として次第に小さな値が算出されるため、三元触媒13の吸着限界を越えた過補正が行なわれるのが未然に防止される。故に、三元触媒13の劣化を加味した上で、長期にわたって有害成分の大気中への排出を防止することができる。
【0211】
更に、上記実施例の内燃機関1の空燃比制御装置は、予め設定された内燃機関1の運転領域毎に、下流側O2センサ27にて検出された三元触媒13の下流側の空燃比λがリッチとリーンの間で頻繁に反転して理論空燃比λ=1付近に収束しているときの基本比較電圧VSを学習値VKGとして学習するとともに(ステップS1005、ステップS1006、ステップS1801)、今現在の運転領域を判定して対応する学習値VKGを選出し、学習値VKGに基づいて比較電圧VOX1LEを設定する(ステップS1708乃至ステップS1710)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0212】
したがって、内燃機関1の運転領域が変化したときであっても、それに対応する学習値VKGが読み出されて直ちに比較電圧VOX1LEが補正されるため、この学習処理を実行しない第一参考例に比較して運転領域の変化に伴う補正遅れが防止され、三元触媒13をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0213】
第二参考例
以下、第二参考例を説明する。
【0214】
なお、本参考例の空燃比制御装置の構成は、第一参考例の空燃比制御装置の構成と同一であり、相違点は比較電圧VOX1LEに対応してリア空燃比補正係数FAFRを設定し、その補正係数FAFRを燃料噴射量TAUの算出に加味する点にある。したがって、特に相違点を重点的に説明する。
【0215】
〈リア空燃比補正係数の設定処理〉
図36は内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャート、図37は内燃機関の空燃比制御装置のリア空燃比補正係数の設定状態を示すタイムチャート、図38は内燃機関の空燃比制御装置のO2センサの検出範囲に対する変位量の設定状態を示す説明図である。
【0216】
図36に示す比較電圧設定ルーチンは、第一参考例で説明した図29のルーチンとほとんど同一であり、ステップS1504及びステップS1506の処理がステップS1901及びステップS1902の処理に変更されている。したがって、出力電圧VOX2がリッチ側からリーン側に反転すると、CPU32はステップS1901で比較電圧VOX1LE←VRとしてリッチ側に設定するとともに、リア空燃比補正係数FAFR←1+α(αは変位量)としてリッチ側に補正する。逆に出力電圧VOX2がリーン側からリッチ側に反転すると、ステップS1902で比較電圧VOX1LE←VLとしてリーン側に設定するとともに、リア空燃比補正係数FAFR←1−αとしてリーン側に補正する。そして、得られたリア空燃比補正係数FAFRは、図28のステップS1408で次式に従って燃料噴射量TAUの算出に用いられる。
【0217】
TAU=TP+FAF+FAFR+FALL
ここで、図37に示すように変位量αは、比較電圧VOX1LEを設定するためのリッチ側電圧設定値VR及びリーン側電圧設定値VLと理論空燃比λ=1との電位差β(β=VR−(λ=1)=(λ=1)−VL)に対応して設定されている。換言すれば、変位量αに基づくリア空燃比補正係数FAFRにより燃料噴射量TAUをリッチ側またはリーン側に補正すると、上流側O2センサ41の出力電圧VOX1が電位差β分だけ同一方向に変動するように、電位差βと変位量αの関係が定められている。また、図38に示すように電位差β(=変位量α)の大きさは、第一参考例と同じく理論空燃比λ=1を中心とした上流側O2センサ41の検出範囲(出力電圧VOX1をリニアライズ化して空燃比λとして得られる検出範囲)より小さく設定されている。
【0218】
そして、第一参考例で説明したように比較電圧VOX1LEのリッチ側またはリーン側の設定に対応して、空燃比補正係数FAFは図28のステップS1404以降のフィードバックにより同一方向に補正されるが、加えて本参考例では、その制御と同一結果になるように燃料噴射量TAUがリア空燃比補正係数FAFRにて直ちに補正される。つまり、比較電圧VOX1LEに基づくフィードバックでは、図30で説明したようにポイントAで出力電圧VOX2が変動してもポイントA’までは空燃比補正係数FAFに反映されなかったが、このようにリア空燃比補正係数FAFRを加味することにより、フィードバックに先行して出力電圧VOX2の変動が直接的に燃料噴射量TAUに反映される。したがって、下流側の空燃比λの乱れに対する燃料噴射量TAUの制御の応答性がより高められて、下流側の空燃比λをより一層確実に理論空燃比λ=1付近に収束させることができる。
【0219】
このように上記参考例の内燃機関1の空燃比制御装置は、下流側の空燃比λが反転したときに、反転方向に対して反対側に予め設定されたリッチ側電圧設定値VR及びリーン側電圧設定値VLにて比較電圧VOX1LEを設定するとともに、比較電圧VOX1LEと同一方向にリア空燃比補正係数FAFRを設定して、燃料噴射量TAUを補正する(ステップS1901及びステップS1902)CPU32を具備している。
【0220】
したがって、比較電圧VOX1LEに基づくフィードバックに先行して、出力電圧VOX2の変動が直接的に燃料噴射量TAUに反映されるため、下流側の空燃比λの乱れに対する燃料噴射量TAUの制御の応答性が高められて、下流側の空燃比λをより確実に理論空燃比λ=1付近に収束させることができる。
【0221】
また、上記参考例の内燃機関1の空燃比制御装置は、下流側の空燃比λが反転したときに、反転方向に対して反対側に予め設定されたリッチ側電圧設定値VR及びリーン側電圧設定値VLにて比較電圧VOX1LEを設定するとともに、比較電圧VOX1LEと同一方向に同一の変位量αとなるようにリア空燃比補正係数FAFRを設定して、燃料噴射量TAUを補正する(ステップS1901及びステップS1902)CPU32を具備している。
【0222】
したがって、比較電圧VOX1LEに基づくフィードバックと同一結果となるように燃料噴射量TAUが直ちに補正されるため、燃料噴射量TAUの制御の応答性をより一層高めることができる。
【0223】
第六実施例〕
以下、本発明の第六実施例を説明する。
【0224】
なお、本実施例の空燃比制御装置の構成は、三元触媒13の上流側にA/Fセンサ26を備えた第一実施例の空燃比制御装置の構成と同一であり、相違点はO2 センサ27の出力電圧VOX2と比較する電圧を0.45Vに固定せずに、内燃機関の負荷状態に基づいて切り換える点にある。したがって、特に相違点を重点的に説明する。
【0225】
〈反転スキップ制御処理〉
図39は本発明の第六実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャート、図40は本発明の第六実施例である内燃機関の空燃比制御装置のCPUが実行する制御目標値設定ルーチンを示すフローチャート、図41は本発明の第六実施例である内燃機関の空燃比制御装置の制御目標値を算出するためのROMに格納されたマップを示す説明図、図42は本発明の第六実施例である内燃機関の空燃比制御装置の制御目標値の設定状態を示すタイムチャート、図43は本発明の第六実施例である内燃機関の空燃比制御装置の各有害成分の浄化特性を示す説明図である。
【0226】
図39に示す反転スキップ制御ルーチンは、第一実施例で説明した図8のルーチンとほとんど同一であり、ステップS2001の処理が付加されている点と、ステップS301の処理内容が変更されている点が相違する。CPU32はステップS2001で制御目標値VOX2TGの設定処理を実行し、ステップS301で第一実施例で用いた理論空燃比λ=1に対応する0.45Vに代えて、制御目標値VOX2TGをO2 センサ27の出力電圧VOX2との比較に用い、その比較結果に応じて第一実施例と同様にステップS302以降の処理で目標空燃比λTGを設定する。
【0227】
前記したステップS2001で制御目標値設定ルーチンがコールされると、CPU32は図40のステップS2101で吸気圧センサ22にて検出された吸気圧PMを微分して吸気圧微分値DLPMを算出する。ここで、図42に示すように、車両の加速時には吸気圧PMが増加することから吸気圧微分値DLPMの極性は正に、車両の減速時には吸気圧PMが減少することから吸気圧微分値DLPMの極性は負になり、いずれの場合も加減速が急激であるほど吸気圧微分値DLPMが絶対値として大きな値に算出される。次いで、CPU32はステップS2102で吸気圧微分値DLPMを、予め正の値として設定された加速判定値DLUP及び負の値として設定された減速判定値DLDWと比較し、吸気圧微分値DLPMが加速判定値DLUPより小さく、かつ減速判定値DLDWより大きいときには、車両が加減速状態にないと見做してステップS2103に移行する。
【0228】
そして、CPU32はステップS2103で、図41のマップに従って吸気圧PMと回転数センサ25にて検出された機関回転数Ne から制御目標値VOX2TGを算出し、このルーチンを終了する。この制御目標値VOX2TGは、基本的に内燃機関1の負荷が高いときほどリッチ側に設定される。例えば図中に黒点印で示すように、低負荷のアイドル運転時には吸気圧PMと機関回転数Ne が共に低いため、制御目標値VOX2TGとして理論空燃比λ=1よりリーン側の0.35Vが算出され、低・中負荷の定常運転時には吸気圧PMと機関回転数Ne が共に中間の値であるため、制御目標値VOX2TGとして理論空燃比λ=1に対応する0.45Vが算出され、高負荷の定常運転時には吸気圧PMと機関回転数Ne が共に高いため、制御目標値VOX2TGとして理論空燃比λ=1よりリッチ側の0.55Vが算出される。
【0229】
一方、前記ステップS2102で吸気圧微分値DLPMが加速判定値DLUP以上のときには、車両が加速状態にあると見做してステップS2104に移行し、制御目標値VOX2TGとして0.55Vを設定する。また、ステップS2102で吸気圧微分値DLPMが減速判定値DLDW以下のときには、車両が減速状態にあると見做してステップS2105に移行し、制御目標値VOX2TGとして0.35Vを設定する。即ち、加減速時には内燃機関1が高負荷または低負荷にあるため、本来は制御目標値VOX2TGをリッチ側またはリーン側に設定すべきであるが、マップに従った場合には図中に白点印で示すように、低・中負荷の領域で加減速が行われたときに制御目標値VOX2TGが理論空燃比λ=1に設定されてしまう。故に、加減速についてはマップに関係なく無条件で制御目標値VOX2TGを0.55Vまたは0.35Vに設定しているのである。
【0230】
そして、以上のようにして設定された目標空燃比λTGに基づいて燃料噴射量が制御され、三元触媒13を通過した排気ガスの空燃比λは、第一実施例のように常に理論空燃比λ=1付近に収束することなく、内燃機関1の負荷状態に応じて高負荷時にはリッチ側に、低・中負荷時には理論空燃比λ=1に、低負荷時にはリーン側に収束する。ここで、制御目標値VOX2TGとして設定された0.55V及び0.35Vにより実際に空燃比λがシフトする量はごく僅かであり、図43に示すように、空燃比λがリッチ側にシフトされたときにはNOX の浄化率が向上し、リーン側にシフトされたときにはCOやHCの浄化率が向上する。
【0231】
したがって、高負荷定常運転時や加速時においては周知のようにNOX の排出量が増大するが、空燃比λをリッチ側に制御することでこのNOX の増大が抑制される。このときCOやHCについては浄化率が低下するため排出量が若干増大するが、増大が予測されるNOX を特に優先して抑制するため、全体としての有害成分を確実に低減可能である。また、逆にアイドル運転時や減速時においてはHCの排出量が増大するが、空燃比λをリーン側に制御することでこのHCの増大が抑制され、NOX の排出量は若干増大するものの全体としての有害成分を確実に低減可能である。
【0232】
なお、前記のように空燃比λを微妙にシフトできるのは、検出精度の高い02 センサ27の出力電圧VOX2に基づいて、三元触媒13の劣化状態が反映された下流側の空燃比λをフィードバックしているためであり、例えば、A/Fセンサ26にて三元触媒13の上流側の空燃比λをフィードバックした場合には、A/Fセンサ26の出力のバラツキ及び三元触媒13の劣化状態が制御に全く加味されないことから、このように微妙な空燃比制御は実現できない。
【0233】
そして、本実施例では、運転状態検出手段として吸気圧センサ22及び回転数センサ25が機能し、制御目標値設定手段としてステップS2001の処理を実行するときのCPU32が、反転方向判別手段としてステップS301、ステップS302及びステップS307の処理を実行するときのCPU32がそれぞれ機能する。
【0234】
このように上記実施例の内燃機関1の空燃比制御装置は、内燃機関1の運転状態を検出する吸気圧センサ22及び回転数センサ25と、前記吸気圧センサ22及び回転数センサ25にて検出された運転状態において増大が予測される特定の有害成分を低減可能な方向に制御目標値VOX2TGを設定するとともに(ステップS2001)、O2センサ27の出力電圧VOX2が制御目標値VOX2TGを横切ってリッチ側とリーン側との間で反転したときに反転方向を判別する(ステップS301、ステップS302及びステップS307)CPU32を具備している。この構成は請求項の発明の実施例に相当するものである。
【0235】
したがって、設定された制御目標値VOX2TGに応じて三元触媒13の下流側の空燃比λがリッチ側やリーン側にシフトされ、今現在の運転状態において増大が予想される特定の有害成分が特に優先して抑制される。よって、その他の有害成分の排出量は若干増大するものの、全体としての有害成分を確実に低減することができる。
【0236】
また、上記実施例の内燃機関1の空燃比制御装置は、吸気圧センサ22及び回転数センサ25にて検出された内燃機関1の負荷状態に基づき、負荷が高いときほど制御目標値VOX2TGをリッチ側に設定するCPU32を具備している。この構成は請求項10の発明の実施例に相当するものである。
【0237】
そして、周知のように内燃機関1は高負荷時にNOX を排出し、低負荷時にHCを多く排出するため、負荷が高いときほど制御目標値VOX2TGをリッチ側に設定すれば、高負荷時のNOX と低負荷時のHCを共に抑制でき、このように負荷状態を目安として制御目標値VOX2TGを適切に設定して、全体としての有害成分を確実に低減することができる。
【0238】
ところで、上記第六実施例は、三元触媒13の上流側にA/Fセンサ26を備えた第一実施例の空燃比制御装置に、内燃機関1の負荷状態に応じて空燃比λをシフトさせる機能を付加したものであるが、例えば、三元触媒13の上流側にO2センサ27を備えた第一参考例の空燃比制御装置に、空燃比λをシフトさせる機能を付加してもよい。詳細は説明しないが、この場合は図44に示すように、比較電圧設定ルーチンの開始時にステップS2001で制御目標値VOX2TGの設定処理を実行し、その制御目標値VOX2TGに基づいてステップS1501の処理を実行すればよい。
【0239】
第七実施例〕
以下、本発明の第七実施例を説明する。
【0240】
なお、本実施例の空燃比制御装置の構成は、第六実施例の空燃比制御装置の構成と同一であり、相違点は第六実施例で述べた内燃機関1の負荷状態に代えて、EGR装置の作動状態に基づいて制御目標値VOX2TGの設定する点にある。したがって、特に相違点を重点的に説明する。
【0241】
〈反転スキップ制御処理〉
図45は本発明の第七実施例である内燃機関の空燃比制御装置の制御目標値を算出するためのROMに格納されたマップを示す説明図である。
【0242】
第六実施例と同じく、本実施例では図39に示す反転スキップ制御ルーチンが実行され、そのステップS2001の処理では、図45のマップに従ってEGR装置の作動状態に基づいて制御目標値VOX2TGを算出する。周知のようにEGR装置は、内燃機関1の排気ガスを吸気系に再循環させることにより燃焼温度を低下させてNOXを低減する作用を奏し、図に示すように、吸気圧PMと機関回転数Neに基づいて内燃機関1が高負荷でないときに作動する。
【0243】
ステップS2001において、CPU32はEGR装置が作動しているときには制御目標値VOX2TGとして理論空燃比λ=1に対応する0.45Vを設定し、EGR装置が停止しているときには制御目標値VOX2TGとしてリッチ側の0.55Vを設定する。したがって、三元触媒13を通過した排気ガスの空燃比λは、EGR装置の作動時には理論空燃比λ=1に、停止時にはリッチ側に収束する。つまり、EGR装置の停止時には、作動時に比較して空燃比λがリッチ側に制御されるため、EGR装置の作動時と同様にNOX が抑制される。
【0244】
このように、上記実施例の内燃機関1の空燃比制御装置は、EGR装置の停止時に、作動時に比較して制御目標値VOX2TGをよりリッチ側に設定するCPU32を具備している。この構成は請求項11の発明の実施例に相当するものである。
【0245】
したがって、EGR装置の停止時には、作動時に比較して空燃比λがリッチ側に制御されて、EGR装置の作動時と同様にNOX を抑制でき、このようにEGR装置の作動状態を目安として制御目標値VOX2TGを適切に設定して、全体としての有害成分を確実に低減することができる。
【0246】
ところで、上記第一実施例及び第二実施例では、ROM33に格納された図10に示すマップに基づき、三元触媒13の最小吸着量OSTmin 及び最大吸着量OSTmax の減少に応じてリッチスキップ量λSKR やリーンスキップ量λSKL を減少させているが、必ずしも三元触媒13の吸着量を考慮に入れる必要はなく、これらのリッチスキップ量λSKR やリーンスキップ量λSKL を固定値としてもよい。
【0247】
また、上記第一実施例乃至第四実施例では、反転スキップ制御処理やパージ制御処理で算出した目標空燃比λTGをそのまま空燃比補正係数FAFの設定に用いたが、例えば、特開平3−185244号公報に記載された空燃比制御装置のように、算出した値を中心として目標空燃比λTGを周期的に変動させる所謂ディザ制御を実行してもよい。
【0248】
更に、上記第三実施例では、吸入空気量QA の増減に応じて積分量λIR,λIL及びスキップ量λSKR,λSKL を共に変化させ、また、第四実施例では、O2 センサ27の出力電圧VOX2の増減に応じて積分量λI 及びスキップ量λSKを共に変化させたが、必ずしも双方の値を変化させる必要はない。したがって、積分量λIR,λIL,λI とスキップ量λSKR,λSKL,λSKのいずれか一方を吸入空気量QA や出力電圧VOX2の増減に応じて変化させ、他方は固定値としてもよい。
【0249】
一方、上記第七実施例では、比較電圧VOX1LEの設定(電位差β)に対応するようにリア空燃比補正係数FAFRの変位量αを定めたが、必ずしも対応させる必要はなく、比較電圧VOX1LEの設定と同一方向にリア空燃比補正係数FAFRを設定するものであれば、変位量αの大きさを比較電圧VOX1LE以外に変更してもよい。
【0250】
【発明の効果】
以上のように、請求項1の発明の内燃機関の空燃比制御装置によれば、噴射量算出手段が所定の更新速度で噴射量を算出しているため、目標空燃比設定手段にて設定された目標空燃比は直ちに噴射量に反映され、空燃比の乱れに対して極めて良好な応答性で噴射量を制御することができ、また、下流側空燃比検出手段にて検出された空燃比が反転したときには、スキップ量にて目標空燃比がスキップ的に補正されるため、その後の触媒下流側の空燃比の大きな乱れを確実に抑制できる。その結果、空燃比が乱れたときの補正の遅れを回避して、常に確実に空燃比を理論空燃比付近に収束させ、よって、有害成分の大気中への排出を未然に防止することができる。
【0251】
また、空燃比が反転しないときには、空燃比の変動方向と反対側に目標空燃比が積分量にて補正されるため、空燃比はより確実に理論空燃比付近に収束し、前記した有害成分の排出を一層確実に防止することができる。
【0252】
請求項の発明の内燃機関の空燃比制御装置によれば、触媒劣化検出手段にて検出された触媒の劣化状態が進行するほど、目標空燃比設定手段にてスキップ量が減少されるため、触媒の吸着限界を越えた過補正が行なわれるのが未然に防止され、触媒の劣化を加味した上で、長期にわたって有害成分の大気中への排出を防止することができる。
【0253】
請求項の発明の内燃機関の空燃比制御装置によれば、触媒の下流側の空燃比が理論空燃比付近に収束しているときの目標空燃比が運転領域毎に学習されるため、運転領域が変化したときであっても、それに対応する学習値が読み出されて直ちに目標空燃比が補正される。よって、運転領域の変化に伴う補正遅れを防止し、触媒をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0254】
請求項の発明の内燃機関の空燃比制御装置によれば、内燃機関の運転状態に応じてスキップ量や積分量が設定されるため、運転状態の変化に拘わらず、触媒の下流側の空燃比に対してスキップ量や積分量が常に一定の影響力を及ぼすように設定可能となる。よって、これらのスキップ量や積分量にて目標空燃比を補正する際の過補正や補正遅れを防止でき、触媒をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0255】
請求項の発明の内燃機関の空燃比制御装置によれば、触媒の下流側の空燃比が理論空燃比から離間して、目標空燃比を大幅に補正する必要があるときほど、スキップ量や積分量が増大して設定されるため、常に適切な補正を行なって下流側の空燃比をより迅速に理論空燃比に収束させることができる。
【0256】
請求項の発明の内燃機関の空燃比制御装置によれば、スキップ量にて比較値を変更することで噴射量を補正しているため、空燃比の変動が速やかに噴射量に反映され、空燃比の乱れに対して良好な応答性で噴射量を制御することができる。その結果、空燃比が乱れたときの補正の遅れを回避して、常に確実に空燃比を理論空燃比付近に収束させ、よって、有害成分の大気中への排出を未然に防止することができる。
【0257】
また、空燃比が反転しないときには、空燃比の変動方向と反対側に比較値が積分量にて補正されるため、空燃比はより確実に理論空燃比付近に収束し、前記した有害成分の排出を一層確実に防止することができる。
【0258】
請求項の発明の内燃機関の空燃比制御装置によれば、触媒劣化検出手段にて検出された触媒の劣化状態が進行するほど、比較値設定手段にてスキップ量が減少されるため、触媒の吸着限界を越えた過補正が行なわれるのが未然に防止され、触媒の劣化を加味した上で、長期にわたって有害成分の大気中への排出を防止することができる。
【0259】
請求項の発明の内燃機関の空燃比制御装置によれば、触媒の下流側の空燃比が理論空燃比付近に収束しているときの比較値が運転領域毎に学習されるため、運転領域が変化したときであっても、それに対応する学習値が読み出されて直ちに比較値が補正される。よって、運転領域の変化に伴う補正遅れを防止し、触媒をより確実に中立状態に保持し続けて、有害成分の大気中への排出を防止することができる。
【0262】
請求項の発明の内燃機関の空燃比制御装置によれば、制御目標値が今現在の運転状態において増大が予測される特定の有害成分を低減可能な方向に設定されて、その特定の有害成分を特に優先して抑制するため、その他の有害成分の排出量は若干増大するものの、全体としての有害成分を確実に低減することができる。
【0263】
請求項10の発明の内燃機関の空燃比制御装置によれば、負荷が高いときほど制御目標値がリッチ側に設定されるため、高負荷時のNOXと低負荷時のHCを共に抑制でき、このように負荷状態を目安として制御目標値を適切に設定して、全体としての有害成分を確実に低減することができる。
【0264】
請求項11の発明の内燃機関の空燃比制御装置によれば、EGR装置の停止時に、作動時に比較して制御目標値がよりリッチ側に設定されてNOXを抑制でき、このようにEGR装置の作動状態を目安として制御目標値を適切に設定して、全体としての有害成分を確実に低減することができる。
【図面の簡単な説明】
【図1】 図1は本発明の第一実施例の内容を概念的に示したクレーム対応図である。
【図2】 図2は本発明の第一実施例である内燃機関の空燃比制御装置が設けられた内燃機関とその周辺機器の概略構成図である。
【図3】 図3は本発明の第一実施例である内燃機関の空燃比制御装置における空燃比制御システムの原理を説明するためのブロック図である。
【図4】 図4は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャートである。
【図5】 図5は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する定常・過渡判定ルーチンを示すフローチャートである。
【図6】 図6は本発明の第一実施例である内燃機関の空燃比制御装置の空燃比から物質濃度を算出するためのROMに格納されたマップを示す説明図である。
【図7】 図7は本発明の第一実施例である内燃機関の空燃比制御装置の空燃比のサンプリング時及びパージ制御時におけるA/Fセンサ出力、吸着量及び目標空燃比を示すタイムチャートである。
【図8】 図8は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャートである。
【図9】 図9は本発明の第一実施例である内燃機関の空燃比制御装置の反転スキップ制御時におけるO2センサの出力電圧及び目標空燃比を示すタイムチャートである。
【図10】 図10は本発明の第一実施例である内燃機関の空燃比制御装置の最小・最大吸着量からスキップ量を算出するためのROMに格納されたマップを示す説明図である。
【図11】 図11は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行するパージ制御ルーチンを示すフローチャートである。
【図12】 図12は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する学習開始判定ルーチンを示すフローチャートである。
【図13】 図13は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行するA/F変動制御ルーチンを示すフローチャートである。
【図14】 図14は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する飽和判定ルーチンを示すフローチャートである。
【図15】 図15は本発明の第一実施例である内燃機関の空燃比制御装置のCPUが実行する吸着量算出ルーチンを示すフローチャートである。
【図16】 図16は本発明の第一実施例である内燃機関の空燃比制御装置の吸着量学習時におけるO2センサの出力電圧及び目標空燃比を示すタイムチャートである。
【図17】 図17は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャートである。
【図18】 図18は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する目標空燃比学習ルーチンを示すフローチャートである。
【図19】 図19は本発明の第二実施例である内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャートである。
【図20】 図20は本発明の第二実施例である内燃機関の空燃比制御装置の運転領域の設定の一例を示す説明図である。
【図21】 図21は本発明の第二実施例である内燃機関の空燃比制御装置の反転スキップ制御時を示すタイムチャートである。
【図22】 図22は本発明の第三実施例である内燃機関の空燃比制御装置のCPUが実行する積分量・スキップ量設定ルーチンを示すフローチャートである。
【図23】 図23は本発明の第三実施例である内燃機関の空燃比制御装置の吸入空気量から積分量を設定するためのROMに格納されたマップを示す説明図である。
【図24】 図24は本発明の第三実施例である内燃機関の空燃比制御装置の吸入空気量からスキップ量を設定するためのROMに格納されたマップを示す説明図である。
【図25】 図25は本発明の第四実施例である内燃機関の空燃比制御装置のCPUが実行する積分量・スキップ量設定ルーチンを示すフローチャートである。
【図26】 図26は本発明の第四実施例である内燃機関の空燃比制御装置のO2センサの出力電圧から積分量を設定するためのROMに格納されたマップを示す説明図である。
【図27】 図27は第一参考例の内容を概念的に示したクレーム対応図である。
【図28】 図28は第一参考例である内燃機関の空燃比制御装置のCPUが実行する燃料噴射量算出ルーチンを示すフローチャートである。
【図29】 図29は第一参考例である内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャートである。
【図30】 図30は第一参考例である内燃機関の空燃比制御装置の比較電圧及び空燃比補正係数の設定状態を示すタイムチャートである。
【図31】 図31は本発明の第実施例である内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャートである。
【図32】 図32は本発明の第実施例である内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャートである。
【図33】 図33は本発明の第実施例である内燃機関の空燃比制御装置のCPUが実行する比較電圧学習ルーチンを示すフローチャートである。
【図34】 図34は本発明の第実施例である内燃機関の空燃比制御装置の三元触媒の劣化状態から積分量及びスキップ量を算出するためのマップを示す説明図である。
【図35】 図35は本発明の第実施例である内燃機関の空燃比制御装置の比較電圧及び空燃比補正係数の設定状態を示すタイムチャートである。
【図36】 図36は第二参考例である内燃機関の空燃比制御装置のCPUが実行する比較電圧設定ルーチンを示すフローチャートである。
【図37】 図37は第二参考例である内燃機関の空燃比制御装置のリア空燃比補正係数の設定状態を示すタイムチャートである。
【図38】 図38は第二参考例である内燃機関の空燃比制御装置のO2センサの検出範囲に対する変位量の設定状態を示す説明図である。
【図39】 図39は本発明の第実施例である内燃機関の空燃比制御装置のCPUが実行する反転スキップ制御ルーチンを示すフローチャートである。
【図40】 図40は本発明の第実施例である内燃機関の空燃比制御装置のCPUが実行する制御目標値設定ルーチンを示すフローチャートである。
【図41】 図41は本発明の第実施例である内燃機関の空燃比制御装置の制御目標値を算出するためのROMに格納されたマップを示す説明図である。
【図42】 図42は本発明の第実施例である内燃機関の空燃比制御装置の制御目標値の設定状態を示すタイムチャートである。
【図43】 図43は本発明の第実施例である内燃機関の空燃比制御装置の各有害成分の浄化特性を示す説明図である。
【図44】 図44は本発明の第実施例の別例である内燃機関の空燃比制御装置のCPUが実行する制御目標値設定ルーチンを示すフローチャートである。
【図45】 図45は本発明の第実施例である内燃機関の空燃比制御装置の制御目標値を算出するためのROMに格納されたマップを示す説明図である。
【図46】 図46は従来の内燃機関の空燃比制御装置の空燃比制御時における空燃比補正係数及び下流側O2センサの出力電圧を示すタイムチャートである。
【図47】 図47は従来の別の内燃機関の空燃比制御装置の空燃比制御時におけるO2センサの出力電圧及び目標空燃比を示すタイムチャートである。
【符号の説明】
M1 内燃機関
M2 触媒
M3 上流側空燃比検出手段
M4 下流側空燃比検出手段
M5 反転方向判別手段
M6 目標空燃比設定手段
M7 燃料噴射弁
M8 噴射量算出手段
M11 内燃機関
M12 触媒
M13 上流側空燃比検出手段
M14 下流側空燃比検出手段
M15 反転方向判別手段
M16 比較値設定手段
M17 燃料噴射弁
M18 噴射量算出手段
1 内燃機関
7 燃料噴射弁
13 三元触媒
22 吸気圧センサ
25 回転数センサ
26 A/Fセンサ
27 O2センサ
32 CPU

Claims (11)

  1. 内燃機関の排気経路の触媒の上流側に設けられ、前記内燃機関から排出された排気ガスの空燃比を検出する上流側空燃比検出手段と、
    前記触媒の下流側に設けられ、触媒を通過した排気ガスの空燃比を検出する下流側空燃比検出手段と、
    前記下流側空燃比検出手段にて検出された空燃比が理論空燃比を経てリッチ側とリーン側との間で反転したときに、反転方向を判別する反転方向判別手段と、
    前記反転方向判別手段にて前記下流側空燃比検出手段により検出された空燃比の反転方向が判別されたときに、目標空燃比をスキップ的に補正するためのスキップ量にて、該反転方向に対して反対側に目標空燃比を補正し、前記下流側空燃比検出手段により検出される空燃比が反転しないときに、前記下流側空燃比検出手段により検出される空燃比の変動方向に対して反対側に前記スキップ量より小さい値として設定された積分量にて目標空燃比を補正する目標空燃比設定手段と、
    前記上流側空燃比検出手段にて検出された空燃比と、前記目標空燃比設定手段にて設定された目標空燃比との差に基づき、燃料噴射弁の噴射量を算出する噴射量算出手段と
    を具備することを特徴とする内燃機関の空燃比制御装置。
  2. 前記目標空燃比設定手段は、触媒劣化検出手段にて検出された触媒の劣化状態の進行に伴なって、目標空燃比を補正するスキップ量を減少させることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
  3. 前記目標空燃比設定手段は、
    予め設定された内燃機関の運転領域毎に、下流側空燃比検出手段にて検出された空燃比が理論空燃比付近に収束しているときの目標空燃比を学習する空燃比学習手段と、
    内燃機関の運転領域を判定して対応する前記空燃比学習手段の学習値を選出し、学習値に基づいて前記目標空燃比を補正する目標空燃比補正手段と
    を具備することを特徴とする請求項1または請求項2に記載の内燃機関の空燃比制御装置。
  4. 前記目標空燃比設定手段は、
    前記内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段にて検出された運転状態に応じて前記スキップ量及び/または積分量を設定する補正量設定手段と
    を具備することを特徴とする請求項1乃至請求項3のいずれか1つに記載の内燃機関の空燃比制御装置。
  5. 前記目標空燃比設定手段は、下流側空燃比検出手段にて検出された空燃比が理論空燃比から離間するほど、目標空燃比を補正するスキップ量及び/または積分量を増大させることを特徴とする請求項1乃至請求項4のいずれか1つに記載の内燃機関の空燃比制御装置。
  6. 内燃機関の排気経路の触媒の上流側に設けられ、前記内燃機関から排出された排気ガスの空燃比を検出する上流側空燃比検出手段と、
    前記触媒の下流側に設けられ、触媒を通過した排気ガスの空燃比を検出する下流側空燃比検出手段と、
    前記下流側空燃比検出手段にて検出された空燃比が理論空燃比を経てリッチ側とリーン側との間で反転したときに、反転方向を判別する反転方向判別手段と、
    前記反転方向判別手段にて前記下流側空燃比検出手段により検出された空燃比の反転方向が判別されたときに、比較値をスキップ的に補正するためのスキップ量にて、反転方向に対して反対側に比較値を補正し、前記下流側空燃比検出手段により検出される空燃比が反転しないときに、前記下流側空燃比検出手段により検出される空燃比の変動方向に対して反対側に前記スキップ量より小さい値として設定された積分量にて比較値を補正する比較値設定手段と、
    前記上流側空燃比検出手段にて検出された空燃比と、前記比較値設定手段にて設定された比較値との比較結果に基づき、前記上流側空燃比検出手段により検出される空燃比が前記比較値設定手段にて設定された比較値となるように燃料噴射弁の噴射量を算出する噴射量算出手段と
    を具備することを特徴とする内燃機関の空燃比制御装置。
  7. 前記比較値設定手段は、触媒劣化検出手段にて検出された触媒の劣化状態の進行に伴なって、比較値を補正するスキップ量を減少させることを特徴とする請求項6に記載の内燃機関の空燃比制御装置。
  8. 前記比較値設定手段は、
    予め設定された内燃機関の運転領域毎に、下流側空燃比検出手段にて検出された空燃比が理論空燃比付近に収束しているときの比較値を学習する比較値学習手段と、
    内燃機関の運転領域を判定して対応する前記比較値学習手段の学習値を選出し、学習値に基づいて前記比較値を補正する比較値補正手段と
    を具備することを特徴とする請求項6または請求項7に記載の内燃機関の空燃比制御装置。
  9. 内燃機関の運転状態を検出する運転状態検出手段と、
    前記運転状態検出手段にて検出された運転状態において増大が予測される特定の有害成分を低減可能な方向に制御目標値を設定する制御目標値設定手段と
    を備え、
    前記反転方向判別手段は、前記下流側空燃比検出手段にて検出された空燃比が制御目標値を経てリッチ側とリーン側との間で反転したときに、反転方向を判別することを特徴とする請求項1または請求項に記載の内燃機関の空燃比制御装置。
  10. 前記制御目標値設定手段は、前記運転状態検出手段にて検出された内燃機関の負荷状態に基づき、負荷が高いときほど制御目標値をリッチ側に設定することを特徴とする請求項に記載の内燃機関の空燃比制御装置。
  11. 前記制御目標値設定手段は、前記運転状態検出手段にて検出された排気ガス再循環用のEGR装置の作動状態に基づき、EGR装置の停止時に、作動時に比較して制御目標値をよりリッチ側に設定することを特徴とする請求項に記載の内燃機関の空燃比制御装置。
JP16073193A 1992-07-03 1993-06-30 内燃機関の空燃比制御装置 Expired - Fee Related JP3846906B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16073193A JP3846906B2 (ja) 1992-07-03 1993-06-30 内燃機関の空燃比制御装置

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP4-177228 1992-07-03
JP17722892 1992-07-03
JP29250392 1992-10-30
JP4-292503 1992-10-30
JP5-5290 1993-01-14
JP529093 1993-01-14
JP16073193A JP3846906B2 (ja) 1992-07-03 1993-06-30 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JPH06264798A JPH06264798A (ja) 1994-09-20
JP3846906B2 true JP3846906B2 (ja) 2006-11-15

Family

ID=27454269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16073193A Expired - Fee Related JP3846906B2 (ja) 1992-07-03 1993-06-30 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP3846906B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120676A1 (ja) * 2011-03-10 2012-09-13 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JPH06264798A (ja) 1994-09-20

Similar Documents

Publication Publication Date Title
US5090199A (en) Apparatus for controlling air-fuel ratio for engine
JP3449011B2 (ja) 内燃機関の空燃比制御装置
JP2893308B2 (ja) 内燃機関の空燃比制御装置
US7024302B2 (en) Air-fuel ratio control system and method for an internal combustion engine, and engine control unit
JPH04365947A (ja) エンジン用空燃比制御装置
JP3306930B2 (ja) 内燃機関の空燃比制御装置
JP3683357B2 (ja) 内燃機関の気筒別空燃比推定装置
JP3039162B2 (ja) 内燃機関の空燃比制御装置
US5487270A (en) Air-fuel ratio control system for internal combustion engine
JP3282217B2 (ja) 触媒の飽和吸着量検出装置
JP3846906B2 (ja) 内燃機関の空燃比制御装置
JPH07229439A (ja) 内燃機関の空燃比制御装置
JPH07103039A (ja) 触媒の劣化状態検出装置
JPH03134241A (ja) 内燃機関の空燃比制御装置
JPH0476241A (ja) 内燃機関の空燃比制御装置
JP2841806B2 (ja) エンジン用空燃比制御装置
US6427438B1 (en) Method of evaluating deteriorated state of catalytic converter for purifying exhaust gas
JP5295177B2 (ja) エンジンの制御装置
JP2916804B2 (ja) 内燃機関の空燃比制御装置
JP3161049B2 (ja) 内燃機関の空燃比制御装置
JP3460354B2 (ja) 内燃機関の空燃比制御装置
JP3601210B2 (ja) エンジンの空燃比制御装置
JP3589683B2 (ja) 内燃機関の空燃比制御装置
JPH06200809A (ja) 内燃機関の空燃比制御装置
JPH0763111A (ja) エンジンの失火検出装置

Legal Events

Date Code Title Description
A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees