WO2012120676A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012120676A1
WO2012120676A1 PCT/JP2011/055631 JP2011055631W WO2012120676A1 WO 2012120676 A1 WO2012120676 A1 WO 2012120676A1 JP 2011055631 W JP2011055631 W JP 2011055631W WO 2012120676 A1 WO2012120676 A1 WO 2012120676A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
fuel
air
target
amount
Prior art date
Application number
PCT/JP2011/055631
Other languages
English (en)
French (fr)
Inventor
健士 鈴木
岡崎 俊太郎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11860368.7A priority Critical patent/EP2685071B1/en
Priority to JP2013503300A priority patent/JP5494885B2/ja
Priority to CN201180069141.3A priority patent/CN103443428B/zh
Priority to PCT/JP2011/055631 priority patent/WO2012120676A1/ja
Priority to US13/882,622 priority patent/US8904762B2/en
Publication of WO2012120676A1 publication Critical patent/WO2012120676A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus

Definitions

  • the present invention relates to an internal combustion engine comprising a three-way catalyst disposed in an exhaust passage, an evaporated fuel purge means for introducing evaporated fuel generated in a fuel tank into an intake passage, and a fuel injection valve for supplying fuel.
  • the present invention relates to a control device.
  • a three-way catalyst is disposed in the exhaust passage of the engine.
  • the three-way catalyst has an oxygen storage function. That is, when the gas flowing into the three-way catalyst (catalyst inflow gas) contains excess oxygen, the three-way catalyst stores the oxygen and purifies NOx. When the catalyst inflow gas contains excessive unburned substances, the three-way catalyst releases the stored oxygen and purifies the unburned substances.
  • the three-way catalyst is also simply referred to as “catalyst”.
  • a conventional air-fuel ratio control device includes an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor, which are disposed in the exhaust passage of the engine and upstream and downstream of the catalyst, respectively.
  • the air-fuel ratio (the engine air-fuel ratio) supplied to the engine is set so that the air-fuel ratio (detected upstream air-fuel ratio) represented by the output value of the upstream air-fuel ratio sensor matches the upstream target air-fuel ratio. (Fuel ratio) is controlled. This control is also referred to as “main feedback control”.
  • the conventional apparatus calculates the sub feedback amount so that the output value of the downstream air fuel ratio sensor matches the “target value corresponding to the theoretical air fuel ratio”, and the upstream target air fuel ratio is substantially determined by the sub feedback amount.
  • the air-fuel ratio of the engine is controlled by changing to (for example, refer to Patent Document 1).
  • the air-fuel ratio control using the sub feedback amount is also referred to as “sub feedback control”.
  • the target air-fuel ratio of the catalyst inflow gas is set to “a target rich air-fuel ratio smaller than the theoretical air-fuel ratio”.
  • the control device determines that the state of the catalyst has become an oxygen-deficient state (rich state) based on the output value Voxs of the downstream air-fuel ratio sensor, the control device sets the upstream target air-fuel ratio to “larger than the stoichiometric air-fuel ratio”. Set to “Target lean air-fuel ratio”.
  • this control device does not generate a state in which the torque generated by the engine fluctuates greatly due to the rapid change in the air-fuel ratio of the engine, thereby causing the engine to vibrate and the drivability to deteriorate.
  • the target rich air-fuel ratio and the target lean air-fuel ratio are changed according to the operating state of the engine. That is, for example, in an operating state where drivability is likely to deteriorate, the target rich air-fuel ratio and the target lean air-fuel ratio are each brought close to the theoretical air-fuel ratio. As a result, the magnitude of the difference between the target lean air-fuel ratio and the target rich air-fuel ratio becomes small. Further, the control device may change the target rich air-fuel ratio and the target lean air-fuel ratio from another viewpoint even when drivability does not deteriorate.
  • the evaporated fuel purge means adsorbs the evaporated fuel generated in the fuel tank to the canister, and introduces the evaporated fuel adsorbed to the canister to the intake passage of the engine when a predetermined condition is satisfied. As a result, the evaporated fuel is burned in the combustion chamber of the engine and then discharged into the atmosphere.
  • the introduction of the evaporated fuel into the intake passage of the engine is called a purge or purge of the evaporated fuel. Purge is one of the factors that change the air-fuel ratio of the engine.
  • the control device estimates the concentration of the evaporated fuel to be purged based on the output value of the upstream air-fuel ratio sensor, and adjusts the fuel injection amount according to the estimated concentration of the evaporated fuel, thereby “The air-fuel ratio of the engine fluctuates greatly due to the purge” is avoided.
  • the present invention has been made to address the above-described problems. That is, one of the objects of the present invention is to provide a control device for an internal combustion engine that can reduce the degree of worsening of emissions when purging the evaporated fuel.
  • An internal combustion engine control apparatus comprises: A catalyst disposed in an exhaust passage of the engine; A downstream air-fuel ratio sensor disposed downstream of the catalyst in the exhaust passage; The upstream target air-fuel ratio, which is the “target value of the air-fuel ratio of the gas flowing into the catalyst”, is alternately set to the target rich air-fuel ratio and the target lean air-fuel ratio based on the output value of the downstream air-fuel ratio sensor.
  • Target air-fuel ratio setting means for A fuel injection valve for injecting fuel to the engine; Fuel injection control for determining “a fuel injection amount that is the amount of fuel injected from the fuel injection valve” according to the upstream target air-fuel ratio and injecting the determined fuel injection amount from the fuel injection valve Means, Evaporative fuel purge means for introducing evaporative fuel generated in a fuel tank for storing fuel supplied to the fuel injection valve into an intake passage of the engine; An evaporated fuel purge amount control means for controlling a purge amount which is an amount of evaporated fuel introduced into the intake passage by the evaporated fuel purge means; Is provided.
  • the target air-fuel ratio setting means includes When the operating state index amount representing the operating state of the engine is the first value, the target rich air-fuel ratio is set to a first target rich air-fuel ratio that is smaller than the stoichiometric air-fuel ratio, and the target lean air-fuel ratio is set to the stoichiometric air-fuel ratio.
  • the target rich air-fuel ratio is set to a first target lean air-fuel ratio that is greater than the fuel ratio, and the target rich air-fuel ratio is set to the second value when the operating state index amount representing the operating state of the engine is a second value different from the first value.
  • the second target rich air-fuel ratio is set to be smaller than the first target rich air-fuel ratio, and the second target lean air-fuel ratio is set to be larger than the first target lean air-fuel ratio.
  • the operating state index amount is, for example, adsorbed to the canister, the intake air amount of the engine (a value corresponding to the load of the engine), the engine speed, the catalyst temperature (activity level), and the “canister” described later.
  • a value corresponding to the amount of the evaporated fuel for example, an evaporative fuel gas concentration learning value.
  • the evaporated fuel purge amount control means of the apparatus of the present invention comprises: The purge amount is increased as the difference between the target lean air-fuel ratio and the target rich air-fuel ratio increases.
  • the evaporative fuel purge amount control means has a larger purge amount when the operation state index amount is the second value than the purge amount when the operation state index amount is the first value.
  • the purge amount is controlled.
  • the apparatus of the present invention even if the air-fuel ratio of the catalyst inflow gas is greatly disturbed by purging a large amount of evaporated fuel, the oxygen storage amount of the catalyst is maintained at the “maximum oxygen storage amount Cmax” or “0”. The period during which the emission is performed (that is, the period during which the emission is deteriorated) is shortened. As a result, the apparatus of the present invention can purge the evaporated fuel while maintaining a low possibility that the emission will deteriorate.
  • the evaporated fuel purge means comprises: And a canister that is interposed in a purge passage connecting the fuel tank and the intake passage and adsorbs the evaporated fuel generated in the fuel tank.
  • the canister holds an adsorbent such as activated carbon that adsorbs evaporated fuel. Therefore, there is an upper limit (canister saturated evaporated fuel amount) in the amount of evaporated fuel that canisters can adsorb. For this reason, the closer the amount of evaporated fuel adsorbed to the canister to the saturated amount of canister saturated evaporated fuel, the smaller the amount of canister that can adsorb evaporated fuel, so the canister further absorbs evaporated fuel by increasing the purge amount. It is desirable to increase the amount that can be made.
  • the target air-fuel ratio setting means acquires an estimated evaporated fuel adsorption amount that is a value corresponding to the amount of the evaporated fuel adsorbed by the canister as the operating state index amount. Further, the target air-fuel ratio setting means determines that the operating state index amount is the first value when the estimated amount of evaporated fuel adsorption is less than a predetermined amount. As a result, the target rich air-fuel ratio is set to the first target rich air-fuel ratio, and the target lean air-fuel ratio is set to the first target lean air-fuel ratio. In addition, the target air-fuel ratio setting unit determines that the operating state index amount is the second value when the estimated amount of evaporated fuel adsorption is equal to or greater than the predetermined amount. As a result, the target rich air-fuel ratio is set to the second target rich air-fuel ratio, and the target lean air-fuel ratio is set to the second target lean air-fuel ratio.
  • the purge amount can be increased as the amount of evaporated fuel adsorbed by the canister (evaporated fuel adsorption estimated amount) approaches the canister saturated evaporated fuel amount. It is possible to give a surplus power capable of adsorbing “evaporated fuel”. This increases the possibility that the evaporated fuel can be adsorbed to the canister even if the evaporated fuel is suddenly generated in a large amount in the fuel tank. As a result, the possibility that the evaporated fuel is discharged into the atmosphere can be reduced.
  • the target rich air-fuel ratio is set to a second target rich air-fuel ratio that is smaller than the first target rich air-fuel ratio, and the target lean air-fuel ratio is set to the first target air-fuel ratio.
  • the evaporated fuel purge amount control means includes: The purge amount is increased as the difference between the target lean air-fuel ratio and the target rich air-fuel ratio increases.
  • the target rich air fuel ratio is smaller than that when the estimated evaporated fuel adsorption amount is less than the predetermined amount (second target fuel ratio (second target)). Rich air / fuel ratio) and the target lean air / fuel ratio is set to a larger air / fuel ratio (second target lean air / fuel ratio). In this case, since the magnitude of the difference between the target lean air-fuel ratio and the target rich air-fuel ratio becomes large, the purge amount is increased.
  • the purge amount can be increased as the amount of evaporated fuel adsorbed on the canister (evaporated fuel adsorption estimated amount) approaches the canister saturated evaporated fuel amount. Therefore, it is possible to give the canister enough capacity to adsorb “a certain amount of evaporated fuel”. This increases the possibility that the evaporated fuel can be adsorbed to the canister even if the evaporated fuel is suddenly generated in a large amount in the fuel tank. As a result, the possibility that the evaporated fuel is discharged into the atmosphere can be reduced. Further, as the purge amount increases, the magnitude of the difference between the target lean air-fuel ratio and the target rich air-fuel ratio increases, so the change speed of the air-fuel ratio of the catalyst inflow gas increases. Therefore, it is possible to reduce the possibility that the emission is deteriorated by the purge.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which a control device according to each embodiment of the present invention is applied.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio of the gas flowing into the catalyst shown in FIG. 1 and the output value of the upstream air-fuel ratio sensor shown in FIG.
  • FIG. 3 is a graph showing the relationship between the air-fuel ratio of the gas flowing out from the catalyst shown in FIG. 1 and the output value of the downstream air-fuel ratio sensor shown in FIG.
  • FIG. 4 is a time chart showing changes in the upstream target air-fuel ratio and the oxygen storage amount of the catalyst.
  • FIG. 5 is a flowchart showing a routine executed by the CPU of the control device (first control device) according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a routine executed by the CPU of the control device (first control device) according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 7 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 8 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 9 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 10 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 11 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 12 is a flowchart showing a routine executed by the CPU of the control device (second control device) according to the second embodiment of the present invention.
  • control device for an internal combustion engine according to each embodiment of the present invention (hereinafter, also simply referred to as “control device”) will be described with reference to the drawings.
  • This control device is a part of an air-fuel ratio control device that controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (the air-fuel ratio of the engine).
  • the fuel injection amount control device that controls the fuel injection amount and the evaporation It is also a part of an evaporative fuel purge amount control device for controlling the fuel purge amount.
  • FIG. 1 shows a system in which a control device according to the first embodiment (hereinafter also referred to as “first control device”) is applied to a 4-cycle, spark ignition type, multi-cylinder (in-line 4-cylinder) internal combustion engine 10. The schematic structure of is shown.
  • the internal combustion engine 10 includes an engine body 20, an intake system 30, an exhaust system 40, and an evaporated fuel supply system 50.
  • the engine body 20 includes a cylinder block and a cylinder head.
  • the engine body 20 includes a plurality of cylinders (combustion chambers) 21.
  • Each cylinder communicates with an “intake port and exhaust port” (not shown).
  • a communicating portion between the intake port and the combustion chamber 21 is opened and closed by an intake valve (not shown).
  • a communicating portion between the exhaust port and the combustion chamber 21 is opened and closed by an exhaust valve (not shown).
  • Each combustion chamber 21 is provided with a spark plug (not shown).
  • the intake system 30 includes an intake manifold 31, an intake pipe 32, a plurality of fuel injection valves 33, and a throttle valve 34.
  • the intake manifold 31 includes a plurality of branch portions 31a and a surge tank 31b. One end of each of the plurality of branch portions 31a is connected to each of the plurality of intake ports. The other ends of the plurality of branch portions 31a are connected to the surge tank 31b.
  • One end of the intake pipe 32 is connected to the surge tank 31b.
  • An air filter (not shown) is disposed at the other end of the intake pipe 32.
  • One fuel injection valve 33 is provided for each cylinder (combustion chamber) 21.
  • the fuel injection valve 33 is provided at the intake port. That is, each of the plurality of cylinders includes a fuel injection valve 33 that supplies fuel independently of the other cylinders.
  • the fuel injection valve 33 responds to the injection instruction signal, and when it is normal, “the fuel of the indicated fuel injection amount included in the injection instruction signal” in the intake port (therefore, the cylinder 21 corresponding to the fuel injection valve 33). It is supposed to be injected into.
  • fuel is supplied to the fuel injection valve 33 via a fuel supply pipe 57 connected to a fuel tank 51 described later.
  • the pressure of the fuel supplied to the fuel injection valve 33 is controlled by a pressure regulator (not shown) so that the differential pressure between the pressure of the fuel and the pressure in the intake port becomes constant.
  • the fuel injection valve 33 is opened for a time corresponding to the command fuel injection amount. Therefore, if the fuel injection valve 33 is normal, the fuel injection valve 33 injects an amount of fuel equal to the indicated fuel injection amount.
  • the throttle valve 34 is rotatably disposed in the intake pipe 32.
  • the throttle valve 34 has a variable opening cross-sectional area of the intake passage.
  • the throttle valve 34 is rotationally driven in the intake pipe 32 by a throttle valve actuator (not shown).
  • the exhaust system 40 includes an exhaust manifold 41, an exhaust pipe 42, an upstream catalyst 43 disposed in the exhaust pipe 42, and a “downstream catalyst (not shown) disposed in the exhaust pipe 42 downstream of the upstream catalyst 43. Is provided.
  • the exhaust manifold 41 includes a plurality of branch portions 41a and a collecting portion 41b. One end of each of the plurality of branch portions 41a is connected to each of the plurality of exhaust ports. The other ends of the plurality of branch portions 41a are gathered in the gathering portion 41b.
  • the collecting portion 41b is also referred to as an exhaust collecting portion HK because exhaust gas discharged from a plurality of (two or more, four in this example) cylinders gathers.
  • the exhaust pipe 42 is connected to the collecting portion 41b.
  • the exhaust port, the exhaust manifold 41 and the exhaust pipe 42 constitute an exhaust passage.
  • Each of the upstream side catalyst 43 and the downstream side catalyst is a so-called three-way catalyst device (exhaust purification catalyst) carrying an active component made of a noble metal (catalyst substance) such as platinum, rhodium and palladium.
  • a noble metal catalyst substance
  • Each catalyst oxidizes unburned components such as HC, CO, and H 2 when the air-fuel ratio of the gas flowing into each catalyst is “the air-fuel ratio within the window of the three-way catalyst (for example, the theoretical air-fuel ratio)”.
  • it has a function of reducing nitrogen oxides (NOx). This function is also called a catalyst function.
  • each catalyst has an oxygen storage function for storing (storing) oxygen. That is, each catalyst occludes oxygen and purifies NOx when excessive oxygen is contained in the gas flowing into the catalyst (catalyst inflow gas). When the catalyst inflow gas contains excessive unburned substances, each catalyst releases the stored oxygen and purifies the unburned substances.
  • This oxygen storage function is provided by an oxygen storage material such as ceria (CeO 2 ) supported on the catalyst.
  • Each catalyst can purify unburned components and nitrogen oxides even if the air-fuel ratio shifts from the stoichiometric air-fuel ratio due to the oxygen storage function. That is, the window width is expanded by the oxygen storage function.
  • the evaporated fuel supply system 50 includes a fuel tank 51, a canister 52, a vapor collection pipe 53, a purge flow path pipe 54, a purge control valve 55, and a fuel pump 56.
  • the fuel tank 51 stores fuel that is injected and supplied from the fuel injection valve 33 to the engine 10.
  • the canister 52 is a “well-known charcoal canister” that stores the evaporated fuel (evaporated fuel gas) generated in the fuel tank 51.
  • the canister 52 includes a housing in which a tank port 52a, a purge port 52b, and an atmospheric port 52c exposed to the atmosphere are formed.
  • the canister 52 houses (holds) an adsorbent (such as activated carbon) 52d for adsorbing the evaporated fuel in the casing.
  • the vapor collection pipe 53 is a pipe for introducing the evaporated fuel generated in the fuel tank 51 from the fuel tank 51 to the canister 52.
  • the purge passage pipe 54 is a pipe for introducing the evaporated fuel desorbed from the adsorbent 52d of the canister 52 into the surge tank 31b.
  • the vapor collection pipe 53 and the purge flow path pipe 54 constitute a purge passage (purge passage portion).
  • the purge control valve 55 is interposed in the purge flow path pipe 54.
  • the purge control valve 55 is configured to change the passage cross-sectional area of the purge passage pipe 54 by adjusting the opening degree (valve opening period) by a drive signal representing the duty ratio DPG which is an instruction signal.
  • the purge control valve 55 is configured to completely close the purge flow path pipe 54 when the duty ratio DPG is “0”.
  • the fuel pump 56 is configured to supply the fuel stored in the fuel tank 51 to the fuel injection valve 33 through the fuel supply pipe 57.
  • the evaporated fuel supply system 50 configured as described above, when the purge control valve 55 is completely closed, the evaporated fuel generated in the fuel tank 51 is occluded in the canister 52.
  • the purge control valve 55 When the purge control valve 55 is opened, the evaporated fuel occluded in the canister 52 is discharged to the surge tank 31b (the intake passage downstream of the throttle valve 34) through the purge passage pipe 54, and the combustion chamber 21 (engine 10). ). That is, when the purge control valve 55 is open, the fuel vapor purge (also referred to as “vapor fuel gas purge” or “purge”) is performed.
  • This system includes a hot-wire air flow meter 61, a throttle position sensor 62, a water temperature sensor 63, a crank position sensor 64, an intake cam position sensor 65, an upstream air-fuel ratio sensor 66, a downstream air-fuel ratio sensor 67, and an accelerator opening sensor. 68.
  • the air flow meter 61 outputs a signal corresponding to the mass flow rate (intake air flow rate) Ga of intake air flowing through the intake pipe 32. That is, the intake air amount Ga represents the intake air amount taken into the engine 10 per unit time.
  • the throttle position sensor 62 detects the opening (throttle valve opening) of the throttle valve 34 and outputs a signal representing the throttle valve opening TA.
  • the water temperature sensor 63 detects the cooling water temperature of the internal combustion engine 10 and outputs a signal representing the cooling water temperature THW.
  • the coolant temperature THW is an operating state index amount that represents the warm-up state of the engine 10 (temperature of the engine 10).
  • the crank position sensor 64 outputs a signal having a narrow pulse every time the crankshaft rotates 10 ° and a wide pulse every time the crankshaft rotates 360 °. This signal is converted into an engine speed NE by an electric control device 70 described later.
  • the intake cam position sensor 65 outputs one pulse every time the intake cam shaft rotates 90 degrees from a predetermined angle, then 90 degrees, and then 180 degrees.
  • the electric control device 70 described later acquires an absolute crank angle CA based on the compression top dead center of the reference cylinder (for example, the first cylinder) based on signals from the crank position sensor 64 and the intake cam position sensor 65. It has become.
  • This absolute crank angle CA is set to “0 ° crank angle” at the compression top dead center of the reference cylinder, and increases to a 720 ° crank angle according to the rotation angle of the crankshaft.
  • the upstream air-fuel ratio sensor 66 is disposed in “one of the exhaust manifold 41 and the exhaust pipe 42” at a position between the collecting portion 41 b (exhaust collecting portion HK) of the exhaust manifold 41 and the upstream catalyst 43. .
  • the upstream air-fuel ratio sensor 66 is disclosed in, for example, “Limit current type wide area air-fuel ratio including diffusion resistance layer” disclosed in JP-A-11-72473, JP-A-2000-65782, JP-A-2004-69547, and the like. Sensor ".
  • the upstream air-fuel ratio sensor 66 corresponds to the air-fuel ratio of the exhaust gas flowing through the position where the upstream air-fuel ratio sensor 66 is disposed (the air-fuel ratio of the “catalyst inflow gas” that is the gas flowing into the catalyst 43, the upstream air-fuel ratio abyfs). Output the output value Vabyfs. As shown in FIG. 2, the output value Vabyfs increases as the air-fuel ratio (upstream air-fuel ratio abyfs) of the catalyst inflow gas increases (as the air-fuel ratio becomes leaner).
  • the electric control device 70 stores an air-fuel ratio conversion table (map) Mapabyfs that defines the relationship shown in FIG. 2 between the output value Vabyfs and the upstream air-fuel ratio abyfs.
  • Map air-fuel ratio conversion table
  • the electric control device 70 detects the actual upstream air-fuel ratio abyfs (obtains the detected upstream air-fuel ratio abyfs) by applying the output value Vabyfs to the air-fuel ratio conversion table Mapabyfs.
  • the downstream air-fuel ratio sensor 67 is disposed in the exhaust pipe 42.
  • the downstream air-fuel ratio sensor 67 is disposed downstream of the upstream catalyst 43 and upstream of the downstream catalyst (that is, the exhaust passage between the upstream catalyst 43 and the downstream catalyst). It is.
  • the downstream air-fuel ratio sensor 67 is a known electromotive force type oxygen concentration sensor (a known concentration cell type oxygen concentration sensor using a solid electrolyte such as stabilized zirconia).
  • the downstream air-fuel ratio sensor 67 generates an output value Voxs corresponding to the air-fuel ratio of the gas to be detected, which is a gas passing through a portion of the exhaust passage where the downstream air-fuel ratio sensor 67 is disposed. ing.
  • the output value Voxs is a value corresponding to the air-fuel ratio of the gas flowing out from the upstream catalyst 43 and flowing into the downstream catalyst.
  • this output value Voxs becomes the maximum output value max (for example, about 0.9 V to 1.0 V) when the air-fuel ratio of the detected gas is richer than the stoichiometric air-fuel ratio.
  • the output value Voxs becomes the minimum output value min (for example, about 0.1 V to 0 V) when the air-fuel ratio of the detected gas is leaner than the stoichiometric air-fuel ratio.
  • the output value Voxs is a voltage Vst (median value Vmid, intermediate voltage Vst, for example, about 0.5 V) between the maximum output value max and the minimum output value min when the air-fuel ratio of the detected gas is the stoichiometric air-fuel ratio.
  • the output value Voxs suddenly changes from the maximum output value max to the minimum output value min when the air-fuel ratio of the gas to be detected changes from an air-fuel ratio richer than the stoichiometric air-fuel ratio to a lean air-fuel ratio.
  • the output value Voxs suddenly changes from the minimum output value min to the maximum output value max when the air-fuel ratio of the detected gas changes from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to a rich air-fuel ratio.
  • the accelerator opening sensor 68 shown in FIG. 1 outputs a signal representing the operation amount Accp (accelerator pedal operation amount, accelerator pedal AP opening) of the accelerator pedal AP operated by the driver.
  • the accelerator pedal operation amount Accp increases as the operation amount of the accelerator pedal AP increases.
  • the electric control device 70 includes: “a CPU, a program executed by the CPU, a ROM in which tables (maps, functions), constants, and the like are stored in advance, a RAM in which the CPU temporarily stores data as necessary, and a backup RAM (B ⁇ RAM), an interface including an AD converter, and the like ".
  • the backup RAM is supplied with electric power from a battery mounted on the vehicle regardless of the position of an ignition key switch (not shown) of the vehicle on which the engine 10 is mounted (any one of an off position, a start position, an on position, etc.). It is like that.
  • the backup RAM stores data according to an instruction from the CPU (data is written) and holds (stores) the data so that the data can be read. Therefore, the backup RAM can hold data even when the operation of the engine 10 is stopped.
  • the backup RAM cannot retain data when the power supply from the battery is interrupted, for example, when the battery is removed from the vehicle. Therefore, when the power supply to the backup RAM is resumed, the CPU initializes (sets to the default value) data to be held in the backup RAM.
  • the backup RAM may be a readable / writable nonvolatile memory such as an EEPROM.
  • the electric control device 70 is connected to the above-described sensors and the like, and supplies signals from these sensors to the CPU. Furthermore, the electric control device 70 is responsive to an instruction from the CPU to provide a spark plug (actually an igniter) provided for each cylinder, a fuel injection valve 33 provided for each cylinder, a purge control valve. 55, and a drive signal (instruction signal) is sent to a throttle valve actuator or the like.
  • a spark plug actually an igniter
  • a fuel injection valve 33 provided for each cylinder
  • a purge control valve. 55 a drive signal (instruction signal) is sent to a throttle valve actuator or the like.
  • the electric control device 70 sends an instruction signal to the throttle valve actuator so that the throttle valve opening TA increases as the acquired accelerator pedal operation amount Accp increases. That is, the electric control device 70 changes the opening degree of the “throttle valve 34 disposed in the intake passage of the engine 10” according to the acceleration operation amount (accelerator pedal operation amount Accp) of the engine 10 changed by the driver. Throttle valve drive means is provided.
  • the first control device Based on the output value Voxs of the downstream air-fuel ratio sensor 67, the first control device determines that the state of the catalyst 43 (oxygen storage state) is an oxygen excess state (lean state, and the oxygen storage amount of the catalyst 43 is the maximum oxygen storage amount).
  • a state where the value is close to Cmax that is, a state where the oxygen storage amount of the catalyst 43 is equal to or higher than the high threshold value, or an oxygen-deficient state (rich state, a state where almost no oxygen is stored in the catalyst 43, That is, it is determined whether the oxygen storage amount of the catalyst 43 is less than “a low threshold value that is equal to or lower than the high threshold value”.
  • the first control device is a case where it is determined that the state of the catalyst 43 is an oxygen excess state, and the change amount ⁇ Voxs per predetermined time of the output value Voxs is a positive value.
  • becomes larger than the rich determination threshold dRichth, it is determined that the state of the catalyst 43 has become an oxygen-deficient state.
  • the first control device has a negative change amount ⁇ Voxs and the magnitude
  • the first control device when it is determined that the state of the catalyst 43 is an excess oxygen state, and the output value Voxs is greater than the rich determination threshold VRichth, the state of the catalyst 43 is insufficient for oxygen. It may be determined that the state has been reached. Further, the first control device determines that the state of the catalyst 43 is an oxygen-excess state when the output value Voxs becomes smaller than the lean determination threshold value VLeanth when the state of the catalyst 43 is determined to be an oxygen-deficient state. It may be determined that it has become.
  • the first control device sets the target value of the air-fuel ratio of the catalyst inflow gas (that is, the upstream target air-fuel ratio abyfr) to “greater than the stoichiometric air-fuel ratio”.
  • the target lean air-fuel ratio is set to “afLean”.
  • the first control device sets the target value of the air-fuel ratio of the catalyst inflow gas (that is, the upstream target air-fuel ratio abyfr) to be “less than the stoichiometric air-fuel ratio”.
  • the value a1 and the value a2 may be equal or different.
  • the value a3 and the value a4 may be the same or different.
  • the first control device opens the purge control valve 55 and introduces the evaporated fuel into the intake passage (purifies the evaporated fuel).
  • the purge of the evaporated fuel greatly disturbs the air-fuel ratio of the catalyst inflow gas when the fuel injection amount is not sufficiently corrected. That is, the influence on the air-fuel ratio caused by the purge of the evaporated fuel is compensated by correcting the fuel injection amount.
  • the fuel injection amount is not sufficiently decreased and corrected, the air-fuel ratio of the catalyst inflow gas becomes too small, and if the fuel injection amount is corrected to decrease excessively, the air-fuel ratio of the catalyst inflow gas becomes excessive. Accordingly, when the purge of the evaporated fuel is started, the emission may be deteriorated.
  • the difference between the lean air-fuel ratio afLean1 and the first target rich air-fuel ratio afRich1 is
  • is greater than the value
  • . That is, in the first control apparatus, the target rich air-fuel ratio afRich becomes smaller as the magnitude of the difference between the target lean air-fuel ratio afLean and the target rich air-fuel ratio afRich (
  • the air-fuel ratio afLean becomes larger.
  • the larger the magnitude of the difference between the target lean air-fuel ratio afLean and the target rich air-fuel ratio afRich (
  • exhaust gas with a smaller air-fuel ratio flows into the catalyst 43, so that the oxygen storage amount of the catalyst 43 can be quickly reduced by a large amount of unburned matter in the exhaust gas.
  • the larger the magnitude of the difference between the target lean air-fuel ratio afLean and the target rich air-fuel ratio afRich (
  • exhaust gas with a larger air-fuel ratio flows into the catalyst 43, so that the oxygen storage amount of the catalyst 43 can be quickly increased by a large amount of oxygen in the exhaust gas.
  • the opening degree (duty ratio DPG) of the purge control valve 55 is controlled. As a result, the first control device can purge the evaporated fuel while maintaining a low possibility that the emission will deteriorate.
  • the CPU of the first controller performs the fuel injection amount control routine shown in FIG. 5 every time the crank angle of an arbitrary cylinder reaches a predetermined crank angle (for example, BTDC 90 ° CA) before the intake top dead center of the cylinder.
  • the operation is repeatedly performed on the cylinder (hereinafter also referred to as “fuel injection cylinder”).
  • the CPU starts processing from step 500, sequentially performs the processing from step 510 to step 570 described below, and then proceeds to step 595 to end this routine once.
  • Step 510 The CPU applies “the intake air amount Ga measured by the air flow meter 61 and the engine rotational speed NE” to the lookup table MapMc, so that the intake air amount (cylinder) The inner intake air amount Mc (k) is obtained.
  • the in-cylinder intake air amount Mc (k) is stored in the RAM while corresponding to each intake stroke.
  • Step 520 The CPU reads the main FB learning value (main feedback learning value) KG from the backup RAM.
  • the main FB learning value KG is obtained separately by a main feedback learning routine shown in FIG. 8 to be described later and stored in the backup RAM.
  • Step 550 The CPU obtains a purge correction coefficient FPG according to the following equation (2).
  • PGT is a target purge rate.
  • the target purge rate PGT is obtained in step 935 of FIG. 9 described later.
  • FGPG is an evaporative fuel gas concentration learning value.
  • the evaporated fuel gas concentration learning value FGPG is obtained by a routine shown in FIG. 10 to be described later, and is stored in the backup RAM.
  • FPG 1 + PGT (FGPG-1) (2)
  • Step 560 The CPU corrects the basic fuel injection amount Fb (k) according to the following equation (3) to obtain an instruction fuel injection amount Fi that is a final command value of the fuel injection amount.
  • FPG purge correction coefficient.
  • KG Main FB learning value KG.
  • FAF Main feedback coefficient updated by main feedback control.
  • Fi FPG ⁇ ⁇ KG ⁇ FAF ⁇ Fb (k) ⁇ (3)
  • Step 570 The CPU sends an instruction signal to the fuel injection valve 33 so that fuel of the indicated fuel injection amount Fi is injected from the fuel injection valve 33 provided corresponding to the fuel injection cylinder.
  • the CPU repeatedly executes the upstream target air-fuel ratio setting routine shown in the flowchart in FIG. 6 every elapse of a predetermined time. Therefore, when the predetermined timing comes, the CPU starts the process from step 600 and determines whether or not the value of the feedback control flag XFB is “1”.
  • the value of the feedback control flag XFB is set to “1” when the feedback control condition is satisfied, and is set to “0” when the feedback control condition is not satisfied. In other words, when the air-fuel ratio feedback control (main feedback control and sub feedback control) is being executed, the value of the feedback control flag XFB is set to “1”.
  • the feedback control condition is satisfied when, for example, all the following conditions are satisfied.
  • A1 The upstream air-fuel ratio sensor 66 is activated.
  • the downstream air-fuel ratio sensor 67 is activated.
  • the engine load KL is less than or equal to the threshold KLth.
  • step 610 the CPU makes a “No” determination at step 610 to proceed to step 620 to set the upstream target air-fuel ratio abyfr to the stoichiometric air-fuel ratio stoich (for example, 14 .6). Thereafter, the CPU proceeds to step 695 to end the present routine tentatively.
  • step 610 determines “Yes” in step 610 and proceeds to step 630, where the rich request flag It is determined whether or not the value of XRichreq is “1”.
  • the value of the rich request flag XRichreq is set to either “1” or “0” by an air-fuel ratio request (catalyst state) determination routine shown in FIG.
  • the value of the rich request flag XRichreq being “1” means that the state of the catalyst 43 is an oxygen excess state, and an excessive unburned substance should be allowed to flow into the catalyst 43. That is, the air-fuel ratio request is a rich request.
  • the value of the rich request flag XRichreq being “0” means that the state of the catalyst 43 is an oxygen-deficient state and excessive oxygen should be caused to flow into the catalyst 43. That is, the air-fuel ratio request is a lean request.
  • Step 630 can be replaced with a step of determining whether “the state of the catalyst 43 is determined to be an oxygen-excess state”.
  • the target rich air-fuel ratio afRich becomes the first target rich air-fuel ratio afRich1 when the intake air amount Ga is the first value Ga1, and the intake air amount Ga is different (large) from the first value Ga1.
  • the second value Ga2 it is determined to be “a second target rich air-fuel ratio afRich2 smaller than the first target rich air-fuel ratio afRich1”. Thereafter, the CPU proceeds to step 695 to end the present routine tentatively.
  • afLean an air fuel ratio greater than the theoretical air fuel ratio
  • the upstream target air fuel ratio abyfr is set to the target lean air fuel ratio afLean To do.
  • the target lean air-fuel ratio afLean becomes the first target lean air-fuel ratio afLean1 when the intake air amount Ga is the first value Ga1, and the intake air amount Ga is “differing (large) from the first value Ga1”.
  • the second value Ga2 it is determined to be “a second target lean air-fuel ratio afLean2 larger than the first target lean air-fuel ratio afLean1”.
  • the CPU proceeds to step 695 to end the present routine tentatively.
  • the upstream target air-fuel ratio abyfr is stored in the RAM while corresponding to each intake stroke.
  • the CPU repeatedly executes the main feedback control routine shown by the flowchart in FIG. 7 every elapse of a predetermined time. Accordingly, when the predetermined timing is reached, the CPU starts the process from step 700 and proceeds to step 710 to determine whether or not the value of the feedback control flag XFB is “1”.
  • step 710 makes a “Yes” determination at step 710 to sequentially perform the processing from step 715 to step 750 described below, and then proceeds to step 795 to end the present routine tentatively.
  • Step 715 The CPU obtains the upstream air-fuel ratio abyfs by applying the output value Vabyfs of the upstream air-fuel ratio sensor 66 to the table Mapabyfs shown in FIG.
  • Step 720 The CPU divides the in-cylinder intake air amount Mc (k ⁇ N) by N upstream (ie, N ⁇ 720 ° crank angle) before the current time by the upstream air-fuel ratio abyfs. Further, “in-cylinder fuel supply amount Fc (k ⁇ N)”, which is the amount of fuel actually supplied to the combustion chamber 21 at a time before N cycles, is obtained.
  • the in-cylinder intake air amount Mc (k ⁇ N) N cycles before the current time with the upstream air-fuel ratio abyfs.
  • the reason is that it takes a time corresponding to N cycles until the air-fuel mixture burned in the combustion chamber 21 reaches the upstream air-fuel ratio sensor 66.
  • Step 725 The CPU divides “the in-cylinder intake air amount Mc (k ⁇ N) N cycles before the current time” by “the upstream target air-fuel ratio abyfr (k ⁇ N) N cycles before the current time”. “Target in-cylinder fuel supply amount Fcr (k ⁇ N) N cycles before the present time” is obtained.
  • Step 730 The CPU sets a value obtained by subtracting the in-cylinder fuel supply amount Fc (k ⁇ N) from the target in-cylinder fuel supply amount Fcr (k ⁇ N) as the in-cylinder fuel supply amount deviation DFc.
  • Step 735 The CPU obtains the main feedback value DFi based on the following equation (4).
  • Gp is a preset proportional gain
  • Gi is a preset integral gain.
  • the value SDFc of the equation (4) is an integral value of the in-cylinder fuel supply amount deviation DFc, and is obtained in the next step 740. That is, the first control device calculates the main feedback value DFi by proportional / integral control (PI control) that matches the upstream air-fuel ratio abyfs with the upstream target air-fuel ratio abyfr.
  • PI control proportional / integral control
  • Step 740 The CPU adds the in-cylinder fuel supply amount deviation DFc obtained in the above step 730 to the integral value SDFc of the in-cylinder fuel supply amount deviation DFc at that time, so that a new in-cylinder fuel supply amount deviation DFc is obtained. An integral value SDFc is obtained.
  • Step 750 The CPU obtains a weighted average value of the main feedback coefficient FAF as a main feedback coefficient average FAFAV (hereinafter also referred to as “correction coefficient average FAFAV”) according to the following equation (6).
  • FAFAVnew is the updated correction coefficient average FAFAV
  • the FAFAVnew is stored as a new correction coefficient average FAFAV.
  • the value q is a constant larger than 0 and smaller than 1. This correction coefficient average FAFAV is used when obtaining “the main FB learning value KG and the evaporated fuel gas concentration learning value FGPG”, as will be described later.
  • FAFAVnew q ⁇ FAF + (1-q) ⁇ FAFAV (6)
  • the main feedback value DFi is obtained by proportional integral control, and this main feedback value DFi is converted into the main feedback coefficient FAF.
  • the main feedback coefficient FAF is reflected on the commanded fuel injection amount Fi in step 560 of FIG.
  • step 710 determines “No” in step 710 and performs the processing of steps 755 to 770 described below. Then, go to step 795.
  • Step 755 The CPU sets the value of the main feedback value DFi to “0”.
  • Step 760 The CPU sets the integral value SDFc of the in-cylinder fuel supply amount deviation to “0”.
  • Step 765 The CPU sets the value of the main feedback coefficient FAF to “1”.
  • Step 770 The CPU sets the value of the correction coefficient average FAFAV to “1”.
  • the value of the feedback control flag XFB is “0” (when the feedback control condition is not satisfied), the value of the main feedback value DFi is set to “0”, and the value of the main feedback coefficient FAF is “ 1 ”. Accordingly, the basic fuel injection amount Fb (k) is not corrected by the main feedback coefficient FAF. However, even in such a case, the basic fuel injection amount Fb (k) is corrected by the main FB learning value KG.
  • the first control device is a period in which an instruction signal for maintaining the purge control valve 55 in a completely closed state is sent to the purge control valve 55 (a period in which the purge control valve closing instruction period and the duty ratio DPG are “0”) ),
  • the main FB learning value KG is updated based on the correction coefficient average FAFAV so that the main feedback coefficient FAF approaches the basic value “1”.
  • the CPU executes the main feedback learning routine shown in FIG. 8 every time a predetermined time elapses. Therefore, the CPU starts the process from step 800 at a predetermined timing, and proceeds to step 805 to determine whether or not the value of the feedback control flag XFB is “1”.
  • the CPU makes a “No” determination at step 805 to directly proceed to step 895.
  • This routine is temporarily terminated. As a result, the main FB learning value KG is not updated.
  • step 805 when the value of the feedback control flag XFB is “1” (when the main feedback control is being executed), the CPU makes a “Yes” determination at step 805 to proceed to step 810, where “purging of evaporated fuel” It is determined whether or not. More specifically, the CPU determines whether or not “duty ratio DPG determined by the routine of FIG. 9 described later” is “0”. At this time, if the evaporated fuel is purged (the duty ratio DPG is not “0”), the CPU makes a “No” determination at step 810 to directly proceed to step 895 to end the present routine tentatively. To do. As a result, the main FB learning value KG is not updated.
  • step 810 it is determined whether or not the value of the correction coefficient average FAFAV is equal to or greater than the value 1 + ⁇ .
  • is a predetermined value that is larger than 0 and smaller than 1, and is, for example, 0.02.
  • the CPU proceeds to step 820 to increase the main FB learning value KG by a positive predetermined value X. Thereafter, the CPU proceeds to step 835.
  • step 815 if the value of the correction coefficient average FAFAV is smaller than the value 1 + ⁇ when the CPU executes the process of step 815, the CPU proceeds to step 825 and the value of the correction coefficient average FAFAV is less than the value 1 ⁇ . It is determined whether or not. At this time, if the value of the correction coefficient average FAFAV is equal to or less than the value 1 ⁇ , the CPU proceeds to step 830 to decrease the main FB learning value KG by a positive predetermined value X. Thereafter, the CPU proceeds to step 835.
  • the value of the main feedback learning completion flag (main FB learning completion flag) XKG is set to “0” in step 835.
  • the main FB learning completion flag XKG indicates that the main feedback learning is completed when the value is “1” and the main feedback learning is not completed when the value is “0”.
  • step 840 sets the value of the main learning counter CKG to “0”. Note that the value of the main learning counter CKG is also set to “0” even in the initial routine executed when an ignition key switch (not shown) of the vehicle on which the engine 10 is mounted is changed from the off position to the on position. It is set up. Thereafter, the CPU proceeds to step 895 to end the present routine tentatively.
  • step 825 if the value of the correction coefficient average FAFAV is larger than the value 1- ⁇ (that is, the value of the correction coefficient average FAFAV is a value between the value 1- ⁇ and the value 1 + ⁇ ). Then, the CPU proceeds to step 845 to increase the value of the main learning counter CKG by “1”.
  • step 850 determines whether or not the value of the main learning counter CKG is equal to or greater than a predetermined main learning counter threshold value CKGth. If the value of the main learning counter CKG is equal to or greater than the predetermined main learning counter threshold value CKGth, the CPU makes a “Yes” determination at step 850 to proceed to step 855 to set the value of the main FB learning completion flag XKG to “1”. To "".
  • step 850 if the value of the main learning counter CKG is smaller than the predetermined main learning counter threshold value CKGth at the time when the CPU executes the process of step 850, the CPU makes a “No” determination at step 850 to execute step 850.
  • the routine directly proceeds from step 850 to step 895 to end the present routine tentatively.
  • the main FB learning value KG is updated while the main feedback control is being performed and the evaporated fuel is not purged.
  • the CPU executes the purge control valve drive routine shown in FIG. 9 every elapse of a predetermined time. Therefore, when the predetermined timing comes, the CPU starts the process from step 900 and proceeds to step 910 to determine whether or not the purge condition is satisfied.
  • This purge condition is satisfied, for example, when all the following conditions are satisfied.
  • the value of the feedback control flag XFB is “1” (main feedback control is being executed).
  • the engine 10 is in a steady operation (for example, the amount of change per unit time of the throttle valve opening TA representing the engine load is equal to or less than a predetermined value).
  • the CPU makes a “Yes” determination at step 910 in FIG. 9 to proceed to step 920 to determine whether or not the value of the main FB learning completion flag XKG is “1” (that is, the main feedback learning is completed). Or not).
  • the CPU makes a “Yes” determination at step 920, sequentially performs the processing from step 930 to step 970 described below, and proceeds to step 995. This routine is finished once.
  • Step 930 The CPU obtains the air-fuel ratio amplitude ⁇ AF by subtracting the target rich air-fuel ratio afRich from the target lean air-fuel ratio afLean. That is, the air-fuel ratio amplitude ⁇ AF is equal to the magnitude
  • Step 935 The CPU determines the target purge rate PGT based on the air-fuel ratio amplitude ⁇ AF.
  • the target purge rate PGT is set so as to increase as the air-fuel ratio amplitude ⁇ AF increases.
  • Step 940 The CPU calculates the product of the target purge rate PGT and the intake air amount (flow rate) Ga as the purge flow rate KP.
  • Step 950 The CPU obtains the fully open purge rate PGRMX by applying the engine speed NE and the load KL to the map MapPGRMX.
  • the fully open purge rate PGRMX is a purge rate when the purge control valve 55 is fully opened.
  • the map MapPGRMX is acquired in advance based on the results of experiments or simulations and stored in the ROM. According to the map MapPGRMX, the fully open purge rate PGRMX decreases as the engine speed NE increases or as the load KL increases.
  • Step 960 The CPU calculates the duty ratio DPG (%) by multiplying the value obtained by dividing the target purge rate PGT by the fully opened purge rate PGRMX by 100.
  • Step 970 The CPU controls the opening and closing of the purge control valve 55 based on the duty ratio DPG.
  • step 910 the CPU makes a “No” determination at step 910 to proceed to step 980 to set the purge flow rate KP to “0”.
  • step 970 the CPU proceeds to step 970 after setting the duty ratio DPG to “0” in step 990. In this case, since the duty ratio DPG is set to “0”, the purge control valve 55 is completely closed. Thereafter, the CPU proceeds to step 995 to end the present routine tentatively.
  • step 920 when the value of the main FB learning completion flag XKG is “0” at the time when the CPU executes the process of step 920, the CPU determines “No” in step 920, and steps 980, 990, and The process of step 970 is executed. Even in this case, since the duty ratio DPG is set to “0”, the purge control valve 55 is completely closed. Thereafter, the CPU proceeds to step 995 to end the present routine tentatively.
  • ⁇ Evaporated fuel gas concentration learning> Furthermore, the CPU executes the evaporative fuel gas concentration learning routine shown in FIG. 10 every time a predetermined time elapses. By executing this evaporative fuel gas concentration learning routine, the evaporative fuel gas concentration learning value FGPG is updated.
  • the CPU starts processing from step 1000 and proceeds to step 1005 to determine whether or not the value of the feedback control flag XFB is “1” (whether or not the main feedback control is being executed). ). At this time, if the value of the feedback control flag XFB is “0”, the CPU makes a “No” determination at step 1005 to directly proceed to step 1095 to end the present routine tentatively. As a result, the evaporated fuel gas concentration learning value FGPG is not updated.
  • step 1005 the CPU makes a “Yes” determination at step 1005 to proceed to step 1010 to determine whether “evaporated fuel purge is being performed (specifically, Determines whether or not the duty ratio DPG obtained by the routine of FIG. 9 is not “0”).
  • step 1010 determines whether “evaporated fuel purge is being performed (specifically, Determines whether or not the duty ratio DPG obtained by the routine of FIG. 9 is not “0”).
  • the CPU makes a “No” determination at step 1010 to directly proceed to step 1095 to end the present routine tentatively.
  • the evaporated fuel gas concentration learning value FGPG is not updated.
  • step 1010 the CPU makes a “Yes” determination at step 1010 to proceed to step 1015, where “1” is obtained from the correction coefficient average FAFAV. It is determined whether or not the absolute value
  • is a minute predetermined value larger than 0 and smaller than 1, for example, 0.02.
  • the CPU makes a “Yes” determination at step 1015 to proceed to step 1020 to obtain an update value tFG according to the following equation (7).
  • the target purge rate PGT in equation (7) is set in step 935 in FIG.
  • the CPU proceeds to step 1030.
  • tFG (FAFAV-1) / PGT (7)
  • the upstream air-fuel ratio abyfs becomes the air-fuel ratio smaller than the stoichiometric air-fuel ratio (the air-fuel ratio richer than the stoichiometric air-fuel ratio). Accordingly, since the main feedback coefficient FAF becomes a smaller value, the correction coefficient average FAFAV also becomes a value smaller than “1”. As a result, since FAFAV-1 is a negative value, the update value tFG is a negative value. Further, the absolute value of the update value tFG becomes a larger value as FAFAV is smaller (as it deviates from “1”). That is, as the concentration of the evaporated fuel gas is higher, the update value tFG becomes a negative value having a larger absolute value.
  • step 1015 the CPU makes a “No” determination at step 1015 to proceed to step 1025 to set the update value tFG to “0”. Thereafter, the CPU proceeds to step 1030.
  • step 1030 the CPU updates the evaporated fuel gas concentration learning value FGPG according to the following equation (8), proceeds to step 1095, and once ends this routine.
  • FGPGnew is the updated evaporated fuel gas concentration learning value FGPG.
  • the initial value of the evaporated fuel gas concentration learning value FGPG is set to “1”.
  • FGPGnew FGPG + tFG (8)
  • the purge of evaporated fuel is performed when the main feedback learning is completed (when the value of the main FB learning completion flag XKG is “1”) (see step 920 in FIG. 9). Further, the indicated fuel injection amount Fi is corrected by the purge correction coefficient FPG as shown in the above equation (3). Moreover, the purge correction coefficient FPG is calculated based on the evaporated fuel gas concentration learning value FGPG as shown in the above equation (2). Therefore, the value indicating the degree of deviation from “1” of the main feedback coefficient FAF during purging (that is, the absolute value
  • the CPU repeatedly executes the “air-fuel ratio request (catalyst state) determination routine” shown in the flowchart of FIG. 11 every elapse of a predetermined time ts. Accordingly, when the predetermined timing comes, the CPU starts the process from step 1100 and proceeds to step 1110, and from “the current output value Voxs of the downstream air-fuel ratio sensor 67” to “the previous output value of the downstream air-fuel ratio sensor 67. By subtracting “Voxsold”, the change amount ⁇ Voxs of the output value Voxs per predetermined time ts (unit time) is calculated.
  • the previous output value Voxsold is a value that is updated in the next step 1120, and is the output value Voxs at the time point a predetermined time ts before the current time (the output value Voxs when this routine was executed last time).
  • the CPU proceeds to step 1120 to store the current output value Voxs as “previous output value Voxsold”.
  • step 1130 determines whether or not the value of the rich request flag XRichreq is “1”.
  • the rich request flag XRichreq is set to “1” in the above-described initial routine. Further, the value of the rich request flag XRichreq is “0” when it is determined that the state of the catalyst 43 is in an oxygen-deficient state (rich state) based on the output value Voxs of the downstream air-fuel ratio sensor 67, as will be described later. Is set to “1” when it is determined that the state of the catalyst 43 is in the oxygen excess state (lean state) based on the output value Voxs of the downstream side air-fuel ratio sensor 67.
  • the CPU makes a “Yes” determination at step 1130 to proceed to step 1140 to determine whether or not the change speed ⁇ Voxs is positive. That is, the CPU determines whether or not the output value Voxs is increasing. At this time, if the change speed ⁇ Voxs is not positive, the CPU makes a “No” determination at step 1140 to directly proceed to step 1195 to end the present routine tentatively.
  • step 1140 the CPU makes a “Yes” determination at step 1140 to proceed to step 1150, where the magnitude
  • step 1150 when the magnitude
  • step 1130 In this state (that is, in the state where the value of the rich request flag XRichreq is set to “0”), when the CPU starts again from step 1100, the CPU proceeds to step 1130 via step 1110 and step 1120, In step 1130, “No” is determined, and the process proceeds to step 1170.
  • the CPU determines whether or not the change speed ⁇ Voxs is negative in step 1170. That is, the CPU determines whether or not the output value Voxs is decreasing. At this time, if the change speed ⁇ Voxs is not negative, the CPU makes a “No” determination at step 1170 to directly proceed to step 1195 to end the present routine tentatively.
  • step 1170 the CPU makes a “Yes” determination at step 1170 to proceed to step 1180, where the magnitude
  • the CPU makes a “Yes” determination at step 1180 to proceed to step 1190 to set the value of the rich request flag XRichreq to “1”.
  • the CPU determines that the state of the catalyst 43 is an oxygen excess state, and the rich request flag. The value of XRichreq is set to “1”.
  • the CPU may set the value of the rich request flag XRichreq to “0” when the value of the rich request flag XRichreq is “1” and the output value Voxs becomes larger than the rich determination threshold value VRichth. .
  • the value of the rich request flag XRichreq when the value of the rich request flag XRichreq is “0”, the value of the rich request flag XRichreq may be set to “1” when the output value Voxs becomes smaller than the lean determination threshold value VLeanth.
  • the rich determination threshold value VRichth may be a value equal to or less than the median value Vmid.
  • the lean determination threshold value VLeanth may be a value equal to or greater than the median value Vmid.
  • the value of the rich request flag XRichreq is alternately set to one of “1” and “0” based on the output value Voxs of the downstream air-fuel ratio sensor 67. Then, the upstream target air-fuel ratio abyfr is determined according to the set rich request flag XRichreq (see the routine of FIG. 6), and the command fuel injection amount Fi is determined based on the upstream target air-fuel ratio abyfr. (See routine in FIG. 5).
  • the first control device The upstream target air-fuel ratio abyfr, which is the target value of the air-fuel ratio of the gas flowing into the catalyst 43, is alternately changed to “target rich air-fuel ratio afRich and target lean air-fuel ratio afLean” based on the output value Voxs of the downstream air-fuel ratio sensor 67.
  • Target air-fuel ratio setting means (see the routine of FIG. 11)
  • a fuel injection amount (indicated fuel injection amount Fi) that is the amount of fuel injected from the fuel injection valve 33 is determined according to the upstream target air-fuel ratio abyfr, and fuel of the determined fuel injection amount is determined from the fuel injection valve 33.
  • Fuel injection control means for injection (see step 530 to step 570 in FIG. 5); Evaporated fuel purging means (canister 52, vapor collecting pipe 53, purge flow path pipe 54, introducing vaporized fuel generated in a fuel tank 51 storing fuel supplied to the fuel injection valve 33 into the intake passage of the engine 10; And the purge control valve 55 and the like).
  • Evaporated fuel purge amount control means for controlling the purge amount target purge rate PGT or purge flow rate KP, and hence the duty ratio DPG, which is the amount of evaporated fuel introduced into the intake passage by the evaporated fuel purge means (see FIG. 9)) and Is provided.
  • the target air-fuel ratio setting means includes When the operating state index amount (intake air amount Ga) representing the operating state of the engine 10 is the first value (Ga1), the target rich air-fuel ratio afRich is set to “a first target rich air-fuel ratio afRich1 smaller than the theoretical air-fuel ratio.
  • the target lean air-fuel ratio afLean is set to“ first target lean air-fuel ratio afLean1) larger than the theoretical air-fuel ratio ”, and
  • the operation state index amount (intake air amount Ga) is “a second value (Ga2) different from the first value (Ga1)”
  • the target rich air-fuel ratio afRich is set to “the first target rich air-fuel ratio afRich1”.
  • the target lean air-fuel ratio afLean is set to “a second target lean air-fuel ratio afLean2 larger than the first target lean air-fuel ratio afLean1”.
  • the target rich air-fuel ratio afRich decreases and the target lean air-fuel ratio afLean increases. Therefore, for example, even if the air-fuel ratio of the catalyst inflow gas is greatly disturbed because the value of the evaporated fuel gas concentration learning value FGPG deviates from the appropriate value when the purge of evaporated fuel is started.
  • the air-fuel ratio of the catalyst inflow gas changes to a value that quickly absorbs the deviation. Therefore, the period during which the oxygen storage amount of the catalyst 43 is maintained at the “maximum oxygen storage amount Cmax” or “0” (that is, the period during which the emission deteriorates) is shortened.
  • the air-fuel ratio amplitude ⁇ AF when the air-fuel ratio amplitude ⁇ AF is small, the amount of evaporated fuel to be purged decreases. Therefore, the degree of disturbance of the air-fuel ratio of the catalyst inflow gas accompanying the start of purge can be reduced. As a result, even when the air-fuel ratio amplitude ⁇ AF is small, the period during which the oxygen storage amount of the catalyst 43 is maintained at the “maximum oxygen storage amount Cmax” or “0” can be prevented from becoming long. Therefore, the first control device can purge the evaporated fuel while maintaining a low possibility that the emission will deteriorate.
  • the maximum oxygen storage amount Cmax of the catalyst 43 when the air-fuel ratio amplitude ⁇ AF is large is larger than the maximum oxygen storage amount Cmax of the catalyst 43 when the air-fuel ratio amplitude ⁇ AF is small. That is, when the larger target lean air-fuel ratio afLean and the smaller target rich air-fuel ratio afRich are alternately set, the catalyst 43 can store and discharge more oxygen. Accordingly, in such a case, by increasing the purge amount, it is possible to quickly perform the purge while avoiding the deterioration of the emission.
  • the first controller sets the target purge rate PGT to “0” when the air-fuel ratio amplitude ⁇ AF is smaller than the threshold air-fuel ratio amplitude ⁇ AFth, as indicated by the broken line in the block of step 935 in FIG.
  • the purge of evaporated fuel may be stopped (prohibited).
  • the operating state index amount for determining the target rich air-fuel ratio afRich and the target lean air-fuel ratio afLean was the intake air amount Ga, but this operating state index amount is the throttle valve opening TA.
  • One or more parameters indicating the operating state of the engine 10 such as the load KL of the engine 10, the engine speed NE, the coolant temperature THW, and the evaporated fuel gas concentration learning value FGPG may be used.
  • the target rich air-fuel ratio afRich and the target lean air-fuel ratio afLean may be values that change continuously with respect to the operating state index amount as shown in Step 640 and Step 650, and with respect to the operating state index amount, The value may change discretely (stepwise).
  • control device for an internal combustion engine according to a second embodiment of the present invention (hereinafter also referred to as “second control device”) will be described.
  • the adsorbed amount of evaporated fuel by the canister 52 has an upper limit. This upper limit is also referred to as the canister saturated fuel vapor amount.
  • the second control device sets a value (1 ⁇ FGPG) obtained by subtracting the evaporated fuel gas concentration learning value FGPG from “1” as a value indicating “amount of evaporated fuel adsorbed by the canister 52”, that is, evaporated fuel. Obtained as an estimated adsorption amount.
  • the second control device calculates the evaporated fuel adsorption estimated amount and the canister saturated evaporated fuel amount.
  • the target rich air-fuel ratio afRich is made smaller and the target lean air-fuel ratio afLean is made larger than when the difference is larger than the predetermined amount.
  • ) increases, so that the target purge rate PGT (and hence the purge flow rate KP) is increased.
  • PGT and hence the purge flow rate KP
  • the amount by which the canister 52 can further adsorb the evaporated fuel can be quickly recovered to a certain level.
  • the CPU of the second control device executes a routine executed by the CPU of the first control device, except for the routine shown in FIG. Furthermore, the CPU of the second control device executes a “target air-fuel ratio determination routine shown by a flowchart in FIG. 12 instead of FIG. 6” every time a predetermined time elapses. Therefore, the operation of the second control device will be described below mainly with reference to FIG.
  • the routine shown in FIG. 12 is similar to the routine shown in FIG.
  • the steps shown in FIG. 12 and also shown in FIG. 6 are denoted by the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • the routine shown in FIG. 12 is a routine in which “Step 1210 and Step 1220” are added after Step 640 shown in FIG. 6, and “Step 1230 and Step 1240” are added after Step 650 shown in FIG. It is.
  • the CPU determines the target rich air-fuel ratio afRich based on the operating state index amount (intake air amount Ga) of the engine 10 in step 640. Then, the process proceeds to step 1210, where it is determined whether or not the value (1-FGPG) is equal to or greater than the threshold value Lth. That is, the CPU determines whether or not the difference between the estimated evaporated fuel adsorption amount (1-FGPG) indicated by the evaporated fuel gas concentration learning value FGPG and the canister saturated evaporated fuel amount is a predetermined amount or less.
  • the target rich air-fuel ratio afRich before being reset at step 1220 is also referred to as the first target rich air-fuel ratio afRich1, and the target rich air after being reset at step 1220
  • the fuel ratio afRich is also referred to as a second target rich air-fuel ratio afRich2.
  • the CPU makes a “No” determination at step 1210 to directly proceed to step 1295 to end the present routine tentatively.
  • the CPU determines the target lean air-fuel ratio afLean in step 650, and then proceeds to step 1230 to calculate the estimated evaporated fuel adsorption amount (1-FGPG). It is determined whether or not the threshold value is Lth or more. That is, the CPU determines whether or not the difference between the estimated evaporated fuel adsorption amount (1-FGPG) indicated by the evaporated fuel gas concentration learning value FGPG and the canister saturated evaporated fuel amount is a predetermined amount or less.
  • the CPU makes a “Yes” determination at step 1230 to proceed to step 1240 to increase the target lean air-fuel ratio afLean by the predetermined air-fuel ratio afL.
  • the target lean air-fuel ratio afLean before being reset at step 1240 is also referred to as the first target lean air-fuel ratio afLean1, and the target lean airspace after being reset at step 1240
  • the fuel ratio afLean is also referred to as a second target lean air-fuel ratio afLean2.
  • the CPU makes a “No” determination at step 1230 to directly proceed to step 1295 to end the present routine tentatively.
  • the second control device determines that the upstream target air-fuel ratio abyfr, which is the target value of the air-fuel ratio of the gas flowing into the catalyst 43, is based on the output value Voxs of the downstream air-fuel ratio sensor 67.
  • Target air-fuel ratio setting means (see FIGS. 11 and 12) for alternately setting the air-fuel ratio afRich and the target lean air-fuel ratio afLean.
  • the target air-fuel ratio setting means includes Obtaining an estimated amount of evaporated fuel adsorption (1-FGPG) that is a value corresponding to the amount of evaporated fuel adsorbed by the canister 52; When the estimated amount of evaporated fuel adsorption (1-FGPG) is less than the predetermined amount Lth, the target rich air-fuel ratio afRich is set to “the first target rich air-fuel ratio smaller than the theoretical air-fuel ratio (the target determined in step 640 of FIG. 12). (The rich air / fuel ratio) ”(step 640 in FIG.
  • the target lean air / fuel ratio afLean is set to“ the first target lean air / fuel ratio larger than the theoretical air / fuel ratio (the target lean air space determined in step 650 in FIG. 12).
  • Fuel ratio) "(step 650 of FIG. 12), and
  • the target rich air-fuel ratio afRich is set to “a second target rich air-fuel ratio that is smaller by afR than the first target rich air-fuel ratio”.
  • the target lean air-fuel ratio afLean is set to “a second target lean air-fuel ratio that is larger by afL than the first target lean air-fuel ratio” (Step 1230 and Step 1240 in FIG. 12). ) Is configured as follows.
  • the evaporated fuel purge amount control means of the second control device is similar to the evaporated fuel purge amount control means of the first control device in the magnitude of the difference between the target lean air-fuel ratio and the target rich air-fuel ratio (air-fuel ratio amplitude).
  • the purge amount can be increased as the amount of evaporated fuel adsorbed by the canister 52 (evaporated fuel adsorption estimated amount) approaches the canister saturated evaporated fuel amount. Therefore, it is possible to give the canister 52 sufficient capacity to adsorb “a certain amount of evaporated fuel”. Thereby, even if the evaporated fuel is suddenly generated in a large amount in the fuel tank 51, the possibility that the evaporated fuel can be adsorbed to the canister 52 is increased. As a result, the possibility that the evaporated fuel is discharged into the atmosphere can be reduced.
  • the target lean air-fuel ratio afLean becomes a larger air-fuel ratio
  • the target rich air-fuel ratio afRich becomes a smaller air-fuel ratio
  • the second control device omits step 1210 and sets the value afR in step 1220 to a value that increases as the evaporated fuel adsorption estimation amount (1-FGPG) increases (that is, the target rich air-fuel ratio afRich). Can be configured to be smaller).
  • the second control apparatus omits step 1230 and sets the value afL in step 1240 to a value that increases as the estimated amount of evaporated fuel adsorption (1-FGPG) increases (that is, the target lean air-fuel ratio). afLean can be configured to be larger).
  • the second control device is configured to set the upstream target air-fuel ratio abyfr to a constant rich air-fuel ratio in step 640 and to set the upstream target air-fuel ratio abyfr to a constant lean air-fuel ratio in step 650. Also good.
  • the target air-fuel ratio setting means is Obtaining an estimated evaporated fuel adsorption amount (1-FGPG) that is a value corresponding to the amount of evaporated fuel adsorbed to the canister 52 as the operating state index amount;
  • the estimated evaporated fuel adsorption amount (1-FGPG) is less than the predetermined amount Lth, it is determined that the operating state index amount is the first value, whereby the target rich air-fuel ratio afRich is determined as “theoretical air-fuel ratio”.
  • the first target rich air-fuel ratio afRich1 smaller than the target lean air-fuel ratio afLean is set to "the first target lean air-fuel ratio afLean1 larger than the theoretical air-fuel ratio”, and
  • the estimated amount of evaporated fuel adsorption (1-FGPG) is equal to or greater than the predetermined amount Lth, it is determined that the operating state index amount is the second value, whereby the target rich air-fuel ratio afRich is determined as “the first rich air / fuel ratio afRich”.
  • the second target rich air-fuel ratio afRich2 smaller than one target rich air-fuel ratio is set, and the target lean air-fuel ratio afLean is set to "second target lean air-fuel ratio afLean2 larger than the first target lean air-fuel ratio”. (See Steps 1210 to 1240).
  • the control device can include an HC concentration sensor and a flow rate sensor in each of the tank port 52a, the purge port 52b, and the atmospheric port 52c. Then, at each port, the control device integrates the product of the flow rate and the HC concentration as the passing fuel vapor amount.
  • control device estimates the estimated amount of evaporated fuel adsorption by subtracting the amount of evaporated fuel passing through the purge port 52b and the amount of evaporated fuel passing through the atmospheric port 52c from the amount of evaporated fuel passing through the tank port 52a. Can do.
  • control device of each of the above embodiments decreases the target rich air-fuel ratio afRich in a range smaller than the stoichiometric air-fuel ratio and increases the target lean air-fuel ratio afLean in a range larger than the stoichiometric air-fuel ratio as the operating state index amount increases.
  • the target rich air-fuel ratio afRich is increased in a range smaller than the stoichiometric air-fuel ratio and the target lean air-fuel ratio afLean is decreased in a range larger than the stoichiometric air-fuel ratio as the operating state index amount increases. (See step 640 and step 650).
  • control device of each of the above embodiments corrects the basic fuel injection amount Fb (k) by the purge correction coefficient FPG, the main FB learning value KG, and the main feedback coefficient FAF to obtain the command fuel injection amount Fi.
  • the command fuel injection amount Fi may be obtained by correcting the basic fuel injection amount Fb (k) only by the main feedback coefficient FAF, or by the main FB learning value KG and the main feedback coefficient FAF.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明による内燃機関の制御装置の実施形態(制御装置)は、三元触媒43の下流に配設された下流側空燃比センサ67の出力値Voxsに基づいて、リッチ要求とリーン要求との何れの空燃比要求が発生しているかを判定する。制御装置は、リッチ要求が発生している場合には上流側目標空燃比abyfrを目標リッチ空燃比afRichに設定し、リーン要求が発生している場合には上流側目標空燃比abyfrを目標リーン空燃比afLeanに設定する。目標リッチ空燃比afRich及び目標リーン空燃比afLeanはそれぞれ吸入空気量Gaに応じて変化させられる。更に、制御装置は、目標リッチ空燃比afRichと目標リーン空燃比afLeanとの差の大きさ(空燃比振幅ΔAF、|afLean-afRich|)が大きくなるほど、蒸発燃料のパージ量を大きくする。

Description

内燃機関の制御装置
 本発明は、排気通路に配設された三元触媒と、燃料タンク内に発生した蒸発燃料を吸気通路に導入する蒸発燃料パージ手段と、燃料を供給する燃料噴射弁と、を備える内燃機関の制御装置に関する。
 従来より、内燃機関から排出される排ガスを浄化するために同機関の排気通路に三元触媒が配設されている。三元触媒は、周知のように、酸素吸蔵機能を有する。即ち、三元触媒は、その三元触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。三元触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。以下、三元触媒は単に「触媒」とも称呼される。
 従来の空燃比制御装置(従来装置)は、機関の排気通路であって触媒の上流及び下流にそれぞれ配設された上流側空燃比センサ及び下流側空燃比センサを備える。従来装置は、上流側空燃比センサの出力値により表される空燃比(検出上流側空燃比)を上流側目標空燃比に一致させるように機関に供給される混合気の空燃比(機関の空燃比)を制御する。この制御は「メインフィードバック制御」とも称呼される。
 更に、従来装置は、下流側空燃比センサの出力値が「理論空燃比に対応する目標値」に一致するようにサブフィードバック量を算出し、そのサブフィードバック量により上流側目標空燃比を実質的に変更することにより、機関の空燃比を制御する(例えば、特許文献1を参照。)。サブフィードバック量を用いた空燃比制御は「サブフィードバック制御」とも称呼される。
特開2009-162139号公報
 ところで、出願人は、特に、「触媒の酸素吸蔵能力が低い場合(例えば、触媒が劣化した場合、或いは、触媒の容量が小さい場合等であって、最大酸素吸蔵量が小さい場合)」であってもエミッションを良好に維持することができる空燃比制御装置を検討している。例えば、そのような検討中の空燃比制御装置の一つは、触媒の状態(酸素吸蔵状態)を下流側空燃比センサの出力値に基づいて遅滞なく判定し、その判定結果に基づいて触媒流入ガスの空燃比が理論空燃比以外の空燃比に一致するように機関の空燃比を制御する。
 より具体的に述べると、そのような制御装置は、下流側空燃比センサの出力値Voxsに基づいて触媒の状態が酸素過剰状態(リーン状態)になったと判定したとき、上流側目標空燃比(触媒流入ガスの目標空燃比)を「理論空燃比よりも小さい目標リッチ空燃比」に設定する。更に、この制御装置は、下流側空燃比センサの出力値Voxsに基づいて触媒の状態が酸素不足状態(リッチ状態)となったと判定したとき、上流側目標空燃比を「理論空燃比よりも大きい目標リーン空燃比」に設定する。
 加えて、この制御装置は、機関の空燃比の変化が急激であるが故に機関の発生トルクが大きく変動し、それによって機関が振動してドライバビリティが悪化するような状態が発生しないように、目標リッチ空燃比及び目標リーン空燃比を機関の運転状態に応じて変更している。即ち、例えば、ドライバビリティが悪化し易い運転状態において、目標リッチ空燃比及び目標リーン空燃比はそれぞれ理論空燃比に近づけられる。この結果、目標リーン空燃比と目標リッチ空燃比との差の大きさは小さくなる。更に、制御装置は、ドライバビリティが悪化しない場合であっても、他の観点から目標リッチ空燃比及び目標リーン空燃比を変更することがある。
 一方、機関には、蒸発燃料パージ手段が採用される。蒸発燃料パージ手段は、燃料タンク内に発生した蒸発燃料をキャニスタに吸着させ、所定の条件が成立するとキャニスタに吸着された蒸発燃料を機関の吸気通路に導入する。これにより、蒸発燃料は機関の燃焼室にて燃焼させられてから大気中に排出される。蒸発燃料を機関の吸気通路に導入することは蒸発燃料のパージ又はパージと称呼される。パージは、機関の空燃比を変化させる要因の一つである。通常、制御装置は、上流側空燃比センサの出力値に基づいてパージされる蒸発燃料の濃度を推定し、推定した蒸発燃料の濃度に応じて燃料噴射量を調整することにより、「蒸発燃料のパージにより機関の空燃比が大きく変動すること」を回避している。しかしながら、蒸発燃料の濃度を常に高精度に推定することは容易ではない。それ故、蒸発燃料の濃度の推定精度が良好でない場合にパージを開始すると、機関の空燃比が大きく乱れる場合が発生し、その結果、エミッションが悪化する虞がある。
 本発明は、上述した課題に対処するために為されたものである。即ち、本発明の目的の一つは、蒸発燃料のパージを行った場合にエミッションが悪化する程度を小さくすることができる内燃機関の制御装置を提供することにある。
 本発明による内燃機関の制御装置(本発明装置)は、
 前記機関の排気通路に配設された触媒と、
 前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
 「前記触媒に流入するガスの空燃比の目標値」である上流側目標空燃比を、前記下流側空燃比センサの出力値に基づいて、目標リッチ空燃比と目標リーン空燃比とに交互に設定する目標空燃比設定手段と、
 前記機関に対して燃料を噴射する燃料噴射弁と、
 「前記燃料噴射弁から噴射される燃料の量である燃料噴射量」を前記上流側目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
 前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージ手段と、
 前記蒸発燃料パージ手段により前記吸気通路に導入される蒸発燃料の量であるパージ量を制御する蒸発燃料パージ量制御手段と、
 を備える。
 更に、本発明装置において、
 前記目標空燃比設定手段は、
 前記機関の運転状態を表す運転状態指標量が第1の値であるとき、前記目標リッチ空燃比を理論空燃比よりも小さい第1目標リッチ空燃比に設定するとともに前記目標リーン空燃比を理論空燃比よりも大きい第1目標リーン空燃比に設定し、且つ
 前記機関の運転状態を表す運転状態指標量が前記第1の値と異なる第2の値であるとき、前記目標リッチ空燃比を前記第1目標リッチ空燃比よりも小さい第2目標リッチ空燃比に設定するとともに前記目標リーン空燃比を前記第1目標リーン空燃比よりも大きい第2目標リーン空燃比に設定するように構成されている。
 この場合、前記運転状態指標量は、例えば、機関の吸入空気量(機関の負荷に応じた値)、機関回転速度、触媒の温度(活性度合い)、及び、後述する「キャニスタに吸着されている蒸発燃料の量に応じた値(例えば、蒸発燃料ガス濃度学習値)」等である。
 加えて、本発明装置の前記蒸発燃料パージ量制御手段は、
 前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きいほど前記パージ量を増大するように構成されている。
 換言すると、前記蒸発燃料パージ量制御手段は、前記運転状態指標量が前記第1の値であるときのパージ量よりも、運転状態指標量が前記第2の値であるときのパージ量が大きくなるように、パージ量を制御する。
 本発明装置においては、前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きくなるほど、前記目標リッチ空燃比はより小さくなり、前記目標リーン空燃比はより大きくなる。
 従って、本発明装置においては、目標リーン空燃比と目標リッチ空燃比との差の大きさが大きいほど、触媒の状態が酸素過剰状態であると判定されたときには「より小さい空燃比の排ガス」が触媒に流入する。よって、その排ガス中の多量の未燃物により触媒の酸素吸蔵量を速やかに減少させることができる。
 更に、本発明装置においては、目標リーン空燃比と目標リッチ空燃比との差の大きさが大きいほど、触媒の状態が酸素不足状態であると判定されたときには「より大きい空燃比の排ガス」が触媒に流入する。よって、その排ガス中の多量の酸素により触媒の酸素吸蔵量を速やかに増大させることができる。
 従って、本発明装置においては、多量の蒸発燃料がパージされることによって触媒流入ガスの空燃比が大きく乱れたとしても、触媒の酸素吸蔵量が「最大酸素吸蔵量Cmax」又は「0」に維持されている期間(即ち、エミッションが悪化する期間)は短くなる。この結果、本発明装置は、エミッションが悪化する可能性を低く維持しながら、蒸発燃料のパージを行うことができる。
 本発明装置の一態様において、前記蒸発燃料パージ手段は、
 前記燃料タンクと前記吸気通路とを接続するパージ通路に介装されるとともに前記燃料タンク内に発生した前記蒸発燃料を吸着するキャニスタを含む。
 キャニスタは蒸発燃料を吸着する活性炭等の吸着剤を保持している。従って、キャニスタが吸着することができる蒸発燃料の量には上限(キャニスタ飽和蒸発燃料量)がある。このため、キャニスタに吸着された蒸発燃料の量がキャニスタ飽和蒸発燃料量に近づくほど、キャニスタが更に蒸発燃料を吸着できる量は小さくなるから、パージ量を増大することによりキャニスタが更に蒸発燃料を吸着できる量を増大させておくことが望ましい。
 そこで、前記目標空燃比設定手段は、前記キャニスタに吸着されている前記蒸発燃料の量に応じた値である蒸発燃料吸着推定量を前記運転状態指標量として取得する。
 更に、前記目標空燃比設定手段は、前記蒸発燃料吸着推定量が所定量未満であるとき前記運転状態指標量が前記第1の値であると判定する。これにより、前記目標リッチ空燃比は前記第1目標リッチ空燃比に設定され、前記目標リーン空燃比は前記第1目標リーン空燃比に設定される。
 加えて、前記目標空燃比設定手段は、前記蒸発燃料吸着推定量が前記所定量以上であるとき前記運転状態指標量が前記第2の値であると判定する。これにより、前記目標リッチ空燃比は前記第2目標リッチ空燃比に設定され、前記目標リーン空燃比は前記第2目標リーン空燃比に設定される。
 従って、上記構成によれば、キャニスタに吸着された蒸発燃料の量(蒸発燃料吸着推定量)がキャニスタ飽和蒸発燃料量に近づくほどパージ量を増大することができるので、キャニスタに「ある程度の量の蒸発燃料」を吸着することができる余力を与えておくことができる。これにより、仮に燃料タンク内に蒸発燃料が急激且つ多量に発生した場合であっても、その蒸発燃料をキャニスタに吸着させることができる可能性が高まる。その結果、蒸発燃料が大気中に排出されてしまう可能性を低減することができる。
 本発明装置の他の態様は、
 内燃機関の排気通路に配設された触媒と、
 前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
 前記触媒に流入するガスの空燃比の目標値である上流側目標空燃比を前記下流側空燃比センサの出力値に基づいて目標リッチ空燃比と目標リーン空燃比とに交互に設定する目標空燃比設定手段と、
 前記機関に対して燃料を噴射する燃料噴射弁と、
 前記燃料噴射弁から噴射される燃料の量である燃料噴射量を前記上流側目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
 前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージ手段と、
 前記蒸発燃料パージ手段により前記吸気通路に導入される蒸発燃料の量であるパージ量を制御する蒸発燃料パージ量制御手段と、
 を備え、
 前記蒸発燃料パージ手段は、
 前記燃料タンクと前記吸気通路とを接続するパージ通路に介装されるとともに前記燃料タンク内に発生した前記蒸発燃料を吸着するキャニスタを含み、
 前記目標空燃比設定手段は、
 前記キャニスタに吸着されている前記蒸発燃料の量を示す量である蒸発燃料吸着推定量を取得するとともに、
 前記蒸発燃料吸着推定量が所定量未満であるとき前記目標リッチ空燃比を理論空燃比よりも小さい第1目標リッチ空燃比に設定するとともに前記目標リーン空燃比を理論空燃比よりも大きい第1目標リーン空燃比に設定し、且つ、
 前記蒸発燃料吸着推定量が前記所定量以上であるとき前記目標リッチ空燃比を前記第1目標リッチ空燃比よりも小さい第2目標リッチ空燃比に設定するとともに前記目標リーン空燃比を前記第1目標リーン空燃比よりも大きい第2目標リーン空燃比に設定するように構成され、
 前記蒸発燃料パージ量制御手段は、
 前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きいほど前記パージ量を増大するように構成される。
 この態様によれば、蒸発燃料吸着推定量が所定量以上となった場合、蒸発燃料吸着推定量が所定量未満である場合と比較して、目標リッチ空燃比がより小さい空燃比(第2目標リッチ空燃比)に設定され且つ目標リーン空燃比がより大きい空燃比(第2目標リーン空燃比)に設定される。この場合、前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きくなるから、前記パージ量が増大させられる。
 従って、キャニスタに吸着された蒸発燃料の量(蒸発燃料吸着推定量)がキャニスタ飽和蒸発燃料量に近づくほど、パージ量を増大することができる。よって、キャニスタに「ある程度の量の蒸発燃料」を吸着することができる余力を与えておくことができる。これにより、仮に燃料タンク内に蒸発燃料が急激且つ多量に発生した場合であっても、その蒸発燃料をキャニスタに吸着させることができる可能性が高まる。その結果、蒸発燃料が大気中に排出されてしまう可能性を低減することができる。更に、パージ量が大きくなるほど、前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きくなるので、触媒流入ガスの空燃比の変化速度の大きさがより大きくなる。従って、パージによってエミッションが悪化してしまう可能性を低減することができる。
 本発明装置の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、本発明の各実施形態に係る制御装置が適用される内燃機関の概略平面図である。 図2は、図1に示した触媒に流入するガスの空燃比と図1に示した上流側空燃比センサの出力値との関係を示したグラフである。 図3は、図1に示した触媒から流出するガスの空燃比と図1に示した下流側空燃比センサの出力値との関係を示したグラフである。 図4は、上流側目標空燃比及び触媒の酸素吸蔵量の変化の様子を示したタイムチャートである。 図5は、本発明の第1実施形態に係る制御装置(第1制御装置)のCPUが実行するルーチンを示したフローチャートである。 図6は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図7は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図8は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図9は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図10は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図11は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図12は、本発明の第2実施形態に係る制御装置(第2制御装置)のCPUが実行するルーチンを示したフローチャートである。
 以下、本発明の各実施形態に係る内燃機関の制御装置(以下、単に「制御装置」とも称呼する。)について図面を参照しながら説明する。この制御装置は、内燃機関に供給される混合気の空燃比(機関の空燃比)を制御する空燃比制御装置の一部であり、更に、燃料噴射量を制御する燃料噴射量制御装置及び蒸発燃料のパージ量を制御する蒸発燃料パージ量制御装置の一部でもある。
<第1実施形態>
(構成)
 図1は、第1実施形態に係る制御装置(以下、「第1制御装置」とも称呼する。)を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。
 内燃機関10は、機関本体部20と、吸気系統30と、排気系統40と、蒸発燃料供給系統50と、を含む。
 機関本体部20は、シリンダブロック部及びシリンダヘッド部を含む。機関本体部20は、複数の気筒(燃焼室)21を備えている。各気筒は、図示しない「吸気ポート及び排気ポート」と連通している。吸気ポートと燃焼室21との連通部は図示しない吸気弁により開閉される。排気ポートと燃焼室21との連通部は図示しない排気弁により開閉される。各燃焼室21には図示しない点火プラグが配設されている。
 吸気系統30は、インテークマニホールド31、吸気管32、複数の燃料噴射弁33、及び、スロットル弁34を備えている。
 インテークマニホールド31は、複数の枝部31aとサージタンク31bとを備えている。複数の枝部31aのそれぞれの一端は、複数の吸気ポートのそれぞれに接続されている。複数の枝部31aの他端はサージタンク31bに接続されている。
 吸気管32の一端はサージタンク31bに接続されている。吸気管32の他端には図示しないエアフィルタが配設されている。
 燃料噴射弁33は、一つの気筒(燃焼室)21に対して一つずつ配設されている。燃料噴射弁33は吸気ポートに設けられている。即ち、複数の気筒のそれぞれは、他の気筒とは独立して燃料供給を行う燃料噴射弁33を備えている。燃料噴射弁33は、噴射指示信号に応答し、正常である場合に「その噴射指示信号に含まれる指示燃料噴射量の燃料」を吸気ポート(従って、燃料噴射弁33に対応する気筒21)内に噴射するようになっている。
 より具体的に述べると、燃料噴射弁33には、後述する燃料タンク51に接続された燃料供給管57を介して燃料が供給されている。燃料噴射弁33に供給されている燃料の圧力は、その燃料の圧力と吸気ポート内の圧力との差圧が一定になるように図示しないプレッシャレギュレータにより制御されている。燃料噴射弁33は、指示燃料噴射量に応じた時間だけ開弁させられる。従って、燃料噴射弁33が正常であれば、燃料噴射弁33は指示燃料噴射量と等量の燃料を噴射する。
 スロットル弁34は、吸気管32内に回動可能に配設されている。スロットル弁34は、吸気通路の開口断面積を可変とするようになっている。スロットル弁34は、図示しないスロットル弁アクチュエータにより吸気管32内で回転駆動されるようになっている。
 排気系統40は、エキゾーストマニホールド41、エキゾーストパイプ42、エキゾーストパイプ42に配設された上流側触媒43、及び、上流側触媒43よりも下流においてエキゾーストパイプ42に配設された「図示しない下流側触媒」を備えている。
 エキゾーストマニホールド41は、複数の枝部41aと集合部41bとを備えている。複数の枝部41aのそれぞれの一端は、複数の排気ポートのそれぞれに接続されている。複数の枝部41aのそれぞれの他端は集合部41bに集合している。この集合部41bは、複数(2以上であり、本例では4つ)の気筒から排出された排ガスが集合する部分であるから、排気集合部HKとも称呼される。
 エキゾーストパイプ42は集合部41bに接続されている。排気ポート、エキゾーストマニホールド41及びエキゾーストパイプ42は、排気通路を構成している。
 上流側触媒43及び下流側触媒のそれぞれは、所謂、白金、ロジウム及びパラジウム等の貴金属(触媒物質)からなる活性成分を担持する三元触媒装置(排気浄化用の触媒)である。各触媒は、各触媒に流入するガスの空燃比が「三元触媒のウインドウ内の空燃比(例えば、理論空燃比)」であるとき、HC,CO,Hなどの未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。
 更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有する。即ち、各触媒は、その触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。各触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。この酸素吸蔵機能は、触媒に担持されているセリア(CeO)等の酸素吸蔵材によってもたらされる。各触媒は、酸素吸蔵機能により空燃比が理論空燃比から偏移したとしても未燃成分及び窒素酸化物を浄化することができる。つまり、酸素吸蔵機能により、ウインドウの幅が拡大する。
 蒸発燃料供給系統50は、燃料タンク51、キャニスタ52、ベーパ捕集管53、パージ流路管54、パージ制御弁55、及び、燃料ポンプ56を備えている。
 燃料タンク51は、燃料噴射弁33から機関10に対して噴射・供給される燃料を貯留する。
 キャニスタ52は、燃料タンク51内にて発生した蒸発燃料(蒸発燃料ガス)を吸蔵する「周知のチャコールキャニスタ」である。キャニスタ52は、タンクポート52aと、パージポート52bと、大気に曝されている大気ポート52cと、が形成された筐体を備える。キャニスタ52は、その筐体内に、蒸発燃料を吸着するための吸着剤(活性炭等の)52dを収納(保持)している。
 ベーパ捕集管53の一端は燃料タンク51の上部に接続され、ベーパ捕集管53の他端はタンクポート52aに接続されている。ベーパ捕集管53は、燃料タンク51内に発生した蒸発燃料を燃料タンク51からキャニスタ52へと導入するための管である。
 パージ流路管54の一端はパージポート52bに接続され、パージ流路管54の他端はサージタンク31b(即ち、スロットル弁34よりも下流の吸気通路)に接続されている。パージ流路管54は、キャニスタ52の吸着剤52dから脱離した蒸発燃料をサージタンク31bへと導入するための管である。ベーパ捕集管53及びパージ流路管54はパージ通路(パージ通路部)を構成している。
 パージ制御弁55はパージ流路管54に介装されている。パージ制御弁55は、指示信号であるデューティ比DPGを表す駆動信号により開度(開弁期間)が調節されることにより、パージ流路管54の通路断面積を変更するようになっている。パージ制御弁55は、デューティ比DPGが「0」であるときにパージ流路管54を完全に閉じるようになっている。
 燃料ポンプ56は、燃料タンク51に貯留されている燃料を燃料供給管57を通して燃料噴射弁33に供給するようになっている。
 このように構成された蒸発燃料供給系統50において、パージ制御弁55が完全に閉じられている場合、燃料タンク51内で発生した蒸発燃料はキャニスタ52に吸蔵される。パージ制御弁55が開かれている場合、キャニスタ52に吸蔵された蒸発燃料はパージ流路管54を通してサージタンク31b(スロットル弁34よりも下流の吸気通路)に放出され、燃焼室21(機関10)へ供給される。即ち、パージ制御弁55が開かれているとき、蒸発燃料のパージ(「蒸発燃料ガスのパージ」又は「パージ」とも称呼される。)が行われる。
 このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、水温センサ63、クランクポジションセンサ64、インテークカムポジションセンサ65、上流側空燃比センサ66、下流側空燃比センサ67、及び、アクセル開度センサ68を備えている。
 エアフローメータ61は、吸気管32内を流れる吸入空気の質量流量(吸入空気流量)Gaに応じた信号を出力するようになっている。即ち、吸入空気量Gaは、単位時間あたりに機関10に吸入される吸入空気量を表す。
 スロットルポジションセンサ62は、スロットル弁34の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
 水温センサ63は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。冷却水温THWは、機関10の暖機状態(機関10の温度)を表す運転状態指標量である。
 クランクポジションセンサ64は、クランク軸が10°回転する毎に幅狭のパルスを有するとともに同クランク軸が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、後述する電気制御装置70によって機関回転速度NEに変換される。
 インテークカムポジションセンサ65は、インテークカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。後述する電気制御装置70は、クランクポジションセンサ64及びインテークカムポジションセンサ65からの信号に基づいて、基準気筒(例えば第1気筒)の圧縮上死点を基準とした絶対クランク角度CAを取得するようになっている。この絶対クランク角度CAは、基準気筒の圧縮上死点において「0°クランク角度」に設定され、クランク軸の回転角度に応じて720°クランク角度まで増大し、その時点にて再び0°クランク角度に設定される。
 上流側空燃比センサ66は、エキゾーストマニホールド41の集合部41b(排気集合部HK)と上流側触媒43との間の位置において「エキゾーストマニホールド41及びエキゾーストパイプ42の何れか」に配設されている。
 上流側空燃比センサ66は、例えば、特開平11-72473号公報、特開2000-65782号公報及び特開2004-69547号公報等に開示された「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
 上流側空燃比センサ66は、上流側空燃比センサ66の配設位置を流れる排ガスの空燃比(触媒43に流入するガスである「触媒流入ガス」の空燃比、上流側空燃比abyfs)に応じた出力値Vabyfsを出力する。出力値Vabyfsは、図2に示したように、触媒流入ガスの空燃比(上流側空燃比abyfs)が大きくなるほど(リーン側の空燃比になるほど)増大する。
 電気制御装置70は、出力値Vabyfsと上流側空燃比abyfsとの図2に示した関係を規定した空燃比変換テーブル(マップ)Mapabyfsを記憶している。電気制御装置70は、出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより、実際の上流側空燃比abyfsを検出する(検出上流側空燃比abyfsを取得する)ようになっている。
 再び、図1を参照すると、下流側空燃比センサ67は、エキゾーストパイプ42内に配設されている。下流側空燃比センサ67の配設位置は、上流側触媒43よりも下流側であり、且つ、下流側触媒よりも上流側(即ち、上流側触媒43と下流側触媒との間の排気通路)である。下流側空燃比センサ67は、周知の起電力式の酸素濃度センサ(安定化ジルコニア等の固体電解質を用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ67は、排気通路であって下流側空燃比センサ67が配設されている部位を通過するガスである被検出ガスの空燃比に応じた出力値Voxsを発生するようになっている。換言すると、出力値Voxsは、上流側触媒43から流出し且つ下流側触媒に流入するガスの空燃比に応じた値である。
 この出力値Voxsは、図3に示したように、被検出ガスの空燃比が理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V~1.0V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V~0V)となる。更に、出力値Voxsは、被検出ガスの空燃比が理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(中央値Vmid、中間電圧Vst、例えば、約0.5V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへと急変する。同様に、出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
 図1に示したアクセル開度センサ68は、運転者によって操作されるアクセルペダルAPの操作量Accp(アクセルペダル操作量、アクセルペダルAPの開度)を表す信号を出力するようになっている。アクセルペダル操作量Accpは、アクセルペダルAPの操作量が大きくなるとともに大きくなる。
 電気制御装置70は、「CPU、CPUが実行するプログラム、テーブル(マップ、関数)及び定数等を予め記憶したROM、CPUが必要に応じてデータを一時的に格納するRAM、バックアップRAM(B-RAM)、並びに、ADコンバータを含むインターフェース等」からなる周知のマイクロコンピュータである。
 バックアップRAMは、機関10を搭載した車両の図示しないイグニッション・キー・スイッチの位置(オフ位置、始動位置及びオン位置等の何れか)に関わらず、車両に搭載されたバッテリから電力の供給を受けるようになっている。バックアップRAMは、バッテリから電力の供給を受けている場合、CPUの指示に応じてデータを格納する(データが書き込まれる)とともに、そのデータを読み出し可能となるように保持(記憶)する。従って、バックアップRAMは、機関10の運転停止中においてもデータを保持することができる。
 バックアップRAMは、バッテリが車両から取り外される等によりバッテリからの電力供給が遮断されると、データを保持することができない。そこで、CPUは、バックアップRAMへの電力供給が再開されたとき、バックアップRAMに保持されるべきデータを初期化(デフォルト値に設定)するようになっている。なお、バックアップRAMは、EEPROM等の読み書き可能な不揮発性メモリであってもよい。
 電気制御装置70は、上述したセンサ等と接続され、CPUにそれらのセンサからの信号を供給するようになっている。更に、電気制御装置70は、CPUの指示に応じて、各気筒に対応して設けられた点火プラグ(実際にはイグナイタ)、各気筒に対応して設けられた燃料噴射弁33、パージ制御弁55、及び、スロットル弁アクチュエータ等に駆動信号(指示信号)を送出するようになっている。
 なお、電気制御装置70は、取得されたアクセルペダルの操作量Accpが大きくなるほどスロットル弁開度TAが大きくなるように、スロットル弁アクチュエータに指示信号を送出するようになっている。即ち、電気制御装置70は、運転者により変更される機関10の加速操作量(アクセルペダル操作量Accp)に応じて「機関10の吸気通路に配設されたスロットル弁34」の開度を変更するスロットル弁駆動手段を備えている。
(第1制御装置の作動の概要)
 第1制御装置は、下流側空燃比センサ67の出力値Voxsに基づいて、触媒43の状態(酸素吸蔵状態)が、酸素過剰状態(リーン状態、触媒43の酸素吸蔵量がその最大酸素吸蔵量Cmaxに近い値となっている状態、即ち、触媒43の酸素吸蔵量が高側閾値以上である状態)であるか、酸素不足状態(リッチ状態、触媒43に酸素が殆ど吸蔵されていない状態、即ち、触媒43の酸素吸蔵量が「高側閾値以下である低側閾値」未満である状態)であるかを判定する。
 より具体的に述べると、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsの所定時間あたりの変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定する。更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、触媒43の状態が酸素過剰状態となったと判定する。
 なお、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定してもよい。更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、触媒43の状態が酸素過剰状態となったと判定してもよい。
 第1制御装置は、触媒43の状態が酸素不足状態であると判定されている場合、触媒流入ガスの空燃比の目標値(即ち、上流側目標空燃比abyfr)を「理論空燃比よりも大きい目標リーン空燃比afLean」に設定する。
 第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合、触媒流入ガスの空燃比の目標値(即ち、上流側目標空燃比abyfr)を「理論空燃比よりも小さい目標リッチ空燃比afRich」に設定する。
 目標リーン空燃比afLeanは一定ではなく、機関の運転状態を表すパラメータ(運転状態指標量)としての吸入空気量Gaに応じて変化する。即ち、目標リーン空燃比afLeanは、図4の(A)に示したように、吸入空気量Gaが第1の値であるとき第1目標リーン空燃比afLean1(=理論空燃比+a1)に設定される。更に、目標リーン空燃比afLeanは、図4の(C)に示したように、吸入空気量Gaが「第1の値と相違する第2の値」であるとき「第1目標リーン空燃比afLean1よりも大きい第2目標リーン空燃比afLean2(=理論空燃比+a3、a3>a1>0)」に設定される。
 目標リッチ空燃比afRichは一定ではなく、機関の運転状態を表すパラメータ(運転状態指標量)としての吸入空気量Gaに応じて変化する。即ち、目標リッチ空燃比afRichは、図4の(A)に示したように、吸入空気量Gaが第1の値であるとき第1目標リッチ空燃比afRich1(=理論空燃比-a2)に設定される。更に、目標リッチ空燃比afRichは、図4の(C)に示したように、吸入空気量Gaが「第1の値と相違する第2の値」であるとき「第1目標リッチ空燃比afRich1よりも小さい第2目標リッチ空燃比afRich2(=(理論空燃比-a4、a4>a2>0))」に設定される。
 なお、値a1と値a2は等しくても、相違していてもよい。同様に、値a3と値a4は等しくても、相違していてもよい。
 一方、第1制御装置は、所定のパージ条件が成立したとき、パージ制御弁55を開弁して蒸発燃料を吸気通路に導入する(蒸発燃料をパージする。)。蒸発燃料のパージは、燃料噴射量の補正が十分でない場合等において、触媒流入ガスの空燃比を大きく乱れさせる。即ち、蒸発燃料のパージによる空燃比への影響は燃料噴射量を補正することにより補償される。しかしながら、燃料噴射量が十分に減少補正されない場合には触媒流入ガスの空燃比が過小になり、燃料噴射量が過度に減少補正される場合には触媒流入ガスの空燃比が過大になる。従って、蒸発燃料のパージを開始したとき、エミッションが悪化することがある。
 ところで、第1制御装置において、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)は、吸入空気量Gaが第1の値であるときには第1目標リーン空燃比afLean1と第1目標リッチ空燃比afRich1との差の大きさ|a1+a2|となり、吸入空気量Gaが第2の値であるときには第2目標リーン空燃比afLean2と第2目標リッチ空燃比afRich2との差の大きさ|a3+a4|となる。値|a3+a4|は値|a1+a2|よりも大きい。即ち、第1制御装置においては、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きいほど、目標リッチ空燃比afRichはより小さくなり、目標リーン空燃比afLeanはより大きくなる。
 従って、第1制御装置においては、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きいほど、触媒43の状態が酸素過剰状態であると判定されたときには「より小さい空燃比の排ガス」が触媒43に流入するので、その排ガス中の多量の未燃物により触媒43の酸素吸蔵量を速やかに減少させることができる。更に、第1制御装置においては、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きいほど、触媒43の状態が酸素不足状態であると判定されたときには「より大きい空燃比の排ガス」が触媒43に流入するので、その排ガス中の多量の酸素により触媒43の酸素吸蔵量を速やかに増大させることができる。
 このため、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きい場合には、多量の蒸発燃料がパージされたとしても(蒸発燃料のパージ量が大きくされたとしても)、触媒43の酸素吸蔵量が「最大酸素吸蔵量Cmax」又は「0」に維持されている期間(即ち、エミッションが悪化する期間)が長くならない(図4の期間T1と期間T2とを参照。)。
 更に、触媒43は、流入するガスの空燃比が大きくなるほど多量の酸素を吸蔵することができ、流入するガスの空燃比が小さくなるほど多量の酸素を放出することができる。即ち、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きくなるほど、触媒43の最大酸素吸蔵量Cmaxは増大し、触媒43の浄化能力はより高くなる。
 そこで、第1制御装置は、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ(=|afLean-afRich|)が大きいほど、パージされる蒸発燃料の量が大きくなるように、パージ制御弁55の開度(デューティ比DPG)を制御する。この結果、第1制御装置は、エミッションが悪化する可能性を低く維持しながら、蒸発燃料をパージさせることができる。
(実際の作動)
 次に、第1制御装置の実際の作動について説明する。
<燃料噴射量制御>
 第1制御装置のCPUは、図5に示した燃料噴射量制御ルーチンを、任意の気筒のクランク角がその気筒の吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、その気筒(以下、「燃料噴射気筒」とも称呼する。)に対して繰り返し実行するようになっている。
 従って、所定のタイミングになると、CPUはステップ500から処理を開始し、以下に述べるステップ510乃至ステップ570の処理を順に行い、その後、ステップ595に進んで本ルーチンを一旦終了する。
 ステップ510:CPUは「エアフローメータ61により計測された吸入空気量Ga、及び、機関回転速度NE」をルックアップテーブルMapMcに適用することにより、現時点において燃料噴射気筒に吸入される吸入空気量(筒内吸入空気量)Mc(k)を求める。筒内吸入空気量Mc(k)は、各吸気行程に対応されながらRAM内に記憶される。
 ステップ520:CPUは、メインFB学習値(メインフィードバック学習値)KGをバックアップRAMから読み出す。メインFB学習値KGは、後述する図8に示したメインフィードバック学習ルーチンにより別途求められ、バックアップRAM内に記憶されている。
 ステップ530:CPUは、後述する図6に示した上流側目標空燃比設定ルーチンにより別途求められている上流側目標空燃比abyfr(=abyfr(k))をRAMから読み出す。
 ステップ540:CPUは、下記(1)式に示したように、筒内吸入空気量Mc(k)を、ステップ530にて読み出した上流側目標空燃比abyfrによって除することにより、基本燃料噴射量Fb(k)を求める。基本燃料噴射量Fb(k)は、各吸気行程に対応されながらRAM内に記憶される。
 
 Fb(k)=Mc(k)/abyfr  …(1)
 
 ステップ550:CPUはパージ補正係数FPGを下記の(2)式に従って求める。(2)式において、PGTは目標パージ率である。目標パージ率PGTは、後述する図9のステップ935において求められている。FGPGは蒸発燃料ガス濃度学習値である。蒸発燃料ガス濃度学習値FGPGは、後述する図10に示したルーチンにより求められ、バックアップRAM内に記憶されている。
 
 FPG=1+PGT(FGPG-1) …(2)
 
 ステップ560:CPUは、基本燃料噴射量Fb(k)を下記(3)式に従って補正することにより、最終的な燃料噴射量の指令値である指示燃料噴射量Fiを求める。(3)式の右辺における各値は以下の通りである。これらの値は後述するルーチンにより別途求められている。
 
 FPG:パージ補正係数。
 KG:メインFB学習値KG。
 FAF:メインフィードバック制御により更新されるメインフィードバック係数。
 
 Fi=FPG・{KG・FAF・Fb(k)}  …(3)
 
 ステップ570:CPUは、指示燃料噴射量Fiの燃料が燃料噴射気筒に対応して設けられている燃料噴射弁33から噴射されるように、その燃料噴射弁33に指示信号を送出する。
<上流側目標空燃比設定>
 CPUは図6にフローチャートにより示した上流側目標空燃比設定ルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPUはステップ600から処理を開始し、フィードバック制御フラグXFBの値が「1」であるか否かを判定する。
 フィードバック制御フラグXFBの値は、フィードバック制御条件が成立しているときに「1」に設定され、フィードバック制御条件が成立していないときに「0」に設定される。換言すると、空燃比のフィードバック制御(メインフィードバック制御及びサブフィードバック制御)が実行されているとき、フィードバック制御フラグXFBの値は「1」に設定される。フィードバック制御条件は、例えば、以下の総ての条件が成立したときに成立する。
(A1)上流側空燃比センサ66が活性化している。
(A2)下流側空燃比センサ67が活性化している。
(A3)機関の負荷KLが閾値KLth以下である。
 このとき、フィードバック制御フラグXFBの値が「1」でなければ、CPUはステップ610にて「No」と判定してステップ620に進み、上流側目標空燃比abyfrを理論空燃比stoich(例えば、14.6)に設定する。その後、CPUはステップ695に進んで、本ルーチンを一旦終了する。
 一方、CPUがステップ610の処理を実行する時点において、フィードバック制御フラグXFBの値が「1」であると、CPUはそのステップ610にて「Yes」と判定してステップ630に進み、リッチ要求フラグXRichreqの値が「1」であるか否かを判定する。リッチ要求フラグXRichreqの値は、後述する図11に示した空燃比要求(触媒状態)決定ルーチンにより「1」及び「0」の何れかに設定される。
 リッチ要求フラグXRichreqの値が「1」であることは、触媒43の状態は酸素過剰状態であり、触媒43に過剰な未燃物を流入させるべきであることを意味する。即ち、空燃比要求はリッチ要求である。リッチ要求フラグXRichreqの値が「0」であることは、触媒43の状態は酸素不足状態であり、触媒43に過剰な酸素を流入させるべきであることを意味する。即ち、空燃比要求はリーン要求である。ステップ630は、「触媒43の状態が酸素過剰状態であると判定されているか否か」を判定するステップに置換することもできる。
 リッチ要求フラグXRichreqの値が「1」であると、CPUはステップ630にて「Yes」と判定してステップ640に進み、目標リッチ空燃比afRich(理論空燃比よりも小さい空燃比)を吸入空気量Gaに基づいて決定するとともに、上流側目標空燃比abyfr(=今回の目標空燃比abyfr(k))をその目標リッチ空燃比afRichに設定する。
 このステップ640において、目標リッチ空燃比afRichは、吸入空気量Gaが第1の値Ga1のとき第1目標リッチ空燃比afRich1となり、吸入空気量Gaが「第1の値Ga1と相違する(大きい)第2の値Ga2」のとき「第1目標リッチ空燃比afRich1よりも小さい第2目標リッチ空燃比afRich2」となるように決定される。その後、CPUはステップ695に進んで、本ルーチンを一旦終了する。
 他方、CPUがステップ630の処理を実行する時点において、リッチ要求フラグXRichreqの値が「0」であると、CPUはステップ630にて「No」と判定してステップ650に進み、目標リーン空燃比afLean(理論空燃比よりも大きい空燃比)を吸入空気量Gaに基づいて決定するとともに、上流側目標空燃比abyfr(=今回の目標空燃比abyfr(k))をその目標リーン空燃比afLeanに設定する。
  このステップ650において、目標リーン空燃比afLeanは、吸入空気量Gaが第1の値Ga1のとき第1目標リーン空燃比afLean1となり、吸入空気量Gaが「第1の値Ga1と相違する(大きい)第2の値Ga2」のとき「第1目標リーン空燃比afLean1よりも大きい第2目標リーン空燃比afLean2」となるように決定される。その後、CPUはステップ695に進んで、本ルーチンを一旦終了する。なお、上流側目標空燃比abyfrは、各吸気行程に対応されながらRAM内に記憶される。
<メインフィードバック制御>
 CPUは図7にフローチャートにより示したメインフィードバック制御ルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPUはステップ700から処理を開始し、ステップ710に進んでフィードバック制御フラグXFBの値が「1」であるか否かを判定する。
 いま、フィードバック制御フラグXFBの値が「1」であるとして説明を続ける。この場合、CPUはステップ710にて「Yes」と判定して以下に述べるステップ715乃至ステップ750の処理を順に行い、その後、ステップ795に進んで本ルーチンを一旦終了する。
 ステップ715:CPUは、上流側空燃比センサ66の出力値Vabyfsを図2に示したテーブルMapabyfsに適用することにより上流側空燃比abyfsを取得する。
 ステップ720:CPUは、現時点よりもNサイクル(即ち、N・720°クランク角)前の時点における筒内吸入空気量Mc(k-N)を、上流側空燃比abyfsで除すことにより、現時点よりもNサイクル前の時点において燃焼室21に実際に供給された燃料の量である「筒内燃料供給量Fc(k-N)」を求める。
 このように、現時点からNサイクル前の筒内燃料供給量Fc(k-N)を求めるために、現時点からNサイクル前の筒内吸入空気量Mc(k-N)を上流側空燃比abyfsで除すのは、燃焼室21内で燃焼された混合気が上流側空燃比センサ66に到達するまでにNサイクルに相当する時間を要するからである。
 ステップ725:CPUは、「現時点からNサイクル前の筒内吸入空気量Mc(k-N)」を「現時点からNサイクル前の上流側目標空燃比abyfr(k-N)」で除すことにより「現時点からNサイクル前の目標筒内燃料供給量Fcr(k-N)」を求める。
 ステップ730:CPUは、目標筒内燃料供給量Fcr(k-N)から筒内燃料供給量Fc(k-N)を減じた値を筒内燃料供給量偏差DFcとして設定する。この筒内燃料供給量偏差DFc(=Fcr(k-N)-Fc(k-N))は、Nサイクル前の時点で機関10に供給された燃料の過不足分を表す量となる。
 ステップ735:CPUは、下記(4)式に基いてメインフィードバック値DFiを求める。この(4)式において、Gpは予め設定された比例ゲイン、Giは予め設定された積分ゲインである。(4)式の値SDFcは筒内燃料供給量偏差DFcの積分値であり、次のステップ740にて求められる。つまり、第1制御装置は、上流側空燃比abyfsを上流側目標空燃比abyfrに一致させる比例・積分制御(PI制御)によりメインフィードバック値DFiを算出する。
 
 DFi=Gp・DFc+Gi・SDFc  …(4)
 
 ステップ740:CPUは、その時点における筒内燃料供給量偏差DFcの積分値SDFcに上記ステップ730にて求められた筒内燃料供給量偏差DFcを加えることにより、新たな筒内燃料供給量偏差の積分値SDFcを取得する。
 ステップ745:CPUは、メインフィードバック値DFi及び基本燃料噴射量Fb(k-N)を下記(5)式に適用することによりメインフィードバック係数FAFを算出する。即ち、メインフィードバック係数FAFは、「現時点からNサイクル前の基本燃料噴射量Fb(k-N)にメインフィードバック値DFiを加えた値」を「基本燃料噴射量Fb(k-N)」で除すことにより求められる。
 
 FAF=(Fb(k-N)+DFi)/Fb(k-N)  …(5)
 
 ステップ750:CPUは、下記(6)式に従ってメインフィードバック係数FAFの加重平均値をメインフィードバック係数平均FAFAV(以下、「補正係数平均FAFAV」とも称呼する。)として求める。(6)式においてFAFAVnewは更新後の補正係数平均FAFAVであり、そのFAFAVnewが新たな補正係数平均FAFAVとして格納される。また、(6)式において、値qは0より大きく1より小さい定数である。この補正係数平均FAFAVは、後述するように、「メインFB学習値KG及び蒸発燃料ガス濃度学習値FGPG」を求める際に用いられる。
 
 FAFAVnew=q・FAF+(1-q)・FAFAV  …(6)
 
 以上により、メインフィードバック値DFiが比例積分制御により求められ、このメインフィードバック値DFiがメインフィードバック係数FAFへと変換される。メインフィードバック係数FAFは、上述した図5のステップ560において指示燃料噴射量Fiに反映される。この結果、燃料供給量の過不足が補償されるので、機関の空燃比(従って、上流側触媒43に流入するガスの空燃比)の平均値が上流側目標空燃比abyfrと略一致させられる。
 これに対し、ステップ710の判定時において、フィードバック制御フラグXFBの値が「0」である場合、CPUはそのステップ710にて「No」と判定し、以下に述べるステップ755乃至ステップ770の処理を順に行い、その後、ステップ795に進む。
 ステップ755:CPUはメインフィードバック値DFiの値を「0」に設定する。
 ステップ760:CPUは筒内燃料供給量偏差の積分値SDFcを「0」に設定する。
 ステップ765:CPUはメインフィードバック係数FAFの値を「1」に設定する。
 ステップ770:CPUは補正係数平均FAFAVの値を「1」に設定する。
 このように、フィードバック制御フラグXFBの値が「0」であるとき(フィードバック制御条件が不成立であるとき)、メインフィードバック値DFiの値は「0」に設定され、メインフィードバック係数FAFの値は「1」に設定される。従って、基本燃料噴射量Fb(k)のメインフィードバック係数FAFによる補正は行われない。但し、このような場合であっても、基本燃料噴射量Fb(k)はメインFB学習値KGによって補正される。
<メインフィードバック学習(ベース空燃比学習)>
 第1制御装置はパージ制御弁55を完全に閉じた状態に維持する指示信号がパージ制御弁55に送出されている期間(パージ制御弁閉弁指示期間、デューティ比DPGが「0」である期間)において、メインフィードバック係数FAFを基本値「1」に近づけるように、補正係数平均FAFAVに基いてメインFB学習値KGを更新する。
 このメインFB学習値KGの更新を行うために、CPUは図8に示したメインフィードバック学習ルーチンを所定時間が経過する毎に実行するようになっている。従って、CPUは所定のタイミングになるとステップ800から処理を開始し、ステップ805に進んでフィードバック制御フラグXFBの値が「1」であるか否かを判定する。
 このとき、フィードバック制御フラグXFBの値が「1」でなければ(即ち、メインフィードバック制御が実行されていなければ)、CPUはそのステップ805にて「No」と判定し、ステップ895に直接進んで本ルーチンを一旦終了する。この結果、メインFB学習値KGの更新は行われない。
 一方、フィードバック制御フラグXFBの値が「1」であるとき(メインフィードバック制御が実行中であるとき)、CPUはステップ805にて「Yes」と判定してステップ810に進み、「蒸発燃料のパージが行われていないか否か」を判定する。より具体的には、CPUは「後述する図9のルーチンにより決定されるデューティ比DPG」が「0」であるか否かを判定する。このとき、蒸発燃料のパージが行われていると(デューティ比DPGが「0」でないと)、CPUはそのステップ810にて「No」と判定し、ステップ895に直接進んで本ルーチンを一旦終了する。この結果、メインFB学習値KGの更新は行われない。
 他方、CPUがステップ810の処理を実行する時点において蒸発燃料のパージが行われていなければ(デューティ比DPGが「0」であると)、CPUはそのステップ810にて「Yes」と判定してステップ815に進み、補正係数平均FAFAVの値が値1+α以上であるか否かを判定する。ここで、αは、0より大きく1より小さい所定値であり、例えば、0.02である。このとき、補正係数平均FAFAVの値が値1+α以上であると、CPUはステップ820に進んでメインFB学習値KGを正の所定値Xだけ増大させる。その後、CPUはステップ835に進む。
 これに対し、CPUがステップ815の処理を実行する時点において補正係数平均FAFAVの値が値1+αよりも小さいと、CPUはステップ825に進んで補正係数平均FAFAVの値が値1-α以下であるか否かを判定する。このとき、補正係数平均FAFAVの値が値1-α以下であると、CPUはステップ830に進んでメインFB学習値KGを正の所定値Xだけ減少させる。その後、CPUはステップ835に進む。
 更に、CPUはステップ835に進んだとき、そのステップ835にてメインフィードバック学習完了フラグ(メインFB学習完了フラグ)XKGの値を「0」に設定する。メインFB学習完了フラグXKGは、その値が「1」であるときにメインフィードバック学習が完了しており、その値が「0」であるときにメインフィードバック学習が完了していないことを示す。
 次いで、CPUはステップ840に進み、メイン学習カウンタCKGの値を「0」に設定する。なお、メイン学習カウンタCKGの値は、機関10が搭載された車両の図示しないイグニッション・キー・スイッチがオフ位置からオン位置へと変更された際に実行されるイニシャルルーチンにても「0」に設定されるようになっている。その後、CPUはステップ895に進み、本ルーチンを一旦終了する。
 CPUがステップ825の処理を実行する時点において、補正係数平均FAFAVの値が値1-αよりも大きいと(即ち、補正係数平均FAFAVの値が値1-αと値1+αの間の値であると)、CPUはステップ845に進んでメイン学習カウンタCKGの値を「1」だけ増大する。
 次に、CPUはステップ850に進み、メイン学習カウンタCKGの値が所定のメイン学習カウンタ閾値CKGth以上であるか否かを判定する。そして、メイン学習カウンタCKGの値が所定のメイン学習カウンタ閾値CKGth以上であれば、CPUはステップ850にて「Yes」と判定してステップ855に進み、メインFB学習完了フラグXKGの値を「1」に設定する。
 即ち、機関10の始動後において補正係数平均FAFAVの値が値1-αと値1+αの間の値である回数(継続時間)がメイン学習カウンタ閾値CKGth以上となると、メインFB学習値KGの学習は完了したと見做される。その後、CPUはステップ895に進んで、本ルーチンを一旦終了する。
 これに対し、CPUがステップ850の処理を実行する時点において、メイン学習カウンタCKGの値が所定のメイン学習カウンタ閾値CKGthよりも小さければ、CPUはそのステップ850にて「No」と判定し、ステップ850からステップ895に直接進んで本ルーチンを一旦終了する。
 以上により、メインフィードバック制御中であって蒸発燃料のパージが行われていない間にメインFB学習値KGが更新される。
<パージ制御弁駆動>
 一方、CPUは図9に示したパージ制御弁駆動ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ900から処理を開始し、ステップ910に進んでパージ条件が成立しているか否かを判定する。このパージ条件は、例えば、以下の総ての条件が成立したときに成立する。
(B1)フィードバック制御フラグXFBの値が「1」である(メインフィードバック制御が実行中である。)。
(B2)機関10が定常運転されている(例えば、機関の負荷を表すスロットル弁開度TAの単位時間あたりの変化量が所定値以下である。)。
 いま、パージ条件が成立していると仮定する。この場合、CPUは図9のステップ910にて「Yes」と判定してステップ920に進み、メインFB学習完了フラグXKGの値が「1」であるか否か(即ち、メインフィードバック学習が完了しているか否か)を判定する。このとき、メインFB学習完了フラグXKGの値が「1」であると、CPUはステップ920にて「Yes」と判定し、以下に述べるステップ930乃至ステップ970の処理を順に行い、ステップ995に進んで本ルーチンを一旦終了する。
 ステップ930:CPUは、目標リーン空燃比afLeanから目標リッチ空燃比afRichを減じることにより空燃比振幅ΔAFを求める。即ち、空燃比振幅ΔAFは、目標リーン空燃比afLeanと目標リッチ空燃比afRichとの差の大きさ|afLean-afRich|と等しい。
 ステップ935:CPUは、空燃比振幅ΔAFに基づいて目標パージ率PGTを決定する。目標パージ率PGTは、空燃比振幅ΔAFが大きくなるほど大きくなるように設定される。なお、パージ率は、吸入空気量Gaに対するパージ流量KPの比(パージ率=KP/Ga)である。即ち、パージ流量KPは、機関10に吸入される(吸気通路に導入される)蒸発燃料ガスの流量であり、蒸発燃料ガスパージ量KPとも称呼される。パージ率は、「吸入空気量Gaと蒸発燃料ガスパージ量KPとの和(Ga+KP)」に対する蒸発燃料ガスパージ量KPの比(パージ率=(KP/(Ga+KP))として表されてもよい。
 ステップ940:CPUは、目標パージ率PGTと吸入空気量(流量)Gaとの積をパージ流量KPとして算出する。
 ステップ950:CPUは、機関回転速度NE及び負荷KLをマップMapPGRMXに適用することにより、全開パージ率PGRMXを求める。この全開パージ率PGRMXは、パージ制御弁55を全開にしたときのパージ率である。マップMapPGRMXは実験又はシミュレーションの結果に基づき予め取得され、ROM内に格納されている。マップMapPGRMXによれば、全開パージ率PGRMXは機関回転速度NEが大きくなるほど、又は、負荷KLが大きくなるほど、小さくなる。
 ステップ960:CPUは、目標パージ率PGTを全開パージ率PGRMXで除した値に100を乗ずることによりデューティ比DPG(%)を算出する。
 ステップ970:CPUは、パージ制御弁55をデューティ比DPGに基いて開閉制御する。
 これに対し、CPUは、パージ条件が成立していていない場合、ステップ910にて「No」と判定してステップ980に進み、パージ流量KPを「0」に設定する。次いで、CPUは、ステップ990にてデューティ比DPGを「0」に設定した後、ステップ970へと進む。この場合、デューティ比DPGは「0」に設定されているからパージ制御弁55は完全に閉じられた状態となる。その後、CPUはステップ995に進んで本ルーチンを一旦終了する。
 更に、CPUがステップ920の処理を実行する時点において、メインFB学習完了フラグXKGの値が「0」である場合、CPUはそのステップ920にて「No」と判定し、ステップ980、ステップ990及びステップ970の処理を実行する。この場合においても、デューティ比DPGは「0」に設定されているからパージ制御弁55は完全に閉じられた状態となる。その後、CPUはステップ995に進んで本ルーチンを一旦終了する。
<蒸発燃料ガス濃度学習>
 更に、CPUは、所定時間が経過する毎に図10に示した蒸発燃料ガス濃度学習ルーチンを実行するようになっている。この蒸発燃料ガス濃度学習ルーチンの実行によって、蒸発燃料ガス濃度学習値FGPGの更新が行われる。
 CPUは所定のタイミングになるとステップ1000から処理を開始してステップ1005に進み、フィードバック制御フラグXFBの値が「1」であるか否かを判定する(メインフィードバック制御が実行中であるか否か)を判定する。このとき、フィードバック制御フラグXFBの値が「0」であれば、CPUはそのステップ1005にて「No」と判定し、ステップ1095に直接進んで本ルーチンを一旦終了する。この結果、蒸発燃料ガス濃度学習値FGPGの更新は行われない。
 一方、フィードバック制御フラグXFBの値が「1」であるとき、CPUはステップ1005にて「Yes」と判定してステップ1010に進み、「蒸発燃料のパージが行われているか否か(具体的には、図9のルーチンにより求められるデューティ比DPGが「0」でないか否か)」を判定する。このとき、蒸発燃料のパージが行われていないと、CPUはそのステップ1010にて「No」と判定し、ステップ1095に直接進んで本ルーチンを一旦終了する。この結果、蒸発燃料ガス濃度学習値FGPGの更新は行われない。
 これに対し、CPUがステップ1010に進んだ際に蒸発燃料のパージが行われていると、CPUはステップ1010にて「Yes」と判定してステップ1015に進み、補正係数平均FAFAVから「1」を減じた値の絶対値|FAFAV-1|が所定値β以上であるか否かを判定する。ここで、βは0より大きく1より小さい微小な所定値であり、例えば、0.02である。
 このとき、絶対値|FAFAV-1|が所定値β以上であると、CPUはステップ1015にて「Yes」と判定してステップ1020に進み、下記(7)式に従って更新値tFGを求める。(7)式における目標パージ率PGTは、図9のステップ935にて設定されている。(7)式から明らかなように、更新値tFGは目標パージ率1%当たりの「補正量(偏差)εa(=FAFAV-1)」である。その後、CPUはステップ1030に進む。
 
 tFG=(FAFAV-1)/PGT …(7)
 
 蒸発燃料のパージが行われている場合、蒸発燃料ガスの濃度が高いほど、上流側空燃比abyfsは理論空燃比よりもより小さい空燃比(理論空燃比よりもリッチ側の空燃比)となる。従って、メインフィードバック係数FAFはより小さい値になるので、補正係数平均FAFAVも「1」より小さい値となる。その結果、FAFAV-1は負の値となるので、更新値tFGは負の値となる。更に、更新値tFGの絶対値は、FAFAVが小さいほど(「1」から乖離するほど)大きな値となる。つまり、蒸発燃料ガスの濃度が高いほど、更新値tFGはその絶対値の大きい負の値となる。
 これに対し、絶対値|FAFAV-1|が所定値β以下である場合、CPUはステップ1015にて「No」と判定してステップ1025に進み、更新値tFGを「0」に設定する。その後、CPUはステップ1030に進む。
 CPUは、ステップ1030において、下記(8)式に従って蒸発燃料ガス濃度学習値FGPGを更新し、ステップ1095に進んで本ルーチンを一旦終了する。(8)式においてFGPGnewは更新後の蒸発燃料ガス濃度学習値FGPGである。この結果、蒸発燃料ガス濃度学習値FGPGは、蒸発燃料ガスの濃度が高いほど小さい値になる。なお、蒸発燃料ガス濃度学習値FGPGの初期値は「1」に設定されている。
 
 FGPGnew=FGPG+tFG …(8)
 
 蒸発燃料のパージは、メインフィードバック学習が完了しているとき(メインFB学習完了フラグXKGの値が「1」であるとき)に行われる(図9のステップ920を参照。)。更に、指示燃料噴射量Fiは、上記(3)式に示したように、パージ補正係数FPGにより補正される。しかも、パージ補正係数FPGは、上記(2)式に示したように、蒸発燃料ガス濃度学習値FGPGに基づいて算出される。それ故、パージ中のメインフィードバック係数FAFの「1」からの乖離の程度を示す値(即ち、絶対値|FAFAV-1|)は、蒸発燃料ガス濃度学習値FGPGの真値(適正値)からの乖離の程度を表す。そこで、上述したように、絶対値|FAFAV-1|が所定値βよりも大きいとき、蒸発燃料ガス濃度学習値FGPGが更新される。
<空燃比要求(触媒状態)決定>
 CPUは、図11にフローチャートにより示した「空燃比要求(触媒状態)決定ルーチン」を所定時間tsの経過毎に繰り返し実行している。従って、所定のタイミングになると、CPUはステップ1100から処理を開始してステップ1110に進み、「現時点の下流側空燃比センサ67の出力値Voxs」から「前回の下流側空燃比センサ67の出力値Voxsold」を減じることにより、所定時間ts(単位時間)あたりの出力値Voxsの変化量ΔVoxsを算出する。前回の出力値Voxsoldは、次のステップ1120にて更新される値であり、現時点から所定時間tsだけ前の時点の出力値Voxs(本ルーチンが前回実行されたときの出力値Voxs)である。次に、CPUはステップ1120に進み、現時点の出力値Voxsを「前回の出力値Voxsold」として記憶する。
 次に、CPUはステップ1130に進み、リッチ要求フラグXRichreqの値が「1」であるか否かを判定する。リッチ要求フラグXRichreqは、上述したイニシャルルーチンにおいて「1」に設定されるようになっている。更に、リッチ要求フラグXRichreqの値は、後述するように、下流側空燃比センサ67の出力値Voxsに基づいて触媒43の状態が酸素不足状態(リッチ状態)であると判定されたときに「0」に設定され、下流側空燃比センサ67の出力値Voxsに基づいて触媒43の状態が酸素過剰状態(リーン状態)であると判定されたときに「1」に設定される。
 いま、リッチ要求フラグXRichreqの値が「1」であると仮定する。この場合、CPUはステップ1130にて「Yes」と判定してステップ1140に進み、変化速度ΔVoxsが正であるか否かを判定する。即ち、CPUは、出力値Voxsが増大しているか否かを判定する。このとき、変化速度ΔVoxsが正でなければ、CPUはステップ1140にて「No」と判定し、ステップ1195に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsが正であると、CPUはステップ1140にて「Yes」と判定してステップ1150に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリッチ判定閾値dRichth以下であると、CPUはステップ1150にて「No」と判定し、ステップ1195に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいと、CPUはステップ1150にて「Yes」と判定してステップ1160に進み、リッチ要求フラグXRichreqの値を「0」に設定する。即ち、出力値Voxsが増大していて且つその変化速度ΔVoxsの大きさがリッチ判定閾値dRichthよりも大きい場合、CPUは「触媒43の状態が酸素不足状態である。」と判定し、リッチ要求フラグXRichreqの値を「0」に設定する。
 この状態(即ち、リッチ要求フラグXRichreqの値が「0」に設定された状態)において、CPUがステップ1100から処理を再び開始すると、CPUはステップ1110及びステップ1120を経由してステップ1130に進み、そのステップ1130にて「No」と判定してステップ1170に進む。
 CPUは、ステップ1170にて変化速度ΔVoxsが負であるか否かを判定する。即ち、CPUは、出力値Voxsが減少しているか否かを判定する。このとき、変化速度ΔVoxsが負でなければ、CPUはステップ1170にて「No」と判定し、ステップ1195に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsが負であると、CPUはステップ1170にて「Yes」と判定してステップ1180に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリーン判定閾値dLeanth以下であると、CPUはステップ1180にて「No」と判定し、ステップ1195に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいと、CPUはステップ1180にて「Yes」と判定してステップ1190に進み、リッチ要求フラグXRichreqの値を「1」に設定する。即ち、出力値Voxsが減少していて且つその変化速度ΔVoxsの大きさがリーン判定閾値dLeanthよりも大きい場合、CPUは「触媒43の状態が酸素過剰状態である。」と判定し、リッチ要求フラグXRichreqの値を「1」に設定する。
 なお、CPUは、リッチ要求フラグXRichreqの値が「1」であるとき、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、リッチ要求フラグXRichreqの値を「0」に設定してもよい。同様に、リッチ要求フラグXRichreqの値が「0」であるとき、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、リッチ要求フラグXRichreqの値を「1」に設定してもよい。この場合、リッチ判定閾値VRichthは中央値Vmid以下の値であってもよい。リーン判定閾値VLeanthは中央値Vmid以上の値であってもよい。
 このようにリッチ要求フラグXRichreqの値は、下流側空燃比センサ67の出力値Voxsに基づいて、「1」と「0」との何れかの値に交互に設定される。そして、設定されたリッチ要求フラグXRichreqに応じて上流側目標空燃比abyfrが決定され(図6のルーチンを参照。)、その上流側目標空燃比abyfrに基づいて指示燃料噴射量Fiが決定される(図5のルーチンを参照。)。
 以上、説明したように、第1制御装置は、
 触媒43に流入するガスの空燃比の目標値である上流側目標空燃比abyfrを下流側空燃比センサ67の出力値Voxsに基づいて「目標リッチ空燃比afRichと目標リーン空燃比afLeanと」に交互に設定する目標空燃比設定手段(図11のルーチンを参照。)と、
 機関10に対して燃料を噴射する燃料噴射弁33と、
 燃料噴射弁33から噴射される燃料の量である燃料噴射量(指示燃料噴射量Fi)を上流側目標空燃比abyfrに応じて決定するとともに同決定した燃料噴射量の燃料を燃料噴射弁33から噴射させる燃料噴射制御手段(図5のステップ530乃至ステップ570を参照。)と、
 燃料噴射弁33に供給される燃料を貯蔵する燃料タンク51内に発生した蒸発燃料を機関10の吸気通路に導入する蒸発燃料パージ手段(キャニスタ52、ベーパ捕集管53、パージ流路管54、及び、パージ制御弁55等を参照。)と、
 前記蒸発燃料パージ手段により前記吸気通路に導入される蒸発燃料の量であるパージ量(目標パージ率PGT、又は、パージ流量KP、従って、デューティ比DPG)を制御する蒸発燃料パージ量制御手段(図9のルーチンを参照。)と、
 を備える。
 更に、第1制御装置において、
 前記目標空燃比設定手段は、
 機関10の運転状態を表す運転状態指標量(吸入空気量Ga)が第1の値(Ga1)であるとき、前記目標リッチ空燃比afRichを「理論空燃比よりも小さい第1目標リッチ空燃比afRich1)」に設定するとともに前記目標リーン空燃比afLeanを「理論空燃比よりも大きい第1目標リーン空燃比afLean1)」に設定し、且つ、
 運転状態指標量(吸入空気量Ga)が「前記第1の値(Ga1)と異なる第2の値(Ga2)」であるとき、前記目標リッチ空燃比afRichを「前記第1目標リッチ空燃比afRich1よりも小さい第2目標リッチ空燃比afRich2」に設定するとともに前記目標リーン空燃比afLeanを「前記第1目標リーン空燃比afLean1よりも大きい第2目標リーン空燃比afLean2」に設定するように構成され(図6のステップ640及びステップ650を参照。)、
 前記蒸発燃料パージ量制御手段は、
 前記目標リーン空燃比afLeanと前記目標リッチ空燃比afRichとの差の大きさ(=空燃比振幅ΔAF=|afLean-afRich|)が大きいほど前記パージ量を増大するように構成されている(図9のステップ930、ステップ935、及び、ステップ940~ステップ970を参照。)。
 第1制御装置においては、空燃比振幅ΔAFが大きくなるほど、目標リッチ空燃比afRichは小さくなり、目標リーン空燃比afLeanは大きくなる。従って、例えば、蒸発燃料のパージが開始されたときに蒸発燃料ガス濃度学習値FGPGの値が適正値から乖離していることに起因して触媒流入ガスの空燃比が大きく乱れたとしても、その影響が下流側空燃比センサの出力値Voxsに現れたときに触媒流入ガスの空燃比がその乖離を迅速に吸収するような値へと変化する。よって、触媒43の酸素吸蔵量が「最大酸素吸蔵量Cmax」又は「0」に維持されている期間(即ち、エミッションが悪化する期間)は短くなる。
 逆に、空燃比振幅ΔAFが小さい場合、パージされる蒸発燃料の量は少なくなる。従って、パージの開始に伴う触媒流入ガスの空燃比が乱れる程度を小さくすることができる。その結果、空燃比振幅ΔAFが小さい場合であっても、触媒43の酸素吸蔵量が「最大酸素吸蔵量Cmax」又は「0」に維持されている期間が長くならないようにすることができる。よって、第1制御装置は、エミッションが悪化する可能性を低く維持しながら、蒸発燃料のパージを行うことができる。
 また、異なる見方をすると、空燃比振幅ΔAFが大きい場合の触媒43の最大酸素吸蔵量Cmaxは、空燃比振幅ΔAFが小さい場合の触媒43の最大酸素吸蔵量Cmaxよりも大きくなる。つまり、より大きい目標リーン空燃比afLean及びより小さい目標リッチ空燃比afRichを交互に設定している場合、触媒43はより多くの酸素を吸蔵及び吐出することができる。従って、そのような場合にパージ量を多くすることにより、エミッションの悪化を回避しながらパージを迅速に行うことができる。
 なお、第1制御装置は、図9のステップ935のブロック内において破線により示したように、空燃比振幅ΔAFが閾値空燃比振幅ΔAFthよりも小さいとき、目標パージ率PGTを「0」に設定し、蒸発燃料のパージを停止(禁止)してもよい。
 更に、第1制御装置において、目標リッチ空燃比afRich及び目標リーン空燃比afLeanを決定するための運転状態指標量は吸入空気量Gaであったが、この運転状態指標量はスロットル弁開度TA、機関10の負荷KL、機関回転速度NE、冷却水温THW、及び、蒸発燃料ガス濃度学習値FGPG等の機関10の運転状態を示す一つ以上のパラメータであってもよい。更に、目標リッチ空燃比afRich及び目標リーン空燃比afLeanはステップ640及びステップ650に示したように運転状態指標量に対して連続的に変化する値であってもよく、運転状態指標量に対して離散的(ステップ状)に変化する値であってもよい。
<第2実施形態>
 次に、本発明の第2実施形態に係る内燃機関の制御装置(以下、「第2制御装置」とも称呼する。)について説明する。
 キャニスタ52は有限量の吸着剤を保持しているから、キャニスタ52による蒸発燃料の吸着量には上限がある。この上限はキャニスタ飽和蒸発燃料量とも称呼される。「キャニスタ52に吸着されている蒸発燃料の量」がキャニスタ飽和蒸発燃料量に近づくほど、蒸発燃料ガスの濃度は高くなるので、蒸発燃料ガス濃度学習値FGPGは小さくなる。そこで、第2制御装置は、「1」から蒸発燃料ガス濃度学習値FGPGを減じた値(1-FGPG)を「キャニスタ52に吸着されている蒸発燃料の量」を表す値、即ち、蒸発燃料吸着推定量として取得する。
 そして、第2制御装置は、蒸発燃料吸着推定量とキャニスタ飽和蒸発燃料量との差が所定量以下になると(即ち、キャニスタ飽和状態となると)、蒸発燃料吸着推定量とキャニスタ飽和蒸発燃料量との差が前記所定量よりも大きい場合に比較して、目標リッチ空燃比afRichをより小さくするとともに、目標リーン空燃比afLeanをより大きくする。これにより、目標リーン空燃比と目標リッチ空燃比との差の大きさ(空燃比振幅ΔAF=|afLean-afRich|)が大きくなるので、目標パージ率PGT(従って、パージ流量KP)を大きくすることができる。その結果、キャニスタ52が蒸発燃料を更に吸着することができる量を迅速にある程度の大きさにまで回復することができる。
(実際の作動)
 次に、第2制御装置の実際の作動について説明する。第2制御装置のCPUは、図6に示したルーチンを除き、第1制御装置のCPUが実行するルーチンを実行する。更に、第2制御装置のCPUは、所定時間が経過する毎に「図6に代わる図12にフローチャートにより示した目標空燃比決定ルーチン」を実行するようになっている。従って、以下、主として図12を参照しながら第2制御装置の作動について説明する。
 図12に示したルーチンは図6に示したルーチンと類似している。図12に示されたステップであって図6にも示されたステップには、図6に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。図12に示したルーチンは、図6に示したステップ640の後に「ステップ1210及びステップ1220」を追加し、更に、図6に示したステップ650の後に「ステップ1230及びステップ1240」を追加したルーチンである。
 より具体的に述べると、CPUは、リッチ要求フラグXRichreqの値が「1」である場合、ステップ640にて目標リッチ空燃比afRichを機関10の運転状態指標量(吸入空気量Ga)に基づいて決定し、その後、ステップ1210に進んで値(1-FGPG)が閾値Lth以上であるか否かを判定する。即ち、CPUは、蒸発燃料ガス濃度学習値FGPGにより示された蒸発燃料吸着推定量(1-FGPG)とキャニスタ飽和蒸発燃料量との差が所定量以下であるか否かを判定する。
 そして、蒸発燃料吸着推定量(1-FGPG)が閾値Lth以上である場合(即ち、蒸発燃料吸着推定量とキャニスタ飽和蒸発燃料量との差が所定量以下である場合)、CPUはステップ1210にて「Yes」と判定してステップ1220に進み、目標リッチ空燃比afRichを所定空燃比afRだけ小さくした値(=afRich-afR)を目標リッチ空燃比afRichとして再設定する。その後、CPUはステップ1295に進む。なお、第2制御装置において、便宜上、ステップ1220にて再設定される前の目標リッチ空燃比afRichは第1目標リッチ空燃比afRich1とも称呼され、ステップ1220にて再設定された後の目標リッチ空燃比afRichは第2目標リッチ空燃比afRich2とも称呼される。これに対し、蒸発燃料吸着推定量(1-FGPG)が閾値Lth未満であれば、CPUはステップ1210にて「No」と判定し、ステップ1295に直接進んで本ルーチンを一旦終了する。
 同様に、リッチ要求フラグXRichreqの値が「0」である場合、CPUはステップ650にて目標リーン空燃比afLeanを決定し、その後、ステップ1230に進んで蒸発燃料吸着推定量(1-FGPG)が閾値Lth以上であるか否かを判定する。即ち、CPUは、蒸発燃料ガス濃度学習値FGPGにより示された蒸発燃料吸着推定量(1-FGPG)とキャニスタ飽和蒸発燃料量との差が所定量以下であるか否かを判定する。
 そして、蒸発燃料吸着推定量(1-FGPG)が閾値Lth以上である場合、CPUはステップ1230にて「Yes」と判定してステップ1240に進み、目標リーン空燃比afLeanを所定空燃比afLだけ大きくした値(=afLean+afL)を目標リーン空燃比afLeanとして再設定する。その後、CPUはステップ1295に進む。なお、第2制御装置において、便宜上、ステップ1240にて再設定される前の目標リーン空燃比afLeanは第1目標リーン空燃比afLean1とも称呼され、ステップ1240にて再設定された後の目標リーン空燃比afLeanは第2目標リーン空燃比afLean2とも称呼される。これに対し、蒸発燃料吸着推定量(1-FGPG)が閾値Lth未満であれば、CPUはステップ1230にて「No」と判定し、ステップ1295に直接進んで本ルーチンを一旦終了する。
 以上、説明したように、第2制御装置は、触媒43に流入するガスの空燃比の目標値である上流側目標空燃比abyfrを下流側空燃比センサ67の出力値Voxsに基づいて「目標リッチ空燃比afRichと目標リーン空燃比afLeanと」に交互に設定する目標空燃比設定手段(図11及び図12を参照。)を備える。
 そして、前記目標空燃比設定手段は、
 キャニスタ52に吸着されている蒸発燃料の量に応じた値である蒸発燃料吸着推定量(1-FGPG)を取得するとともに、
 蒸発燃料吸着推定量(1-FGPG)が所定量Lth未満であるとき前記目標リッチ空燃比afRichを「理論空燃比よりも小さい第1目標リッチ空燃比(図12のステップ640にて決定される目標リッチ空燃比)」に設定するとともに(図12のステップ640)前記目標リーン空燃比afLeanを「理論空燃比よりも大きい第1目標リーン空燃比(図12のステップ650にて決定される目標リーン空燃比)」に設定し(図12のステップ650)、且つ、
 前記蒸発燃料吸着推定量(1-FGPG)が前記所定量Lth以上であるとき前記目標リッチ空燃比afRichを「前記第1目標リッチ空燃比よりもafRだけ小さい第2目標リッチ空燃比」に設定する(図12のステップ1210及びステップ1220)とともに前記目標リーン空燃比afLeanを「前記第1目標リーン空燃比よりもafLだけ大きい第2目標リーン空燃比」に設定する(図12のステップ1230及びステップ1240)ように構成されている。
 更に、第2制御装置の蒸発燃料パージ量制御手段は、第1制御装置の蒸発燃料パージ量制御手段と同様、前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさ(空燃比振幅ΔAF=|afLean-afRich|)が大きいほど前記パージ量を増大するように構成されている(図9のステップ930乃至ステップ970を参照。)。
 従って、キャニスタ52に吸着された蒸発燃料の量(蒸発燃料吸着推定量)がキャニスタ飽和蒸発燃料量に近づくほど、パージ量を増大することができる。よって、キャニスタ52に「ある程度の量の蒸発燃料」を吸着することができる余力を与えておくことができる。これにより、仮に燃料タンク51内に蒸発燃料が急激且つ多量に発生した場合であっても、その蒸発燃料をキャニスタ52に吸着させることができる可能性が高まる。その結果、蒸発燃料が大気中に排出されてしまう可能性を低減することができる。
 更に、パージ量が大きくなるほど、目標リーン空燃比afLeanはより大きい空燃比となり、目標リッチ空燃比afRichはより小さい空燃比となるので、蒸発燃料のパージによってエミッションが悪化してしまう可能性を低減することができる。
 なお、第2制御装置は、ステップ1210を省略するとともに、ステップ1220の値afRを蒸発燃料吸着推定量(1-FGPG)が大きくなるほど大きくなる値に設定するように(即ち、目標リッチ空燃比afRichをより小さくするように)構成され得る。同様に、第2制御装置は、ステップ1230を省略するとともに、ステップ1240の値afLを蒸発燃料吸着推定量(1-FGPG)が大きくなるほど大きくなる値に設定するように(即ち、目標リーン空燃比afLeanをより大きくするように)構成され得る。
 更に、第2制御装置は、ステップ640において上流側目標空燃比abyfrを一定のリッチ空燃比に設定し、ステップ650において上流側目標空燃比abyfrを一定のリーン空燃比に設定するように構成されてもよい。
 この場合、前記目標空燃比設定手段は、
 前記運転状態指標量として前記キャニスタ52に吸着されている蒸発燃料の量に応じた値である蒸発燃料吸着推定量(1-FGPG)を取得するとともに、
 前記蒸発燃料吸着推定量(1-FGPG)が所定量Lth未満であるとき前記運転状態指標量が前記第1の値であると判定し、それによって、前記目標リッチ空燃比afRichを「理論空燃比よりも小さい第1目標リッチ空燃比afRich1」に設定するとともに前記目標リーン空燃比afLeanを「理論空燃比よりも大きい第1目標リーン空燃比afLean1」に設定し、且つ、
 前記蒸発燃料吸着推定量(1-FGPG)が前記所定量Lth以上であるとき前記運転状態指標量が前記第2の値であると判定し、それによって、前記目標リッチ空燃比afRichを「前記第1目標リッチ空燃比よりも小さい第2目標リッチ空燃比afRich2」に設定するとともに前記目標リーン空燃比afLeanを「前記第1目標リーン空燃比よりも大きい第2目標リーン空燃比afLean2」に設定するように構成されていると表現することもできる(ステップ1210乃至ステップ1240を参照。)。
 以上、説明したように、本発明による制御装置の種々の実施形態によれば、蒸発燃料のパージをエミッションの悪化を招くことなく行うことができる。なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、蒸発燃料吸着推定量は、複数のセンサの出力値から推定することもできる。より具体的に述べると、制御装置は、タンクポート52aと、パージポート52bと、大気ポート52cと、のそれぞれに、HC濃度センサ及び流量センサを備えることができる。そして、制御装置は、それぞれのポートにおいて、流量とHC濃度との積を通過蒸発燃料量として積算する。更に、制御装置は、タンクポート52aの通過蒸発燃料量から、パージポート52bの通過蒸発燃料量と、大気ポート52cの通過蒸発燃料量と、を減じることにより、蒸発燃料吸着推定量を推定することができる。
 更に、上記各実施形態の制御装置は、運転状態指標量が増大するにつれて目標リッチ空燃比afRichを理論空燃比よりも小さい範囲において減少させ且つ目標リーン空燃比afLeanを理論空燃比よりも大きい範囲において増大させ、或いは、運転状態指標量が増大するにつれて目標リッチ空燃比afRichを理論空燃比よりも小さい範囲において増大させ且つ目標リーン空燃比afLeanを理論空燃比よりも大きい範囲において減少させるように構成されていると表現することもできる(ステップ640及びステップ650を参照。)。
 加えて、上記各実施形態の制御装置は、パージ補正係数FPG、メインFB学習値KG及びメインフィードバック係数FAFにより基本燃料噴射量Fb(k)を補正して指示燃料噴射量Fiを求めているが、メインフィードバック係数FAFのみにより、又は、メインFB学習値KG及びメインフィードバック係数FAFにより、基本燃料噴射量Fb(k)を補正して指示燃料噴射量Fiを求めてもよい。

Claims (3)

  1.  内燃機関の排気通路に配設された触媒と、
     前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
     前記触媒に流入するガスの空燃比の目標値である上流側目標空燃比を前記下流側空燃比センサの出力値に基づいて目標リッチ空燃比と目標リーン空燃比とに交互に設定する目標空燃比設定手段と、
     前記機関に対して燃料を噴射する燃料噴射弁と、
     前記燃料噴射弁から噴射される燃料の量である燃料噴射量を前記上流側目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
     前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージ手段と、
     前記蒸発燃料パージ手段により前記吸気通路に導入される蒸発燃料の量であるパージ量を制御する蒸発燃料パージ量制御手段と、
     を備えた内燃機関の制御装置において、
     前記目標空燃比設定手段は、
     前記機関の運転状態を表す運転状態指標量が第1の値であるとき、前記目標リッチ空燃比を理論空燃比よりも小さい第1目標リッチ空燃比に設定するとともに前記目標リーン空燃比を理論空燃比よりも大きい第1目標リーン空燃比に設定し、且つ、
     前記運転状態指標量が前記第1の値と異なる第2の値であるとき、前記目標リッチ空燃比を前記第1目標リッチ空燃比よりも小さい第2目標リッチ空燃比に設定するとともに前記目標リーン空燃比を前記第1目標リーン空燃比よりも大きい第2目標リーン空燃比に設定するように構成され、
     前記蒸発燃料パージ量制御手段は、
     前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きいほど前記パージ量を増大するように構成された制御装置。
  2.  請求項1に記載の内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記燃料タンクと前記吸気通路とを接続するパージ通路に介装されるとともに前記燃料タンク内に発生した前記蒸発燃料を吸着するキャニスタを含み、
     前記目標空燃比設定手段は、
     前記運転状態指標量として前記キャニスタに吸着されている前記蒸発燃料の量に応じた値である蒸発燃料吸着推定量を取得するとともに、前記蒸発燃料吸着推定量が所定量未満であるとき前記運転状態指標量が前記第1の値であると判定し、且つ、前記蒸発燃料吸着推定量が前記所定量以上であるとき前記運転状態指標量が前記第2の値であると判定するように構成された制御装置。
  3.  内燃機関の排気通路に配設された触媒と、
     前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
     前記触媒に流入するガスの空燃比の目標値である上流側目標空燃比を前記下流側空燃比センサの出力値に基づいて目標リッチ空燃比と目標リーン空燃比とに交互に設定する目標空燃比設定手段と、
     前記機関に対して燃料を噴射する燃料噴射弁と、
     前記燃料噴射弁から噴射される燃料の量である燃料噴射量を前記上流側目標空燃比に応じて決定するとともに同決定した燃料噴射量の燃料を前記燃料噴射弁から噴射させる燃料噴射制御手段と、
     前記燃料噴射弁に供給される燃料を貯蔵する燃料タンク内に発生した蒸発燃料を前記機関の吸気通路に導入する蒸発燃料パージ手段と、
     前記蒸発燃料パージ手段により前記吸気通路に導入される蒸発燃料の量であるパージ量を制御する蒸発燃料パージ量制御手段と、
     を備えた内燃機関の制御装置において、
     前記蒸発燃料パージ手段は、
     前記燃料タンクと前記吸気通路とを接続するパージ通路に介装されるとともに前記燃料タンク内に発生した前記蒸発燃料を吸着するキャニスタを含み、
     前記目標空燃比設定手段は、
     前記キャニスタに吸着されている前記蒸発燃料の量に応じた値である蒸発燃料吸着推定量を取得するとともに、
     前記蒸発燃料吸着推定量が所定量未満であるとき前記目標リッチ空燃比を理論空燃比よりも小さい第1目標リッチ空燃比に設定するとともに前記目標リーン空燃比を理論空燃比よりも大きい第1目標リーン空燃比に設定し、且つ、
     前記蒸発燃料吸着推定量が前記所定量以上であるとき前記目標リッチ空燃比を前記第1目標リッチ空燃比よりも小さい第2目標リッチ空燃比に設定するとともに前記目標リーン空燃比を前記第1目標リーン空燃比よりも大きい第2目標リーン空燃比に設定するように構成され、
     前記蒸発燃料パージ量制御手段は、
     前記目標リーン空燃比と前記目標リッチ空燃比との差の大きさが大きいほど前記パージ量を増大するように構成された制御装置。
PCT/JP2011/055631 2011-03-10 2011-03-10 内燃機関の制御装置 WO2012120676A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11860368.7A EP2685071B1 (en) 2011-03-10 2011-03-10 Internal combustion engine control apparatus
JP2013503300A JP5494885B2 (ja) 2011-03-10 2011-03-10 内燃機関の制御装置
CN201180069141.3A CN103443428B (zh) 2011-03-10 2011-03-10 内燃机的控制装置
PCT/JP2011/055631 WO2012120676A1 (ja) 2011-03-10 2011-03-10 内燃機関の制御装置
US13/882,622 US8904762B2 (en) 2011-03-10 2011-03-10 Control apparatus for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055631 WO2012120676A1 (ja) 2011-03-10 2011-03-10 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012120676A1 true WO2012120676A1 (ja) 2012-09-13

Family

ID=46797674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055631 WO2012120676A1 (ja) 2011-03-10 2011-03-10 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8904762B2 (ja)
EP (1) EP2685071B1 (ja)
JP (1) JP5494885B2 (ja)
CN (1) CN103443428B (ja)
WO (1) WO2012120676A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118888A1 (ja) * 2013-01-29 2014-08-07 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013029356B1 (pt) * 2011-05-16 2021-01-19 Toyota Jidosha Kabushiki Kaisha. aparelho de controle de razão ar-combustível para um motor de combustão interna
EP2873824B1 (en) * 2012-06-25 2016-08-03 Nissan Motor Co., Ltd. Exhaust gas purification device for engine and exhaust gas purification method
JP6349608B2 (ja) * 2014-04-23 2018-07-04 株式会社ケーヒン エンジン制御システム
JP6344080B2 (ja) * 2014-06-19 2018-06-20 トヨタ自動車株式会社 内燃機関の制御装置
JP6314727B2 (ja) * 2014-07-28 2018-04-25 トヨタ自動車株式会社 内燃機関
JP6497048B2 (ja) * 2014-12-03 2019-04-10 スズキ株式会社 内燃機関の空燃比学習制御装置
CN114837830B (zh) * 2021-02-02 2023-04-07 比亚迪股份有限公司 发动机排放控制方法、系统和车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264798A (ja) * 1992-07-03 1994-09-20 Nippondenso Co Ltd 内燃機関の空燃比制御装置
JP2002081350A (ja) * 2000-09-07 2002-03-22 Suzuki Motor Corp 内燃機関の空燃比制御装置
JP2007113549A (ja) * 2005-10-24 2007-05-10 Fujitsu Ten Ltd 車両制御装置,車両制御システム及び車両制御方法
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610737A (ja) 1992-06-29 1994-01-18 Mazda Motor Corp エンジンの空燃比制御装置
US5487270A (en) 1992-07-03 1996-01-30 Nippondenso Co., Ltd. Air-fuel ratio control system for internal combustion engine
KR100423348B1 (ko) * 1998-08-10 2004-03-18 도요다 지도샤 가부시끼가이샤 내연기관의 증발연료 처리장치
US6442413B1 (en) * 2000-05-15 2002-08-27 James H. Silver Implantable sensor
JP3680217B2 (ja) * 2000-06-26 2005-08-10 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4088412B2 (ja) * 2000-12-26 2008-05-21 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2004100623A (ja) 2002-09-11 2004-04-02 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
DE102004009615B4 (de) * 2004-02-27 2008-03-13 Siemens Ag Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
DE102004017886B3 (de) * 2004-04-13 2005-07-21 Audi Ag Verfahren und Vorrichtung zur Lambdaregelung einer Brennkraftmaschine mit Abgaskatalysator
JP4363242B2 (ja) * 2004-04-15 2009-11-11 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4466474B2 (ja) * 2005-05-20 2010-05-26 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2007085179A (ja) * 2005-09-20 2007-04-05 Toyota Motor Corp 蒸発燃料処理装置
JP4389867B2 (ja) * 2005-12-14 2009-12-24 トヨタ自動車株式会社 内燃機関の制御装置
DE102006004837B4 (de) 2006-02-02 2011-12-22 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4221025B2 (ja) * 2006-12-25 2009-02-12 三菱電機株式会社 内燃機関の空燃比制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264798A (ja) * 1992-07-03 1994-09-20 Nippondenso Co Ltd 内燃機関の空燃比制御装置
JP2002081350A (ja) * 2000-09-07 2002-03-22 Suzuki Motor Corp 内燃機関の空燃比制御装置
JP2007113549A (ja) * 2005-10-24 2007-05-10 Fujitsu Ten Ltd 車両制御装置,車両制御システム及び車両制御方法
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2685071A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118888A1 (ja) * 2013-01-29 2014-08-07 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
JP5494885B2 (ja) 2014-05-21
US8904762B2 (en) 2014-12-09
CN103443428B (zh) 2015-06-24
JPWO2012120676A1 (ja) 2014-07-07
EP2685071A1 (en) 2014-01-15
US20130340410A1 (en) 2013-12-26
CN103443428A (zh) 2013-12-11
EP2685071B1 (en) 2017-10-25
EP2685071A4 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5494885B2 (ja) 内燃機関の制御装置
US9726103B2 (en) Fuel injection amount control apparatus for an internal combustion engine
JP5088421B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5494317B2 (ja) 多気筒内燃機関の異常判定装置
JP5041078B2 (ja) 多気筒内燃機関の空燃比制御装置
JP5045820B2 (ja) 多気筒内燃機関の監視装置
JP5282824B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
US10352263B2 (en) Fuel injection amount control apparatus for an internal combustion engine
JP5510158B2 (ja) 内燃機関の燃料噴射量制御装置
JP5522392B2 (ja) 内燃機関の燃料噴射量制御装置
JP5170320B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
WO2012020500A1 (ja) 内燃機関の燃料噴射量制御装置
JP5494998B2 (ja) 内燃機関の制御装置
JP2010180746A (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP2012225308A (ja) 内燃機関の制御装置
WO2011148517A1 (ja) 内燃機関の空燃比制御装置
WO2011033687A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5640662B2 (ja) 内燃機関の燃料噴射量制御装置
JP2016145546A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503300

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13882622

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011860368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011860368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE