JP2008256519A - 多点水晶温度測定装置 - Google Patents

多点水晶温度測定装置 Download PDF

Info

Publication number
JP2008256519A
JP2008256519A JP2007098707A JP2007098707A JP2008256519A JP 2008256519 A JP2008256519 A JP 2008256519A JP 2007098707 A JP2007098707 A JP 2007098707A JP 2007098707 A JP2007098707 A JP 2007098707A JP 2008256519 A JP2008256519 A JP 2008256519A
Authority
JP
Japan
Prior art keywords
crystal
temperature
frequency
measuring device
temperature measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098707A
Other languages
English (en)
Other versions
JP2008256519A5 (ja
Inventor
Yasushi Saito
靖 斉藤
Yasushi Nakada
泰 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denpa Co Ltd
Original Assignee
Tokyo Denpa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denpa Co Ltd filed Critical Tokyo Denpa Co Ltd
Priority to JP2007098707A priority Critical patent/JP2008256519A/ja
Publication of JP2008256519A publication Critical patent/JP2008256519A/ja
Publication of JP2008256519A5 publication Critical patent/JP2008256519A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】被測定物の各所の温度を測定できるようにした多点水晶温度測定装置の提供。
【解決手段】センサー支持部材10に対して所定の箇所に複数個の水晶振動子からなる水晶温度センサ11a.11b.11c.11d.・・・・11kが導熱性の接着剤等によって固着されている。上記各水晶温度センサ11(a、b、c、・・・・)を励振する電極端子は、一対の振動電極部が高周波線路12に対して順次並列的に接続されている。そして、その一端が同軸ケーブル13に接続されたプラグを介して温度測定装置14に接続される。温度測定装置14は前記高周波線路12に周波数の変化する交流信号を供給し、流れ込む電流値を検出する。複数個の水晶温度センサ11(a、b、c、・・・・)の総合的なインピーダンス特性の特異点(例えばピーク点)を検出することによって、各水晶温度センサ11(a、b、c、d、・・・)が載置されている箇所の温度を測定する。
【選択図】図1

Description

この発明は感熱素子を使用して温度を計測する温度測定器にかかわり、特に、水晶振動子を温度測定センサとして使用することにより、多点の温度測定が同時に、より簡単な作業で行われるようにした多点水晶温度測定装置に関するものである。
被測定物の温度を測定する際に、温度の変化に対して物理的な常数が変化するような温度センサーが使用され、この温度センサーの特性を電気的に検出することによって、前記被測定物の温度を計測することが行われている。
この場合は温度センサとしては、熱電対の起電圧を測定する方法、温度により電気抵抗が変化する白金抵抗帯、サーミスタ等の感温素子が知られているが、より高精度の温度センサー(温度測定素子)として水晶片の感温共振特性の変化を電気的に測定するものが知られている。
ところで、温度測定技術としては、通常1箇所の特定点を1個の温度プローブを使用して測定をするが、被測定物がある程度の大きさを持ち、特定の加熱状況下に置かれているような場合は、複数点の温度を同時に測定することを要請される場合がある。
図7はこのような多点の温度測定を行う場合一例をの模式図として示したものである。
この図に示されているように、ある大きさを有する被測定物Xに対して、所定の複数箇所の温度を同時に測定をする場合は、温度センサーとしては、例えば水晶結晶材から特定の結晶軸でカットとされた水晶振動片に電極を付けた水晶振動子を所定の容器内に固定した水晶温度センサ1a、1b、1c、1d・・・・を所定の測定位置に当接し、この複数個の各水晶温度センサ1(a、b、c、d、・・・)に、例えば同軸ケーブル2a、2b、2c、2d・・・・を接続して所定の交流信号を供給し、温度測定部(ネットワークアナライザ)3において各水晶温度センサ1(a、b、c、d・・・)の電気的な特性変化を検出することによって、各水晶温度センサ1(a、b、c、d・・・)が接触している各点の温度を同時に測定するようにしている。
この場合の水晶振動片の温度に対する電気的な特性の変化は、水晶振動片を発振器とする発振周波数の変化であっても良いが、一般的には水晶振動子が温度によって変化する水晶振動子のインピーダンス特性(共振点や反共振点の周波数)を、供給する交流信号の周波数を変化しながら測定するネットワークアナライザにより検知することによって行うこともできる。
特開2003−215188
このように、水晶振動子を使用した温度センサは、被測定物Xや、その他広範囲の液体等の各所の位置における温度を同時点で綿密に測定する場合、上記の水晶温度測定装置によって、分解能が0.01℃ぐらいの高精度で温度測定を行うことができるが、被測定物Xの広い範囲に分布した多点の温度測定を同時に知りたい場合は、上記したように、複数本のケーブル2(a、b、c、d・・・)に接続された水晶温度センサ1(a、b、c、d・・・・)を温度測定プローブとし使用し、複数台の温度測定装置3,3,3をY1,Y2,Y3として設置するか、多数の温度プローブを取り付けることができる高価な温度測定装置が必要になるため、温度測定前のキャリブレーション等を考慮すると、被測定物Xの温度測定作業が非常に繁雑になるという問題があった。
特に、近年ますます高密度の集積回路を大量に作るため、大型化されている半導体ウエハ基板等を被測定物とする場合では、この半導体ウエハー基板上に種種の表面加工や、微細な薄膜工程に施す必要から、半導体ウエハ基板全体が均一な所定の温度となるように制御することが要請されている。
図8は例えば半導体ウエハー基板を加熱して、そのウエハ基板上の各所の温度を高い精度で均一にして、種種の加工が行われる前に行う温度測定のための想定図を示したもので、図7と同一部分は同一の符号が記載されている。
この想定図に見られるように、複数個のヒータHが内蔵されている加熱装置4を加熱電源5から供給される電力で加熱して半導体ウエハ基板6を所定温度に加熱するだけでは、大型化された半導体ウエハ基板6の各所の温度が完全に均一化されることは困難になっている。
そこで、半導体ウエハ基板6の所定の箇所に上記したような水晶温度センサ1a、1b、1c、1d、1e、(5個の場合を示す)を配置し、これらの各水晶温度センサ1(a、b、c、d、e)をそれぞれケーブル2a、2b、2c、2d、2eを介して多端子の温度測定装置3に接続すると共に、このような方法で検出した各所の温度情報を制御装置7に取込み、この測定結果に基づいて制御装置7から、加熱装置4の各所の各ヒータHの部分を局所的に制御して、半導体ウエハ基板6の全面が十分に均一な所定の温度となるように制御することが考えられるが、前記したように半導体ウエハ基板6が大型化すると、温度測定点を十数箇所に増加させるような必要性があり、温度センサとなる水晶温度センサの分散配置作業と、各水晶温度センサをそれぞれネットワークアナライザ等からなる温度測定装置3に接続する作業がかなり面倒になってくる。
本発明の多点水晶温度測定装置はかかる問題点に鑑みてなされたものであり、
被測定物の形状に類似したセンサー支持部材の表面の複数点の所定個所に、共振周波数がそれぞれ異なる複数個の水晶振動子を固着配置すると共に、該複数個の水晶振動子の電極端子を開放された高周波線路に対して並列的に接続し、
前記センサー支持部材、前記複数個の水晶振動子、及び前記高周波線路を温度検出プローブとし、高周波ケーブルを介してネットワークアナライザを内蔵した1台の温度検出装置に接続するようにした。
本発明の多点の被温度測物は、特に、近年微細化と高密度化が要請されている半導体集積回路を作るために特に大型化した半導体ウエハ基板に対して、特に好適である。
また、ウエハ基板、又はウエハ基板に類似したセンサ支持部材上に配置された上記複数個の水晶振動子は、少なくともその共振周波数が検出すべき周波数変化帯域幅以下となるように相互に離間することによって、ネットワークアナライザで掃引する周波数帯域を比較的狭くすることもできる。
水晶温度センサを接続するための高周波線路は平衡、又は不平衡型のストリップ線路、同軸ケーブル等によって ウエハ基板に類似したセンサ支持部材上に固定されているので、温度測定装置に対する接続も容易になる。
また、水晶振動子はYsカット、またはLCカットの水晶片によって構成することによって感温−周波数特性を良好にし、スイープ時間を早くしても共振点の検出精度を高くすることができる。
なお、被測定物の各温度測定地点の相互の温度差(t)が、温度測定点の測定温度範囲(T)に比較して小さい場合(t<T)は、前記複数個の水晶振動子の共振周波数間隔を、測定温度範囲内で変動すると思われる水晶振動子の共振周波数変化幅より小さく設定できるので、多点の広範囲の温度測定であっても水晶振動子に供給する励振周波数のスイープを幅を小さくすることができる。
本発明の多点水晶温度測定装置は、被測定物の形状に類似したセンサー支持部材に対して、予め複数個の共振周波数が異なる水晶振動子を温度センサとして取り付け、該複数個の水晶振動子の電極端子を終端部が開放され、または所定のインピーダンスで整合されている高周波線路に接続して温度測定プローブを構成している。
したがって、被測定物の温度検出点が多くなっても、温度測定装置と温度測定プローブ間を1本の同軸ケーブルによって接続することができ、温度測定作業を容易にすると共に、この多点水晶温度測定装置を使用して被測定物の表面温度を正確に制御するシステムを構築することができる。
図1は本願発明の温度測定装置の概要を説明する全体的な模式図であって、例えば、被測定物が半導体ウエハ基板に適応される場合を例示している。
この図において、温度センサーとなる水晶振動子を設置するためのセンサー支持部材10は、半導体ウエハ基板、または、導体ウエハ基板の形状や材質にできるだけ近似するような形状を備えており、このセンサー支持部材10に対して所定の箇所、つまり基板表面で、例えば、温度分布を測定したいと思われる測定点に複数個の水晶温度センサ11a.11b.11c.11d.・・・・11kが導熱性の接着剤等によって固着して載置されている。
なお、各水晶温度センサ11(a、b、c、d、・・・)は、通常はよく知られているように、保護用の容器、例えば、セラミックやカン(Can)内に水晶振動子が封入されたものであり、その水晶振動子の電極端子が外部に露出するように構成されている。
本実施例の場合は図2に示されているように水晶振動子はセラミック容器21内に収容され、このセラミック容器21は蓋体21aと、凹部となっている筐体21bからなり、筐体21bの凹部には水晶片21c、とその励振電極部21dが収納されている。
筐体21bの底辺には、4個の電極端子21eが形成されており、いわゆる表面実装型の水晶振動子を使用することができる。
なお、各水晶温度センサ11(a、b、c、d、・・・)としては、その他にカン内に封入され水晶振動電極がリード端子として外部に出力されているものも使用できる。
本実施例では、上記各水晶温度センサ11(a、b、c、・・・・)を励振する電極端子21eは、水晶片の上下の振動電極部21dに対して、それぞれ2個設けられ、後で述べるように一対の振動電極部21dが、図1に示すように一端が開放された高周波線路12に対して順次並列的に接続され全ての水晶温度センサが連結されている。
ここでいう高周波線路12には同軸線路や、平行線路、またはストリップ線路等に見られるように、高周波信号に対して一定の特定インピーダンスを示す分布常数線路が好ましい。但し、測定用の周波数が低いときは通常のツイストペアコードを使用することもできる。
そして、その一端が同軸ケーブル13に接続されたプラグを介して温度測定装置14に接続される。
温度測定装置14は水晶温度測定器として知られているように、ネットワークアナライザとして、所定の範囲で周波数が変化するスイープ発振器や位相検出器、電流測定器、方向性結合器等を備えており、このスイープ発振器の発振出力が上記高周波線路12に出力される。
なお、圧電素子等のインピーダンス特性を測定する場合は、図示されていないがネットワークアナライザで形成されている温度測定機器の前段に、従来技術にも示されているようにπ回路治具を装着して測定系を構築し、通常π型回路に対して3種類の標準抵抗を差し替えながら測定前の校正をすることが好ましい。
本例では、温度測定装置14は前記高周波線路12に流れ込む電流値を検出することによって、高周波線路12に対して並列的に接続されている複数個の水晶温度センサ11(a、b、c、d、・・・・)の総合的なインピーダンス変化を検出し、そのインピーダンスの変化特性をスイープ周波数軸上に表示可能とされている。
また、この総合的なインピーダンス特性の特異点(例えばピーク点)を検出することによって、各水晶温度センサ11(a、b、c、d、・・・)の直列共振点の周波数を検出できるように構成されている。
図3はセンサ支持部材10に接着剤等で固着された水晶温度センサのセラミック容器21と高周波線路12の接続例を示したもので、図3(a)は高周波線路として同軸ケーブル31を使用した場合を、図3(b)は平衡型のストリップ線路41を使用した場合を示す。
この実施形態では導熱性の接着剤等でセラミック容器21の蓋体21a側がセンサ支持部材10の所定の位置に固着され、底面側にある電極端子21eが上方に位置するようにしている。
そして、同軸ケーブル31の中心導体31cを一方の振動電極部21dと導通する電極端子21eに溶着すると共に、絶縁層31aの外周に形成されている同軸ケーブルの外層導体31bを開いて、他方の振動電極部21dに導通している電極端子21eに接続している。
また、平衡型ストリップ線路41の場合も、絶縁層41bに敷設されている一方の線路41a1が一方の振動電極部と導通している電極端子21eに、他方の線路41a2が他方の振動電極部に導通している電極端子21eと接続されている。
このように各水晶温度センサ11(a、b、c、d、・・・)の電極端子21eを高周波線路に順番に接続してゆくと、各水晶温度センサ21の水晶振動子はこの高周波線路31(41)に対して並列的に接続され、交流信号(スイープ周波数)によって励振されることになる。
ところで、水晶振動子の共振点(ω)付近の電気的な等価回路は図4(a)に示されているように、並列容量Coと、付加容量Cl、モーショナルインピーダンスとなるリアクタンスL1、実効抵抗Reによって示されており、この等価回路は水晶片の形状及び寸法に基づいてそれぞれ異なるが、一般的にはインピーダンス値が最小となる低い方の直列共振点frと、インピーダンス値が最大となる高い周波数で反(並列)共振点faが現れる。
図4(b)は共振点付近のインピーダンス変化特性を拡大して示したもので、fr点は直列共振点、fa点は並列共振点でこれらの共振点の周波数差Δfの期間で誘導性インピーダンスを示す。
また、これらの共振点は温度依存性があり、特にYsカット、及びLCカットで切り出された水晶片は温度特性の変化が大きくなり、温度センサとして高感度のデバイスを構成する。
図5は、例えば5組の共振点が少しずつずれている水晶振動子を、図1に示すように高周波線路12で接続して、その総合インピーダンス特性を表示したものである。
横軸に沿って励振周波数を増加したときに、縦軸に複数個接続されている水晶振動子の総合インピーダンス値が出力レベルとしてネットワークアナライザを内蔵している温度測定装置によって観測されている。
この図では掃引周波数幅は、横軸で(30KHz、3KHz)であるが、温度測定装置のネットワークアナライザの分析能力によっては、5組の水晶振動子の共振点を中心として5チャンネル(Ch1,Ch2、Ch3、Ch4、Ch5)毎に掃引を繰り返し、各水晶振動子の共振点インピーダンスのピーク点の変化を精度良く検出するようにしても良い。
このインピーダンス特性(出力レベル)では5組の水晶振動子の共振点(直列)がピーク点f1,f2,f3,f4,f5として検出されており、さらに、このような特性を精査分析して温度変化に伴うピーク点f1,f2,f3,f4、f5・・の変化を検出することにより、多点の温度変化を1台の温度測定装置によって同時に観測することが可能になる。
本発明の多点温度測定装置の応用例としては、例えば、測定に先立ってセンサ支持部材10の表面温度を特定の温度に設定し、上記したようにセンサ支持部材10上に載置されている複数個の水晶温度センサ11(a、b、c、d・・・)を基準の交流信号でスイープして、各センサ位置における共振周波数、すなわちインピーダンスのピーク点の位置を予め温度測定装置内の記憶手段に取り込みキャリブレーション行う。
このセンサ支持部材10が接続されたケーブル13を1個の温度測定プローブとして、温度測定装置14に接続し、センサ支持部材10を先に図8で示したような加熱装置等4に載置して、センサ支持部材11によって加熱装置4の半導体ウエハが載置される各点の温度を検出する。
そして、加熱装置4で加熱される上記したような半導体ウエハ基板の表面の各点が、例えば均一な所定の温度となるように制御装置7等を介して加熱装置4内を局部的に温度制御を行うことにより、加工される半導体ウエハの表面温度を均一となるように制御することができる。
センサ支持部材10上に設定される各水晶温度センサの共振点周波数間隔(チャンネル間隔fch)は、通常水晶振動子の感温度特性が10,000Hz/10℃(ft/c)で計算すると、200℃の温度差を検出するために200KHz(fT)のチャンネル間隔が必要になるが、センサ支持部材が半導体ウエハ基板のような場合は、半導体ウエハ基板を加熱してしても、その温度上昇に伴うウエハ上の各点の温度差は極めて少ない。
したがって、図7に示すように例えば10個程度の水晶振動子を温度センサとして使用する場合でも、各水晶振動子の共振周波数をf1,f2,f3,・・・・・(約10.6MHz+Δf)を室温Rtで数KHz(10KHz)のチャンネル間隔に設定しても、100℃の温度上昇ではf11,f21,f31,・・・・に変化し、200℃ではf12.f22,f32,・・と変化するが、このように200℃の測定温度差が生じる場合でもスイープ周波数範囲は300KHz位で十分であり、ウエハ基板の温度が室温から200℃近く上昇したときにも、各センサの共振点の周波数が重複するという問題は生じない。
なお、実際に被測定物の温度検出を行う際は、温度測定装置に接続された温度プローブに対して先に述べたようにキャリブレーションを行い、このキャリブレーションによって校正されたレンジで温度測定を行うが、本発明の多点水晶温度測定装置の場合も、半導体ウエハ基板、又はこれに類似している形状のセンサ支持部材に水晶温度センサを取り付けた温度プローブに対して、測定前に予めキャリブレーションを行い、その後に半導体ウエハ基板の加熱時の温度測定が行われる。
上記した実施例は半導体ウエハ基板の温度分布を多点で測定する場合について述べたが、1台の温度測定装置と、温度プローブを使用して同時に多点の温度測定を行う必要性のある他の被測定物について適応することも可能である。
また、水晶の共振点としてそのインピーダンス変化を検出するようにしたが、各水晶温度センサを発振器として発振させ、その発振周波数の変化を検出するようにしても良い。
さらに、本出願が先に提案したように、分散配置されている各水晶温度センサに電磁波を照射し、この電磁に応答して振動する水晶振動子の周波数を受信するエコー方式で、センサ支持部材の表面に何らの接続もないまま散財している複数個の水晶温度センサの共振周波数を測定して同時に多点の温度測定が行われるようにしても良い。
本発明の多点水晶温度測定装置で測定された半導体ウエハ基板の加熱時の温度分布データは、制御用のコンピュータに取り込まれ、所定の演算処理を行って表面加工が施される半導体ウエハ基板を加熱する加熱装置にフィードバックされ、このウエハ基板上で施される種種の薄膜工程が正確に行われるようにするために使用することができる。
本発明の多点水晶温度測定装置の概要を示した説明図である。 水晶温度センサとなる水晶振動子の一例を示す斜視図である。 水晶温度センサと高周波線路の接続図を例示した説明図である 水晶振動子の共振点付近の等価回路図と共振インピーダンスのグラフを示す 複数個の水晶振動子の総合インピーダンス特性図である。 温度変化に対応して変化する水晶振動子の共振周波数変化を示す図である。 被測定物に対する多点の温度測定を行うための模式図である。 半導体ウエハ基板の加熱方法と、温度測定装置の説明図を示す。
符号の説明
10 センサ支持部材 水晶温度センサ 12高周波線路 13ケーブル
14 温度測定装置

Claims (6)

  1. 被測定物の形状に類似したセンサー支持部材の複数の個所に、共振周波数がそれぞれ異なる複数個の水晶振動子を固着配置すると共に、前記複数個の水晶振動子の振動電極端子を高周波線路に対して並列的に接続し、
    前記センサー支持部材、前記複数個の水晶振動子、及び前記高周波線路を温度検出プローブとし、高周波ケーブルを介してネットワークアナライザを内蔵した温度検出装置に接続したことを特徴とする多点水晶温度測定装置。
  2. 上記被測定物は半導体ウエハ基板とされていることを特徴とする請求項1に記載の多点水晶温度測定装置。
  3. 上記複数個の水晶振動子の共振周波数の差は、前記水晶振動子が検出すべき温度差に対応して変移する共振周波数の変化帯域幅以内に設定されていることを特徴とする請求項1に記載の多点水晶温度測定装置。
  4. 上記高周波線路はストリップ線路によって構成されていることを特徴とする請求項1に記載の多点水晶温度測定装置。
  5. 上記記高周波線路は同軸ケーブルによって構成されていることを特徴とする請求項1に記載の多点水晶温度測定装置。
  6. 上記水晶振動子はYsカット、またはLCカットの水晶片によって構成されていることを請求項2に記載の多点水晶温度測定装置。
JP2007098707A 2007-04-04 2007-04-04 多点水晶温度測定装置 Pending JP2008256519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098707A JP2008256519A (ja) 2007-04-04 2007-04-04 多点水晶温度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098707A JP2008256519A (ja) 2007-04-04 2007-04-04 多点水晶温度測定装置

Publications (2)

Publication Number Publication Date
JP2008256519A true JP2008256519A (ja) 2008-10-23
JP2008256519A5 JP2008256519A5 (ja) 2010-05-06

Family

ID=39980227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098707A Pending JP2008256519A (ja) 2007-04-04 2007-04-04 多点水晶温度測定装置

Country Status (1)

Country Link
JP (1) JP2008256519A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678892B1 (ja) * 2010-07-29 2011-04-27 眞人 田邉 水晶温度計測用プローブおよび水晶温度計測装置
JP2011137738A (ja) * 2009-12-28 2011-07-14 Fukuda Crystal Laboratory 多点温度測定装置
JP2012189336A (ja) * 2011-03-08 2012-10-04 Furuya Kinzoku:Kk 温度測定装置
CN114910714A (zh) * 2022-05-12 2022-08-16 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540966A (en) * 1978-09-18 1980-03-22 Toshiba Corp Multiplex temperature measuring method and its unit
JPS6098323A (ja) * 1983-11-02 1985-06-01 Toyo Commun Equip Co Ltd 生体内温度測定用プロ−ブ
JP2004140167A (ja) * 2002-10-17 2004-05-13 Dainippon Screen Mfg Co Ltd 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540966A (en) * 1978-09-18 1980-03-22 Toshiba Corp Multiplex temperature measuring method and its unit
JPS6098323A (ja) * 1983-11-02 1985-06-01 Toyo Commun Equip Co Ltd 生体内温度測定用プロ−ブ
JP2004140167A (ja) * 2002-10-17 2004-05-13 Dainippon Screen Mfg Co Ltd 基板の温度測定方法、基板熱処理装置における設定温度の補正方法および基板熱処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137738A (ja) * 2009-12-28 2011-07-14 Fukuda Crystal Laboratory 多点温度測定装置
JP4678892B1 (ja) * 2010-07-29 2011-04-27 眞人 田邉 水晶温度計測用プローブおよび水晶温度計測装置
JP2012032194A (ja) * 2010-07-29 2012-02-16 Masato Tanabe 水晶温度計測用プローブおよび水晶温度計測装置
JP2012189336A (ja) * 2011-03-08 2012-10-04 Furuya Kinzoku:Kk 温度測定装置
CN114910714A (zh) * 2022-05-12 2022-08-16 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法
CN114910714B (zh) * 2022-05-12 2024-02-02 东南大学 一种基于奇异点的高灵敏度电荷传感器及其使用方法

Similar Documents

Publication Publication Date Title
CA3049709C (en) Device and method for the in-situ calibration of a thermometer
JP5476114B2 (ja) 温度測定用装置
EP3540409A1 (en) Substance detection system and substance detection method
CN103051285B (zh) 用于修正压阻式振荡器的频率的温度相关性的电路和方法
JP5098045B2 (ja) 圧電温度センサとシリコンウエハ温度測定冶具
CN102692524B (zh) 一种基于原子力显微镜的纳米热电塞贝克系数原位定量表征装置
JP2008256519A (ja) 多点水晶温度測定装置
JP5413767B2 (ja) シリコンウエハ多点温度測定装置
US7694551B2 (en) Sensor
JP2004294356A (ja) Qcmセンサー装置
JP6528523B2 (ja) 物理量センサー用回路、物理量センサー、及び物理量センサーの製造方法
JPS6118354B2 (ja)
JP3639906B2 (ja) キャビティーとそのキャビティーを使用した共鳴超音波スペクトロスコピー装置
JP3706911B2 (ja) 熱容量スペクトロスコピーと誘電率の同時測定装置と測定方法
JP5347737B2 (ja) 回転子検査装置
KR100594673B1 (ko) 플라즈마 영역내의 전자 에너지 분포 측정 방법 및 그측정 장치
JP5341746B2 (ja) 多点温度測定装置
WO2008019396A2 (en) Apparatus and method of measuring acoustical energy applied to a substrate
JP5356148B2 (ja) プローバー装置及び検査方法
JP2013174493A (ja) Qcmセンサ
JP2009302233A (ja) 圧電素子
KR100490902B1 (ko) 권선형 전력기기의 온도, 부분방전 및 자속 측정 겸용 센서
JP2017073586A (ja) 振動子の共振周波数調整方法及び製造方法
KR101421641B1 (ko) 박막 증착 장치 및 박막 증착 장치의 박막 면저항 모니터링 방법
JP2009150789A (ja) 水晶振動子を用いた物理/化学量測定装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Effective date: 20120127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A02 Decision of refusal

Effective date: 20120605

Free format text: JAPANESE INTERMEDIATE CODE: A02