JP3589683B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP3589683B2
JP3589683B2 JP15564693A JP15564693A JP3589683B2 JP 3589683 B2 JP3589683 B2 JP 3589683B2 JP 15564693 A JP15564693 A JP 15564693A JP 15564693 A JP15564693 A JP 15564693A JP 3589683 B2 JP3589683 B2 JP 3589683B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15564693A
Other languages
English (en)
Other versions
JPH0711995A (ja
Inventor
山下  幸宏
寿浩 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP15564693A priority Critical patent/JP3589683B2/ja
Priority to US08/248,951 priority patent/US5445136A/en
Priority to DE4422072A priority patent/DE4422072B4/de
Publication of JPH0711995A publication Critical patent/JPH0711995A/ja
Application granted granted Critical
Publication of JP3589683B2 publication Critical patent/JP3589683B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、内燃機関に供給される燃料量を制御して、混合気の空燃比を目標空燃比に制御する内燃機関の空燃比制御装置に関する。
【0002】
【従来の技術】
従来、この種の空燃比制御装置としては、例えば、特開平1−110853号公報に記載されている装置がある。すなわち、この装置も基本的には、内燃機関の空燃比を制御する系の動的なモデルを考え、その都度供給すべき燃料量を、該モデルの内部状態を推定した最適なゲインのもとでフィードバック制御するいわゆる現代制御理論を活用したものではあるが、このような現代制御理論が通常、オブザーバと称される状態観測器の構築が必要とされて、その制御量や制御規模が膨大となることに鑑みて、この装置では特に、
( 1)内燃機関の空燃比を検出する空燃比検出手段
( 2)内燃機関への燃料供給量を制御する燃料供給量制御手段
( 3)検出された空燃比に基づいて燃料供給量制御手段の制御量を定め、内燃機関の空燃比を目標空燃比に制御する空燃比制御手段
を基本的に具え、
( 4)空燃比制御手段は、空燃比を決定する内燃機関の動的なモデルを、無駄時間を次数1の自己回帰モデルにより近似し、更に外乱を考慮して構築するとともに、
( 5)内燃機関の空燃比と燃料供給量制御手段の制御量とを、内燃機関の動的なモデルの内部状態を代表する状態変数量として出力する状態変数量出力部
( 6)目標空燃比と検出された空燃比との偏差を累積する累積部
( 7)動的なモデルに基づいて予め定められた最適フィードバックゲインと状態変数量及び累積部による累積値とから、燃料供給量制御手段の制御量を算出する制御量算出部
を更に具えることで、こうしたオブザーバの構築を不要としている。
【0003】
【発明が解決しようとする課題】
ところで、このような構成においては、上述のモデルが、内燃機関への燃料供給量と混合気の空燃比との間にてきちんとして成立した動的なモデル関係でもって常に構成されなければならない。
【0004】
然るに、通常にリッチ出力やリーン出力を生ずる酸素濃度センサが約300(℃)で活性化するのに対し、前記空燃比検出手段を構成する空燃比センサにおいては、その出力である限界電流のリッチリーン出力は400(℃)から始まる。通常は、限界温度が安定する温度で使用しなければならないので、空燃比をここまでの範囲に亘り計測しようとすると、素子温において630(℃)程度が必要であり、これに達するまでは空燃比のフィードバックを開始できない。その結果、このフィードバックの開始時期が、通常の酸素濃度センサによる空燃比のフィードバックに比べかなり遅延されてしまい、排気ガス中のHCが悪化するという不具合が生ずる。
【0005】
この対策として、限界電流が出力し始めたら、即座にフィードバックを開始するという方法が考えられるが、上述の空燃比センサの半暖機状態では、空燃比センサの出力特性が安定しない。このため、燃料噴射量と空燃比との間の動的モデル関係が崩れてしまい、その結果、現代制御理論の活用により期待される空燃比の制御が適正には実現できないという不具合が生ずる。特に、上述のような構成の空燃比制御装置においては、高応答性故に、空燃比制御は益々不安定になりハンチング現象を招くおそれがある。
【0006】
また、空燃比センサのこのような出力特性に鑑みて、空燃比センサが安定状態にあるか否かを判定し、安定状態にあれば、空燃比センサの出力に基づく空燃比のフィードバック制御を実行し、不安定状態であれば、その制御を予めメモリに格納した擬似データにて代用するもの(特開平1−219327号公報参照)、また或いは、同じく空燃比センサが安定状態にあるか否かを判定し、安定状態にあれば、理論空燃比以外の所望空燃比となるようフィードバック制御を行い、不安定状態であれば、理論空燃比となるようフィードバック制御を行うもの(特開昭60−27749号公報参照)、などもあるにはあるが、実際の制御系の内情に沿った柔軟性やフィードバック系の応答性(収束速度)となると、なお改良の余地を残す。
【0007】
この発明は、こうした実情に鑑みてなされたものであり、上述した空燃比制御をより柔軟に、且つ応答性よく実現することのできる内燃機関の空燃比制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
こうした目的を達成するため、この発明では、図9に示されるように、内燃機関M1へ供給する混合気を形成すべく同内燃機関M1へ吸入される空気へ燃料を噴射供給する燃料供給手段M2と、内燃機関M1の排気ガスに基づいて前記混合気の空燃比を検出する空燃比検出手段M3と、これら燃料供給手段M2から空燃比検出手段M3までの制御対象に近似して設定された制御モデルに基づき前記検出される空燃比を目標空燃比に制御するための状態フィードバックを実行しつつその都度の空燃比補正係数を求める空燃比制御手段M4と、この求められる空燃比補正係数に基づいて前記燃料供給手段M2が供給する燃料量を制御する燃料供給量制御手段M5とを具える内燃機関の空燃比制御装置であって、前記空燃比検出手段M3が安定して空燃比検出の可能な状態か否かを判定する判定手段M6と、前記制御モデルとして、前記空燃比検出手段M3が安定して空燃比検出の可能な状態にあるとき、及びないとき、のそれぞれの状態に対応して、フィードバックゲインが各々設定記憶された記憶手段M7と、前記判定手段M6の判定結果に応じて、これら設定記憶されたフィードバックゲインを選択的に読み出す制御モデル切換手段M8と、をそれぞれ具えるようにする。そして前記空燃比制御手段M4は、前記制御モデル切換手段M8から選択的に読み出されるフィードバックゲインに基づいて前記空燃比補正係数を求めるようにする。
【0009】
【作用】
記憶手段M7に前記制御モデルとして、すなわち第1及び第2の制御モデルとして各々設定記憶されるフィードバックゲインとは、空燃比検出手段M3が安定して空燃比検出の可能な状態にあるとき、及びないとき、のそれぞれ実際に適用される状態フィードバック系の状態に対応して求められたものである。
【0010】
したがって、判定手段M6の判定結果に応じてこれら第1及び第2の制御モデル(フィードバックゲイン)が選択的に空燃比制御手段M4に読み込まれることは、空燃比検出手段M3のその都度の状態に最も即したかたちで、供給される燃料量と検出される空燃比との動的な関係に基づく空燃比補正係数の算出が行われることを意味し、結局、柔軟性に富み、且つ応答性にも優れた前記現代制御理論に基づく空燃比フィードバック制御は、如何なる場合も好適に維持されるようになる。
【0011】
なお、判定手段M6による判定手法としては、例えば
( a)空燃比検出手段M3の温度が所定温度に達すること、及び該所定温度に達して所定時間が経過されること、の論理積条件に基づいて同空燃比検出手段M3が安定して空燃比検出の可能な状態にある旨を判定する。
或いは
( b)前記制御される燃料供給量と前記検出される空燃比との動的な関係が維持されていることを条件に、前記空燃比検出手段M3が安定して空燃比検出の可能な状態にある旨を判定する。
などの方法がある。何れの場合も、単に空燃比検出手段M3の温度のみを検出してその安定状態/不安定状態を判定する方法に比べれば、これら状態について、格段に信頼性の高い判定を行うことが可能となる。
【0012】
【実施例】
図1に、この発明の一実施例として、4気筒4サイクル型火花点火式内燃機関E、及びその燃料噴射制御システムに、この発明にかかる内燃機関の空燃比制御装置を適用した例を示す。
【0013】
この図1に示される内燃機関Eは、その作動下において、
( 1)エアクリーナ10を通り吸気管20内に流入する空気流を、同吸気管20内のスロットルバルブ20a及びサージタンク30を介してインテークマニホールド40内に流入させる。
( 2)図示しない燃料タンクより圧送され、燃料噴射弁41〜44を通じて噴射される燃料と、この流入させた空気流とを、同インテークマニホールド40内で混合して混合気を形成する。
( 3)この形成した混合気を機関本体50の各気筒の燃焼室に供給して点火プラグ51〜54の点火のもとに燃焼させる。
( 4)この燃焼させたガスをイグゾーストマニホールド60及び三元触媒70を通し排気ガスとして排気管80内に排出する。
といった動作を繰り返す。
【0014】
なおここで、上記各点火プラグ51〜54は、ディストリビュータ90から点火回路100との協働により配電される高電圧を受けて点火する。また、三元触媒70はイグゾーストマニホールド60からの排気ガス中の有害成分(CO、HC、NOX 等)を低減する役割を果たす。
【0015】
また、燃料噴射制御システムは、回転数センサ110、スロットルセンサ120、負圧センサ130、水温センサ140、空気温センサ150、空燃比センサ160、及び酸素濃度センサ170をそれぞれ有している。以下に、これら各センサの機能を簡単に説明する。
【0016】
回転数センサ110は、ディストリビュータ90に配設されて、機関本体50の出力軸の現実の回転数(内燃機関Eの現実の回転数に相当する)を検出し、この検出結果に比例する周波数にてパルス信号を順次発生する。ただし、回転数センサ110からのパルス信号の発生数は、内燃機関Eの2回転(すなわち720度クランク角)あたり、24個である。
【0017】
スロットルセンサ120は、スロットルバルブ20aの現実の開度を検出し、これを開度検出信号として発生する。また、スロットルセンサ120は、アイドルスイッチをも内蔵しているものとする。このアイドルスイッチは、スロットルバルブ20aの全閉時にこれを検出して全閉検出新語を発生する。
【0018】
負圧センサ130は、吸気管20内のスロットルバルブ20aの下流に生ずる現実の負圧を検出し、これを負圧検出信号として発生する。
水温センサ140は、機関本体50の冷却系統内の現実の冷却水温を検出し、これを水温検出信号として発生する。
【0019】
空気温センサ150は、吸気管20内スロットルバルブ20aの上流に流入する空気流の現実の温度を空気温検出信号として発生する。
また、空燃比センサ160は、排気管80内の三元触媒70の上流における排気ガス中の現実の未燃焼酸素濃度を検出し、これを空燃比検出信号として発生する。かかる場合、同空燃比検出信号は、機関本体50に供給される混合気の現実の空燃比λに対しリニアな値をとる。
【0020】
酸素濃度センサ170は、排気管80内の三元触媒70の下流における排気ガス中の現実の未燃焼酸素濃度を検出し、これを酸素濃度検出信号として発生する。ただし、この酸素濃度センサ170からの酸素濃度検出信号は、空燃比λが理論空燃比λ0 に対しリッチかリーンであるかを表す。
【0021】
以上説明したセンサは何れも周知であり、その構造等についての詳細な説明は割愛する。
マイクロコンピュータ180は、CPU181、ROM182、RAM183、バックアップRAM184、入力ポート185、出力ポート186及びバスライン187等により構成されている。
【0022】
CPU181は、上述した回転数センサ110からのパルス信号、スロットルセンサ120からの開度検出信号並びに全閉検出信号、負圧センサ130からの負圧検出信号、水温センサ140からの水温検出信号、空気温センサ150からの空気温検出信号、空燃比センサ160からの空燃比検出信号、及び酸素濃度センサ170からの酸素濃度検出信号についてはこれを入力ポート185及びバスライン187を介して受入するとともに、ROM182、RAM183、及びバックアップRAM184に記憶されているデータについてもこれをバスライン187を介して受入して、該燃料噴射制御システムとしての所定のコンピュータプログラムを実行し、この実行中において、バスライン187及び出力ポート186を介して燃料噴射弁41〜44及び点火回路100を駆動制御するに必要な演算処理を行う。
【0023】
ただし、上述のコンピュータプログラムはROM182内に予め記憶されている。
また、このROM182内には、後述する制御モデルとして、上記空燃比センサ160が安定して空燃比検出の可能な状態にあるとき、及びないとき、のそれぞれの状態に対応して、後述する状態フィードバックが最も早く収束されるための最適フィードバックゲインも各々設定記憶されている。
【0024】
次に、上述した燃料噴射制御システムにおいて、空燃比制御を行うために予め設計されている手法について順次説明する。
(1)制御対象のモデリング
この実施例では、内燃機関Eの空燃比λを制御するシステムのモデルに、無駄時間P=3を有する次数1の自己回帰移動平均モデルを用い、更に外乱dを考慮して近似している。
【0025】
まず、自己回帰移動平均モデルを用いた空燃比λを制御するシステムのモデルは、次の(1)式により近似できる。
λ(K)=a・λ(K−1)+b・FAF(K−3) …(1)
ただし、この(1)式において、符号FAFは空燃比補正係数を表す。また、符号a、bはそれぞれ定数を表す。また、符号Kは、最初のサンプリング開始からの制御回数を示す変数を表す。
【0026】
更に、外乱dを考慮すると、制御システムのモデルは、次の(2)式で近似できる。
λ(K)=a・λ(K−1)+b・FAF(K−3)+d(K−1)…(2)
以上のように近似したモデルに対し、ステップ応答を用いた回転周期(360度クランク角)サンプリングで離散化して上記各定数a、bを定めること、すなわち空燃比λを制御する系の伝達関数Gを求めることは容易である。
(2)状態変数量IXの表示方法(ただし、IXはベクトル量である)
上記(2)式を、次の(3)式により表される状態変数量IX(K)を用いて書き直すと、(4)式の如き行列式となり、更には(5)式のようになる。ただし、(3)式において、符号Tは、転置行列を示す。また、式中の記号「^」はべき乗を示すものとする。
Figure 0003589683
(3)レギュレータの設計
上記(3)式〜(5)式に基づいてレギュレータを設計すると、空燃比補正係数FAFは、最適フィードバックゲインIK(ベクトル量を有する)に関する次の(6)式、及び状態変数量IX(K)に関する(7)式を用いて、(8)式のように表せる。ここでも、式中の記号「^」はべき乗を示す。
Figure 0003589683
更に、この(8)式において、誤差を吸収させるための積分項ZI(K)加えると、空燃比補正係数FAFは、次の(9)式によって与えられる。
Figure 0003589683
なお、上記の積分項ZI(K)は、目標空燃比λTG及び現実の空燃比λ(K)間の偏差と積分定数Kaとから決まる値であって、次の(10)式により与えられる。
ZI(K)=ZI(K−1)+Ka・(λTG−λ(K)) …(10)
図2に、上述のようにモデル設計した空燃比λの制御システムのブロック線図を表す。
【0027】
なお、この図2においては、空燃比補正係数FAF(K)をFAF(K−1)から導出するために(1/Z)変換を用いて表記したが、これは実際には、過去の空燃比補正係数FAF(K−1)をRAM183に記憶しておき、次の制御タイミングで読み出して用いている。因みに、「FAF(K−1)」は1回前の空燃比補正係数を表し、「FAF(K−2)」は2回前の空燃比補正係数を表し、「FAF(K−3)」は3回前の空燃比補正係数を表す。
【0028】
また、同図2において、一点鎖線で囲まれたブロックP1が、空燃比λ(K)を目標空燃比λTGにフィードバック制御している状態にて状態変数量IX(K)を定める部分であり、ブロックP2が、積分項ZI(K)を求める部分(累積部)であり、そしてブロックP3が、ブロックP1で定められた状態変数量IX(K)とブロックP2で求められた積分項ZI(K)とから今回の空燃比補正係数FAF(K)を演算する部分である。
(4)最適フィードバックゲインIK及び積分定数Kaの決定
最適フィードバックゲインIK及び積分定数Kaは、例えば、次の(11)式で示される評価関数Jを最小にすることで設定できる。式中の記号「^」がべき乗を示すことはこれまでと同様である。
Figure 0003589683
ただしこの(11)式において、評価関数Jは、空燃比補正係数FAF(K)の動きを制約しつつ、空燃比λ(K)と目標空燃比λTGとの偏差を最小にすることを意図したものである。また、空燃比補正係数FAF(K)に対する制約の重み付けは、重みのパラメータQ、及びRの値によって変更できる。したがって、重みパラメータQ、及びRの値を種々変えて最適な制御特性が得られるまでシミュレーションを繰り返して、最適フィードバックゲインIK及び積分定数Kaを定めればよい。
【0029】
更に、最適フィードバックッゲインIK及び積分定数Kaは、先のモデル定数a、及びb(先の(2)式、或いは(4)式参照)に依存している。したがって、現在の空燃比λを制御する系の変動(パラメータ変動)に対するシステムの安定性(ロバスト性)を保証するためには、これら各モデル定数a、及びbの変動分を見込んで、最適フィードバックゲインIK及び積分定数Kaを設定する必要がある。
【0030】
よって、シミュレーションは、各モデル定数a、及びbの現実に生じ得る変動を加味して行い、安定性を満足する最適フィールドバックゲインIK及び積分定数Kaを定める。
【0031】
以上、制御対象のモデリング、状態変数量の表示方法、レジュレータの設計、並びに最適フィールドバックゲイン及び積分定数の決定について説明したが、該実施例の装置では、これらは何れも既に設定されているものとする。そして以下では、上記(9)式及び(10)式のみを用いて、該燃料噴射制御システムにおける空燃比制御を実行するものとする。
【0032】
さて、以上のように構成したこの実施例の装置において、燃料噴射制御システムを作動状態におけば、マイクロコンピュータ180(正確にはそのCPU181)は、図3〜図5のフローチャートに従ってコンピュータプログラムの実行を開始する。
【0033】
すなわちCPU181は、ステップ200にて同プログラムの実行を開始した後、ステップ300にて、インテークマニホールド40内へ噴射供給する燃料の基本噴射量Tpを演算する。この基本噴射量Tpを演算は、内燃機関Eの360度クランク角毎に回転数センサ110から出力されるパルス信号の周波数(これに応じて同内燃機関Eの回転数Neが自ずと求まる)や、負圧センサ130から出力される負圧検出信号の値(以下、負圧PMという)等に基づいて行われる。こうして燃料の基本噴射量Tpを演算したCPU181は次いで、空燃比演算処理ルーチン400(図4及び図5参照)に進み、ここで前述した空燃比補正係数FAFの算出、設定を開始する。
【0034】
以下、図4に基づいて、この空燃比演算処理ルーチン400におけるCPU181の処理手順を説明する。
ステップ400aとしてこの空燃比演算処理ルーチン400を開始したCPU181は、次のステップ410にて、空燃比λのフィードバック条件の成立の有無を判別する。ただし、このフィードバック条件の成立は、機関本体50の冷却系統内の冷却水温が所定水温以上であること、及び内燃機関Eの回転数及び負荷が高くないこと、等であるとする。
【0035】
現段階にてフィードバック条件が成立していなければ、CPU181は、このステップ410において「NO」と判断し、ステップ480にて、空燃比補正係数FAFを「FAF=1.0」とセットする。すなわちこのことは、空燃比λを補正しないことを意味し、この場合には、いわゆるオープン制御となる。
【0036】
このようにして空燃比演算処理ルーチン400の演算処理がステップ400bにて終了すると、CPU181は、ステップ500(図3参照)にて、次の(12)式に基づき、そのときに制御すべき燃料噴射量TAUを算出、設定する。
TAU=FAF・Tp・FALL …(12)
因みにこの(12)式において、FAFは、この空燃比演算処理ルーチン400で求められた空燃比補正係数、Tpは、上記ステップ300で求められた燃料の基本噴射量、そしてFALLは、該燃料噴射制御システムがここで実行される空燃比制御以外の要素で燃料噴射量を補正するための補正係数である。この補正係数FALLに基づく補正としては例えば、EGR(エキゾーストガスリサキュレイションシステム)による補正、その時点の電圧による補正、その時点の水温による補正、等々がある。
【0037】
一方、コンピュータープログラムが上述のようにステップ410(図4)に進んだときに空燃比λのフィードバック条件が成立しておれば、CPU181は同ステップ410にて「YES」と判断する。
【0038】
こうしてフィードバック条件が成立している旨判断したCPU181は、ステップ420にて、内燃機関Eのその時点での運転状態に応じた目標空燃比入TGを設定した後、ステップ430にて、前記空燃比センサ160が安定して空燃比検出の可能な状態か否かを判定する。この判定のためのルーチンについては、後に図5を併せ参照して詳述する。
【0039】
さてここで、空燃比センサ160が安定状態にある旨判定される場合、CPU181は、前記ROM182に各々設定記憶されている最適フィードバックゲインIKn(n=1,2,3,4,A)のうち、空燃比センサ160の安定状態に対応してモデル化した制御モデルにあって、先の図2に示されるフィードバック系を最も早く収束させ得るフィードバックゲイン(便宜上、これを「第1の制御モデル」という)を選択的に読み込むステップ440を実行する。他方、同空燃比センサ160が不安定な状態にある旨判定される場合には、CPU181は、同ROM182に各々設定記憶されている最適フィードバックゲインIKn(n=1,2,3,4,A)のうち、空燃比センサ160の不安定な状態に対応してモデル化した制御モデルにあって、同図2に示されるフィードバック系を最も早く収束させ得るフィードバックゲイン(便宜上、これを「第2の制御モデル」という)を選択的に読み込むステップ450を実行する。
【0040】
これら最適フィードバックゲインIKn(n=1,2,3,4,A)とは、先の(9)式におけるフィードバック定数「K1」〜「K4」、及び先の(10)式におけるフィードバック定数「Ka」をそれぞれ特定する値である。通常、このように空燃比センサの安定状態/不安定状態に応じて制御モデルが違えば、先の(4)式での定数a、及びbも自ずと違った値となり、ひいては該最適フィードバックゲインIKn(n=1,2,3,4,A)の値も、それら制御モデルの違いに応じて異なった値となる。そして、これら制御モデルの違いに応じて異なった最適フィードバックゲインIKn(n=1,2,3,4,A)、すなわち第1及び第2の制御モデルが、先の(11)式に基づいて予め経験的に設定できることは前述した通りである。
【0041】
しかしてCPU181は、次のステップ460にて、その選択的に読み込んだ最適フィードバックゲインIKn(n=A)を先の(10)式に代入して積分項ZI(K)を演算し、更にステップ470にて、同選択的に読み込んだ最適フィードバックゲインIKn(n=1,2,3,4)を先の(9)式に代入して空燃比補正係数FAFを演算する。
【0042】
このようにして、ステップ470における空燃比補正係数FAFの演算を終えると、CPU181は、ステップ500(図3)にて、先と同様、(12)式に基づいて、そのときに制御すべき燃料噴射量TAUを算出、設定する。
【0043】
そしてCPU181はその後、この設定した燃料噴射量TAUを燃料噴射出力信号として、バスライン187及び出力ポート186を介して燃料噴射弁41〜44に付与することとなる。これにより燃料噴射弁41〜44は、燃料タンクから圧送される燃料をこの燃料噴射出力信号の値に相当する量にてインテークマニホールド40内に噴射するようになる。
【0044】
なお、上記ステップ430での判定において、空燃比センサ160が不活性である旨判定される場合には、先のステップ480を通じて、この空燃比補正係数FAFを強制的に「1.0」とする。すなわち、たとえ前記フィードバック条件が成立していようとも、空燃比センサ160が不活性であれば、正常な空燃比制御などそもそも不可能であるため、この場合にもオープン制御として、空燃比の補正は行わない。
【0045】
ここで、上記ステップ430にあたる判定ルーチンについて、その一例を図5に基づき詳述する。
すなわちこの判定ルーチンでは、ステップ4311にて、空燃比センサ160の素子温TAFを検出した後、ステップ4312で、この素子温TAFが700℃以上か否かを判定する。素子温TAFが700℃以上であれば、ステップ4314に進む。ステップ4314では、マイクロコンピュータ180自身に内蔵されるとするカウンタCAFを1インクリメントし、ステップ4315で、この素子温TAFが700℃以上にある時間が、同カウンタCAFでいう例えばカウント値「10」に相当する時間以上続いたかどうかを判定する。この条件が満たされていれば、ステップ4318に進んで、「出力安定」状態である旨判定する。また、このステップ4315での判定において、上記素子温TAFの持続条件が満たされていない旨判断される場合には、ステップ4317にて「出力不安定」状態である旨判定する。
【0046】
他方、上記ステップ4312において、素子温TAFが700℃に満たない旨判断される場合には、ステップ4313で更に、同素子温TAFが550℃以上か否かを判定する。そしてその結果、素子温TAFが550℃以上であれば、ステップ4317にて「出力不安定」状態である旨判定し、同素子温TAFが550℃未満であれば、ステップ4316で「不活性」状態である旨判定する。
【0047】
こうした判定ルーチンによれば、単に空燃比センサ160の温度のみを検出してその安定状態/不安定状態を判定する方法に比べ、同空燃比センサ160のそれら状態について、はるかに信頼性の高い判定を行うことができる。
【0048】
図6は、こうした空燃比センサの温度−限界電流特性を参考までに示したものであるが、上述した実施例の装置を通じて上記判定ルーチンに基づく空燃比制御が行われることにより、同図6に付記する態様で、上記第1の制御モデルによるフィードバック制御、上記第2の制御モデルによるフィードバック制御、及びそれらに該当しないオープン制御がそれぞれ実施されるようになる。なお、第1の制御モデルによるフィードバック制御が行われるためには、正確には、上記素子温TAFが700℃以上に維持される「時間要素」も加味されることとなるが、この図6では便宜上、該「時間要素」についての図示は割愛した。
【0049】
以上のように、この実施例によれば、空燃比センサの安定状態/不安定状態の判定結果に応じて、これら第1及び第2の制御モデルに応じたフィードバック制御が選択的に実行されることとなる。すなわち、同空燃比センサが不活性である場合を除く如何なる状態にあっても、柔軟性に富み、且つ応答性にも優れた現代制御理論に基づく空燃比制御が実現されるようになる。
【0050】
ところで、上記の実施例にあっては、空燃比センサの安定状態/不安定状態を判定するのに、図5に例示した判定ルーチンを用いるとしたが、このような判定ルーチンの選択は任意であり、他に例えば、図7に例示するような判定ルーチンを用いるようにしてもよい。
【0051】
一般に、空燃比センサの出力が安定していないときは、燃料噴射量−空燃比の動的関係が崩れるため、燃料噴射量の動きに空燃比が追従しない。図8は、燃料噴射量−空燃比のこのような動的関係について例示している。すなわち、図8(b)に示される空燃比補正係数FAFの変動に追従して、燃料噴射量が例えば10%だけ減ったとすると、そのときの空燃比λも、図8(a)に一点鎖線にて示されるように、10%だけ燃料が薄くなった旨を示す値として検出されるべきものが、このように空燃比センサ自身の出力が安定していないときには、例えば同図8(a)に実線にて示されるように、せいぜい2%程度燃料が薄くなった旨を示す値として検出される可能性がある。
【0052】
そこで、この図7に例示する判定ルーチンでは、ステップ4321で、内燃機関Eが同一運転条件にあることを確認し、ステップ4322で、現在フィードバック中であることを確認した後、ステップ4323で、その時点で設定されている空燃比補正係数FAFと検出された空燃比λとを前記RAM183に記憶する。そしてその後、ステップ4324で、燃料噴射量(ここでは空燃比補正係数FAFをもって燃料噴射量としている)と空燃比λとの動的関係を確認する。なお、このステップ4324の判定式で、「λ」はその時点で検出されている空燃比、「λBF」は前回検出された空燃比、「FAF」はその時点で設定されている空燃比補正係数、「FAFBF」は前回設定された空燃比補正係数、をそれぞれ示すとする。したがって、(λ−λBF)と(FAF−FAFBF)との比の絶対値である「α」の値は、上記動的関係が保たれているほど「1.0」に近づき、逆に上記動的関係が崩れているほど小さくなる(「0.1」に近づく)。このためここでは、上記「α」の値を監視して、同値が「0.8<α≦1.0」であれば、ステップ4325で「出力安定」状態と判定し、同値が「0.6<α≦0.8」であれば、ステップ4326で「出力不安定」状態と判定し、同値が「α≦0.6」であれば、ステップ4327で「不活性」状態と判定する。もっとも、上記の実施例では、内燃機関Eの空燃比λを制御するシステムのモデルに無駄時間P=3を有する次数1の自己回帰移動平均モデルを用いて近似しているため、上記検出される空燃比λも3回転分だけ遅れることとなり、ここでエンジン回転数をiとおけば、この判定式も正確には、
|{λ(i+3)−λBF(i+3)}/{FAF(i)−FAFBF(i)}|=α
となる。
【0053】
なお、上記ステップ4321において、内燃機関Eが同一運転条件にあるか否かは、例えばエンジン回転数と吸気管圧力について各々前回のサンプル値と今回のサンプル値を比較することで判断できる。それら値が近ければ同一運転条件にあると判断される。
【0054】
また、上記ステップ4322において、フィードバック中であるか否かは、先のフィードバック条件の成立の有無(図4ステップ410参照)によって判断することができる。
【0055】
そして、これらステップ4321及び4322において「NO」と判定される場合には、ステップ4328の処理として、該判定ルーチンとしての前回の判定結果を返す(リターンする)ものとする。
【0056】
このような判定方法によっても、前記空燃比センサ160が安定して空燃比検出の可能な状態か否かを、非常に高い信頼性を持って判定することができる。
なお、上記実施例においては、それが適用される内燃機関並びにその燃料噴射制御システムが図1に示される構成を有するとしたが、この発明にかかる内燃機関の空燃比制御装置がこの図1に示される内燃機関やその燃料噴射制御システムへの適用に限られるものでないことは勿論であり、例えば先の図2に示される態様にてその制御対象がモデリングできるものであれば、他のいかなる内燃機関並びにその燃料噴射制御システムについても、上記同様にこの発明を適用することができる。
【0057】
また、空燃比補正係数を求めるための具体処理として図4に示した手順も一例にすぎない。例えば目標空燃比の設定に関しても、積分項の演算などでそれが用いられる以前であれば、同フロー中の何れの箇所で設定されてもよい。
【0058】
【発明の効果】
以上説明したように、この発明によれば、空燃比検出手段のその都度の状態に最も即したかたちで、供給される燃料量と検出される空燃比との動的な関係に基づく空燃比補正係数の算出が行われ、ひいては柔軟性に富み、且つ応答性にも優れた現代制御理論に基づく空燃比フィードバック制御が、如何なる場合も好適に維持されるようになる。
【0059】
またこの発明によれば、冒頭に示した従来の空燃比制御装置に比べてフィードバックの開始時期を早めることができ、その結果、適正な空燃比制御のもとに、排気ガス中の有害成分のエミッションの低減をより一層促進することができるようにもなる。
【図面の簡単な説明】
【図1】この発明にかかる内燃機関の空燃比制御装置についてその一実施例が適用される内燃機関及びその燃料噴射制御システムの構成例を示すブロック図である。
【図2】実施例の空燃比制御装置においてその制御対象としてモデリングされた状態フィードバック系の構成を示すブロック図である。
【図3】同実施例の空燃比制御装置の燃料噴射量設定のためのメイン処理ルーチンを示すフローチャートである。
【図4】図3に示される手順のうち、空燃比補正係数の設定手順についてそのその具体的な処理手順を示すフローチャートである。
【図5】図4に示される空燃比センサ出力の安定状態/不安定状態判定処理についてその具体的な処理手順を示すフローチャートである。
【図6】上記実施例の空燃比制御装置に適用される空燃比センサの温度−限界電流特性とともに、同実施例の空燃比制御装置による制御態様推移を併せ示すグラフである。
【図7】図4に示される空燃比センサ出力の安定状態/不安定状態判定処理について他の処理手順例を示すフローチャートである。
【図8】燃料噴射量の動きに空燃比が追従しない場合の燃料噴射量−空燃比の動的関係について例示したタイミングチャートである。
【図9】この発明にかかる内燃機関の空燃比制御装置についてその構成概念を示すクレーム対応図である。
【符号の説明】
10…エアクリーナ、20…吸気管、20a…スロットルバルブ、30…サージタンク、40…インテークマニホールド、41、42、43、44…燃料噴射弁、50…機関本体、60…イグゾーストマニホールド、70…三元触媒、80…排気管、90…ディストリビュータ、100…点火回路、110…回転数センサ、120…スロットルセンサ、130…負圧センサ、140…水温センサ、150…空気温センサ、160…空燃比センサ、170…酸素濃度センサ、180…マイクロコンピュータ、181…CPU、182…ROM、183…RAM、184…バックアップRAM、185…入力ポート、186…出力ポート、187…バスライン。

Claims (3)

  1. 内燃機関へ供給する混合気を形成すべく同内燃機関へ吸入される空気へ燃料を噴射供給する燃料供給手段と、内燃機関の排気ガスに基づいて前記混合気の空燃比を検出する空燃比検出手段と、これら燃料供給手段から空燃比検出手段までの制御対象に近似して設定された制御モデルに基づき前記検出される空燃比を目標空燃比に制御するための状態フィードバックを実行しつつその都度の空燃比補正係数を求める空燃比制御手段と、この求められる空燃比補正係数に基づいて前記燃料供給手段が供給する燃料量を制御する燃料供給量制御手段とを具える内燃機関の空燃比制御装置であって、
    前記空燃比検出手段が安定して空燃比検出の可能な状態か否かを判定する判定手段と、
    前記制御モデルとして、前記空燃比検出手段が安定して空燃比検出の可能な状態にあるとき、及びないとき、のそれぞれの状態に対応して、フィードバックゲインが各々設定記憶された記憶手段と、
    前記判定手段の判定結果に応じて、これら設定記憶されたフィードバックゲインを選択的に読み出す制御モデル切換手段と、
    を具え、前記空燃比制御手段は、該制御モデル切換手段から選択的に読み出されるフィードバックゲインに基づいて前記空燃比補正係数を求める
    ことを特徴とする内燃機関の空燃比制御装置。
  2. 前記判定手段は、前記空燃比検出手段の温度が所定温度に達すること、及び該所定温度に達して所定時間が経過されること、の論理積条件に基づいて同空燃比検出手段が安定して空燃比検出の可能な状態にある旨を判定する請求項1に記載の内燃機関の空燃比制御装置。
  3. 前記判定手段は、前記制御される燃料供給量と前記検出される空燃比との動的な関係が維持されていることを条件に、前記空燃比検出手段が安定して空燃比検出の可能な状態にある旨を判定する請求項1に記載の内燃機関の空燃比制御装置。
JP15564693A 1993-06-25 1993-06-25 内燃機関の空燃比制御装置 Expired - Lifetime JP3589683B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15564693A JP3589683B2 (ja) 1993-06-25 1993-06-25 内燃機関の空燃比制御装置
US08/248,951 US5445136A (en) 1993-06-25 1994-05-25 Air-fuel ratio control apparatus for internal combustion engines
DE4422072A DE4422072B4 (de) 1993-06-25 1994-06-23 Luft-Treibstoff-Verhältnis-Regelungseinrichtung für eine Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15564693A JP3589683B2 (ja) 1993-06-25 1993-06-25 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JPH0711995A JPH0711995A (ja) 1995-01-13
JP3589683B2 true JP3589683B2 (ja) 2004-11-17

Family

ID=15610524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15564693A Expired - Lifetime JP3589683B2 (ja) 1993-06-25 1993-06-25 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP3589683B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3745308B2 (ja) * 2002-05-07 2006-02-15 本田技研工業株式会社 内燃機関の空燃比制御装置
KR101509745B1 (ko) * 2013-12-16 2015-04-07 현대자동차 주식회사 공조장치 소비전력 산출방법

Also Published As

Publication number Publication date
JPH0711995A (ja) 1995-01-13

Similar Documents

Publication Publication Date Title
US5531208A (en) Air-fuel ratio feedback control system for internal combustion engine
US5243952A (en) Air-fuel ratio control apparatus for use in engine
JPH04365947A (ja) エンジン用空燃比制御装置
JP3039162B2 (ja) 内燃機関の空燃比制御装置
US5445136A (en) Air-fuel ratio control apparatus for internal combustion engines
US6530214B2 (en) Air-fuel ratio control apparatus having sub-feedback control
JP2927074B2 (ja) 内燃機関の空燃比制御装置
JP3589683B2 (ja) 内燃機関の空燃比制御装置
JP4492802B2 (ja) 空燃比制御装置
JP3458425B2 (ja) 内燃機関の空燃比制御装置
JP2970144B2 (ja) 内燃機関の空燃比制御装置
JPS5910764A (ja) 内燃機関の空燃比制御方法
JP4449603B2 (ja) 内燃機関の燃料噴射制御装置
JP2715208B2 (ja) 内燃機関の空燃比学習制御装置
JPH077563Y2 (ja) 内燃機関の電子制御燃料噴射装置
JPH077562Y2 (ja) 内燃機関の電子制御燃料噴射装置
JPH0711994A (ja) 内燃機関の空燃比制御装置
JPH0656124B2 (ja) 内燃機関の学習制御装置
JPH01106945A (ja) 内燃機関の学習制御装置
JPH0658084B2 (ja) 内燃機関の学習制御装置
JPS6270641A (ja) 内燃機関の学習制御装置
JPH0656122B2 (ja) 内燃機関の学習制御装置
JPH0656120B2 (ja) 内燃機関の学習制御装置
JPH0656121B2 (ja) 内燃機関の学習制御装置
JPH0656125B2 (ja) 内燃機関の学習制御装置

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

EXPY Cancellation because of completion of term