JP3833162B2 - 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置 - Google Patents

基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置 Download PDF

Info

Publication number
JP3833162B2
JP3833162B2 JP2002303075A JP2002303075A JP3833162B2 JP 3833162 B2 JP3833162 B2 JP 3833162B2 JP 2002303075 A JP2002303075 A JP 2002303075A JP 2002303075 A JP2002303075 A JP 2002303075A JP 3833162 B2 JP3833162 B2 JP 3833162B2
Authority
JP
Japan
Prior art keywords
temperature
substrate
heat treatment
measuring
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002303075A
Other languages
English (en)
Other versions
JP2004140167A (ja
Inventor
謙治 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2002303075A priority Critical patent/JP3833162B2/ja
Publication of JP2004140167A publication Critical patent/JP2004140167A/ja
Application granted granted Critical
Publication of JP3833162B2 publication Critical patent/JP3833162B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置に関する。
【0002】
【従来の技術】
レジストコータやデベロッパーのベーキングユニットなどにおいては、基板の温度を測定する必要があり、従来では、白金抵抗体や熱電対などの温度検知部材をダミー用の基板の表面に貼り付けたり埋め込んだりして、その温度検知部材と、温度測定器とをワイヤーで接続している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来例の場合、ワイヤーが必要なために、ベーキングユニットなどのように密閉構造で温度を測定する必要が有る場合、ワイヤーを傷付けないように開閉シャッターに挟むようにしたり、ワイヤーを通すための穴をベーキングユニットに形成したりしなければならなかった。0.1℃程度の測定精度を必要とするレジストコータやデベロッパーのベーキングユニットなどでは、密閉度を損なう前述のような構成を採用することに問題があった。
【0004】
また、基板の重量に比べてワイヤーの剛性が大きく、基板がベーキングプレート上から浮き上がり、測定誤差を生じる問題があった。更に、ワイヤーを介して基板に熱が伝わり、この点からも測定誤差を生じる問題があった。
【0005】
このようなワイヤーに起因する問題を回避するために、赤外線温度計を用い、基板からの輻射赤外線を計測し、非接触で基板の温度を測定する方法もあるが、基板では表面に膜付けや回路形成がされているため、測定誤差が大きくて適用できないものであった。
【0006】
また、半導体を用い、電池等の電源を搭載してワイヤレス化することも考えられるが、半導体等の部品の最高使用温度の制限から150℃程度までに制限され、200℃近辺からそれ以上の高温雰囲気下で処理されることが多い基板に対しては適用できないものであった。
【0007】
本発明は、上記の点に鑑みてなされたものであって、基板の温度を精度よく測定できるようにすることを目的とする。また、他の目的は、熱処理手段による基板の処理温度の精度を上げる点にある。
【0008】
【課題を解決するための手段】
本発明は、上述のような目的を達成するために、次のような構成をとる。
すなわち、請求項1に係る発明の基板の温度測定方法は、水晶振動子にコイルまたはアンテナを接続して形成される検温素子が取り付けられた基板に向けて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信する過程と、前記送信波の発信を停止した後に、前記検温素子からの電磁波を受信し、その電磁波の周波数に基づいて前記基板の温度を測定する過程とを備えたことを特徴としている。
【0009】
(作用・効果)
請求項1に係る発明は、水晶振動子が安定に発信を行う固有振動数を持ち、かつ、その固有振動数が温度変化と特定の相関を持つ特性を有していることを利用している。すなわち、検温素子が取り付けられた基板に向けて、水晶振動子の固有振動数に相当する周波数の送信波を発信する。この送信波が検温素子のコイルまたはアンテナを介して水晶振動子に伝えられることにより、水晶振動子が共振する。送信波の発信を停止すると、水晶振動子は、水晶振動子の温度(すなわち、基板の温度)に応じた振動数で減衰振動する。この減衰振動に基づく電磁波が検温素子のコイルまたはアンテナを通じて放出される。この電磁波を受信して、その周波数を検出することにより、基板の温度を測定することができる。
【0010】
したがって、本発明によれば次の効果を奏する。
基板に温度測定用のワイヤーを接続する必要がないので、熱処理装置内の基板の温度を測定する場合などに、熱処理空間の密閉性を損なうことなく基板の温度を精度よく測定することができる。また、ワイヤーを通じて熱が逃げたり、ワイヤーの剛性によって基板が加熱プレートなどから持ち上がることがないので、基板の温度を精度よく測定することができる。水晶振動子を基板に取り付けて基板の温度を測定するので、赤外線温度計のように基板表面の影響を受ける、ということもない。また、耐熱性の高い水晶振動子を用いているので、高温でも基板の温度を精度よく測定できる。
【0011】
また、請求項2に係る発明は、請求項1に記載の基板の温度測定方法において、 基板の搬送経路に沿って基板を搬送しながら、基板の温度を測定することを特徴としている。
【0012】
(作用・効果)
請求項2に係る発明の基板の温度測定方法によれば、レジストコータなどからベーキングユニットなどへの搬送途中の基板の温度を容易に測定することができる。したがって、基板熱処理装置の各所での基板の温度を知ることができ、基板熱処理装置を構成する上で有用である。
【0013】
また、請求項3に係る発明は、基板を熱処理する熱処理手段と、設定温度に基づいて前記熱処理手段の温度を制御する温度制御手段とを備えた基板熱処理装置における設定温度の補正方法であって、水晶振動子にコイルまたはアンテナを接続して形成される検温素子が取り付けられたダミー用基板を前記熱処理手段に搬入する過程と、前記熱処理手段に搬入されたダミー用基板に向けて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信する過程と、前記送信波の発信を停止した後に、前記検温素子からの電磁波を受信し、その電磁波の周波数に基づいてダミー用基板の温度を測定する過程と、前記ダミー用基板の測定温度と前記設定温度との偏差に応じて前記設定温度を補正する過程とを備えたことを特徴としている。
【0014】
(作用・効果)
請求項3に係る発明によれば、検温素子が取り付けられたダミー用基板を熱処理手段に搬入した後、このダミー用基板に向けて、水晶振動子の固有振動数に相当する周波数の送信波を発信する。続いて送信波の発信を停止した後、検温素子からの電磁波を受信し、その周波数に基づいてダミー用基板の温度を測定する。このダミー用基板の測定温度と熱処理手段の設定温度との偏差に応じて、前記設定温度を補正することにより、ダミー用基板の温度が所定の基板処理温度になるようにする。本発明によれば、検温素子を取り付けたダミー用基板を用いてダミー用基板の温度を測定することにより、熱処理手段の設定温度を正しく補正することができ、もって基板の処理温度の精度を向上させることができる。
【0015】
また、請求項4に係る発明の基板熱処理装置は、基板を熱処理する熱処理プレートと、前記熱処理プレートの温度を昇降させる駆動手段と、前記熱処理プレートの温度を測定するプレート温度測定手段と、前記基板と熱的性質が略同じ材料からなり、前記基板と略同じ状態で前記熱処理プレート上に設けられる温度測定用部材と、前記温度測定用部材に取り付けられ、水晶振動子にコイルまたはアンテナを接続して形成される検温素子と、前記検温素子と非接触状態で設けられて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信するとともに、前記検温素子からの電磁波を受信する送受信手段と、前記送受信手段で受信した電磁波の周波数に基づいて前記温度測定用部材の温度を求める温度求出手段と、前記温度求出手段で求めた前記温度測定用部材の温度と前記熱処理プレートの設定温度との偏差を算出する偏差算出手段と、前記偏差算出手段で算出された温度偏差に基づいて前記熱処理プレートの設定温度を補正する設定値補正手段と、前記プレート温度測定手段で測定された熱処理プレートの温度が前記補正された設定温度になるように、前記駆動手段を操作する温度制御手段とを備えたことを特徴としている。
【0016】
(作用・効果)
請求項4に係る発明によれば、熱処理プレート上で基板に熱処理が施されている間、同じ熱処理プレート上に設けられた温度測定用部材の温度が測定される。温度測定用部材は、基板と熱的性質が略同じ材料からなり、基板と略同じ状態で熱処理プレート上に設けられるので、温度測定用部材の温度は基板のそれと略同じである。この温度測定用部材に検温素子を取り付けて、温度測定用部材の温度を非接触で測定する。具体的には、送受信手段が、水晶振動子の固有振動数に相当する周波数の送信波を発信するとともに、検温素子からの電磁波を受信し、温度求出手段が、受信した電磁波の周波数に基づいて温度測定用部材の温度を求める。温度測定用部材の温度が測定されると、偏差算出手段は、温度測定用部材の温度と熱処理プレートの設定温度との偏差を算出し、続いて、設定値補正手段が、この温度偏差に基づいて熱処理プレートの設定温度を補正する。このようにして補正された設定温度が温度制御手段に与えられることにより、温度制御手段は、プレート温度測定手段で測定された熱処理プレートの温度が補正された設定温度になるように、熱処理プレートの駆動手段を操作する。以上のように、本発明によれば、基板に熱処理が施されている間も、基板の温度を精度よく反映した温度測定用部材の温度が測定され、この測定温度に基づいて熱処理プレートの設定温度が逐次補正されるので、基板の処理温度の精度を向上させることができるとともに、その精度を維持することができる。
【0017】
【発明の実施の形態】
次に、本発明の実施例について図面を参照しながら説明する。
図1は、本発明に係る基板の温度測定方法および基板熱処理装置における設定温度の補正方法の第1実施例を示す全体構成図、図2は要部の平面図である。
ヒータ1を内蔵した熱処理手段としての熱処理プレート2の上面にセラミックボール3が設けられ、そのセラミックボール3を介して所定のギャップ(例えば、0.1mm)の有る状態で、被処理基板と同形状・同質のダミー用基板4が載置されている。熱処理プレート2には複数本の基板支持ピン5が上下に貫いて挿入されている。これらの基板支持ピン5が基板昇降用シリンダ6で駆動されることにより、ダミー用基板4や被処理基板が熱処理プレート2上で昇降する。
【0018】
熱処理プレート2の上方には、チャンバー7がチャンバー昇降シリンダ8を介して昇降可能に設けられ、ダミー用基板4や被処理基板を熱処理するときに熱処理プレート2の上方空間を密閉できるように構成されている。
【0019】
ダミー用基板4の上面中央部に、水晶振動子9にコイル10を接続して形成される検温素子Sが取り付けられている。水晶振動子9はハーメチックシールされた状態で、伝熱セメントを介してダミー用基板4に取り付けられている。この水晶振動子9に、図3の要部の斜視図に示すように、コイル軸心が鉛直方向(基板面に対して垂直な方向)を向く状態でコイル10が接続されている。
【0020】
チャンバー7の内側上面に、コイル軸心がコイル10と同方向になるようにセンサーコイル11が取り付けられている。このセンサーコイル11は切替器12を介して発信器13と受信器14とに接続されている。これらの構成は本発明における送受信手段に相当し、水晶振動子9の固有振動数に相当する周波数の送信波をダミー用基板4に向けて発信するとともに、検温素子Sからの電磁波を受信するように構成されている。
【0021】
受信器14には、周波数カウンタ15が接続され、その周波数カウンタ15に基板温度測定手段16が接続され、受信した電磁波の周波数を計測し、その周波数に基づいてダミー用基板4の温度を測定できるように構成されている。
【0022】
詳述すると、水晶は、その結晶から切り出す角度により固有振動数が異なるとともに多種多様の温度特性を有し、それらのうちのいわゆるYsカットのものが、図4の温度と周波数との相関のグラフに示すように、温度に対する周波数の変化率が大きい。このことを利用し、基板温度測定手段16により、
Δf/f=(受信電磁波の周波数−送信波の周波数)/送信波の周波数
を求め、その値とグラフとからダミー用基板4の温度を求めるようになっている。
【0023】
ヒータ1には、熱処理プレート2の温度を昇降させる駆動手段としてのヒータ駆動回路17が接続され、そのヒータ駆動回路17にコントローラ18が接続されている。また、熱処理プレート2に、その温度を測定するプレート温度測定手段19が設けられ、そのプレート温度測定手段19がコントローラ18に接続されている。コントローラ18には、基板処理温度に応じた、熱処理プレート2の設定温度が設定されるようになっている。
【0024】
コントローラ18は、基板温度測定手段16で測定されたダミー用基板4の温度を参照して、熱処理プレート2の設定温度を補正し、熱処理プレート2がその補正された設定温度になるようにヒータ駆動回路17を操作するものである。具体的には、コントローラ18は、オフセット値算出部18A、メモリ18B、設定値補正部18C、および温度制御部18Dを備えている。これら各部の説明は後述する動作説明において行う。
【0025】
上記構成による動作を説明する。まず、基板温度の測定方法を説明する。
チャンバー7を下降させた状態で切替器12を発信器13側に設定し、水晶振動子9の固有振動数に相当する周波数の送信波を発信器13により発信する。この送信波はセンサーコイル11を介してコイル10に伝えられる。これにより、コイル10に接続している水晶振動子9が送信波の周波数で共振する。続いて、発信器13の発振を停止するとともに、切替器12を受信器14側に切り替える。送信波の停止の後、水晶振動子9は、ダミー用基板4の温度に応じた周波数で減衰振動する。この減衰振動に起因した電気信号がコイル10を介して電磁波として放出される。受信器14は、この電磁波をセンサーコイル11を介して取り込んで、電気信号に変換する。周波数カウンタ15は、この電気信号の周波数を計数して、その計数値を基板温度測定手段16に与える。基板温度測定手段16は、周波数カウンタ15で計数された電気信号の周波数に基づき、上述した図4の相関関係からダミー用基板4の温度を求める。
【0026】
次に、上記のようにして得られたダミー用基板4の温度を用いて行われる、基板熱処理装置における設定温度の補正方法を説明する。
測定されたダミー用基板4の温度データは、コントローラ18のオフセット値算出部18Aに入力される。オフセット値算出部18Aは、コントローラ18に予め入力設定されている設定温度と、ダミー用基板4の測定温度との偏差(オフセット値)を算出する。このオフセット値はメモリ18Bに記憶される。例えば、設定温度が150°Cで、ダミー用基板4の測定温度が149°Cであれば、オフセット値「+1」がメモリ18Bに記憶される。設定値補正部18Cは、メモリ18Bに記憶されたオフセット値で設定温度を補正し、その補正された設定温度を温度制御部18Dに与える。上記の例では、設定温度「150°C」にオフセット値「+1」が加算されて、補正された設定温度「151°C」が温度制御部18Dに与えられる。温度制御部18Dは、プレート温度測定手段19で測定された熱処理プレート2の温度が、補正された設定温度になるように、ヒータ駆動回路17を操作する。その結果、熱処理プレート2の温度が補正された設定温度(例えば、151°C)になり、ダミー用基板4の温度は、補正されたオフセット値に相当する温度だけ引き上げられて、所定の基板処理温度(この場合、当初の設定温度と同じ150°C)に一層近づいた温度になる。好ましくは、上述したダミー用基板4の温度測定と、その測定結果に基づく設定温度の補正処理は、ダミー用基板4の温度が許容温度範囲内になるまで繰り返し行われる。
【0027】
なお、種々の設定温度に対するオフセット値を予め求めてメモリ18Bに記憶しておけば、設定温度の変更の都度、オフセット値を求めなくてもよいので便利である。また、上記の実施例では、基板温度測定手段16で求められたダミー用基板4の測定データが自動的にコントローラ18に入力設定されるように構成したが、人手によって設定するようにしてもよい。例えば、オフセット値算出部18Aとメモリ18Bに代えて、いわゆるデジタルスイッチを設定値補正部18Cに接続しておく。そして、測定されたダミー用基板4の温度と設定温度との偏差(オフセット値)をオペレータが前記デジタルスイッチに設定するようにしてもよい。あるいは、温度制御部18Dにデジタルスイッチを接続し、補正された設定温度をオペレータが直接に設定するようにしてもよい。
【0028】
検温素子Sを取り付けたダミー用基板4による設定温度の補正処理は、上述のようなベーキングに限らず、ベーキング後の冷却処理、レジスト塗布や現像処理など、基板処理装置の一連の工程に適宜適用し、その基板処理装置の立ち上げ時や定期的なメンテナンス時に行い、各処理部の設定温度の補正値であるオフセット値を自動的に更新するのが好ましい。
【0029】
また、基板温度測定手段を装置近辺に常設しておき、温度監視が必要な処理部を搬送するレシピを予め入力しておけば、定期メンテナンス等の必要時にインデクサから検温素子Sを取り付けたダミー基板4を、このレシピを使って流すことにより、ワイヤー等を接続することなく、非常に簡単に熱処理プレート等の監視が必要な部分の基板温度測定が可能になる。
【0030】
図5は、基板の温度測定方法の第2実施例を示す全体構成図、図6はその平面図であり、上述の第1実施例と異なるところは次の通りである。
すなわち、ダミー用基板4の温度分布を測定するために、前述した切り出し角度により固有振動数を互いに異ならせた5個の水晶振動子9を個別に備えた検温素子Sが分散して取り付けられている。
【0031】
センサーコイル11と受信器14との間に周波数弁別器21が介装され、その周波数弁別器21と基板温度測定手段16に、発信器13から発信した送信波の周波数に対応する信号が送られるように構成されている。
【0032】
すなわち、発信器13により、5個の水晶振動子9の固有振動数に相当する周波数(f1、f2、f3、f4、f5)の送信波の発信と停止とが順に行われ、周波数弁別器21においてそれぞれに対応する周波数を中心とした所定帯域の電磁波を各検温素子Sから順に受信し、受信した電磁波の周波数を計測し、その周波数と前述した送信波の周波数とを比較することによって各検温素子Sの設置箇所でのダミー用基板4の温度を測定し、ダミー用基板4全体としての温度分布を知ることができるように構成されている。
【0033】
図5では、熱処理プレート2に関連したヒータ駆動回路17およびコントローラ18は図示を省略しているが、測定されたダミー用基板4の温度分布データに基づくオフセット値の設定は上述した例と同様である。例えば、温度分布データから平均温度を算出し、この平均温度に基づいてオフセット値を設定する。なお、熱処理プレート2の各部の温度(例えば、中央部と周辺部の温度)を個別にコントロールするように構成している場合には、測定されたダミー用基板4の温度分布データに基づき、各コントローラに個別のオフセット値が設定される。
【0034】
図7は、基板の温度測定方法の第3実施例を示す全体構成図、図8はその平面図である。この実施例の特徴は次の通りである。
すなわち、ダミー用基板4に取り付けられた5個の検温素子Sのそれぞれの上方に対応させて、チャンバー7に小径のセンサーコイル11a、11b、11c、11d、11eが設けられている。
【0035】
各センサーコイル11a、11b、11c、11d、11eと、発信器13および受信器14との間に、発信器13に接続する状態と、受信器14に接続する状態と、いずれにも接続しない中立状態の3状態に切替え可能な切替器12aが介装されている。
【0036】
この実施例では、5個の検温素子Sのそれぞれに近接させてセンサーコイル11a、11b、11c、11d、11eを設けるため、各検温素子Sの水晶振動子9の固有振動数は同じにしても良く、前述の第2実施例におけるような周波数弁別器21は不要である。他の構成は第2実施例と同じであるので、同じ符号を付すことによりその説明は省略する。
【0037】
この実施例によれば、各センサーコイル11a、11b、11c、11d、11eについて、順に、発信器13に接続し、発信器13により、水晶振動子9の固有振動数に相当する周波数の送信波を発信した後に受信器14に接続し、検温素子Sからの電磁波を受信し、受信した電磁波の周波数を計測し、その周波数と前述した送信波の周波数とを比較することによって各検温素子Sの設置箇所でのダミー用基板4の温度を測定し、ダミー用基板4全体としての温度分布を知ることができる。
【0038】
図9は、基板熱処理装置の実施例を示す全体構成図であり、前述の各実施例と異なるところは次の通りである。
すなわち、熱処理プレート2上に、被処理基板32と熱的性質が略同じ材料からなる温度測定用部材33が、被処理基板32と略同じ状態で設けられている。例えば、被処理基板32がシリコンウエハである場合、温度測定用部材33としては、略同じ厚みのシリコン片を用い、このシリコン片を被処理基板32の場合と略同じセラミックボール31を介して熱処理プレート2上に載置する。この温度測定用部材33に、検温素子Sが取り付けられている。具体的には、ハーメチックシールされた水晶振動子34が伝熱セメントを介して温度測定用部材33の上面に取り付けられ、その水晶振動子34に、コイル軸心が鉛直方向を向く状態でコイル35が接続されている。
【0039】
チャンバー7の内側上面の、コイル35の上方箇所に、コイル軸心がコイル35と同方向になるようにセンサーコイル36が取り付けられている。このセンサーコイル36に切替器37を介して発信器38と受信器39とが接続され、水晶振動子34の固有振動数に相当する周波数の送信波を水晶振動子34に発信するとともに、検温素子Sからの電磁波を受信するように送受信手段が構成されている。
【0040】
受信器39には、周波数カウンタ40が接続され、その周波数カウンタ40に温度求出手段41が接続され、受信した電磁波の周波数を計測し、その周波数と前述した送信波の周波数とを比較することによって温度測定用部材33の温度を求めるように構成されている。
【0041】
前述の各実施例と同様に、ヒータ1には、熱処理プレート2の温度を昇降する駆動手段としてのヒータ駆動回路17が接続され、そのヒータ駆動回路17にコントローラ42が接続されるとともに、コントローラ42に温度求出手段41が接続されている。
【0042】
熱処理プレート2に、その温度を測定するプレート温度測定手段43が設けられ、そのプレート温度測定手段43がコントローラ42に接続されている。コントローラ42には、オフセット値算出部42A、設定値補正部42B、温度制御部42Cが備えられている。
【0043】
この基板熱処理装置によれば、被処理基板32が搬入されて熱処理されている間も、温度測定用部材33の温度が継続して測定され、その温度データがコントローラ42に逐次与えられる。コントローラ42のオフセット値算出部42Aは、設定温度と、温度測定用部材33の測定温度との偏差であるオフセット値を逐次算出し、そのオフセット値を設定値補正部42Bに与える。設定値補正部42Bは、与えられたオフセット値で設定温度を補正する。補正された設定温度は温度制御部42Cに逐次与えられる。温度制御部42Cは、プレート温度測定手段43で測定された熱処理プレート2の温度が、補正された設定温度になるようにヒータ駆動回路17を操作する。
【0044】
以上のように、被処理基板32が熱処理を受けている間も、温度測定用部材33の温度が継続的に測定されて、オフセット値が更新され続けるので、例えば熱処理中に外乱の影響で被処理基板32の温度が変動すると、これに追随して温度測定用部材33の温度も変動するので、オフセット値がリアルタイムに更新される。したがって、被処理基板32の処理温度を精度よく維持することができる。
【0045】
本発明方法は、上述した各実施例のような基板熱処理装置における基板温度の測定に用いられるだけでなく、搬送途中の基板温度の測定にも用いることができる。例えば、インデクサーユニットからホットプレートやクールプレート、レジスト塗布処理部や現像処理部などとの間の、基板搬送経路に沿って送受信手段を取り外し可能に設け、搬送状態のダミー用基板4の温度を測定するようにしても良い。
【0046】
また、本発明としては、上述のようなヒータを内蔵したホットプレートでの基板処理に係る温度の測定に限らず、例えば、熱処理手段としてのペルチェ素子を内蔵したクールプレート、レジスト塗付処理部、現像処理部、洗浄処理部、露光機、エッチャー、成膜装置(CVP)、膜厚や線幅などの検査装置等、各種の半導体製造装置での基板処理に係る温度の測定に適用できる。
【0047】
さらに、上述の実施例では、水晶振動子にコイルを接続して検温素子を形成したが、コイルに代えて種々の構成のアンテナを接続してもよい。
【0048】
【発明の効果】
以上説明したように、請求項1記載の発明に係る基板の温度測定方法によれば、基板にワイヤーを接続することなく、基板温度を非接触で測定するので、基板の温度を精度よく短時間の準備で測定することができる。また、水晶振動子を基板に取り付けて基板の温度を測定するので、赤外線温度計のように基板表面の影響を受ける、ということもない。また、耐熱性の高い水晶振動子を用いているので、高温でも基板の温度を精度よく測定できる。
【0049】
請求項3記載の発明に係る基板熱処理装置における設定温度の補正方法によれば、検温素子を取り付けたダミー用基板を用いてダミー用基板の温度を測定することにより、熱処理手段の設定温度を正しく補正することができ、もって基板の処理温度の精度を向上させることができる。
【0050】
請求項4記載の発明に係る基板熱処理装置によれば、基板に熱処理が施されている間も、基板の温度を精度よく反映した温度測定用部材の温度が測定され、この測定温度に基づいて熱処理プレートの設定温度が逐次補正されるので、基板の処理温度の精度を向上させることができるとともに、その精度を維持することができる。
【図面の簡単な説明】
【図1】本発明に係る基板の温度測定方法および基板熱処理装置における処理温度の補正方法の第1実施例を示す全体構成図である。
【図2】第1実施例の要部の平面図である。
【図3】第1実施例の要部の斜視図である。
【図4】温度と周波数との相関を示すグラフである。
【図5】本発明に係る基板の温度測定方法の第2実施例を示す全体構成図である。
【図6】第2実施例の要部の平面図である。
【図7】本発明に係る基板の温度測定方法の第3実施例を示す全体構成図である。
【図8】第3実施例の要部の平面図である。
【図9】本発明に係る基板熱処理装置の実施例を示す全体構成図である。
【符号の説明】
2…熱処理プレート(熱処理手段)
4…ダミー用基板
S…検温素子
9…水晶振動子
10…コイル
11…センサーコイル(送受信手段)
11a、11b、11c、11d、11e
…センサーコイル(送受信手段)
12…切替器(送受信手段)
12a…切替器(送受信手段)
13…発信器(送受信手段)
14…受信器(送受信手段)
16…基板温度測定手段
17…ヒータ駆動回路(駆動手段)
32…被処理基板
33…温度測定用部材
34…水晶振動子
35…コイル
36…センサーコイル(送受信手段)
37…切替器(送受信手段)
38…発信器(送受信手段)
39…受信器(送受信手段)
41…温度求出手段
42A…オフセット値算出部(偏差算出手段)
42B…設定値補正部(設定値補正手段)
42C…温度制御部(温度制御手段)

Claims (4)

  1. 水晶振動子にコイルまたはアンテナを接続して形成される検温素子が取り付けられた基板に向けて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信する過程と、
    前記送信波の発信を停止した後に、前記検温素子からの電磁波を受信し、その電磁波の周波数に基づいて前記基板の温度を測定する過程と
    を備えたことを特徴とする基板の温度測定方法。
  2. 請求項1に記載の基板の温度測定方法において、
    基板の搬送経路に沿って基板を搬送しながら、基板の温度を測定することを特徴とする基板の温度測定方法。
  3. 基板を熱処理する熱処理手段と、設定温度に基づいて前記熱処理手段の温度を制御する温度制御手段とを備えた基板熱処理装置における設定温度の補正方法であって、
    水晶振動子にコイルまたはアンテナを接続して形成される検温素子が取り付けられたダミー用基板を前記熱処理手段に搬入する過程と、
    前記熱処理手段に搬入されたダミー用基板に向けて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信する過程と、
    前記送信波の発信を停止した後に、前記検温素子からの電磁波を受信し、その電磁波の周波数に基づいてダミー用基板の温度を測定する過程と、
    前記ダミー用基板の測定温度と前記設定温度との偏差に応じて前記設定温度を補正する過程と
    を備えたことを特徴とする基板熱処理装置における設定温度の補正方法。
  4. 基板を熱処理する熱処理プレートと、
    前記熱処理プレートの温度を昇降させる駆動手段と、
    前記熱処理プレートの温度を測定するプレート温度測定手段と、
    前記基板と熱的性質が略同じ材料からなり、前記基板と略同じ状態で前記熱処理プレート上に設けられる温度測定用部材と、
    前記温度測定用部材に取り付けられ、水晶振動子にコイルまたはアンテナを接続して形成される検温素子と、
    前記検温素子と非接触状態で設けられて、前記水晶振動子の固有振動数に相当する周波数の送信波を発信するとともに、前記検温素子からの電磁波を受信する送受信手段と、
    前記送受信手段で受信した電磁波の周波数に基づいて前記温度測定用部材の温度を求める温度求出手段と、
    前記温度求出手段で求めた前記温度測定用部材の温度と前記熱処理プレートの設定温度との偏差を算出する偏差算出手段と、
    前記偏差算出手段で算出された温度偏差に基づいて前記熱処理プレートの設定温度を補正する設定値補正手段と、
    前記プレート温度測定手段で測定された熱処理プレートの温度が前記補正された設定温度になるように、前記駆動手段を操作する温度制御手段と
    を備えたことを特徴とする基板熱処理装置。
JP2002303075A 2002-10-17 2002-10-17 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置 Expired - Fee Related JP3833162B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002303075A JP3833162B2 (ja) 2002-10-17 2002-10-17 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303075A JP3833162B2 (ja) 2002-10-17 2002-10-17 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置

Publications (2)

Publication Number Publication Date
JP2004140167A JP2004140167A (ja) 2004-05-13
JP3833162B2 true JP3833162B2 (ja) 2006-10-11

Family

ID=32450971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303075A Expired - Fee Related JP3833162B2 (ja) 2002-10-17 2002-10-17 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置

Country Status (1)

Country Link
JP (1) JP3833162B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114968B2 (en) 2017-11-24 2021-09-07 Mitsubishi Electric Corporation Rotating electric machine device and rotating electric machine device control method
US11435238B2 (en) 2017-11-24 2022-09-06 Mitsubishi Electric Cornoration Temperature detection device and temperature detection method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535948B2 (ja) * 2005-07-06 2010-09-01 大日本スクリーン製造株式会社 基板熱処理装置および基板温度測定方法
KR100927526B1 (ko) 2006-11-29 2009-11-17 가부시키가이샤 소쿠도 더미용 기판의 온도를 검출/측정하는 검출시트 및 온도측정시스템과 이들을 사용한 열처리장치
JP2008139067A (ja) * 2006-11-30 2008-06-19 Dainippon Screen Mfg Co Ltd 温度測定用基板および温度測定システム
US8089031B2 (en) * 2007-02-27 2012-01-03 Tokyo Electron Limited Heating apparatus for heating objects to be heated, heating method for heating the objects to be heated, and storage medium in which computer-readable program is stored
JP4905381B2 (ja) * 2007-02-27 2012-03-28 東京エレクトロン株式会社 被処理体の熱処理装置及び熱処理方法
JP2008256519A (ja) * 2007-04-04 2008-10-23 Tokyo Denpa Co Ltd 多点水晶温度測定装置
JP5015729B2 (ja) 2007-11-13 2012-08-29 株式会社Sokudo 基板処理装置
JP5413767B2 (ja) * 2008-03-25 2014-02-12 東京電波株式会社 シリコンウエハ多点温度測定装置
JP5217663B2 (ja) 2008-06-11 2013-06-19 東京エレクトロン株式会社 被処理体の熱処理装置及び熱処理方法
JP5329379B2 (ja) * 2009-12-10 2013-10-30 株式会社Sebacs 温度測定システム
CN108507705A (zh) * 2018-07-04 2018-09-07 上海捷策创电子科技有限公司 一种芯片测温装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114968B2 (en) 2017-11-24 2021-09-07 Mitsubishi Electric Corporation Rotating electric machine device and rotating electric machine device control method
US11435238B2 (en) 2017-11-24 2022-09-06 Mitsubishi Electric Cornoration Temperature detection device and temperature detection method

Also Published As

Publication number Publication date
JP2004140167A (ja) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3833162B2 (ja) 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置
KR101019076B1 (ko) 프로세스 컨디션 검지형 웨이퍼 및 데이터 분석 시스템
US7914202B2 (en) First detecting sheet and first thermometric system for detecting and measuring temperature of an object under test, second detecting sheet and second thermometric system for detecting and measuring temperature of a dummy substrate, and heat treatment apparatus using same
US7977609B2 (en) Temperature measuring device using oscillating frequency signals
JP4905381B2 (ja) 被処理体の熱処理装置及び熱処理方法
JP4904822B2 (ja) 温度測定機能を有する装置
KR101783362B1 (ko) 온도 측정용 판 형상체 및 그것을 구비한 온도 측정 장치
JP2011525632A (ja) エッチングプロセス内の赤外線伝播による基板温度測定
JP3590341B2 (ja) 温度測定装置及び温度測定方法
JP2007171047A (ja) ウェハ型温度センサとこれを用いた温度測定装置、温度測定機能を有する熱処理装置および温度測定方法
JP5098045B2 (ja) 圧電温度センサとシリコンウエハ温度測定冶具
JP3615694B2 (ja) ウェハ加熱部材及びこれを用いたウェハの均熱化方法
JP2008140833A (ja) 温度測定用基板および温度測定システム
JP2008139256A (ja) 検知シート、温度測定システム、および、熱処理装置
JP5413767B2 (ja) シリコンウエハ多点温度測定装置
US20060084188A1 (en) Method for temperature control in a rapid thermal processing system
JP2008139067A (ja) 温度測定用基板および温度測定システム
JP5329379B2 (ja) 温度測定システム
JP2007171046A (ja) ウェハ型温度センサとこれを用いた温度測定装置、温度測定機能を有する熱処理装置および温度測定方法
JP2007171046A5 (ja)
JP2008134204A (ja) 温度検出シート、温度測定システム、および、熱処理装置
JP2021156698A (ja) 感知センサ
JP3571634B2 (ja) 基板処理装置
JP2000156335A (ja) 半導体製造用ベーキング装置
JP2000068224A (ja) 基板熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Ref document number: 3833162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees