JP3819230B2 - マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法 - Google Patents

マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法 Download PDF

Info

Publication number
JP3819230B2
JP3819230B2 JP2000332452A JP2000332452A JP3819230B2 JP 3819230 B2 JP3819230 B2 JP 3819230B2 JP 2000332452 A JP2000332452 A JP 2000332452A JP 2000332452 A JP2000332452 A JP 2000332452A JP 3819230 B2 JP3819230 B2 JP 3819230B2
Authority
JP
Japan
Prior art keywords
probe
indentation
measurement
scanning
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000332452A
Other languages
English (en)
Other versions
JP2002139414A (ja
Inventor
文利 安尾
あきつ 鮎川
加代子 森
裕子 岡▲崎▼
亮一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000332452A priority Critical patent/JP3819230B2/ja
Publication of JP2002139414A publication Critical patent/JP2002139414A/ja
Application granted granted Critical
Publication of JP3819230B2 publication Critical patent/JP3819230B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/06Circuits or algorithms therefor

Description

【0001】
【発明の属する技術分野】
本発明はマルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法に関する。
【0002】
【従来の技術】
従来、走査プローブ顕微鏡装置としては、図11(e)に示すように、先端部に測定用プローブ26を有する単体のカンチレバー27と、このカンチレバー27を保持するホルダ28と、このホルダ28が固定された駆動機構29とを備えたものがある。上記駆動機構29は、カンチレバー27と共に測定用プローブ26をX,Y,Z方向に移動させることができる。
【0003】
上記構成の走査プローブ顕微鏡装置を用いた試料表面評価方法を下記(A),(B),(C)の場合について説明する。
【0004】
(A) 目的の測定箇所を複数種の走査プローブ顕微鏡装置で測定する場合
図11(a)に示す試料20の測定箇所21が形状などから容易に認識できる場合は、光学顕微鏡を用いて測定箇所21をカンチレバー27の上方から観察しながら、カンチレバー27を測定箇所21の上方に移動させて、測定用プローブ26で走査プローブ顕微鏡像を測定する。
【0005】
一方、測定対象である試料20の形状が例えばLSI(大規模集積回路)のメモリーデバイスの様に同じ形状を繰り返している場合、つまり、同じ形状の繰り返しのために試料20上の測定箇所21の確認が難しい場合は、予め、測定箇所21の周辺にマーキングを施して、このマーキングを基準に走査プローブ顕微鏡測定で測定箇所21を確認する。上記マーキングは、広域観察ができ、かつ、試料20の表面に微小なマーキングが可能である集束イオンビーム(以下、FIBと言う)装置やレーザマーカなどの装置によって形成する。
【0006】
具体的には、まず、図11(b)に示すように、レーザマーカ用ステージ22に試料20を乗せる。そして、上記試料20において、測定箇所21から間隔Lを隔てた箇所にレーザ光23を照射して、レーザ痕24を3方向のそれぞれに形成する。この際、上記走査プローブ顕微鏡装置で測定可能であって、かつ、測定箇所21の表面にダメージを与えない距離としてL=20〜50μm程度が適当である。次に、上記試料20を走査プローブ顕微鏡装置用試料台25に固定した後、光学顕微鏡でカンチレバー27の上方からレーザ痕24を観察しながら、測定箇所21を含む領域上にカンチレバー27を移動させ、測定用プローブ26を用いて凹凸像を測定する。この凹凸像は、原子間力顕微鏡(以下、AFMと言う)像測定や走査トンネル顕微鏡(以下、STMと言う)像測定で得られる。上記AFM像測定は、プローブ先端原子と試料最表面原子との間に働く原子間力を計測しながら、プローブで試料の表面をなぞる。一方、上記STM像測定は、試料とプローブとの間に一定電圧を印加した状態で、試料とプローブとの間に流れるトンネル電流を測定しながら、トンネル電流が一定になるように測定用プローブを上下させながら試料表面をなぞる。
【0007】
そして、得られた凹凸像におけるレーザ痕24から、図11(f)に示す位置ずれを補正して、測定箇所21を中心とした測定領域の凹凸像,走査キャパシタンス顕微鏡(以下、SCMと言う)像を測定する。これにより、図11(g)に示す凹凸像、および、図11(h)に示すSCM像が得られ、異常箇所29が検出される。上記SCM像の測定は、試料とプローブとの間に交流電圧を印加した状態で試料表面を測定用プローブでなぞり、自然酸化膜等を介して接するプローブと試料との間の容量変化(キャパシタンスの変化=dc/dv)を容量センサーで測定することで行う。
【0008】
このように、凹凸像,SCM像に対応する測定用プローブを有する走査プローブ顕微鏡毎に測定作業を行って、それぞれの走査プローブ顕微鏡測定の結果を比較評価する。
【0009】
(B) 走査プローブ顕微鏡装置で任意の場所を測定し、その測定中に発見した特定箇所を他の種類の走査プローブ顕微鏡装置で測定する場合
走査プローブ顕微鏡装置で任意の場所を測定し、測定中に見つかった特異な領域が、周辺部等も含めて、形状等の点で光学顕微鏡などで容易に特定できる場合は、光学顕微鏡等を用いて別の走査プローブ顕微鏡装置のプローブを測定対象となる特異な領域に位置合わせして、別の走査プローブ顕微鏡装置による測定を実施する。
【0010】
(C) 走査プローブ顕微鏡装置で任意の場所を測定し、その測定中に発見した特定箇所を透過型電子顕微鏡(以下、TEMと言う)や走査型電子顕微鏡(以下、SEMと言う)などの解析装置で測定する場合
走査プローブ顕微鏡装置による測定中に見つかった特異な領域が、周辺部等も含めて、形状等の点で光学顕微鏡などで容易に特定できる場合は、TEMやSEMなどの解析装置の観察手段を用いて、その解析装置の解析手段を測定対象となる特異な領域に位置合わせして、TEMやSEMなどの解析装置による測定を実施する。または、特徴的な形状を元に、レーザマーカやFIB装置を用いて、評価すべき特異な領域の周辺に位置確認用のマークを形成し、このマーク位置を元に、TEMやSEMなどの解析装置で評価対象位置を確認して評価する。
【0011】
【発明が解決しようとする課題】
(A)の場合、上記試料20の形状的な特徴や、事前に形成したレーザ痕24を手掛りに、複数種の走査プローブ顕微鏡装置を用いて同一箇所を狙って測定を行っている。このとき、試料表面をカンチレバー上方から観察しながら、測定箇所21の直上に測定用プローブ26を移動させ、カンチレバー27と試料20とを接近させて、走査プローブ顕微鏡像を測定する。しかし、上記測定用プローブ26はカンチレバー27の裏側に存在するため、カンチレバー27の上方からの観察では測定用プローブ26の位置が正確には確認できず、その上、測定箇所21もカンチレバー27の影になって見えない。そのため、上記測定用プローブ26を測定箇所21に正確に降ろすことができず、走査プローブ顕微鏡像によって更に測定用プローブ26が降りている位置を確認しながら、目的の位置に測定用プローブ26を移動して行く必要がある。一般に、走査プローブ顕微鏡装置の測定範囲はせいぜい数十μm□であり、測定用プローブ26で測定箇所21を測定するには熟練,労力および時間を要する。その上、そのような測定を複数種の走査プローブ顕微鏡装置のそれぞれにおいて実施しなければならない。その結果、測定作業に多大な労力および時間を要し、測定作業が非常に困難になるという問題がある。
【0012】
また、上記測定箇所21が、電気力顕微鏡(以下、EFMと言う)、SCM、磁気力顕微鏡(以下、MFM)などの測定装置でのみ確認できる特異箇所である場合、光学顕微鏡では測定箇所21を確認することができず、同じ測定箇所21を複数種の走査プローブ顕微鏡装置で評価することは不可能である。
【0013】
更に、走査プローブ顕微鏡装置によっては、電気的な測定のために表面を導電性の膜でコーティングしたプローブを用いるものも多く、測定箇所21とプローブとの位置合わせの間にコーティングを痛めてしまって、目的の測定箇所21に到達した段階では測定できなくなるケースが有る。また、レーザ光23で形成したレーザ痕24を含む領域では表面凹凸が大きく、このレーザ痕24を基準に位置合わせを行う場合、そのレーザ痕24で一層コーティングを痛める可能性が高い。
【0014】
(B)の場合、測定中に見つかった特異な領域に形状等の特徴が無く、その領域を走査プローブ顕微鏡像以外で確認できない場合は、別の走査プローブ顕微鏡に試料を移動しても測定対象の特異な領域が特定できないため、別の走査プローブ顕微鏡の測定が不可能になるという問題がある。
【0015】
(C)の場合、測定中に見つかった特異な領域に形状等の特徴が無く、その領域を最初の走査プローブ顕微鏡像以外で確認できない場合は、TEMやSEMなどの解析装置やマーキング装置で測定対象になる特異な領域を特定できないため、TEMやSEMなどの解析装置やマーキング装置を用いた測定が不可能になるという問題がある。
【0016】
そこで、本発明の課題は、複数種の走査プローブ顕微鏡像の測定を容易に行えて、測定作業に要する労力および時間を軽減できるマルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するため、本発明のマルチプローブ型走査プローブ顕微鏡装置は、試料の表面であって上記試料の測定個所近傍に圧痕を形成する圧痕形成用プローブと、上記試料の表面を測定する測定用プローブとを備えたマルチプローブ型走査プローブ顕微鏡装置であって、上記圧痕形成用プローブと上記測定用プローブとを、水平方向および垂直方向に互いに独立して移動させる移動制御手段と、上記圧痕形成用プローブと上記測定用プローブとの取り付け位置関係を、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量に基づいて補正するために、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置と、上記測定用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置とが一致するように上記移動制御手段を制御する補正手段とを有することを特徴としている。
【0018】
上記構成のマルチプローブ型走査プローブ顕微鏡装置によれば、上記試料の測定箇所が特徴的な形状を有している場合、まず、測定箇所を含む領域に対して圧痕形成用プローブで走査プローブ顕微鏡像測定を行う。そして、上記圧痕形成用プローブと測定用プローブとの機械的な取り付け位置関係に基づいて、移動手段が測定用プローブを測定箇所上に移動させた後、測定箇所を含む領域を測定用プローブで測定する。そして、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する。これにより、それら2つの走査プローブ顕微鏡像のズレ量を測定箇所の位置から検出し、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正する。このように、上記圧痕形成用プローブと測定用プローブとの取り付け位置関係が補正されるから、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろすことができる。その結果、測定作業に要する労力および時間を軽減することができる。
【0019】
また、上記試料の測定箇所が特徴的な形状を有していない場合、その測定箇所近傍に圧痕形成用プローブで圧痕を形成して、測定箇所および圧痕を含む領域に対して圧痕形成用プローブで走査プローブ顕微鏡像測定を行う。そして、上記圧痕形成用プローブと測定用プローブとの機械的な取り付け位置関係に基づいて、移動手段が測定用プローブを測定箇所上に移動させた後、測定箇所を含む領域を測定用プローブで測定する。そして、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する。これにより、それら2つの走査プローブ顕微鏡像のズレ量を圧痕から検出し、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正する。このように、上記圧痕形成用プローブと測定用プローブとの取り付け位置関係が補正されるから、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろされる。その結果、測定作業に要する労力および時間を軽減することができる。
また、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、測定用プローブで得られた走査プローブ顕微鏡像とを比較する。そして、それら2つの走査プローブ顕微鏡像のズレ量に基づいて、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正手段が補正する。その結果、上記圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろすことができる。
【0020】
また、一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記移動制御手段は、上記圧痕形成用プローブのための水平垂直移動機構と、上記測定用プローブのための水平垂直移動機構と、上記圧痕形成用プローブの水平垂直移動機構と上記測定用プローブの水平垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して水平および垂直に移動させるように制御する制御部とからなっていることを特徴としている。
【0021】
上記一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記圧痕形成用プローブの水平垂直移動機構と、測定用プローブの水平垂直移動機構とを制御部が制御することによって、圧痕形成用プローブと測定用プローブとを互いに独立して水平および垂直に移動させている。したがって、上記移動制御手段は、圧痕形成用プローブと測定用プローブとを水平および垂直に互いに独立して移動させることができる。
【0022】
また、本発明のマルチプローブ型走査プローブ顕微鏡装置は、試料の表面であって上記試料の測定個所近傍に圧痕を形成する圧痕形成用プローブと、上記試料の表面を測定する測定用プローブとを備えたマルチプローブ型走査プローブ顕微鏡装置であって、上記圧痕形成用プローブと上記測定用プローブとを水平方向に共に移動させると共に、上記圧痕形成用プローブと上記測定用プローブとを垂直方向に互いに独立して移動させる移動制御手段と、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量を検出すると共に、上記ズレ量に基づいて、上記試料に対する上記圧痕形成用プローブの位置と上記試料に対する上記測定用プローブの位置とを補正するために、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置と、上記測定用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置とが一致するように上記移動制御手段を制御する補正手段と
を有することを特徴としている。
【0023】
上記構成の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記試料の測定箇所が特徴的な形状を有している場合、まず、測定箇所を含む領域に対して圧痕形成用プローブで走査プローブ顕微鏡像測定を行う。そして、上記圧痕形成用プローブと測定用プローブとの機械的な取り付け位置関係に基づいて、移動手段が測定用プローブを測定箇所上に移動させた後、測定箇所を含む領域を測定用プローブで測定する。そして、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する。これにより、それら2つの走査プローブ顕微鏡像のズレ量を測定箇所の位置から検出し、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正する。このように、上記圧痕形成用プローブと測定用プローブとの取り付け位置関係が補正されるから、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろされる。その結果、測定作業に要する労力および時間を軽減することができる。
【0024】
また、上記試料の測定箇所が特徴的な形状を有していない場合、その測定箇所近傍に圧痕形成用プローブで圧痕を形成して、測定箇所および圧痕を含む領域に対して圧痕形成用プローブで走査プローブ顕微鏡像測定を行う。そして、上記圧痕形成用プローブと測定用プローブとの機械的な取り付け位置関係に基づいて、移動手段が測定用プローブを測定箇所上に移動させた後、測定箇所を含む領域を測定用プローブで測定する。そして、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する。これにより、それら2つの走査プローブ顕微鏡像のズレ量を圧痕から検出し、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正する。このように、上記圧痕形成用プローブと測定用プローブとの取り付け位置関係が補正されるから、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろされる。その結果、測定作業に要する労力および時間を軽減することができる。
また、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、測定用プローブで得られた走査プローブ顕微鏡像とを比較する。そして、それら2つの走査プローブ顕微鏡像のズレ量に基づいて、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正手段が補正する。その結果、上記圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろすことができる。
【0025】
また、一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記移動制御手段は、上記圧痕形成用プローブと上記測定用プローブとを一緒に水平方向に移動させる水平移動機構と、上記圧痕形成用プローブのための垂直移動機構と、上記測定用プローブのための垂直移動機構と、上記水平移動機構を制御すると共に、上記圧痕形成用プローブの垂直移動機構と上記測定用プローブの垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して垂直に移動させるように制御する制御部とからなっていることを特徴としている。
【0026】
上記一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記水平移動機構を制御部が制御することによって、圧痕形成用プローブと測定用プローブとを共に水平に移動させる。また、上記圧痕形成用プローブの垂直移動機構と測定用プローブの垂直移動機構とを制御部が制御することによって、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させる。したがって、上記移動制御部は、圧痕形成用プローブと測定用プローブとを一緒に水平に移動させることができると共に、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させることができる。
【0027】
また、一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記移動制御手段は、上記圧痕形成用プローブのための水平垂直移動機構と、上記測定用プローブのための水平垂直移動機構と、上記圧痕形成用プローブの水平垂直移動機構と上記測定用プローブの水平垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを共に水平に移動させるように制御すると共に、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して垂直に移動させるように制御する制御部とからなっていることを特徴としている。
【0028】
上記一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記圧痕形成用プローブの水平垂直移動機構と測定用プローブの水平垂直移動機構とを制御部が制御することによって、圧痕形成用プローブと測定用プローブとを一緒に水平に移動させると共に、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させる。したがって、上記移動制御手段は、圧痕形成用プローブと測定用プローブとを水平方向に共に移動させることができると共に、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させることができる。
【0029】
【0030】
【0031】
また、一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記測定用プローブの数が複数であることを特徴としている。
【0032】
上記一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記測定用プローブの数が複数であるから、測定箇所を含む領域を各測定用プローブで測定することにより、複数種の走査プローブ顕微鏡像が得られて、試料表面の評価を厳密に行うことができる。
【0033】
また、本発明の試料表面評価方法は、マルチプローブ型走査プローブ顕微鏡装置を用いた試料表面評価方法であって、上記圧痕形成用プローブによって上記試料の測定箇所近傍に圧痕を形成する工程を有することを特徴としている。
【0034】
上記構成の試料表面評価方法によれば、上記圧痕が測定箇所近傍に形成されているから、この圧痕を含む領域の走査プローブ顕微鏡像を測定することにより、測定箇所が特徴的な形状を有していなくても、測定箇所を容易に検出することができる。
【0035】
また、上記圧痕が測定箇所近傍に形成されているから、走査プローブ顕微鏡像における圧痕の位置に基づいて、測定箇所の位置の誤差を更に厳密に補正できる。
【0036】
また、一実施形態の発明の試料表面評価方法は、上記圧痕を含む領域を上記圧痕形成用プローブと上記測定用プローブとで測定する工程と、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する工程と、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量を検出する工程と、上記ズレ量に基づいて、上記圧痕形成用プローブと上記測定用プローブとの取り付け位置関係を補正する工程とを有することを特徴としている。
【0037】
上記一実施形態の発明の試料表面評価方法によれば、上記圧痕を含む領域を圧痕形成用プローブと測定用プローブとで測定して、圧痕形成用プローブで得られた走査プローブ顕微鏡像と、測定用プローブで得られた走査プローブ顕微鏡像とを比較する。そして、それら2つの走査プローブ顕微鏡像のズレ量を検出し、そのズレ量に基づいて、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正する。その結果、上記測定用プローブが測定箇所に正確かつ容易に降ろされ、その測定用プローブを用いて測定箇所を高精度に測定することができる。
【0038】
また、一実施形態の発明の試料表面評価方法は、上記圧痕形成用プローブによって上記試料の測定箇所近傍に圧痕を形成する工程と、上記圧痕を含む領域を上記複数の測定用プローブで測定する工程と、上記複数の測定用プローブで得られた複数の走査プローブ顕微鏡像を、上記圧痕を基準にして重ね合わせる工程とを有することを特徴している。
【0039】
上記一実施形態の発明の試料表面評価方法によれば、上記複数の測定用プローブで得られた複数の走査プローブ顕微鏡像を圧痕を基準にして重ね合わせるから、複数の走査プローブ顕微鏡像の比較検討が容易になる。
【0040】
また、一実施形態の発明の試料表面評価方法は、上記圧痕を目印にして上記試料の測定箇所をSEMまたはTEMで評価することを特徴としている。
【0041】
上記一実施形態の発明の試料表面評価方法によれば、上記圧痕を目印にして試料の測定箇所をSEMまたはTEMで評価するから、測定箇所を厳密に評価することができる。
【0042】
また、必要に応じて、圧痕を目印に、例えばレーザマーカなどで測定箇所近傍にマーキングを形成して目印をさらに追加すると、測定箇所の検出がさらに容易になる。
【0043】
【発明の実施の形態】
以下、本発明のマルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法を図示の実施の形態により詳細に説明する。
【0044】
まず、図1は、本発明の実施の一形態のマルチプローブ型走査プローブ顕微鏡装置の概略構成図である。なお、図1では、本発明に係る駆動機構と補正機構とに関連する構成部分のみを示しており、試料観察手段、つまり例えば圧痕位置を確認する光学系等の図示を省略している。
【0045】
上記マルチプローブ型走査プローブ顕微鏡装置は、図1に示すように、試料の上方であって試料6に比較的接近した位置に配置された2つのカンチレバー1,31と、この2つのカンチレバー1,31を移動させる駆動機構5とを備えている。上記カンチレバー1の先端部には、試料表面に圧痕を形成する圧痕形成用プローブ2を有している一方、上記カンチレバー31の先端部には、試料6の表面の走査プローブ顕微鏡像を測定する測定用プローブ32を有している。ここで、上記圧痕形成用プローブ2は、試料6の表面に圧痕を形成できると共に、試料凹凸を測定できるものであり、上記測定用プローブ32は、試料凹凸、電気的信号による拡散形状、磁気力を測定できるものである。また、上記圧痕形成用プローブ2,測定用プローブ32を有するカンチレバー1,31はそれぞれホルダ3,33に保持されている。
【0046】
上記駆動機構5は、圧痕形成用プローブ2のための水平垂直移動機構としての第1駆動部4と、測定用プローブ32のための水平垂直移動機構としの第2駆動部34とを備えている。上記第1駆動部4にホルダ3を固定し、第2駆動部34にホルダ33を固定している。また、上記第1,第2駆動部4,34は、互い独立に水平方向および垂直方向に移動できる。つまり、上記第1,第2駆動部4,34は、互いに独立にX,Y,Z方向に移動可能である。また、上記第1,第2駆動部4,34が停止した状態で、圧痕形成用プローブ2および測定用プローブ32が上下できるように、第1,第2駆動部4,34はそれぞれに駆動系を有している。上記第1,第2駆動部4,34は、図示しないが、圧電素子をそれぞれ有している。
【0047】
上記第1,第2駆動部4,34のX,Y方向の移動をXY方向走査回路61,63で制御し、第1,第2駆動部4,34のZ方向の移動をZ方向走査回路で制御している。また、上記第1,第2駆動部4,34で圧痕形成用プローブ2,測定用プローブ32を移動させることにより、圧痕形成用プローブ2で得られた走査プローブ顕微鏡像を画像メモリ65で保存し、測定用プローブ32で得られた走査プローブ顕微鏡像を画像メモリ66で保存する。この画像メモリ65,66の走査プローブ顕微鏡像をCRT(cathode ray tube)71で表示すると共に、その走査プローブ顕微鏡像のX,Y方向のズレ量を画像補正回路69で検出し、そのズレ量をXY補正回路70で算出する。このズレ量に基づいてXY方向制御回路67,68がXY方向走査回路61,63を制御して、圧痕形成用プローブ2と測定用プローブ32との取り付け位置を補正する。
【0048】
上記圧痕形成用プローブ2および測定用プローブ32を用いて凹凸像を得るために、圧痕形成用プローブ2および測定用プローブ32の上下動の変化または上下動の周期の変化をプローブ・試料間力検出回路81,82で検出している。このプローブ・試料間力検出回路81,82の検出結果はZ方向走査回路62,64にフィードバックされる。このようにフィードバックされたZ方向走査回路62,64からの情報と、XY方向走査回路61,63からの情報とを同期させて凹凸像が得られる。
【0049】
また、上記測定用プローブ32は、試料6と測定用プローブ32との間の電気信号を電気信号検出回路83で検出してSCM像を取得できる。このSCM像は、プローブ・試料間力検出回路83からの情報と、XY方向走査回路63からの情報とを同期させることによって作成される。
【0050】
ここでは、上記第1駆動部4と、第2駆動部34と、XY方向走査回路61,63と、Z方向走査回路62,64と、XY方向制御回路67,68とで、移動制御手段を構成していて、XY方向走査回路61,63Z方向走査回路62,64と、XY方向制御回路67,68とで制御部を構成している。また、上記画像補正回路69とXY補正回路70とで補正手段を構成している。
【0051】
以下、図1,2と図3のフローチャートとを用いて、圧痕形成用プローブ2と測定用プローブ32との測定位置を一致させるための補正機能を説明する。
【0052】
まず、図3に示すように、処理をスタートさせ、ステップS21で、走査プローブ顕微鏡装置用試料台13に固定した試料6に特徴的な形状7(図1参照)があるか否かを判定する。そのステップS21で、試料6に特徴的な形状7があると、その特徴的な形状7を選択してステップS23に進む。このとき、上記試料6が半導体試料である場合は、特徴的な形状7として孤立パターンを選択する。一方、上記試料6に特徴的な形状7がないと、ステップS22に進み、圧痕形成用プローブ2で測定箇所近傍に圧痕を形成した後、ステップS23に進む。
【0053】
次に、ステップS23で、圧痕形成用プローブ2で試料表面の凹凸像を得る。より詳しくは、上記圧痕形成用プローブ2を有するカンチレバー1を、XY方向走査回路61とZ方向走査回路62により制御して、図2(a)に示す試料表面の凹凸像をAFM法測定などで獲得する。なお、上記凹凸像は画像メモリ65に保存される。
【0054】
そして、ステップS24で、測定用プローブ32で試料表面の凹凸像を得る。より詳しくは、上記測定用プローブ32を有するカンチレバー31を、XY方向走査回路63とZ方向走査回路64により制御して、図2(b)に示す試料表面の凹凸像をAFM法測定などに獲得する。なお、上記凹凸像は画像メモリ66に保存される。
【0055】
次に、ステップ25で、圧痕形成用プローブ2,測定用プローブ32で得られた2つの凹凸像において、特徴的な形状7を測定画像の(X,Y)=(0,0)にもってくる。つまり、図2(a),(b)の画像において特徴的な形状7のズレ量を画像補正回路69によって検出して、各測定画像のX,Y方向のズレ量をXY補正回路70により算出して、図2(c)に示すように、それらの測定画像の中心(X,Y)=(0,0)に特徴的な形状7が位置するように、XY方向制御回路67,68を用いてXY方向走査回路61,63を制御する。
【0056】
次に、ステップS26で、圧痕形成用プローブ2と測定用プローブ32とで特徴的な形状7を測定して、その特徴的な形状7が測定画像の中心(X,Y)=(0,0)に位置することを確認する。つまり、図2(d)に示すように、補正を行った後の凹凸像が、圧痕形成用プローブ2,測定用プローブ32のどちらで測定しても、測定画像の中心にきていることを確認して処理を終了する。
【0057】
なお、上記試料6が特徴的な形状7を有していない場合、例えば、半導体試料のメモリーセルのような繰り返しパターンが続いている場合には、ステップS25,S26での処理は、ステップS22で形成された圧痕に対して行われる。つまり、その圧痕が形成されている領域に対して圧痕形成用プローブ2,測定用プローブ32でAFM法測定を行って凹凸像を獲得し、それらの凹凸像のズレ量を計測し、圧痕形成用プローブ2と測定用プローブ32との位置関係を正確に補正する。
【0058】
このような手法を用いて、圧痕形成用プローブ2,測定用プローブ32の取付位置を正確に補正するから、どちらのプローブからでも同じ特徴的な形状7を画像の中心に高精度に測定できる。したがって、上記圧痕形成用プローブ2で検出した測定箇所に測定用プローブを容易かつ正確に降ろすことができて、測定作業に要する労力および時間を減らすことができる。
【0059】
この補正機能は、マルチプローブ型プローブ顕微鏡装置に複数の測定用プローブが装着されている場合、圧痕形成用プローブ,複数の測定用プローブで画像を取り込み、ズレ量を計測し、圧痕形成用プローブ,複数の測定用プローブの位置関係を正確に補正できるものとする。
【0060】
以下、上記構成のマルチプローブ型走査プローブ顕微鏡装置を用いた試料表面評価方法を説明する。
【0061】
図4(b)に示すように、レーザマーカ用ステージ11上に試料10を載置する。この試料10は、図4(a)に示すように、半導体デバイスが形成されたシリコン基板を数センチメートルの大きさに劈開したものであって、他の解析手法、例えばLSIのテスターテストや微弱発光解析法等で、電気的に不良が確認されている箇所9を有している。上記LSIのテスターテストとは、LSIの動作試験などで不良の有無や不良箇所を論理的に検出するテストのことである。また、上記微弱発光解析法とは、LSIの動作不良箇所から、リーク電流などに起因して発生する微弱な光を検知して不良箇所を検出する解析方法のことである。
【0062】
次に、上記試料10に対して、図4(b)に示すように、不良箇所9からL=約50μm離れた部分にレーザマーカでマーキング12を3箇所に形成する。このマーキング12は、不良箇所9に対して図4(b)中の上、右、左に形成されている。実際の作業では、不良箇所9の確認を容易にする観点から、レーザマーキングを行うのが好ましい。
【0063】
そして、図4(c)に示すように、走査プローブ顕微鏡装置用試料台13に試料10を固定し、光学顕微鏡にてマーキング12を手掛りに不良個所9の位置を確認し、圧痕形成用プローブ2を持ったカンチレバー1を、駆動機構5を用いて不良箇所9に比較的接近した位置に移動する。引き続き、上述の補正機能を用いて、図5(d)に示すように、マーキング12よりさらに内側の不良箇所9からM=3〜10μmの位置に高い位置精度で圧痕14を形成する。
【0064】
図11の従来例で圧痕を形成するには、測定用プローブ26が通常1個しか装着されていないため、カンチレバー27と共に測定用プローブ26を目的の圧痕形成用プローブに置き換える必要がある。その上、単に置き換えただけでは、必ずしもマーキング12より内側の不良箇所9からM=3〜10μmの位置に高い精度で、圧痕を形成することは不可能である。また、上記不良箇所9の測定を行う際、測定エリアを小さくとる必要があるが、マーキング12では不良箇所9より遠すぎて位置確認の目印にはなりえない。この不具合を改善するために圧痕形成は不可欠と思われる。
【0065】
次に、図5(e)に示すように、上述の補正機能を用いて試料10上の不良個所9および圧痕14を含む希望した領域上に、測定用プローブ32を持ったカンチレバー31を駆動機構5で移動させて、その領域の凹凸像,SCM像を測定する。この測定の低倍(100μm□程度)の結果を、図6(a),(b)に示している。図6(a)は凹凸像であり、この凹凸像は試料表面の凹凸形状がnmオーダーの分解能で得られる。図6(b)はSCM像であり、このSCM像は、自然酸化膜等を介して試料表面とプローブ先端との間の容量としてLSIイオン注入不純物の分布形状や結晶欠陥などに起因した電気的なリーク箇所が画像化されたものである。
【0066】
上記凹凸像およびSCM像によって、不良箇所9,マーキング12および圧痕14の観察を行えるが、不良箇所9の詳細(例えば、不良箇所の形状、電気的特長など)が、低い分解能のために鮮明に画像になっていない。そこで、既存の拡大機能を用いて、不良箇所9と圧痕14とを観察できる25μm□程度の領域に対して凹凸像,SCM像の測定を行う。これにより得られた凹凸像を図6(c)に示し、SCM像を図6(d)に示している。上記凹凸像では、図6(c)に示すように、圧痕14の凹凸のみしか観察できないが、電気的測定像つまりSCM像では、正常部がライン状の拡散形状で観察され、不良箇所9に相当する箇所に拡散のシミだし15が存在するのが鮮明に確認できている。
【0067】
さらに、電気的に不良が確認され、不良箇所9を持った試料6に対して、測定用プローブ32でMFM測定を行うことにより、図6(e)に示すMFM像が得られる。また、上記測定用プローブ32とは別の測定用プローブを設けておいて、順次電気的測定を行うことも可能である。例えば、上記測定用プローブ32とは別に例えばEFM測定用プローブを設けて、解析を実施した試料10上の不良個所9および圧痕14を含む希望した領域に対してEFM測定を行えば、図6(f)に示すEFM像を得ることができる。上記凹凸像,SCM像,MFM像およびEFMにおいて圧痕14を基準に重ね合わせると、不良箇所9の比較検討が容易に可能になる。
【0068】
図11の従来例では、凹凸像,SCM像,MFMおよびEFM像において各像を得る都度、プローブを取り換える必要があるため、操作や手順が煩雑になっている。これに対し、本実施形態のマルチプローブ型走査プローブ顕微鏡装置では、複数の測定用プローブを高い精度で目的位置に移動できることから、測定用プローブの取り換えは不要である。
【0069】
以下、上記構成のマルチプローブ型走査プローブ顕微鏡装置を用いた他の試料表面評価方法を説明する。
【0070】
まず、図7(a)に示すように、走査プローブ顕微鏡装置用試料台13上に試料16を載置する。そして、上記試料16に対して、図7(b)に示すように、測定用プローブ32を持つカンチレバー31を用いてSCM測定を行う。これにより、図8(a)に示すように、SCM像中に信号の異なる箇所17が検出される。上記SCM像において箇所17の信号が異なっているのは、拡散形状の違い、または結晶欠陥の存在やひずみ等に起因することが多い。さらに、試料16上の信号の異なる箇所17を含む希望した領域に対して、測定用プローブ32でMFM測定を行うことにより、図8(b)に示すMFM像が得られて、SCM像とMFM像との比較検討が容易に可能になる。
【0071】
図11の従来例では、SCM像を測定した状況で、不具合のある箇所が検出されても、マーキングなしで、他の評価方法、例えばMFM測定等を行うことは不可能であった。これに対して、本実施形態のマルチプローブ型走査プローブ顕微鏡装置では、圧痕形成用プローブ2,測定用プローブ32を有していて、それらを高い精度で目的の箇所に移動できる補正機能を有することから、SCM測定とMFM測定を簡便に行うことができる。
【0072】
次に、上記試料16上の信号の異なる箇所17に対して他の解析を行うため、図9(a)に示すように、圧痕形成用プローブ2を持ったカンチレバー1を用いて、信号の異なる箇所17から約3〜10μmほど離れた図9(a)中の上、左、右の3箇所に、圧痕38を高い位置精度で形成する。
【0073】
上記圧痕形成は、図11の従来例では、プローブの交換が必要になり、実現不可能であったが、本実施形態のマルチプローブ型走査プローブ顕微鏡装置では、複数のプローブを高い精度で目的の箇所に移動できる補正機能を有することから、実現可能になっている。
【0074】
次に、この圧痕38を目印に像中に信号の異なる箇所17を、TEMまたはSEMで評価すると、図9(b)に示すように、信号の異なる箇所17に相当する位置に、拡散領域を横切って大きな転位線19が確認された。
【0075】
上記実施の形態のマルチプローブ型走査プローブ顕微鏡装置は、AFMの基本機構と同じであり、その他、EFM、SCM、MFM等々の測定機構を有してもよい。
【0076】
また、上記実施の形態では、1つの測定用プローブ32を有していたが、複数の測定用プローブを有してもよい。この場合、測定用プローブの数が複数であるから、測定箇所を含む領域を各測定用プローブで測定することにより、複数種の走査プローブ顕微鏡像が得られて、試料表面の評価を厳密に行うことができる。また、複数の測定用プローブを有している場合、測定目的に応じた測定用プローブ,カンチレバーおよびそれらの制御系を備えて測定を行う。また、上記制御系は複数の測定用プローブの制御に対応できるものであるのは言うまでもない。
【0077】
図10に、本発明の他の実施の形態のマルチプローブ型走査プローブ顕微鏡装置を示している。このマルチプローブ型走査プローブ顕微鏡装置は、駆動機構のみが図1のマルチプローブ型走査プローブ顕微鏡装置と異なっている。図10では、図1と同一構成部には同一番号を付して説明を省略すると共に、補正手段および制御部に対応する構成部の図示を省略している。
【0078】
図10に示すマルチプローブ型走査プローブ顕微鏡装置は、圧痕形成用プローブ2のための垂直移動機構としての第1駆動部44と、測定用プローブ32のための垂直移動機構としての第2駆動部54と、圧痕形成用プローブ2と測定用プローブ32を一緒に水平方向に移動させる水平移動機構としての第3駆動部36とからなる駆動機構35を備えている。上記第1駆動部44,第2駆動部54によって、圧痕形成用プローブ2と測定用プローブ32とをZ方向(垂直方向に)に互いに独立して移動させることができる。また、上記第3駆動部36によって、圧痕形成用プローブ2と測定用プローブ32とを水平方向(XY方向)に共に移動させることができる。このようなマルチプローブ型走査プローブ顕微鏡装置を用いても本実施形態と同様の効果を奏する。
【0079】
【発明の効果】
以上の説明で明らかなように、本発明のマルチプローブ型走査プローブ顕微鏡装置は、圧痕形成用プローブと測定用プローブを有しているので、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正することにより、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろされて、測定作業に要する労力および時間を軽減することができる。
【0080】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記圧痕形成用プローブの水平垂直移動機構と、測定用プローブの水平垂直移動機構と、制御部とを有しているから、圧痕形成用プローブと測定用プローブとを互いに独立して水平および垂直に移動させることができる。
【0081】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、圧痕形成用プローブと測定用プローブを有しているので、圧痕形成用プローブと測定用プローブとの取り付け位置関係を補正することにより、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろされて、測定作業に要する労力および時間を軽減することができる。
【0082】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記水平移動機構と、圧痕形成用プローブの垂直移動機構と、測定用プローブの垂直移動機構と、制御部とを有しているから、圧痕形成用プローブと測定用プローブとを一緒に水平に移動させることができると共に、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させることができる。
【0083】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記圧痕形成用プローブの水平垂直移動機構と、測定用プローブの水平垂直移動機構と、制御部とを有しているから、圧痕形成用プローブと測定用プローブとを一緒に水平に移動させることができると共に、圧痕形成用プローブと測定用プローブとを互いに独立して垂直に移動させることができる。
【0084】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置によれば、上記圧痕形成用プローブの走査プローブ顕微鏡像と、測定用プローブの走査プローブ顕微鏡像とのズレ量に基づいて、圧痕形成用プローブと測定用プローブとの取り付け位置関係が補正手段で補正されるから、圧痕形成用プローブで検出した測定箇所に測定用プローブを容易かつ正確に降ろすことができる。
【0085】
一実施形態の発明のマルチプローブ型走査プローブ顕微鏡装置は、上記測定用プローブの数が複数であるから、測定箇所を含む領域を各測定用プローブで測定することにより、複数種の走査プローブ顕微鏡像が得られて、試料表面の評価を厳密に行うことができる。
【0086】
本発明の試料表面評価方法は、上記圧痕形成用プローブによって圧痕が測定箇所近傍に形成されているから、この圧痕を含む領域の走査プローブ顕微鏡像を測定することにより、測定箇所が特徴的な形状を有していなくても、測定箇所を容易に検出することができる。
【0087】
また、上記圧痕が測定箇所近傍に形成されているから、走査プローブ顕微鏡像における圧痕の位置に基づいて、測定箇所の位置の誤差を更に厳密に補正できる。
【0088】
一実施形態の発明の試料表面評価方法は、圧痕形成用プローブで得られた走査プローブ顕微鏡像と、測定用プローブで得られた走査プローブ顕微鏡像とのズレ量に基づいて、圧痕形成用プローブと上記測定用プローブとの取り付け位置関係を補正するから、測定用プローブが測定箇所により正確かつ容易に降ろされ、測定用プローブを用いて測定箇所を高精度に測定できる。
【0089】
一実施形態の発明の試料表面評価方法によれば、上記複数の測定用プローブで得られた複数の走査プローブ顕微鏡像を上記圧痕を基準にして重ね合わせるから、複数の走査プローブ顕微鏡像の比較検討を容易にできる。
【0090】
一実施形態の発明の試料表面評価方法によれば、上記圧痕を目印にして上記試料の測定箇所をSEMまたはTEMで評価するから、測定箇所を多角的に評価することができる。
【図面の簡単な説明】
【図1】 図1は、本発明のマルチプローブ型走査プローブ顕微鏡装置の概略構成図である。
【図2】 図2は、上記マルチプローブ型走査プローブ顕微鏡装置の測定画像ある。
【図3】 図3は、上記マルチプローブ型走査プローブ顕微鏡装置の補正方法を示すフローチャートである。
【図4】 図4は、上記マルチプローブ型走査プローブ顕微鏡装置を用いた表面評価方法を説明するための図である。
【図5】 図5は、上記マルチプローブ型走査プローブ顕微鏡装置を用いた表面評価方法を説明するための図である。
【図6】 図6は、上記表面評価方法において得られた走査プローブ顕微鏡像である。
【図7】 図7は、上記マルチプローブ型走査プローブ顕微鏡装置を用いた他の表面評価方法を説明するための図である。
【図8】 図8は、上記他の表面評価方法において得られた走査プローブ顕微鏡像である。
【図9】 図9は、上記マルチプローブ型走査プローブ顕微鏡装置を用いた他の表面評価方法を説明するための図である。
【図10】 図10は、本発明の他の実施の形態のマルチプローブ型走査プローブ顕微鏡装置の概略構成図である。
【図11】 図11は、従来のマルチプローブ型走査プローブ顕微鏡装置を説明するための図である。
【符号の説明】
2 圧痕形成用プローブ
5 駆動機構
6,10,16 試料
14,38 圧痕
32 測定用プローブ

Claims (10)

  1. 試料の表面であって上記試料の測定個所近傍に圧痕を形成する圧痕形成用プローブと、上記試料の表面を測定する測定用プローブとを備えたマルチプローブ型走査プローブ顕微鏡装置であって、
    上記圧痕形成用プローブと上記測定用プローブとを、水平方向および垂直方向に互いに独立して移動させる移動制御手段と、
    上記圧痕形成用プローブと上記測定用プローブとの取り付け位置関係を、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量に基づいて補正するために、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置と、上記測定用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置とが一致するように上記移動制御手段を制御する補正手段と
    を有することを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  2. 請求項1に記載のマルチプローブ型走査プローブ顕微鏡装置において、
    上記移動制御手段は、
    上記圧痕形成用プローブのための水平垂直移動機構と、
    上記測定用プローブのための水平垂直移動機構と、
    上記圧痕形成用プローブの水平垂直移動機構と上記測定用プローブの水平垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して水平および垂直に移動させるように制御する制御部と
    からなっていることを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  3. 試料の表面であって上記試料の測定個所近傍に圧痕を形成する圧痕形成用プローブと、上記試料の表面を測定する測定用プローブとを備えたマルチプローブ型走査プローブ顕微鏡装置であって、
    上記圧痕形成用プローブと上記測定用プローブとを水平方向に共に移動させると共に、上記圧痕形成用プローブと上記測定用プローブとを垂直方向に互いに独立して移動させる移動制御手段と、
    上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量を検出すると共に、上記ズレ量に基づいて、上記試料に対する上記圧痕形成用プローブの位置と上記試料に対する上記測定用プローブの位置とを補正するために、上記圧痕形成用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置と、上記測定用プローブで得られた走査プローブ顕微鏡像における上記圧痕の位置とが一致するように上記移動制御手段を制御する補正手段と
    を有することを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  4. 請求項3に記載のマルチプローブ型走査プローブ顕微鏡装置において、
    上記移動制御手段は、
    上記圧痕形成用プローブと上記測定用プローブとを一緒に水平方向に移動させる水平移動機構と、
    上記圧痕形成用プローブのための垂直移動機構と、
    上記測定用プローブのための垂直移動機構と、
    上記水平移動機構を制御すると共に、上記圧痕形成用プローブの垂直移動機構と上記測定用プローブの垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して垂直に移動させるように制御する制御部と
    からなっていることを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  5. 請求項3に記載のマルチプローブ型走査プローブ顕微鏡装置において、
    上記移動制御手段は、
    上記圧痕形成用プローブのための水平垂直移動機構と、
    上記測定用プローブのための水平垂直移動機構と、
    上記圧痕形成用プローブの水平垂直移動機構と上記測定用プローブの水平垂直移動機構とを、上記圧痕形成用プローブと上記測定用プローブとを共に水平に移動させるように制御すると共に、上記圧痕形成用プローブと上記測定用プローブとを互いに独立して垂直に移動させるように制御する制御部と
    からなっていることを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  6. 請求項1乃至5のいずれか1つに記載のマルチプローブ型走査プローブ顕微鏡装置において、
    上記測定用プローブの数が複数であることを特徴とするマルチプローブ型走査プローブ顕微鏡装置。
  7. 請求項1乃至6のいずれか1つのマルチプローブ型走査プローブ顕微鏡装置を用いた試料表面評価方法であって、
    上記圧痕形成用プローブによって上記試料の測定箇所近傍に圧痕を形成する工程を有することを特徴とする試料表面評価方法。
  8. 請求項7に記載の試料表面評価方法において、
    上記圧痕を含む領域を上記圧痕形成用プローブと上記測定用プローブとで測定する工程と、
    上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とを比較する工程と、
    上記圧痕形成用プローブで得られた走査プローブ顕微鏡像と、上記測定用プローブで得られた走査プローブ顕微鏡像とのズレ量を検出する工程と、
    上記ズレ量に基づいて、上記圧痕形成用プローブと上記測定用プローブとの取り付け位置関係を補正する工程とを有することを特徴とする試料表面評価方法。
  9. 請求項6に記載のマルチプローブ型走査プローブ顕微鏡装置を用いた試料表面評価方法であって、
    上記圧痕形成用プローブによって上記試料の測定箇所近傍に圧痕を形成する工程と、
    上記圧痕を含む領域を上記複数の測定用プローブで測定する工程と、
    上記複数の測定用プローブで得られた複数の走査プローブ顕微鏡像を、上記圧痕を基準にして重ね合わせる工程とを有することを特徴とする試料表面評価方法。
  10. 請求項7に記載の試料表面評価方法において、
    上記圧痕を目印にして上記試料の測定箇所を走査型電子顕微鏡または透過型顕微鏡で評価することを特徴とする試料表面評価方法。
JP2000332452A 2000-10-31 2000-10-31 マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法 Expired - Fee Related JP3819230B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332452A JP3819230B2 (ja) 2000-10-31 2000-10-31 マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332452A JP3819230B2 (ja) 2000-10-31 2000-10-31 マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法

Publications (2)

Publication Number Publication Date
JP2002139414A JP2002139414A (ja) 2002-05-17
JP3819230B2 true JP3819230B2 (ja) 2006-09-06

Family

ID=18808655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332452A Expired - Fee Related JP3819230B2 (ja) 2000-10-31 2000-10-31 マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法

Country Status (1)

Country Link
JP (1) JP3819230B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645803A (zh) * 2016-12-14 2017-05-10 国家纳米科学中心 一种双探针原子力显微镜快速逼近装置及方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006302A2 (en) * 2002-07-08 2004-01-15 Multiprobe, Inc. Software synchronization of multiple scanning probes
JP4336170B2 (ja) * 2003-09-10 2009-09-30 日本電産リード株式会社 基板検査装置及びレーザービーム光照射位置補正方法
JP2009192216A (ja) * 2006-07-28 2009-08-27 National Institute For Materials Science 走査型プローブ顕微鏡及びその探針相対位置測定方法
EP2219036B1 (fr) * 2009-02-13 2014-03-12 NT-MDT Service & Logistics Ltd. Microscope en champ proche multifonctionnel
RU2494406C2 (ru) * 2009-12-14 2013-09-27 Закрытое Акционерное Общество "Нанотехнология Мдт" Сканирующий зондовый микроскоп
EP2680012A1 (en) * 2012-06-28 2014-01-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO High throughput scanning probe microscopy device
RU2591871C2 (ru) * 2014-10-24 2016-07-20 Закрытое Акционерное Общество "Нанотехнология Мдт" Устройство манипулирования
JP2016095228A (ja) * 2014-11-14 2016-05-26 大日本印刷株式会社 走査型プローブ顕微鏡を用いた作業方法および走査型プローブ顕微鏡
KR101718900B1 (ko) * 2015-02-11 2017-03-23 한국과학기술원 복수의 afm 탐침을 가지는 나노 구조체 스캔장치와 방법
US9581617B2 (en) 2015-02-11 2017-02-28 Korea Advanced Institute Of Science And Technology Apparatus for scanning nano structure with plural AFM probes and method thereof
JP2018538512A (ja) * 2015-10-13 2018-12-27 センサペックス オイ リアルタイム試験及び測定用連携マイクロメカニカル位置決め装置
KR20230147143A (ko) 2021-03-26 2023-10-20 주식회사 히타치하이테크 주사형 프로브 현미경, 시료 관찰 가공 시스템 및 전기 특성 평가 장치
KR20220168613A (ko) * 2021-06-16 2022-12-26 삼성전자주식회사 검사 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645803A (zh) * 2016-12-14 2017-05-10 国家纳米科学中心 一种双探针原子力显微镜快速逼近装置及方法

Also Published As

Publication number Publication date
JP2002139414A (ja) 2002-05-17

Similar Documents

Publication Publication Date Title
TWI575549B (zh) 加工程序中的晶片內及晶片間電性分析與使用線內奈米探測的製程控制
JP3819230B2 (ja) マルチプローブ型走査プローブ顕微鏡装置およびそれを用いた試料表面評価方法
JP3577839B2 (ja) 不良検査方法および装置
US6734687B1 (en) Apparatus for detecting defect in device and method of detecting defect
US7301146B2 (en) Probe driving method, and probe apparatus
US7476872B2 (en) Method and apparatus for observing inside structures, and specimen holder
JP2006105960A (ja) 試料検査方法及び試料検査装置
US11709199B2 (en) Evaluation apparatus for semiconductor device
JP2011215112A (ja) 多探針afmナノプローバとそれを用いた測定方法
US7243441B2 (en) Method and apparatus for measuring depth of holes formed on a specimen
JP4090657B2 (ja) プローブ装置
KR20080080494A (ko) 나노크기 결함 분리 및 측정 시스템
US11391756B2 (en) Probe module and probe
JP3383574B2 (ja) プロセス管理システム及び集束イオンビーム装置
JPH07134137A (ja) プローブ顕微鏡装置および探針間距離測定方法
US11977099B2 (en) Method for manufacturing semiconductor device
JP4505946B2 (ja) 荷電粒子線装置およびプローブ制御方法
JP2007179929A (ja) 荷電粒子線装置及び試料像表示方法
JP3879722B2 (ja) 検査装置
JP2004170395A (ja) 荷電粒子線装置
JP4795308B2 (ja) 内部構造観察用及び電子顕微鏡用試料ホルダー
JP4284099B2 (ja) プローブ接触方法およびプローブ装置
KR20060035159A (ko) 반도체 기판 검사 장치
JP2004040132A (ja) 不良検査方法および装置
JP2007071884A (ja) 不良検査方法および装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees