JP3829637B2 - 測温装置 - Google Patents
測温装置 Download PDFInfo
- Publication number
- JP3829637B2 JP3829637B2 JP2001090526A JP2001090526A JP3829637B2 JP 3829637 B2 JP3829637 B2 JP 3829637B2 JP 2001090526 A JP2001090526 A JP 2001090526A JP 2001090526 A JP2001090526 A JP 2001090526A JP 3829637 B2 JP3829637 B2 JP 3829637B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measuring device
- cold junction
- temperature measuring
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の属する技術分野】
本発明は、熱電対による起電力を利用して測温部の温度を測定する測温装置に関し、より詳細には冷接点の温度を正確に測定することができる測温装置に関する。
【0002】
【従来の技術】
熱電対による起電力を利用して測温部の温度を測定する測温装置では、熱電対の一方の接合部(以下、「接合部」と称する)が測温部に配置され、この接合部と測温装置の端子との間は電気的に接続されて、測温装置の端子が熱電対の冷接点を形成する。このような測温装置においては、熱電対の起電力は、熱電対の接合部と冷接点(端子)との温度差によって決定される。従って、測温部の温度を測定するためには、端子温度を求める必要がある。
【0003】
その為、従来の測温装置においては、測温装置の端子温度を求めるため、単一の冷接点補償用センサが端子近傍に配置されたり、端子内部に埋め込まれたりしている。
前者のタイプでは、測温装置の端子温度は端子近傍の外気温度と相互に影響し合っているので、装置自体が熱平衡状態にあるとき、冷接点補償用センサが端子近傍の外気の温度を測定し、この外気温度を端子温度と推定している。
【0004】
後者のタイプに関連して、センサ自体を直接端子と接触させたタイプ、即ち接触による熱伝導を利用して端子の温度を測定するタイプの冷接点補償用センサや、センサ自体を端子内部に埋め込んで端子の温度を測定するタイプの冷接点補償用センサ、センサ自体を端子に取り付けて端子温度を測定するタイプの冷接点補償用センサ等がある。
【0005】
【発明が解決しようとする課題】
熱平衡状態において、冷接点補償用センサが端子近傍の外気の温度を測定し端子温度を推定するタイプの場合、図7にその概略構造の例を示すように、測温装置1の筐体5にプリント基板11が収容され、筐体5には端子12a,12bを有する端子台12が配設され、端子台12の近傍の筐体5にはスリット6が形成されている。プリント基板11上には冷接点補償用センサCJ1が配置され、この冷接点補償用センサCJ1は、スリット6の近傍に位置するようになっている。
【0006】
即ち、冷接点補償用センサCJ1は、測温装置1の筐体5に形成されたスリット6に流入した外気と十分に接する位置に配置されている。更に、冷接点補償用センサCJ1は電子回路部30から十分に離間しているので、電子回路部30の電力消費による熱(内部発熱)が冷接点補償用センサCJ1まであまり伝わらないようになっている。
【0007】
従って、冷接点補償用センサCJ1は、内部発熱の影響をほとんど受けることなく、端子12a,12b近傍の外気の温度Taを測定することができる。そして、温度Taと端子の温度Tcjとが相互に影響し合っていることから、温度Taから温度Tcjを容易に推定できる。
しかし、実際には、測温装置1における内部発熱による熱が、プリント基板11、パッド14a,14b、ブレード13a,13bを介して端子12a,12bに熱伝導されるので、温度Tcjは内部発熱の影響を受けてしまう。更に電子回路部30の動作状態の変化に伴って、その消費電力も変化するので、内部発熱もこれに追従して変動する。結果的に、温度Tcjもこの内部発熱に追従して変動することになる。
【0008】
一方、冷接点補償用センサCJ1が測定する温度Taは測温装置1の外気温度であるので、測定された温度Taは装置の内部発熱の変動による温度Tcjの変動と比較して遅れを生じやすい。また、端子近傍の外気に擾乱が生じた場合、温度Taはこの擾乱の影響を受けてしまう。これらの諸要因により、冷接点補償用センサCJ1が測定した温度Taから推定される温度Tcjと実際の端子温度との間には誤差が生じることがある。
【0009】
また、端子に冷接点補償用センサCJ1を直接接触させ、接触による熱伝導を利用して温度Tcjを測定するタイプのものは、冷接点補償用センサCJ1と端子とが点接触するため、その熱抵抗の値を小さくすることができず、冷接点補償用センサCJ1への熱伝導に遅れが生じる。又、冷接点補償用センサCJ1は端子に接触して配置されているので、電子回路部30から対流またはプリント基板11によって伝熱される内部発熱の影響を受け、冷接点補償用センサCJ1で測定した端子の温度Tcjと実際の端子の温度との間に誤差が生じてしまう。
【0010】
端子に冷接点補償用センサCJ1を接触させた場合、上記の問題がなければ、冷接点補償用センサCJ1は熱電対TC1が接続された端子12a,12bの温度Tcjを正確に測定できそうである。
しかし、端子12a,12bの間には温度差(温度勾配)がある。従って、熱電対TC1が接続される端子12a,12bのすべてに冷接点補償用センサCJ1を接触させることが理想的であるが、このようにすることは測温装置のコストを上昇させるという問題がある。従って、実際には冷接点補償用センサCJ1が接触している一つの端子の温度Tcjの測定結果から他の端子の温度を推定している。
【0011】
しかし、端子12a,12bの何れか一つに接触した冷接点補償用センサCJ1では、前述の温度勾配を検知し得ないため、端子温度を正確に推定できない。
更に、以下に示すように測温装置1のメンテナンス上の問題もある。
測温装置1の測定回路(例えば電子回路部30を形成したプリント基板11)は、測温装置1の筐体5から一つのプリント基板として容易に挿抜され、測定回路のメンテナンスを短時間で完了できることが望まれる。
【0012】
このため、冷接点補償用センサを端子に接触させた測温装置では、冷接点補償用センサとプリント基板との間の電気的接続を、プリント基板の挿抜に対応できる構造にする必要があり、このため測温装置が大型化するという欠点がある。もしこのような構造を採らないと、プリント基板を交換する場合、端子12a、12bに接続した熱電対を取り外し、また取り付けるための長時間の作業が必要となる。
【0013】
測温装置のメンテナンスを短時間で終えることができないと、測定対象である装置の運転を長時間停止しなければならず、かつ運転再開後、測温対象である装置が熱平衡状態に達するまで、長時間のウォームアップ運転が必要となり、その経済的損失は非常に大きくなる。
一方、端子の内部に冷接点補償用センサを埋め込んで温度Tcjを測定するタイプでは、端子近傍の外気の擾乱の影響は少ないが、特定の端子温度から他の端子温度を推定しているので、前述の温度勾配に起因する問題を同様に有している。また、冷接点補償用センサと測定回路の間の電気的接続をプリント基板の挿抜に対応した構造とする必要がある。更にはプリント基板の交換を行なう際の前述した問題点を依然として有する。
【0014】
端子に冷接点補償用センサを取り付けて温度Tcjを測定するタイプでも、端子の内部に冷接点補償用センサを埋め込んで温度Tcjを測定するタイプと同様の問題を有している。
本発明は、上記問題に鑑みてなされたもので、熱電対が接続される測温装置の冷接点である端子の温度測定(推定)において、端子近傍の外気の影響及び測温装置の内部発熱の影響によって生じる端子温度の推定の誤差を改善し、端子温度を高い精度で推定し、測温部の温度の測定精度を向上させ、好ましくはメンテナンスの容易な測温装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために本発明によれば、請求項1では、筐体内部に電子回路が実装され、熱電対を接続する端子を筐体の一部に備えた測温装置において、前記筐体内部の前記端子から離れた位置で、且つ測温装置の外気と接する位置若しくは前記外気を測温装置に流入させる外気導入手段の近傍に配置されて測温装置の外気温度を測定する少なくとも1つの第1の冷接点補償用センサと、前記筐体内部の前記端子の近傍に配置されて測温装置の内部温度を測定する少なくとも1つの第2の冷接点補償用センサとを備えたことを特徴とする測温装置が提供される。
【0016】
熱電対を接続する端子の温度は、測温装置の筐体の外気温度を下限とし、筐体の内部温度を上限とする範囲内にある。
内部発熱に影響されず、外気温度を測定できる第1の冷接点補償用センサと、内部発熱による内部温度の変動を含めて内部温度を測定できる第2の冷接点補償用センサによって、この2つの冷接点補償用センサの温度を測定することで、端子温度をより正確に推定することができる。
【0017】
従って、上記のように構成された測温装置は、測温装置の内部発熱の変動および外気温度の変動によって測温装置の熱平衡が失われても、端子温度を正確に推定することができる。
請求項2では、電子回路を形成したプリント基板を筐体内部に収容し、熱電対が接続される端子を筐体の一部に備えた測温装置において、プリント基板に配設されたパッドと、一端が熱電対を接続する端子を形成し、他端がパッドに接触し、端子の電気信号をパッドを介して電子回路に伝達するブレードと、前記筐体内部の前記パッドから離れた位置で、且つ測温装置の外気と接する位置若しくは前記外気を測温装置に流入させる外気導入手段の近傍に配置されて測温装置の外気温度を測定する少なくとも1つの第1の冷接点補償用センサと、パッドの近傍に配置されて測温装置の内部温度を測定する少なくとも1つの第2の冷接点補償用センサとを備えたことを特徴とする測温装置が提供される。
【0018】
測温装置の内部発熱の一部は、プリント基板、パッド、ブレード、端子を経て外気に放熱される。上記測温装置では、この熱伝導の経路上にあるパッドの近傍に第2の冷接点補償用センサが配置されている。従って、第2の冷接点補償用センサは、端子温度に影響を与える内部発熱による温度変動を遅れなく検出できる。また、第1の冷接点補償用センサは、内部発熱に影響されず、端子温度と相互に影響し合う(相関関係にある)外気の温度を測定できる。
【0019】
従って、上記のように構成された測温装置においては、測温装置の内部発熱の変動および外気温度の変動によって測温装置の熱平衡が失われても、内部温度と外気温度との測定から、端子温度を常に正確に推定することができる。
請求項3では、第1の冷接点補償用センサは、プリント基板に配置され、且つ、測温装置に配設された端子近傍の筐体に形成されたスリットの近傍に位置していることを特徴とする測温装置が提供される。
【0020】
上記のように構成された測温装置においては、第1の冷接点補償用センサは、内部発熱の影響を受けず、且つスリットから筐体に流入する端子近傍の外気と接するので、端子近傍の外気の温度を正確に測定できる。
従って、上記のように構成された測温装置においては、測温装置の内部発熱の変動および外気温度の変動によって生じる測温装置の熱平衡が失われても、端子温度を常に正確に推定することができる。
【0021】
更に、第1の冷接点補償用センサ及び第2の冷接点補償用センサがプリント基板上に配置されているため、プリント基板を挿抜するだけで、冷接点補償用センサのメンテナンスを容易かつ迅速に行なうことができる。
請求項4では、第2の冷接点補償用センサの測定温度と第1の冷接点補償用センサの測定温度から、端子温度を求める算出手段を有することを特徴とする測温装置が提供される。
【0022】
予め、第1の冷接点補償用センサの測定温度、第2の冷接点補償用センサの測定温度、及び端子温度の関係を、測温装置の設計によって決定し、又は実測によって求めて、この関係を上記算出手段で使用することで、測定された内部温度と外気温度から端子温度を推定することができると共に、測温装置の内部発熱の変動および外気温度の変動によって測温装置の熱平衡が失われれても、端子温度を正確に推定することができる。
【0023】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態に係る測温装置について説明する。
図1〜図3は、本発明の一実施形態に係る測温装置の概略構造を示す。
測温装置10は、測温部20の温度を熱電対TC1によって遠隔監視するものであり、熱電対TC1は、測温部20に配置されると共に、測温装置10の筐体15に配設された端子台12の端子12a,12bに接続されている。尚、測温部20は、例えば測温対象である各種プラントを構成する各種装置の測温部である。
【0024】
筐体15には、挿抜可能なプリント基板11が収容されており、プリント基板11の一部には電子回路部30が形成されている。プリント基板11には、所定位置にパッド14a,14bが形成されると共に、冷接点補償用センサCJ1,CJ2が配置されている。
又、筐体15はブレード13a,13bを備えている。ブレード13a,13bの一端は夫々、端子台12上において端子12a,12bを形成し、他端は夫々、筐体15の内部で、プリント基板11のパッド14a,14bとブレード自体の可撓性を利用して接触している。尚、ブレード13a,13bは夫々、プリント基板11を筐体15から挿抜するのに対応して、パッド14a,14bと着脱できるように他端の先端が屈曲した構造を有している。
【0025】
パッド14a,14bには金めっきが施されており、プリント基板11上に密着した銅箔(パターン)、パッド14a,14b、ブレード13a,13b、及び端子12a,12bとの間で夫々安定した電気的接続を確保できるようになっている。
冷接点補償用センサCJ1は、図2に示すように、電子回路部30から離間したプリント基板11上の所定位置に配置されている。冷接点補償用センサCJ1は更に、パッド14a,14bとも離間しているので、内部発熱による熱が端子12a,12bに熱伝導する経路からも離れている。このように配置されることで、冷接点補償用センサCJ1は、電子回路部30による内部発熱の影響を避けている。
【0026】
また、プリント基板11の、冷接点補償用センサCJ1とパッド14a,14bとの間には、冷接点補償用センサCJ1付近に基板スリット11sが形成されている。これによって、パッド14a,14b側の熱が冷接点補償用センサCJ1に熱伝導し難くなっている。又、電子回路部30と冷接点補償用センサCJ1との間で冷接点補償用センサCJ1付近には、熱遮蔽板11pが設けられ、筐体内部の空気の対流による伝熱が阻止されるようになっている。
【0027】
上述のように構成されたプリント基板11を筐体15に収容すると、図3に示すように、冷接点補償用センサCJ1は端子台12が配設されている筐体15の側面15a側に位置することになる。そして、冷接点補償用センサCJ1の近傍に位置する側面15aには、複数のスリット16が設けられている。スリット16は側面15a以外の側面にも設けられ、側面15aのスリット16から流入した外気が筐体15の外部に排出されるようになっている。
【0028】
即ち、冷接点補償用センサCJ1は、プリント基板11が筐体15に収容された状態で、端子台12が配設された側面15aの近傍の外気を導入する部分に配置され、内部発熱の影響を受けずに、端子12a,12bの温度Tcjと互いに影響し合う外気の温度Taを正確に測定することができる。
一方、冷接点補償用センサCJ2は、図2に示すように、プリント基板11上で略パッド14aとパッド14bの間に配置されている。この配置場所は、電子回路部30の内部発熱の熱がプリント基板11から端子12a,12bへと熱伝導する経路の途中で、かつ端子12a,12bの近傍である。従って、冷接点補償用センサCJ2は、端子12a,12bの温度Tcjに影響を与える電子回路30の内部発熱による温度上昇も含めてその配置場所の温度を正確に測定することができる。
【0029】
図4は、図1〜図3に示した測温装置10の各部分とその間の熱抵抗を示す。R1はプリント基板上に形成された電子回路部30と冷接点補償用センサCJ2との間に存在する熱抵抗であり、r2は冷接点補償用センサCJ2とパッド14a,14bとの間に存在する熱抵抗である。又、R3はパッド14a,14bとブレード13a,13bとの間に存在する熱抵抗であり、r4はブレード13a,13bと端子12a,12bとの間に存在する熱抵抗である。又、r5は、端子12a,12bと外気21との間に存在する熱抵抗であり、r6は冷接点補償用センサCJ1と外気21との間に存在する熱抵抗である。
【0030】
尚、熱抵抗R1は、プリント基板上に形成され、かつ電子回路部30と冷接点補償用センサCJ2との距離が比較的長いため、比較的大きい熱抵抗値を有している。熱抵抗r2もプリント基板上に形成されているが、冷接点補償用センサCJ2とパッド14a,14bとの距離が短いため、熱抵抗r2の熱抵抗値は比較的小さい。熱抵抗R3は、パッド14a,14bとブレード13a,13bとが点接触しているため、その熱抵抗値は小さくない。これは、パッド14a,14b並びにブレード13a,13bはいずれも導体であり、それぞれの熱伝導は良好で熱抵抗は小さいが、相互に点接触で接しているため、両者間の熱抵抗は小さいものとはならない為である。
【0031】
ブレード13a,13bの端子台12側は、ブレード13a,13bを端子台12に接続する例えばボルトと共に、端子12a,12bを形成するため、熱抵抗r4の熱抵抗値は比較的小さい。そして、端子12a,12bから外気21に放熱が行われるため、熱抵抗r5の熱抵抗値は比較的小さい。又、外気21と冷接点補償用センサCJ1の間では伝熱が良好に行われるため、熱抵抗r6の熱抵抗値は比較的小さい。
【0032】
次に電子回路部30の構成について説明する。
電子回路部30は、図5に示すように、熱電対TC1の起電力を増幅する直流差動増幅器(以下、「アンプ」と称する。)31と、直列に接続された冷接点補償用センサCJ1,CJ2と、これら冷接点補償用センサに直流の定電流を供給する定電流源32と、この定電流によって生じる冷接点補償用センサCJ1,CJ2の両端に生じる直流電圧を増幅するアンプ33と、アンプ31,33の出力端が接続されたアナログ・ディジタル変換器(以下、「AD変換器」と称する。)36、及びAD変換器36の動作を制御するCPU37(算出手段)を有している。
【0033】
熱電対TC1は、図5では図示を省略した端子12a,12b、並びにブレード13a,13bを介して、電子回路30のパッド14a,14bに電気的に接続されている。パッド14aはアンプ31の非反転入力端に接続され、パッド14bは内部回路の基準電位(以下、「GND」と称する)に接続されている。アンプ31の反転入力端とGNDとの間には抵抗R31が接続され、この反転入力端とアンプ31の出力端間には抵抗R32が接続されている。以上の構成によって、アンプ31は、熱電対TC1の熱起電力を電圧増幅する。
【0034】
このアンプ31の電圧利得Av31は下記の式で求められる。
Av31=(R31+R32)/R31
一方、冷接点補償用センサCJ2の一端はGNDに接続され、他端は冷接点補償用センサCJ1の一端に接続され、冷接点補償用センサCJ1の他端は定電流源32の電流流出側32aに接続されると共に、アンプ33の非反転入力端に接続されている。アンプ33の反転入力端とGNDとの間には抵抗R33が接続され、この反転入力端とアンプ33の出力端間には抵抗R34が接続されている。
【0035】
このアンプ33の電圧利得Av33は下記の式で求められる。
Av33=(R33+R34)/R33
冷接点補償用センサCJ1,CJ2は、夫々の温度に依存して、抵抗値が変化する(温度が高くなると、抵抗値が増加する)。従って、定電流源32に直列に接続された冷接点補償用センサCJ1,CJ2の両端の電圧は、これら冷接点補償用センサ自体の温度に依存して変化する。
【0036】
アンプ33は、この両端の直流電圧を増幅する。アンプ31の出力端はAD変換器36の第1の入力端36aに接続され、アンプ33の出力端はAD変換器36の第2の入力端36bに接続されている。AD変換器36とCPU37とは、バスライン38で相互に接続されており、AD変換によって得られたディジタルデータがCPU37に伝達されるようになっている。CPU37は、バスライン38を介して、AD変換器36のAD変換動作の制御、2つのアナログ入力端である36a,36bの選択制御等を行う。更にCPU37は、バスライン39によって、測温装置10の図示しない表示器(例えば測温部20の温度Thの数値表示器)及び測温対象であるプラントを構成する各種装置等に接続されている。
【0037】
上述のように構成される測温装置10は、CPU37がアンプ31の出力電圧をAD変換するようにAD変換器36を制御すると、熱電対TC1の起電力に対応したディジタルデータを得ることができる。ここで、測温部20が温度Th度(以下、温度は摂氏とする。)である場合、熱電対TC1の起電力は測温部20に配置された熱電対TC1の接合部と冷接点である測温装置の端子12a,12bの温度Tcjとの温度差(Th−Tcj)に依存する。即ち、アンプ31の出力電圧をAD変換して得たディジタルデータは温度差(Th−Tcj)に対応したデータである。従って、温度Tcjを得れば、下記(1)式の関係から、測温部20の温度Thが求められる。
【0038】
Th=(Th−Tcj)+Tcj・・(1)式
ここで、TcjとThとは以下のように求められる。
熱電対TC1の温度(Th−Tcj)における起電力をEhcとし、アンプ31の電圧利得をAv31とし、アンプ31の出力電圧をE31とすると、
Av31×Ehc=E31 であり、
Ehc=E31/Av31・・(2)式を得る。
【0039】
CPU37は、入力端36aに入力されたアンプ31の出力電圧E31をAD変換器36がAD変換して得たディジタルデータから、起電力Ehcを上記(2)式を用いて算出する。
さて、図4から、冷接点補償用センサCJ2の温度Tcj2は、電子回路部30の温度を上限とし外気21の温度Taを下限とする温度勾配の範囲内にあり、端子12a,12bの温度Tcjは、温度Tcj2を上限とし外気の温度Taを下限とする温度勾配の範囲内にある。ここで、温度Taと温度Tcj1とは相関関係にある。従って、温度Tcjは温度Tcj2を上限とし温度Tcj1を下限とする温度範囲内にあり、下記の関係が成立する。
【0040】
Tcj=Tcj1+k(Tcj2−Tcj1)・・(3)式
k=(r5−r6)/(r2+R3+r4+r5−r6)・・(4)式
ここでkは、r2、R3、r4、r5及びr6で決定される定数であり、
0<k<1である。
例えばk=0.5である場合、即ち、(r2+R3+r4)の熱抵抗値が(r5−r6)の熱抵抗値と等しい場合、(3)式から、温度Tcjは、温度Tcj1と温度Tcj2との丁度中間の温度((Tcj1+Tcj2)/2)になる。
【0041】
冷接点補償用センサCJ1、CJ2の温度対抵抗値特性は同一であるとする。そして、温度Tcj1における冷接点補償用センサCJ1の(電気)抵抗値をRc1とし、温度Tcj2における冷接点補償用センサCJ2の抵抗値をRc2とする。そうすると冷接点補償用センサCJ1と冷接点補償用センサCJ2との直列抵抗値は(Rc1+Rc2)である。
【0042】
そして、(Rc1+Rc2)は以下のようにして算出される。
直列接続された冷接点補償用センサCJ1、CJ2の両端の電圧をE1(V)とし、アンプ33の直流出力電圧をE33(V)、電流源32の電流をI(A)、アンプ33の電圧利得をAv33とすると、
E1=(Rc1+Rc2)×I であり、
E33=Av33×E1 である。
【0043】
従って、
Rc1+Rc2=E33/(Av33×I)・・(5)式を得る。
CPU37はAD変換器36を制御し、その制御によって、AD変換器36は入力端36bに入力された電圧E33をAD変換する。このようにしてAD変換器36が得たディジタルデータと、予め定められた電流I及び電圧利得Av33とから、CPU37は上記(5)式の演算を行うことで、(Rc1+Rc2)の値を算出する。
【0044】
更にCPU37は算出された直列抵抗(Rc1+Rc2)に0.5を乗じた抵抗値Rcjを算出する。
そして、CPU37が算出したRcjと、予めCPU37がその記憶回路部分に記憶している冷接点補償用センサの温度対抵抗値特性を示す関数(この関数は、例えばルックアップテーブルに記憶されている)とから、CPU37は、冷接点補償用センサの温度Tcjを算出し、これを端子温度と推定する。
【0045】
この端子温度Tcjから、予めその記憶回路に記憶している熱電対TC1の冷接点が0℃に対する起電力を表す関数(テーブル)を用いて、端子温度Tcj相当の0℃に対する起電力Ecjを算出する。例えば0℃に対する起電力の特性をルックアップテーブルとしてCPU37の記憶回路に記憶しておき、端子温度Tcjを記憶回路のアドレス入力として、ルックアップテーブルから起電力Ecjを読み出して行う。
【0046】
冷接点が0℃に対する熱電対TC1の起電力を表す関数(テーブル)を用いて測温部20の温度Thを求めるために、先ず、熱電対TC1で発生する起電力Ech(測温部20の温度Thと端子温度Tcjの温度差により発生する起電力)に、端子温度Tcj相当の起電力Ecj(端子温度Tcjと0℃との温度差により発生する起電力)を加算した起電力E20(測温部20の温度Thと0℃との温度差により発生する起電力)を求める。
【0047】
E20=Ecj+Ech
この電圧E20を発生させ得る熱電対の温度Thを、予めその記憶回路に記憶している冷接点が0℃に対する熱電対TC1の起電力を表す関数(テーブル)から測温部20の温度Thとして算出する。例えば冷接点が0℃に対する熱電対TC1の特性をルックアップテーブルとしてCPU37の記憶回路に記憶しておき、温度Thの算出は、電圧E20を記憶回路のアドレス入力として、ルックアップテーブルから温度Thを読み出して行う。
【0048】
このようにして、温度Tcjが推定されれば、温度差(Th−Tcj)の熱電対TC1の起電力を使用して、CPU37は測温部20の温度Thを前述の関係から算出することができる。
なお、r2+R3+r4の熱抵抗をr5−r6の熱抵抗と等しくすることは、各熱抵抗を形成するプリント基板等の部材の機械的構造、位置関係、材質等の設計因子を適宜設定することで可能である。例えば、熱抵抗r2の特性は、パッド14a,14bと冷接点補償用センサCJ2との距離、パッド14a,14bの大きさ、両者間のプリント基板の厚さ及び材質等を任意に選択して設定することができる。他の熱抵抗についても同様である。
【0049】
上述した如く構成された測温装置10によれば、第1の冷接点補償用センサCJ1は、端子12a,12bの温度と相関する外気21の温度Taを内部発熱の影響を受けず、温度Tcj1として測定する。又、電子回路部30から端子12a,12bへの熱伝導経路上にある第2の冷接点補償用センサCJ2は、外気21の影響を受けず、端子12a,12bの温度Tcjに影響を与える電子回路部30の内部発熱を含めたプリント基板11の温度をTcj2として遅れなく測定する。
【0050】
従って、単一の冷接点補償用センサを端子近傍に配置したり、端子に取り付け、埋め込み又は接触させて使用していた従来の測温装置に比べ、上述した如く構成された測温装置10は、温度Tcjの推定において、外気21の擾乱が端子に与える影響を軽減すると共に、内部発熱によって温度Tcjの推定値にズレが生じるのを防止し、測温部20の温度測定精度を向上させる。
【0051】
また、冷接点補償用センサCJ1,CJ2は、測温装置10の筐体15から挿抜可能なプリント基板上に配置されている。従って、冷接点補償用センサCJ1,CJ2とプリント基板11との間の電気的接続をプリント基板の挿抜に対応した構造とする必要がなく、測温装置の小型化・コスト低減が可能となる。
更に、冷接点補償用センサCJ1,CJ2がプリント基板11ごと筐体15から挿抜できるので、測温装置10のメンテナンスを迅速に行なうことができる。
【0052】
次に上述の実施形態の変形例について説明する。
図6には、測温装置10で冷接点補償用センサCJ1,CJ2の測定を行う電子回路部の他の構成例である電子回路部30' を示す。なお、図5と同じ機能を有する構成要素については、対応する符号を付して図示し、その詳細な動作説明を省略する。
【0053】
図6に示す電子回路部30' では、冷接点補償用センサCJ1,CJ2はそれぞれ個別のアンプ33' ,35に接続され、それぞれの冷接点補償用センサCJ1,CJ2の電圧降下が検出され、温度Tcj1,温度Tcj2がそれぞれ別個に測定される。
冷接点補償用センサCJ1の一端はGNDに接続され、他端は定電流源32' の電流流出側32' aに接続されると共に、アンプ33' の非反転入力端に接続されている。アンプ33' の反転入力端とGNDとの間には抵抗R33' が接続され、この反転入力端とアンプ33' の出力端間には抵抗R34' が接続されている。
【0054】
冷接点補償用センサCJ2の一端はGNDに接続され、他端は定電流源34の電流流出側34aに接続されると共に、アンプ35の非反転入力端に接続されている。アンプ35の反転入力端とGNDとの間には抵抗R35が接続され、この反転入力端とアンプ35の出力端間には抵抗R36が接続されている。
アンプ31の出力端はAD変換器36' の第1の入力端36'aに接続され、アンプ33' の出力端はAD変換器36' の第2の入力端36'bに接続され、アンプ35の出力端はAD変換器36' の第3の入力端36'cに接続されている。
【0055】
冷接点補償用センサCJ1の抵抗値は温度Tcj1に対応した抵抗値であり、その両端には、定電流源32' の電流値と冷接点補償用センサCJ1の抵抗値との積に対応した電圧が生じる。従って、アンプ33’の出力電圧は温度Tcj1に対応する。同様にアンプ35の出力電圧は温度Tcj2に対応する。
CPU37が、AD変換器36' の入力端36'a,36'b,36'cを選択する制御を行い、そして、CPU37は選択された入力端に入力された直流電圧をAD変換するようにAD変換器36' を制御する。即ち、AD変換器36'は、温度差(Th−Tcj)における熱電対TC1の起電力、温度Tcj1,Tcj2に対応した各アンプの出力電圧をディジタルデータに変換する。
【0056】
更に、CPU37はAD変換器36' で得られた上記ディジタルデータをバスライン38を介してCPU37の内部の記憶回路に読み込む。
そしてCPU37は前述した実施形態と同様に、起電力Ech、温度Tcj1,Tcj2を算出する。
このようにして、CPU37は、(1)式、(3)式及び定数kから、端子12a,12bの温度Tcjを算出(推定)することができる。
【0057】
なお、前述したように、r2、R3、r4、r5及びr6は設計事項として定まる熱抵抗であるので、定数kは(4)式から前もってその値を決めておくことが可能である。又は、測温装置10を動作させて、熱平衡状態における温度Tcj,Tcj1,Tcj2の実測と(3)式からkを求めても良い。
この変形例は、前述した実施形態と同様の効果を有するのに加えて、CJ1とCJの温度を夫々測定するので、上述した各熱抵抗を形成する設計因子から決まる定数kに合わせて電子回路部30' を設計でき、回路設計上の自由度が向上する。
【0058】
ここで、本発明は、測温部に配置される熱電対の接合部と冷接点である測温装置の端子間との温度差に基づき熱電対の起電力が決定されることから、端子温度を高精度で推定することで、測温部の温度を高精度に求めるものである。説明の便宜上、測温装置の端子側を冷接点というが、端子の温度が測温部の温度より高い測温装置であっても、熱電対を接続する測温装置側の端子は、本発明にいう冷接点に含まれることは言うまでもない。
【0059】
なお本発明は上述した実施形態に限定されるものではなく、第1の冷接点補償用センサはプリント基板上に配置され、プリント基板が測温装置に収容されると、冷接点補償用センサが測温装置の筐体に穿設された孔から端子近傍に突出する構造になっていてもよい。
又、外気の温度を測定する第1の冷接点補償用センサを2個以上有する測温装置においては、2箇所以上の位置において、冷接点である端子温度に追従する外気温度を測定するので、外気温度の測定精度が向上し、端子温度の推定がより正確なものとなる。
【0060】
また、二以上の測温部があり、その測定のため二以上の熱電対が接続される測温装置においては、各熱電対の2つの接続端子を一つの対とし、この一つの対に対応して第2の冷接点補償用センサが配置されていても良い。これによって、各熱電対毎の冷接点である端子温度が測定され、各測温部の温度測定精度が向上する。
【0061】
【発明の効果】
以上説明したように、本発明の測温装置によれば、冷接点である端子温度を、測温装置の内部発熱の影響をほとんど受けない第1の冷接点補償用センサによって端子温度と相関関係にある端子近傍の外気温度から推定すると共に、第2の冷接点補償用センサによって端子温度に影響を与える測温装置の内部発熱による温度上昇を測定する。これによって、第1の冷接点補償用センサの温度が端子近傍の外気から受ける影響、及び測温装置の内部発熱による影響で生じる端子温度測定上の誤差を改善することができる。従って、端子温度が高精度で推定され、測温部の測定精度が向上する。併せて、測温装置のメンテナンスを容易に行なうことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る測温装置の概略構造を示す図である。
【図2】図1の測温装置のプリント基板、電子回路部、冷接点補償用センサ、冷接点である端子の関係を示した斜視図である。
【図3】図1の測温装置の筐体を端子部装着方向から示した斜視図である。
【図4】図1の測温装置の各部分間の熱抵抗の分布を概略的に示す図である。
【図5】図1の測温装置の電子回路の構成を示す接続図(回路図)である。
【図6】図1の測温装置の電子回路の変形例を示す接続図(回路図)である。
【図7】従来の冷接点補償用センサを備えた測温装置の概略構造を示す図である。
【符号の説明】
TC1 熱電対
CJ1 第1の冷接点補償用センサ
CJ2 第2の冷接点補償用センサ
10 測温装置
11 プリント基板
12a、12b 端子
13a、13b ブレード
14a、14b パッド
15 筐体
16 スリット
30 電子回路部
Claims (4)
- 筐体内部に電子回路が実装され、筐体の一部に熱電対が接続される端子を備えた測温装置において、
前記筐体内部の前記端子から離れた位置で、且つ測温装置の外気と接する位置若しくは前記外気を測温装置に流入させる外気導入手段の近傍に配置されて測温装置の外気温度を測定する少なくとも1つの第1の冷接点補償用センサと、
前記筐体内部の前記端子の近傍に配置されて測温装置の内部温度を測定する少なくとも1つの第2の冷接点補償用センサとを備えたことを特徴とする測温装置。 - 電子回路が形成されたプリント基板を筐体内部に収容し、熱電対が接続される端子を筐体の一部に備えた測温装置において、
該プリント基板に配設されたパッドと、
一端が熱電対に接続する端子を形成し、他端が前記パッドに接触し、前記端子に入力される電気信号を前記パッドを介して前記電子回路に伝達するブレードと、
前記筐体内部の前記パッドから離れた位置で、且つ測温装置の外気と接する位置若しくは前記外気を測温装置に流入させる外気導入手段の近傍に配置されて測温装置の外気温度を測定する少なくとも1つの第1の冷接点補償用センサと、
前記パッドの近傍に配置されて、測温装置の内部温度を測定する少なくとも1つの第2の冷接点補償用センサとを備えたことを特徴とする測温装置。 - 前記第1の冷接点補償用センサは、前記プリント基板に配置され、且つ前記外気導入手段は、測温装置の前記端子近傍の筐体に形成されたスリットであることを特徴とする請求項1又は2に記載の測温装置。
- 前記第2の冷接点補償用センサの測定温度と前記第1の冷接点補償用センサの測定温度から、前記端子温度を求める算出手段を有することを特徴とする請求項1又は2に記載の測温装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090526A JP3829637B2 (ja) | 2001-03-27 | 2001-03-27 | 測温装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001090526A JP3829637B2 (ja) | 2001-03-27 | 2001-03-27 | 測温装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002286556A JP2002286556A (ja) | 2002-10-03 |
JP3829637B2 true JP3829637B2 (ja) | 2006-10-04 |
Family
ID=18945296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001090526A Expired - Lifetime JP3829637B2 (ja) | 2001-03-27 | 2001-03-27 | 測温装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3829637B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021226029A1 (en) * | 2020-05-06 | 2021-11-11 | Computime Ltd. | Temperature compensation for an electronic thermostat |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5720548B2 (ja) * | 2011-12-02 | 2015-05-20 | 理化工業株式会社 | 温度測定装置、温度測定方法及び温度測定システム |
DE102015113842A1 (de) * | 2015-08-20 | 2017-02-23 | Endress + Hauser Wetzer Gmbh + Co. Kg | Temperaturmessgerät mit Vergleichstemperaturbestimmung |
JP6854618B2 (ja) * | 2016-10-17 | 2021-04-07 | 株式会社日立製作所 | 温度測定装置 |
JP6897104B2 (ja) * | 2017-01-13 | 2021-06-30 | オムロン株式会社 | 熱電対による温度測定装置 |
CN110121635B (zh) * | 2017-03-31 | 2020-09-08 | 三菱电机株式会社 | 温度测定装置 |
JP6973161B2 (ja) * | 2018-02-21 | 2021-11-24 | オムロン株式会社 | 温度測定装置、周囲温度測定方法、および、周囲温度測定プログラム |
JP6881355B2 (ja) * | 2018-03-08 | 2021-06-02 | オムロン株式会社 | 温度測定装置、温度調整装置、温度測定方法、および、温度測定プログラム |
CN109540317A (zh) * | 2019-01-28 | 2019-03-29 | 上海海得自动化控制软件有限公司 | 一种热电偶温度测量系统 |
CN113686457B (zh) * | 2021-09-03 | 2023-01-13 | 珠海格力电器股份有限公司 | 一种温度补偿装置、方法、电子设备及温度检测装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0220652Y2 (ja) * | 1984-09-28 | 1990-06-05 | ||
JPH0632591Y2 (ja) * | 1987-03-31 | 1994-08-24 | オムロン株式会社 | 温度測定装置 |
JPH062126Y2 (ja) * | 1987-05-13 | 1994-01-19 | オムロン株式会社 | 熱電対測温装置 |
JPH0552728U (ja) * | 1991-12-19 | 1993-07-13 | 山武ハネウエル株式会社 | 温度測定装置の冷接点補償装置 |
JPH09133588A (ja) * | 1995-11-10 | 1997-05-20 | Omron Corp | 温度測定機器の零接点補償装置とその方法 |
-
2001
- 2001-03-27 JP JP2001090526A patent/JP3829637B2/ja not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021226029A1 (en) * | 2020-05-06 | 2021-11-11 | Computime Ltd. | Temperature compensation for an electronic thermostat |
US11385665B2 (en) * | 2020-05-06 | 2022-07-12 | Computime Ltd. | Temperature compensation for an electronic thermostat |
Also Published As
Publication number | Publication date |
---|---|
JP2002286556A (ja) | 2002-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104048776B (zh) | 用于三维温度梯度的多信道热电偶补偿 | |
JP3829637B2 (ja) | 測温装置 | |
JP2012522247A (ja) | 熱電対アセンブリおよびこれを用いた冷接点補償 | |
JP2012063355A (ja) | 熱電対接続用の一体型冷接点補償回路 | |
US20180238744A1 (en) | Temperature Measuring Device with Reference Temperature Determination | |
EP3462152B1 (en) | Accurate and fast response temperature measurement | |
US20120197586A1 (en) | I/O Module with Multi-Dimensional Cold Junction Compensation | |
SE1050545A1 (sv) | Temperaturmätningssystem och metod för ett temperaturmätningssystem innefattande åtminstone ett termoelement | |
CN207456645U (zh) | 温度变送器和温度变送器组件 | |
JPS5830633A (ja) | 制御式ピラニ真空計およびその作動方法 | |
US6048095A (en) | External connection mechanism of temperature-measuring type for printed circuit board | |
CN208254665U (zh) | 测温系统 | |
US20140050248A1 (en) | I/o connector incorporating a cold junction | |
GB2405476A (en) | Method, system and apparatus for measuring temperature with cold junction compensation | |
JP2019049552A (ja) | 湿度を算出するための測定センサ素子 | |
JP5437654B2 (ja) | 温度測定装置 | |
TWI446492B (zh) | 具有熱電偶之電路蓋件 | |
JP5030816B2 (ja) | 温度検出装置 | |
JP4278096B2 (ja) | 温度補償装置 | |
JP3254669B2 (ja) | 熱電温度計 | |
CN108645530B (zh) | 测温系统及利用测温系统测量测温区温度的方法 | |
JP3210222B2 (ja) | 温度測定装置 | |
CN220252039U (zh) | 电流检测组件 | |
JP2018155626A (ja) | 電流センサ | |
US20230155333A1 (en) | Electrical Power Connector for Contacting an Elongated DC Power Distribution Busbar, and Method of Monitoring a Connection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060628 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20060703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060703 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3829637 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110721 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130721 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130721 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140721 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |