JP3822077B2 - 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材 - Google Patents

酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材 Download PDF

Info

Publication number
JP3822077B2
JP3822077B2 JP2001283928A JP2001283928A JP3822077B2 JP 3822077 B2 JP3822077 B2 JP 3822077B2 JP 2001283928 A JP2001283928 A JP 2001283928A JP 2001283928 A JP2001283928 A JP 2001283928A JP 3822077 B2 JP3822077 B2 JP 3822077B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
layer
base material
oxide
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001283928A
Other languages
English (en)
Other versions
JP2003092036A (ja
Inventor
和憲 尾鍋
隆 斉藤
直二 鹿島
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP2001283928A priority Critical patent/JP3822077B2/ja
Priority to US10/177,962 priority patent/US6743531B2/en
Priority to EP02291528A priority patent/EP1271666A3/en
Priority to CNB021272433A priority patent/CN1302487C/zh
Publication of JP2003092036A publication Critical patent/JP2003092036A/ja
Priority to US10/768,899 priority patent/US20050079116A1/en
Application granted granted Critical
Publication of JP3822077B2 publication Critical patent/JP3822077B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵、超電導発電装置、医療用MRI装置、超電導電流リード等の分野において利用できる、気相法による酸化物超電導体テープ線材の製造方法ならびに酸化物超電導体テープ線材に関するものである。
【0002】
【従来の技術】
酸化物超電導層の形成方法として、レーザー蒸着法、CVD法やスパッタ法などの気相法により金属テープなどの長尺の基材上に連続的に酸化物系超電導層を形成する成膜法が知られている。このような気相法により製造された酸化物超電導テープ線材の構造としては、図7に示すようにAg(銀)からなる基材1の上面にYBaCuO系の酸化物超電導層2が形成され、更にこの酸化物超電導層2上にAgからなる表面保護層3が形成されたものが知られている。このような気相法により作製した酸化物超電導テープ線材において、優れた超電導特性を得るためには、Ag基材1上に作製した酸化物超電導層2の2軸配向(面内配向)を実現することが重要である。そのためには、基材1の格子定数を、酸化物超電導層2の格子定数に近づけることと、基材1の表面を構成する結晶粒が、疑似単結晶的に揃っていることが好ましい。
【0003】
そこで、このような問題を解決するために、図6に示すようにハステロイテープなどの金属製の母材4の上面に、スパッタ装置を用いてYSZ(イットリア安定化ジルコニウム)などの多結晶中間層5を形成し、この多結晶中間層5上にYBaCuO系などの酸化物超電導層2を形成し、更にこの上にAgの安定化層6を形成することにより、超電導性の優れた酸化物超電導テープ線材を製造する試みなどが種々行われている。また、圧延、熱処理により集合組織を形成したAg基材や、圧延、熱処理により集合組織を形成し、さらに酸化物中間層を形成したNi基材なども検討されている。
【0004】
そしてこれらの中でも、Agは酸化物超電導層との反応性が小さく、基材上に直接酸化物超電導層を形成することができる唯一の金属材料であり、さらには非磁性、低抵抗であるという特徴も有していることから、基材自身が安定化層としても機能するコンパクトな線材構造を実現することもできる。
【0005】
このような圧延、熱処理により集合組織を形成したテープ状のAg基材1としては、基材表面に(100)面を、長手方向に<001>を優先的に配向させた立方体集合組織を有するAg{100}<001>、あるいは、基材表面に(110)面を、長手方向に<110>を優先的に配向させた立方体集合組織を有するAg{110}<110>などが開発されており、これらのうちでも、YBaCuO系の酸化物超電導層との格子のマッチングを考慮すると、Ag{110}<110>の配向Ag基材が有望である。
【0006】
【発明が解決しようとする課題】
しかしながら、図6に示すような多結晶中間層5上に酸化物超電導層2を形成した酸化物超電導テープ線材では、この多結晶中間層5の作用により、酸化物超電導層2が形成される表面の平滑性や面内配向性が優れており、良好に面内配向した酸化物超電導層2を得ることができ、最近では100万A/cm2以上の高Jcが得られることが確認されている。また、金属テープとしてハステロイを用いているため、十分な強度を備えた線材を製造することができる。しかしながら、この多結晶中間層5を備えた基材は、その成膜にイオンビームスパッタ法という高度で高価な技術を用いる必要があり、まだ今のところ、1m/h程度までの基材の生産速度しか得られておらず、製造コストが極めて高いという問題点を有している。
【0007】
一方、Agの圧延集合組織を用いた配向Ag基材1では、基材の生産性を高くでき、製造コストも比較的安価であり有望であるが、この配向Ag基材を用いて10万A/cm2以上の高Jcを得られたという報告はほとんど成されておらず、超電導特性の不足が問題とされていた。これは、Ag基材上に形成する酸化物超電導層を構成する元素の内、Cu元素が前記Ag基材中に拡散反応を起こし、得られた酸化物超電導層の組成が目的とする組成になっていないためであると考えられている。さらに、Ag基材を用いる場合には、Ag自体が非常に柔らかい金属である上、酸化物超電導体の生成時に高温に加熱されることでさらに軟化するため、Ag基材を用いた酸化物超電導体テープ線材などへ応用するためには、強度の問題を解決することも必要である。
【0008】
本発明は上記課題を解決するために成されたものであって、Ag基材あるいは他の金属母材の一面にAg層を形成した酸化物超電導体成形用基材を用い、そのAg上に酸化物超電導体層をCVD法により形成させる場合に、優れた強度と10万A/cm2以上の高Jc特性を具備した酸化物超電導体を得るための、酸化物超電導体テープ線材の製造方法と前述の特性を具備した酸化物超電導体テープ線材を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するための、本発明の酸化物超電導体テープ線材の製造方法は、CVD法によってCuを含有する酸化物超電導体を多層に基材上に生成させるに当たり、テープ状のAg基材1あるいは他の金属母材4の少なくとも一面に形成された圧延集合組織を有するAg層7とを備えた酸化物超電導体成形用基材を用い、少なくとも前記Ag上に直接形成される前記酸化物超電導体層2の生成に用いる酸化物超電導体の原料溶液中のCu原料を過剰に供給して製造するようにしたことを特徴とする。
【0010】
また、本発明の酸化物超電導体テープ線材は、CVD法によって生成される多層のCuを含有する酸化物超電導体であって、Ag基材あるいは他の金属母材の少なくとも一面に形成された圧延集合組織を有するAg層を備えた酸化物超電導体形成用基材の、Ag直上に形成される前記酸化物超電導体層のCu含有量が、その他の酸化物超電導体層のCu含有量よりも高い濃度としたことを特徴とする。
【0011】
これは、CVD法によってAgテープ状基材1上に、例えばYBaCuO系超電導体層2を多層に形成した場合に、10万A/cm2以上の高いJc値が得られない原因について確認実験を行った結果、Ag基材上に直接形成される前記酸化物超電導体層中のCu元素が、Ag基材中に拡散を生じて、得られるYBaCuO超電導体中のCu元素が不足している為である事を見出したことによる。
【0012】
以上の点についてより詳細に述べると、図2(A)(B)に示されるような酸化物超電導体層2を得るために、Ag基材1あるいはAg層7上に直接形成される酸化物超電導体2aを生成する為、CVD反応生成室から供給される原料溶液のガス中のCu原料ガス濃度を他の反応生成室中のCu原料ガス濃度よりも過剰となるように供給して、まずAg基材1上あるいは酸化物超電導体形成用基材のAg層7上に酸化物超電導体層を形成し、続いて順次その上に第2の酸化物超電導体層2b、第3の酸化物超電導体層2cを順次形成する。
【0013】
このようにして、Ag基材1、Ag層7上にYBaCuO系酸化物超電導体層2を形成した後、この層をエッチングによって除去し、前記Ag基材中のY(イットリウム)、Ba(バリウム)、Cu(銅)各元素の量を分析した。結果は、表1に記載されるように、多量のCu元素が確認された。(2回測定した結果である)これは、酸化物超電導体生成用の原料中のCu元素がAg基材中に拡散されたためであると考えられる。よって、このような現象を生じないようにするためには、Ag基材界面でのCu元素の拡散を抑制する必要がある。
【0014】
【表1】
Figure 0003822077
【0015】
そこで上記結果を基に前記課題を解決する為に、以下の確認実験を行った。すなわち、異なる3種類の製造条件で生成させたYBaCuO系酸化物超電導体の各構成元素の割合を測定した。これは図3に示すような3個の反応生成室9A、9B、9Cを有するCVD製造装置8を用いて、図4に示す原料溶液を供給する装置から、それぞれ表2に示す組成割合の前記YBaCuO酸化物超電導体の原料溶液のガス(各元素の組成割合は、原料溶液のモル比で表した)をAgテープ基材T上に供給して、前記YBaCuO酸化物超電導体層を形成させた。すなわち実験例1の場合は、反応生成室9A、9B、9C全てからから、Y、Ba、Cu各元素の組成割合を1:1.9:2.5となるように全て同組成の原料溶液のガスを供給した。実験例2の場合は、反応生成室9A、9B、9C全てからY、Ba、Cu各元素の原料ガス割合を1:1.9:2.7となるようにして、前記と同様に供給した。また実験例3では、Ag基材上に直接酸化物超電導体層を形成する反応生成室7Aからは、Y、Ba、Cuの各元素の原料溶液のガス割合を、1:1.9:2.7となるように調整して、Cu元素が過剰となる様供給し(第1層目を構成)、他の反応生成室7Bおよび7Cからは、Cu原料溶液のガスを過剰としないY:Ba:Cuが1:1.9:2.5の原料溶液のガスを供給し(第2層目、第3層目を構成)、前記YBaCuO酸化物超電導体層を生成させた。なお、実験の条件を纏めて示すと、以下の表2に記載するとおりである。
更に、表2には記載を略したが、実験例4として、Ag基材上に直接酸化物超電導体層を形成する反応生成室7Aからは、Y、Ba、Cuの各元素の原料溶液のガス割合を、1:1.9:2.9となるように調整して、Cu元素が更に過剰となる様供給し(第1層目を構成)、他の反応生成室7Bおよび7Cからは、Cu原料溶液のガスを過剰としないY:Ba:Cuが1:1.9:2.5の原料溶液のガスを供給し(第2層目、第3層目を構成)、前記YBaCuO酸化物超電導体層を生成させる実験も行った。
【0016】
【表2】
Figure 0003822077
【0017】
結果は表3に記載されるように、実験例1の場合は、生成されたYBaCuO系酸化物超電導体のY、Ba、Cu各元素の組成は、1:2:2.8となっており、Ag基材にCu元素が拡散する為、得られた前記YBaCuO酸化物超電導体中のCu元素が不足していることが判る。この酸化物超電導体のJc(臨界電流密度)は、4.1万A/cm2であった。また実験例2の場合は、得られたYBaCuO系酸化物超電導体のY、Ba、Cu各元素の組成は、1:2:3.2となっており、Cu元素が過剰になっている。これは特に、第3層目(最表面層)では過剰に供給したCu元素がAg基材中に拡散することがないので、前記YBaCuO酸化物超電導体の表面ほどCuOとして析出しているものと考えられる。そしてこのYBaCuO酸化物超電導体のJcも9.8万A/cm2で、10万A/cm2以上のものとはならなかった。
【0018】
これに対して、実験例3のようにAg基材に直接形成される超電導体層(第1層目)を、反応生成室9Aから供給するY、Ba、Cu各元素の組成割合を1:1.9:2.7のようにCu元素が過剰となるような原料溶液のガスを供給して形成したので、Cu元素がAg基材中に拡散しても十分それを補充する量となっている為、得られた前記酸化物超電導体は、Y:Ba:Cuの組成割合が、1:2:3となっていた。また、第2層目(反応生成室9Bから供給)及び第3層目(反応生成室9Cから供給)となる酸化物超電導層の組成割合を、通常YBaCuO酸化物超電導体の形成に好ましいとされるY:Ba:Cuの組成割合である1:1.9:2.5としたので、前記YBaCuO酸化物超電導体の各元素の組成割合はY:Ba:Cuが1:2:3となっていた。そしてこの酸化物超電導体のJc値は、11万A/cm2を示し、想定した超電導特性を有する前記酸化物超電導体が得られた。
また、実験例4の場合に得られた酸化物超電導体のJc値は、11万A/cm2を示し、想定した超電導特性を有する酸化物超電導体が得られた。この例の酸化物超電導体の第3層と第2層を一部研磨して除去し、第1層目の酸化物超電導体部分を露出させてから酸化物超電導体の組成を測定した結果、各元素の組成割合はY:Ba:Cuが1:2:3.1となっていて、第1層目の酸化物超電導体の組成比においてCuの割合が高いことが判明した。
【0019】
【表3】
Figure 0003822077
【0020】
なお、前記には反応生成室(9A、9B、9C)を3個直列に配置した場合の製法について述べたが、前記反応生成室を1個配置して製造することも可能である。すなわち、最初の酸化物超電導体層の形成を、Cu原料溶液のガス濃度を過剰なものとして供給してAg基材上全てに酸化物超電導体層を形成させた後、このAg基材を逆送りする等して前記超電導体層上に、通常の原料溶液濃度(例えば、Y:Ba:Cuがモル比で1:1.9:2.5)の原料溶液のガスを供給して超電導体層(第2層目)を形成する。ついでまた、Ag基材を逆送りしながら、同様の組成の原料溶液のガスを供給して前記第2層目の超電導体層上に、第3層目の酸化物超電導体層を形成するものである。このような製造方法でも、十分に高Jc(10万A/cm2以上)の酸化物超電導体テープ線材を得ることができる。また、反応生成室が2個の場合も同様の効果のものが得られるし、(反応生成室が4個以上の場合も同様である。)更に逆に、1個の反応生成室を備えた製造装置と2個以上の反応生成室を備えた製造装置を用い、1個の反応生成室を備えた製造装置でAg上にCuを多く含む酸化物超電導層を生成し、次いで2個以上の反応生成室を備えた製造装置でCuを規定量含む酸化物超電導層を積層するなどの方法を行って多層構造の酸化物超電導層を備えた酸化物超電導体を製造しても良いのは勿論である。
【0021】
さらに、YBaCuO系酸化物超電導体作成時のCu元素の過剰供給割合については、前記酸化物超電導体の通常好ましいとされる組成元素割合である、Y:Ba:Cuが1:1.9:2.5に対して、1〜20%程度高めのCu濃度とすることが好ましい。このような範囲で、製造条件である温度、製造速度等を考慮して定めれば良い。また、このような範囲とする理由は、1%未満であるとCu元素の過剰供給効果が小さくなり、20%を超えるとCu元素がYBaCuO系酸化物超電導体の膜中でCu-Oの粗大な異相を形成し易くなるからである。
【0022】
以上のように、本発明の酸化物超電導体テープ線材の製造方法は、少なくともAg基材上に直接形成されるYBaCuO系酸化物超電導体の生成を(図2(A)の2a)、YBaCuO超電導体の原料溶液組成の内、Cu原料濃度を過剰に供給することによって生成すれば、その後に形成されるYBaCuO系酸化物超電導体層の各元素の組成割合が、目的とする規定のYBaCuO系酸化物超電導体組成割合とすることが可能となる。
これは、原料溶液中のCu元素を過剰にしておくことによって、YBaCuO酸化物超電導体の生成時にたとえ前記原料溶液中のCu元素がAg中に拡散しても、予めCuを過剰としておくので、減少した分を十分補って酸化物超電導体の組成が乱れたり、結晶の連続性が損なわれること無く、高Jc値を有する超電導特性に優れた酸化物超電導体テープ線材を製造することができる。
【0023】
また、本発明のCuを含む多層の酸化物超電導体テープ線材は、Ag上に直接生成する酸化物超電導層をCu原料組成を過剰に供給することによって生成させるため、前記基材のAg中にCu元素が拡散しても、目的とする組成の酸化物超電導体層が得られるとともに、その上に順次生成する酸化物超電導体層も、目的とする組成の酸化物超電導体を有するテープ線材とすることができる。なお、前記Ag直上に形成する酸化物超電導層を生成するCu原料組成をその後に形成する酸化物超電導層を生成するCu原料組成よりも1〜20%の範囲で高い濃度とすることによって、Ag直上の酸化物超電導体層のみならず、酸化物超電導体層全体を目的とする組成に形成可能となる。そして、前記Cu原料組成の高めの濃度が1%未満であると、Cu元素が、基材であるAg中に拡散してしまい、Cu元素が不足することとなり、また、20%を超えるとCu元素が過剰となり、酸化物超電導体層中にCuOなどの異相として生成され、目的とする酸化物超電導体が得られないという問題が生じる。
また、Cu原料組成を1〜20%過剰として酸化物超電導体を生成することで、Ag上に19%以下の濃度でCu含有量の高い酸化物超電導層を得ることができる。ここで19%以下とは、Cu過剰量が0%よりも高く、19%以下の範囲であることを意味する。
【0024】
なお、酸化物超電導形成用基材を、前記Ag基材(図2(A)の1)に変えて、他の金属母材上に圧延集合組織を有するAg層を備えた2重構造の酸化物超電導体形成用基材(図2(B))を用いた場合には、Ag基材に比して大幅に強度を向上させた酸化物超電導体テープ線材が得られることになる。その場合前記の2層構造の基材は、Ag層の膜厚が、10μm以上100μm以下の範囲とされた構成とすることが好ましい。Ag層の膜厚が、10μm未満であると、金属母材の構成元素がAg層を通して酸化物超電導体層へ拡散するため好ましくない。また、100μmを越える場合には、Agの使用量が多く、基材のコストが高くなるため好ましくない。
【0025】
また、前記基材の母材としては、ハステロイ(NiCrMo合金)、Ni、インコネル、ステンレス鋼などの高温強度に優れる材料から構成されることが好ましい。この金属母材としては、これらの金属材料を用いることで、Ag層を集合組織化するための熱処理や、酸化物超電導体層を生成するために高温に加熱された場合に、金属母材の軟化や、金属母材の構成元素の拡散が起こりにくくなる。従って、Ag層にあっては良好な集合組織を形成、維持することができ、酸化物超電導体層も良好な結晶配向性、結晶連続性を実現することができるので、良好な超電導特性を備えた酸化物超電導体テープ線材を作製することができる。また、この金属母材の厚さは、目的に応じて適宜変更すればよいが、50μm〜200μm程度とするのがよい。
【0026】
さらに、前記Ag層と、金属母材との間に、バリア層が備えられた構成とすることもできる。このような構成とすることで、金属母材を構成する元素が、Ag層や酸化物超電導体層へ拡散するのを抑制することができるので、Ag層の集合組織や酸化物超電導体層の結晶組織を良好に保つことができ、Ag層上に形成される酸化物超電導体層の結晶配向性や結晶連続性を良好なものとすることが可能である。さらに、上記バリア層を備えた酸化物超電導体テープ線材においては、前記Ag層の厚さが、5μm以上10μm以下とされた構成とすることができる。すなわち、上記バリア層により金属母材を構成する元素がAg層やこのAg層上に形成される酸化物超電導層に拡散するのを防止することができる。従って本構成によれば、Ag層を薄くしても良好な結晶連続性を備えた酸化物超電導体層を形成することができ、特に高Jc値を有する超電導特性に優れた酸化物超電導体テープ線材を提供することができる。また、このバリア層を備えた酸化物超電導体テープ線材において、Ag層の膜厚が、5μm未満であると、バリア層へAg層(Ag箔)を貼り合わせるのが困難であり実用的でない。また、10μmを越える場合には、基材コストの増加につながるため好ましくない。
【0027】
【発明の実施の形態】
次に、本発明に係る酸化物超電導体テープ線材の製造方法について、図1を参照して以下に詳細に説明する。この図1に示すCVD製造装置8は、本発明に係る酸化物超電導体テープ線材の製造装置の一例を示すもので、基本的に略同等の構造を有する3個の反応生成室9A、9B、9Cを備えたもので、前記反応生成室内においてテープ状の基材TのAg上に、酸化物超電導体層を連続して積層形成できるようになっている。
【0028】
この酸化物超電導導体の製造装置は、横長の両端を閉じた筒型の石英製のリアクタ10を有している。このリアクタ10は、図5に示すように隔壁11A、12Aによって図5の左側から順に基材導入部13と反応生成室9A、9B、9Cと、基材導出部14に区画されており、隔壁11Aと隔壁12Aの間に設けられた複数の隔壁15(図面では4枚の隔壁)によって、上記反応生成室9A、9B、9Cが分割(図面では3分割)されて、それぞれが互いに略同等の構造とされるとともに、隣り合う反応生成室9A、9Bと9B、9Cの間(隣り合う隔壁16、16で)には、2つの境界室16が区画されている。従って、このリアクタ10には、反応生成室9A、9B、9Cが後述する基材搬送領域Rに送り込まれるテープ状の基材Tの移動方向に直列に複数(図面では3つの反応生成室)が設けられていることになる。尚、リアクタ10を構成する材料は、石英に限らずステンレス鋼などの耐食性に優れた金属であっても良い。
【0029】
また、上記隔壁11A、15、12Bの下部中央には、図5と図6に示すように、長尺のテープ状の基材Tが通過可能な通過孔17がそれぞれ形成されていて、前記リアクタ10の内部には、その中心部を横切る形で基材搬送領域Rが形成されている。さらに、基材導入部13にはテープ状の基材Tを導入するための導入孔が形成されるとともに、基材導出部14には基材Tを導出するための導出孔が形成されている。また、導入孔と導出孔の周縁部には、基材Tを通過させている状態で各孔の隙間を閉じて基材導入部13と基材導出部14を気密状態に保持するための封止機構(図示略)が設けられている。
【0030】
各反応生成室9A、9B、9Cの天井部には、図5に示すように略角錐台型のガス拡散部18が取り付けられている。これらのガス拡散部18は、リアクタ10に取り付けられたガス拡散部材19と、このガス拡散部材の天井壁20に接続され、拡散層または酸化物超電導体の原料ガスをガス拡散部材19に供給するガス導入管21と、ガス導入管21の先端部に設けられたスリットノズル(図示略)を具備して構成されている。また、ガス拡散部材19の底面は、細長い長方形状の開口部22とされ、この開口部を介してガス拡散部材19が各反応生成室9A、9B、9Cに連通されている。
【0031】
また、図3に示すように、境界室16、16の天井部には、遮断ガス供給手段23が供給管24、24を介して接続され、前記遮断ガス供給手段23は、境界室16の両側の反応生成室9A、9Bと9B、9Cどうしを遮断するための遮断ガスを供給し、供給管24は、遮断ガス噴出部を介して境界室16に接続されている。この遮断ガスとして例えばアルゴンガスが選択される。特に最近では、各反応生成室9A、9B、9C内の圧力、ガス拡散の状態を同時に保つことで遮断ガスを導入しなくとも、問題ないことを本発明者が確認しており、遮断ガス供給手段23を略して構成しても良い。
【0032】
一方、各反応生成室9A、9B、9C及び境界室16、16の下方には、図6に示すように基材搬送領域Rの長さ方向に沿って各反応生成室9A、9B、9C及び境界室16、16を貫通するように排気室25が設けられている。そして、この排気室の上部には、図5に示すように、基材搬送領域Rに通されたテープ状の基材Tの長さ方向に沿って細長い長方形状のガス排気孔26、26が各反応生成室9A、9B、9C及び境界室16、16を貫通するようにそれぞれ基材Tの両側に形成されており、このガス排気孔26、26には、隔壁11、12、15の基材搬送領域Rの両側か端部が貫通状態とされている。また、排気室25の下部には複数本(図面では7本)の排気管27がそれぞれ接続されており、これらの排気管27は、図1に示す真空ポンプ28を備えた圧力調整装置29に接続されている。
【0033】
また、ガス排気孔26が形成された排気室25と、排気孔30を有する複数本の排気管27と、バルブ31と、真空ポンプ28と、圧力調整装置29によってガス排気手段32が構成されている。このような構成のガス排気手段32は、CVD反応装置の内部の原料ガスや酸素ガスや不活性ガス、及び遮断ガスなどのガスを速やかに排気できるようになっている。
【0034】
リアクタ10の外部には、図1に示すように加熱ヒータ33が設けられている。図1に示す例では、3つの反応生成室9A、9B、9Cに亘って連続する加熱ヒータ33としたが、この加熱ヒータを、CVD反応装置の各反応生成室9A、9B、9Cに対して独立の構造とすることも可能である。更に、リアクタ10の基材導入部13が不活性ガス供給源34に、また、基材導出部14が酸素ガス供給源35にそれぞれ接続されている。
【0035】
また、ガス拡散部18の天井壁20に接続された各原料ガス導入管36は、ガスミキサ37を介して、酸化物超電導体の原料ガス供給手段38の原料ガスの気化器(原料ガスの供給源)に接続されている。
【0036】
前記酸化物超電導体の原料ガス供給手段38は、図4に示す原液供給装置39と液体原料供給装置40と、原料溶液の気化器(原料ガス供給源)41とを備えて概略構成されている。前記気化器41には、後述の液体原料供給装置40の先端部(図示下部)が収納されている。また、前記気化器の外周部にはヒータ42が付設されていて、このヒータ42により液体原料供給装置40から供給された原料溶液43を所望の温度に加熱して気化させることにより原料ガスが得られるようになっている。また、気化器41の内底部には保熱部材44が設置されている。この保熱部材は、熱容量の大きい材料であって液体原料43と反応しないものであれば、どのような材料であっても良く、特に金属製の厚板が好ましく、その構成材料としてはステンレス鋼、ハステロイ、インコネルなどが好ましい。
【0037】
また、液体原料供給装置40は、図4に示すように、管状の原料溶液供給部45と、この供給部の外周を取り囲んで設けられた筒状のキャリアガス供給部46とから概略構成された2重構造のものである。原料溶液供給部45は、後述する原液供給装置39から送り込まれてくる原料溶液43を気化器41の内部に供給するものである。キャリアガス供給部46は、原料溶液供給部45との隙間に前述の原料溶液43を噴出するためのキャリアガスを流すためのものである。そして、キャリアガス供給部46の上部には、キャリアガス用MFC(流量調整器)47を介してキャリアガス供給源48が接続され、キャリアガス供給部46内(原料溶液供給部45との隙間)にアルゴンガス、ヘリウムガス、窒素ガスなどのキャリアガスを供給できるように構成されている。
【0038】
また、気化器41の内部は仕切板49により縦方向に2分割されており、分割された領域が仕切板49の下側において連通され、この仕切板の下側の連通部分を原料ガスが通過して先のガス導入管36が接続された接続部50に流動できるように構成されている。
【0039】
上述の液体原料供給装置40では、原料溶液43を原料溶液供給部45内に一定流量で送り込むとともにキャリアガスをキャリアガス供給部46に一定流量で送り込むと、原料溶液43は原料溶液供給部45の先端部に達するが、この先端部外周側のキャリアガス供給部46の先端からキャリアガスが流れてくるので、先端部51から吹き出される際、原料溶液43は上記キャリアガスとともに気化器41の内部に導入され、この気化器の内部をその底部に到るまで移動しながら加熱、気化され、原料ガスとされる。また、気化器41の底部に設置された保熱部材44に到り、この保熱部材により更に気化が成されて原料溶液が完全に気化されて原料ガスとされる。尚、本実施形態の構造では、原料溶液を原料溶液供給部45の先端部51から霧化するのではなく、加熱とキャリアガスとの混合のみにより原料ガスとするので、液体原料の気化に関しては、液体原料が原料ガスに気化されるまでの間に気化器41内部の内壁に衝突しない構成とすることが好ましい。
【0040】
このような液体原料供給装置40の原料溶液供給部45には、原液供給装置39が加圧式液体ポンプ52を備えた接続管53を介して接続されている。原液供給装置39は、収納容器54と、パージガス源55を備え、収納容器54の内部には原料溶液43が収納されている。この原料溶液は、加圧式液体ポンプ52により吸引され、その流量を調節されて原料溶液供給部45へ輸送される。
【0041】
さらに、図1に示すように、リアクタ10の基材導入部13の側部側(前段側)には、テープ状の基材TをCVD反応装置に供給するためのテンションドラム56と送出ドラム57とからなる基材搬送機構58が設けられている。このテンションドラム56と送出ドラム57は正逆回転自在に構成されている。また、リアクタ10の基材導出部14の側部側(後段側)には、リアクタ10内の基材搬送領域Rを通過するテープ状の基材Tを巻き取るためのテンションドラム59と、巻取ドラム60とからなる基材搬送機構61が設けられている。このテンションドラム59と、巻取ドラム60も正逆回転自在に構成されている。
【0042】
このような図1に示すCVD反応装置を用いて酸化物超電導体テープ線材を製造するには、まず、テープ状の酸化物超電導体形成用基材Tと、酸化物超電導体の原料溶液を用意する。そしてこの基材Tとしては、図2(A)、(B)に示す構成のものや前記基材について詳述したような基材を用いることが好ましい。
【0043】
そして、酸化物超電導体をCVD反応により生成させるための原料溶液は、酸化物超電導体を構成する金属錯体を溶媒中に分散させたものが好ましい。具体的には、Y1Ba2Cu37-xなる組成のY系の酸化物超電導体層を形成する場合は、Ba−ビス−2,2,6,6−テトラメチル−3,5−ヘプタンジオン−ビス−1,10−フェナントロリン(Ba(thd)2・phen2)と、Y(thd)2と、Cu(thd)2などの金属錯体を使用することができ(phen=フェナントロリン)、他にはY-ビス-2,2,6,6-テトラメチル-3,5-ヘプタンジオナート(Y(DPM)3)と、Ba(DPM)2、Cu(DPM)2などの金属錯体を用いることができる。
【0044】
尚、酸化物超電導体層には、先のY系の他に、La2-xBaxCuO4なる組成式で代表されるLa系、Bi2Sr2Can-1Cun2n+2(nは自然数)なる組成式で代表されるBi系、Tl2Ba2Can-1Cun2n+2(nは自然数)なる組成式で代表されるTl系のものなど、目的の組成に応じた金属錯塩を用いて上述のCVD法を実施すればよい。
【0045】
ここで例えば、Y系以外の酸化物超電導体層を製造する場合には、必要な組成系に応じて、トリフェニルビスマス(III)、ビス(ジピバロイメタナト)ストロンチウム(II)、ビス(ジピバロイメタナト)カルシウム(II)、トリス(ジピバロイメタナト)ランタン(III)等の金属錯塩を適宜用いてそれぞれの系の酸化物超電導体層の製造に供することができる。
【0046】
次に、用意した原料溶液を、図4に示す原液供給装置39の収納容器54に原料溶液43として上記各原料溶液を収納し、液体原料供給装置40に接続しておく。そして、テープ状の酸化物超電導体形成用基材Tを用意したならば、これを酸化物超電導体テープ線材の製造装置内の基材搬送領域Rに基材搬送機構58により基材導入部34から所定の移動速度で送り込むとともに基材搬送機構の巻き取りドラム60で巻き取る。また、反応生成室9A、9B、9C内の基材Tを加熱ヒータ33で所定の温度に加熱する。次いで、テープ状の基材Tをリアクタ10内に送り込んだならば、原料ガス供給手段38に備えられた加圧式液体ポンプ52により収納容器54から原料溶液43を、それぞれ送り込む反応生成室9A、9B、9Cごとの原料組成濃度に調節され状態で、流量0.1〜10ccm程度で原料溶液供給部45内に送液し、これと同時にキャリアガスをキャリアガス供給部46に流量200〜550ccm程度で送り込む。また、気化器41には、原料溶液43の気化温度以上に加熱しておく。
【0047】
すると、一定流量のミスト上の原料溶液43が気化器41内に連続的に供給され、ヒータ42により加熱、気化されて原料ガスとなり、この原料ガスがガス導入管36を介して各ガス拡散部18に連続的に供給される。次に、反応生成室9A、9B、9Cに移動した原料ガスは、上方から下方へ移動し、加熱された基材T上において反応して反応生成物が堆積し、酸化物超電導体層が順次Ag層上、前記酸化物超電導体層上に順次形成される。この際、制御手段62は、各反応生成室ごとにガス分圧を独立に制御して所定のガス分圧を維持するように原料ガス供給手段38をそれぞれ制御する。この際、制御手段61は、テープ状の基材Tの移動方向の反応生成室9A、9B、9Cのガス分圧よりも、テープ状の基材Tの移動方向下流側の反応生成室9A、9B、9Cのガス分圧が高くなるように原料ガス供給手段38bをそれぞれ制御することが好ましい。そして、これらの酸化物超電導体層が形成された基材Tは、巻取ドラム60に巻き取られる。尚、酸化物超電導体層の形成後は、必要に応じて酸化物超電導体層の結晶構造を整えるための熱処理を施しても良い。
【0048】
上述のようにして形成された酸化物超電導体層上にさらに銀などからなる安定化層(保護層としても作用する)をスパッタ法や蒸着法などにより形成すると、安定化層を備えた酸化物超電導体と同等のものを得ることができる。また、この安定化層は、図1に示す製造装置の反応生成室9A、9B、9Cの1個または複数個、さらには専用の保護層形成室を配置して、気相法等により形成することもできる。このような構成とすれば、安定化層(保護層を含む)を備えた酸化物超電導体を上記製造装置において連続して製造することができる。
【0049】
このような図1に示す構造の装置を用いて酸化物超電導体テープ線材を製造するならば、酸化物超電導体層を1回の基材Tの移動により製造することができ、しかもAg層直上の酸化物超電導体層が、Cu元素の拡散によってもなお組成範囲が適正に制御されたものとなっているので、その上に生成される超電導体層のみならず全体の超電導体層も、優れた超電導特性を有するものとなる。また、基材Tの搬送速度を適切な範囲として適切な厚さの酸化物超電導体層が積層することが可能なので、より優れた超電導特性を備えた酸化物超電導体となる。
【0050】
尚、この装置を用いて送出ドラム57と巻き取りドラム60との間において基材Tを繰り返し往復移動し、4層、あるいは6層などの積層数の酸化物超電導層を積層して酸化物超電導導体を製造しても良い。また、上記の例では、3個の反応生成室を配置して酸化物超電導層を形成する場合について説明したが、1個の反応生成室によって製造することも可能であるし、2個または多数配置したものでも良い。
【0051】
さらに、酸化物超電導体形成用基材について述べる。図2(B)に記載されるAg層7は、圧延集合組織を有するAgからなるものが好ましい。このAg層の圧延集合組織としては、基材表面に{100}面を、長手方向に<001>を優先的に配向させた立方体集合組織を有する{100}<001>集合組織、基材表面に{110}面を、長手方向に<110>を優先的に配向させた立方体集合組織を有する{110}<110>集合組織、基材表面に{110}面を、長手方向に<001>を優先的に配向させた立方体集合組織を有する{110}<001>集合組織のいずれかとすることが好ましい。当然に、図2(A)に記載されるAg基材1の表面も、このような処理を施されたものが好ましい。このように集合組織を有する配向Ag層を形成した基材を用いることで、特にYBaCuO系の酸化物超電導体層を形成する際に、基材表面の結晶の格子定数と、酸化物超電導体層の格子定数とを近づけることができるので、形成される酸化物超電導体層の結晶性を向上させ、優れた超電導特性を備えたものとすることができる。
【0052】
また、前記Ag層7の圧延集合組織は、圧延が施されたAg箔を金属母材1またはバリア層13に貼り合わせた後に、熱処理を施して集合組織化したものであっても良く、圧延を施したAg箔に予め熱処理を施して圧延集合組織をAg箔中に形成し、この圧延集合組織を有するAg箔を金属母材1またはバリア層13に貼り合わせて形成しても良い。
【0053】
なお、バリア層(図示せず)を備えていない基材におけるAg層7の膜厚は、10μm〜100μmの範囲とされる。Ag層の厚さが10μm未満であると、金属母材1の構成元素がAg層を通過して、Ag層上に形成される酸化物超電導体層へ拡散するので好ましくない。また、100μmを越える場合には、Agの使用量が多くなり、基材としてのコストが高くなり好ましくない。
【0054】
一方、バリア層を備えた基材においては、このバリア層によって金属母材の元素の拡散を抑制することができるので、Ag層の膜厚をより薄く形成することができる。従って、Ag層の厚さは5μm以上10μm以下とされる。これは、Ag層の厚さが、5μm未満であると、Ag層をバリア層に貼り合わせるのが困難であり実用上好ましくない。また、10μmを越える場合には、基材コストの増加につながるので好ましくない。
【0055】
また、バリア層は、金属母材を構成する元素が、上記圧延集合組織を形成するための熱処理やAg箔を金属母材に貼り合わせるための加熱によってAg層へ拡散し、Ag層の結晶配向性を損なうのを防ぐために設けられている。このようなバリア層を構成する材料としては、Pt、Au、Cu等の金属や、MgO、YSZ(イットリア安定化ジルコニア)、CeO2等の酸化物を用いることができる。
【0056】
そして、バリア層の厚さは、これを構成する材料により適宜最適な厚さとすればよいが、金属材料を用いる場合には、0.2〜5μm程度が好ましく、酸化物材料を用いる場合には、0.1〜0.2μmとすることが好ましい。金属材料で構成されたバリア層が、0.2μm未満では、金属母材の元素の拡散を抑制する効果が十分に得られず、5μmを越える場合には、バリア層が内部応力で剥離しやすくなる。また、酸化物材料で構成されたバリア層においても、厚さが0.1μm未満では金属母材の元素の拡散を抑制する効果が十分でなく、0.2μmを越えると、バリア層の形成に要する時間が増えてコスト高となるほか、基材を曲げたとき等に応力でバリア層に割れが発生するおそれがある。
【0057】
以上の構成の酸化物超電導テープ線材用基材によれば、ハステロイなどの高強度金属からなる金属母材4上に、Ag層7がそれぞれ形成されているので、従来のAg基材の問題点であった基材強度を大きく向上させることができ、テープ線材などへの応用を容易にすることができる。また、Ag1、7の表層は、圧延集合組織を有する構造とされているので、このAg層上に形成される酸化物超電導体層との格子のマッチングが良好なものとなり、優れた超電導特性を備えた酸化物超電導体を構成することができる。また、本発明に係る基材を用いるならば、Ag1、7上に直接酸化物超電導体層を成膜することができるので、酸化物超電導体の構造を簡素なものとし、より製造が容易になるという利点も有している。
【0058】
【実施例】
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。本実施例では、テープ状のハステロイを金属母材として用い、この金属母材上に、{110}<110>集合組織が形成されたAg箔を貼り合わせたAg層を有する基材を用いて、酸化物超電導体テープ線材を作製した。また、この例では、W10mm×L50mm×t0.09mmの金属母材に、厚さ50μmのAg箔を貼り合わせた基材を用いた。尚、本例ではAg箔として集合組織を形成済みのものを用いたが、Agの圧延箔を金属母材と貼り合わせ、これに熱処理を施して集合組織を形成してもよい。
【0059】
まず、Y1Ba2Cu37-xなる組成のイットリウム系の酸化物超電導体層を形成するために、Ag層上に直接形成(第1層目)する反応生成室(図1の7A)に供給するCVD用の原料溶液として、Ba-ビス-2,2,6,6-テトラメチル-3,5-ヘプタンジオン-ビス-1,10-フェナントロリン(Ba(thd)2(phen)2)と、Y(thd)2と、Cu(thd)2を用いた。これらの各々をY:Ba:Cu=1.0:1.9:2.7のモル比で混合し、テトラヒドロフラン(THF)の溶媒中に7.0重量%になるように添加したものを酸化物超電導層の液体原料(原料溶液)とした。また、拡散層の液体原料として、Cu(thd)2をTHFの溶媒中に7.0%Wtになるように添加したものを用意した。
【0060】
ついで、第2層目となる反応生成室(図1の7B)および第3層目となる反応生成室(図1の7C)用のCVD用原料溶液として、前記材料の各く組成をY:Ba:Cu=1.0:1.9:2.5の組成比(原料溶液としてのモル比)の原料溶液を、上記と同様に準備した。
【0061】
次に、送出ドラム側から巻取ドラム側に移動させる必要長さの基材の移動を終了した後、第1層目の原料溶液を加圧式液体ポンプにより(0.27ml/分)の流速で、液体原料供給装置の原料溶液供給部に連続的に供給し、これと同時にキャリアガスとしてArをキャリアガス供給部に流量(300cc/m)程度で送り込んだ。以上の操作により一定量のミスト状の液体原料を気化器内に連続的に供給し、更にこの液体原料が気化した原料ガスをガス導入管を経てCVD反応装置のガス拡散部材に一定量連続的に供給して、第1層目の酸化物超電導体層を生成させた。この時の気化器及び輸送管の温度は(230)℃とした。
【0062】
ついで、前記第1層目の酸化物超電導体層上に順次第2層目の原料ガス、第3層目の原料ガスを積層して酸化物超電導体層を形成した。前記Ag基材のリアクタ内の基材移動速度を3.0m/h、基材加熱温度を780℃、リアクタ内圧力を5.0Torr(5.0×133Pa)、設定酸素分圧値を1.43〜1.53Torr(1.43×133〜1.53×133Pa)に設定して、移動する基材上にYBaCuO系の酸化物超電導体層を連続的に形成し、所定長さの基材の移動が終了するまで成膜を行った。
【0063】
このようにして得られた厚さ0.5μmのYBaCuO酸化物超電導体層について、超電導特性の評価を行った。結果はYBaCuO超電導体テープ線材として、Jcが13万A/cm2であった。また、このときのYBaCuO超電導体の各元素の組成比は、Y1Ba2Cu37- δであり、酸化物超電導体テープ線材としての強度と併せて満足できるものといえる。
【0064】
【発明の効果】
以上詳細に説明したように、本発明によれば、Agテープ基材や他の金属母材少なくとも一面側に形成された圧延集合組織を有するAg層とを備えた酸化物超電導体形成用基材を用いて酸化物超電導層をCVD法によって製造できるので、他の気相法に比して安価な装置で、製造速度も比較的早くまた強度の問題も解決できる等、Ag材料の利点を生かした酸化物超電導体テープ線材を提供することができる。
【0065】
また、本発明の酸化物超電導体テープ線材の製造方法は、前記Ag層上に直接形成される酸化物超電導体層は、その上に順次形成する酸化物超電導層のCu組成よりも過剰に供給しながら酸化物超電導体生成するので、たとえAg中にCu元素が拡散しても、過剰に供給したCu元素によって不足分を十分に補充されるので、生成された酸化物超電導体は、高Jc、特に10万A/cm2以上の超電導特性を有する酸化物超電導体テープ線材が得られる。
【0066】
さらに、前述した反応生成室を少なくとも2個配置したCVD製造装置を用いて、本発明の酸化物超電導体テープ線材を製造すれば、連続製造が可能となる。また、テープ基材の移動速度も自由に変えることが可能なので、目的とする酸化物超電導体を種々の製造条件を選択して、製造することもできる。
【0067】
さらにまた、本発明の酸化物超電導体テープ線材は、酸化物超電導体形成用基材であるAg基材や強度等に優れた金属母材上に圧延集合組織を有するAg層を形成した前記基材を用い、このAg直上にはCu含有量の高い酸化物超電導体層が形成されているので、その上に順次形成される酸化物超電導体層も、目的とする組成の酸化物超電導体の生成が可能となる。このため得られた酸化物超電導体テープ線材は、高Jcの超電導特性を有し、強度等も優れた酸化物超電導テープ線材として、用いることができる。
【図面の簡単な説明】
【図1】 図1は、本発明に係る酸化物超電導体テープ線材の製造装置の全体構成を示す図である。
【図2】 図2は、本発明に係る酸化物超電導テープ線材の断面構造例を示す図であり、図1(A)は、Ag基材上に直接構成された例を示し、図1(B)は、金属母材上のAg層の上に形成した例を示す。
【図3】 図3は、図1に示す製造装置に備えられたリアクタの概略構造例を示す断面構成図である。
【図4】 図4は、図1に示す製造装置に備えられた原料ガス供給装置の概略構造例を示す構成図である。
【図5】 図5は、図1に示す製造装置に備えられたリアクタの構造例を示す斜視構成図である。
【図6】 図6は、従来の酸化物超電導体の一例を示す概略断面図である。
【図7】 図7は、従来の酸化物超電導体の他の例を示す概略断面図である。
【符号の説明】
2・・・酸化物超電導導体層、2a・・・Cu元素を過剰に供給して生成した酸化物超電導体層、1…Ag基材、9A、9B、9C・・・反応生成室、10・・・リアクタ、T・・・酸化物超電導体形成用基材、13・・・基材導入部、14・・・基材ド導出部、19・・・ガス拡散部、33・・・ヒータ、38・・・原料ガス供給手段、R・・・基材搬送領域、58、61・・・基材搬送機構、62・・・制御手段。

Claims (10)

  1. Ag基材あるいは他の金属母材の少なくとも一面に形成された圧延集合組織を有するAg層を備えた酸化物超電導体形成用基材のAg上に、CVD法により順次Cuを含む酸化物超電導体を多層に生成するに当たり、前記Ag上に直接前記酸化物超電導体を生成する為の反応生成室の原料溶液の組成を、Cu組成が前記酸化物超電導体組成よりも過剰となるように供給しながらCuを含む酸化物超電導体を生成することを特徴とする酸化物超電導体テープ線材の製造方法。
  2. 前記反応生成室を少なくとも2個直列に配置し、前記Ag上に直接前記超電導体を生成する為の前記反応生成室の前記原料溶液の組成を、Cu組成が前記酸化物超電導体の組成割合よりも過剰になるように供給し、残りの反応生成室中の原料溶液組成は、Ag直上に生成する反応生成室のCu組成ではない、規定の酸化物超電導体組成を得ることが可能なCu組成とすることを特徴とする請求項1記載の酸化物超電導体テープ線材の製造方法。
  3. 前記Ag上に直接酸化物超電導体層を生成させるための前記反応生成室中のCu組成を、その他の反応生成室中のCu組成よりも1〜20%高い濃度としておくことを特徴とする請求項1または2に記載の酸化物超電導体テープ線材の製造方法。
  4. 前記酸化物超電導体層が、YBaCuO系酸化物超電導体であることを特徴とする請求項1〜3のいずれかに記載の酸化物超電導体テープ線材の製造方法。
  5. 前記Ag基材は表面の組織(110)配向が圧延集合組織を有することを特徴とする請求項1〜4記載のいずれかに記載の酸化物超電導体テープ線材の製造方法。
  6. 前記酸化物超電導体成形用基材のAg層の厚さが、10μm以上100μm以下の範囲とされたことを特徴とする請求項1〜4のいずれかに記載の酸化物超電導体テープ線材の製造方法。
  7. 前記酸化物超電導体成形用基材の前記Ag層と、前記金属母材との間に、バリア層が備えられたことを特徴とする請求項1〜4並びに6のいずれかに記載の酸化物超電導体テープ線材の製造方法。
  8. 前記酸化物超電導体層上に貴金属材料からなる保護層を形成したことを特徴とする請求項1〜7のいずれかに記載の酸化物超電導体テープ線材の製造方法。
  9. Ag基材あるいは他の金属母材の少なくとも一面に形成された圧延集合組織を有するAg層を備えた酸化物超電導体形成用基材のAg上に、CVD法により順次Cuを含む酸化物超電導体を多層に生成してなる酸化物超電導体であって、前記多層の酸化物超電導体の内、Ag直上の前記酸化物超電導体層のCu含有量が、その他の前記酸化物超電導体層のCu含有量よりも高い濃度であることを特徴とするCuを含む酸化物超電導体テープ線材。
  10. 前記Ag直上の酸化物超電導体層のCu含有量が、その他の前記酸化物超電導体層のCu含有量よりも19%以下高い濃度であることを特徴とする請求項9に記載のCuを含む酸化物超電導体テープ線材。
JP2001283928A 2001-06-22 2001-09-18 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材 Expired - Fee Related JP3822077B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001283928A JP3822077B2 (ja) 2001-09-18 2001-09-18 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材
US10/177,962 US6743531B2 (en) 2001-06-22 2002-06-19 Oxide superconducting conductor and its production method
EP02291528A EP1271666A3 (en) 2001-06-22 2002-06-19 Oxide superconductor layer and its production method
CNB021272433A CN1302487C (zh) 2001-06-22 2002-06-20 氧化物超导导体及其制造方法
US10/768,899 US20050079116A1 (en) 2001-06-22 2004-01-30 Oxide superconducting conductor and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001283928A JP3822077B2 (ja) 2001-09-18 2001-09-18 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材

Publications (2)

Publication Number Publication Date
JP2003092036A JP2003092036A (ja) 2003-03-28
JP3822077B2 true JP3822077B2 (ja) 2006-09-13

Family

ID=19107340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001283928A Expired - Fee Related JP3822077B2 (ja) 2001-06-22 2001-09-18 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材

Country Status (1)

Country Link
JP (1) JP3822077B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123462B2 (ja) * 2004-10-27 2013-01-23 住友電気工業株式会社 膜形成用配向基板および超電導線材ならびに膜形成用配向基板の製造方法
US20090149330A1 (en) * 2006-02-16 2009-06-11 Sumitomo Electriv Industries, Ltd. Method of manufacturing superconducting thin film material, superconducting device and superconducting thin film material
JP5087447B2 (ja) * 2008-03-26 2012-12-05 中部電力株式会社 酸化物超電導線材及び酸化物超電導線材の製造方法
JP5468857B2 (ja) * 2009-09-28 2014-04-09 古河電気工業株式会社 超電導線材の製造方法及びcvd装置
JP5432863B2 (ja) * 2010-08-25 2014-03-05 住友電気工業株式会社 膜形成用配向基板および超電導線材
JP5379293B2 (ja) * 2012-11-15 2013-12-25 住友電気工業株式会社 膜形成用配向基板および超電導線材ならびに膜形成用配向基板の製造方法
WO2015177831A1 (ja) * 2014-05-19 2015-11-26 株式会社日立製作所 超電導線材

Also Published As

Publication number Publication date
JP2003092036A (ja) 2003-03-28

Similar Documents

Publication Publication Date Title
EP1525627B1 (en) Method and apparatus for depositing superconductor material on a tape substrate
CN101431143B (zh) 制作超导材料的方法
US20120258863A1 (en) Metalorganic chemical vapor deposition (mocvd) process and apparatus to produce multi-layer high-temperature superconducting (hts) coated tape
US6743531B2 (en) Oxide superconducting conductor and its production method
JP5415696B2 (ja) 機能が向上された厚膜超伝導フィルム
CN102870244B (zh) 单涂层的厚氧化物膜
JP3822077B2 (ja) 酸化物超電導体テープ線材の製造方法と酸化物超電導体テープ線材
JP2008514545A5 (ja)
JP3771143B2 (ja) 酸化物超電導導体の製造方法
US20040178175A1 (en) Atomic layer deposition for high temperature superconductor material synthesis
JP3771142B2 (ja) 酸化物超電導導体及びその製造方法
JP3741860B2 (ja) 酸化物超電導導体の製造装置および製造方法
JP4034052B2 (ja) 酸化物超電導導体の製造方法
JP4012772B2 (ja) 酸化物超電導体テープ線材
JP3741816B2 (ja) 酸化物超電導テープ線材の製造方法
JP4128358B2 (ja) 酸化物超電導導体の製造方法
JP3756322B2 (ja) 酸化物超電導導体の製造装置および製造方法
JP4490049B2 (ja) 超電導導体およびその製造方法
JP3771107B2 (ja) 酸化物超電導導体及びその製造装置並びに製造方法
JP3330964B2 (ja) 高温超電導線材の製造方法および製造装置
JP2575443B2 (ja) 酸化物系超電導線材の製造方法
JP2575442B2 (ja) 酸化物系超電導線材の製造方法
JP2002266072A (ja) 積層膜および成膜方法
JP4112314B2 (ja) 酸化物超電導導体製造cvd反応装置用液体原料供給装置及び酸化物超電導導体の製造方法
JP2527790B2 (ja) 酸化物系超電導長尺材の製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees