JP3804047B2 - 回路基板の検査装置および検査方法 - Google Patents
回路基板の検査装置および検査方法 Download PDFInfo
- Publication number
- JP3804047B2 JP3804047B2 JP2002009492A JP2002009492A JP3804047B2 JP 3804047 B2 JP3804047 B2 JP 3804047B2 JP 2002009492 A JP2002009492 A JP 2002009492A JP 2002009492 A JP2002009492 A JP 2002009492A JP 3804047 B2 JP3804047 B2 JP 3804047B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- circuit board
- wiring
- inspection
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measuring Leads Or Probes (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Tests Of Electronic Circuits (AREA)
Description
【発明の属する技術分野】
この発明は、回路基板に形成された複数の配線の電気的な状態を検査する検査装置および検査方法に関するものである。なお、この発明は、プリント配線基板、フレキシブル基板、多層配線基板、液晶ディスプレイやプラズマディスプレイ用のガラス基板、ならびに半導体パッケージ用のフィルムキャリアなど種々の基板上の電気的配線検査に適用でき、この明細書では、それら種々の配線基板を総称して「回路基板」と称する。
【0002】
【従来の技術】
回路基板には、複数の配線からなる配線パターンが形成されており、配線パターンが設計通りに仕上がっているか否かを検査するために、従来より数多くの検査装置が提供されている。特に、近年、電子機器の小型化や軽量化などに伴って配線パターンのファイン化が進んでおり、全ての配線に直接プローブを接触させて配線の断線や短絡を検査することが困難となる場合があった。そこで、この方式の代わりに、微小なパッドには直接プローブを接触させずに、配線の断線等を検査する検査装置が提案されている。
【0003】
このような検査装置としては、例えば特許第3080158号公報に記載された装置がある。この装置は回路基板に形成された配線の断線/短絡を検査する装置であり、次のようにして検査を行っている。すなわち、この装置では、被検査配線のパッドに電磁波を照射し、光電効果によってそこから電子を放出させることによって生ずる被検査配線内の電流変化を、回路基板内部に設けられ、被検査配線と容量結合したGND(グラウンド)パッドを介して外部に取り出し、その電流値を測定することによって、被検査配線の導通状態を検査している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術においては、次のような問題があった。すなわち、従来技術においては、放出される電子は利用せず、パッドに対して単に電磁波の照射を行っているにすぎないため、光電効果によってパッドから放出された電子は、再びそのパッドに戻ったり、他のパッドに散逸したりする。また、パッドから放出された電子が空間電荷領域を形成し、光電効果による電子放出効率を低下させる。したがって、従来技術によれば、光電効果により瞬間的に電子が放出されたとしても、それによって電流値を定常的に測定することは難しいため、このような構成の検査装置を用いて、回路基板に形成された配線の断線等を精度よく安定して検査することは困難である。
【0005】
そこで、この発明は上記課題に鑑みなされたものであって、光電効果によって生ずる電子を利用して回路基板に形成された配線の断線/短絡を精度よく安定して検査することができる回路基板の検査装置および検査方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明にかかる回路基板の検査装置および検査方法は、上記目的を達成するため、光電効果により生ずる電子を捕捉し、容量結合を介した閉回路を流れる電流として検出することにより、配線の検査を行っている。すなわち、回路基板に設けられた複数の配線の一端部をハウジングで覆って減圧し、該一端部の1つに電磁波を照射して、その一端部から光電効果により放出される電子を、高電位を与えた第1電極部に引き寄せて捕捉する。一方、一端部とは反対側の回路基板主面に設けられた各配線の他端部は第2電極部と容量結合されており、電磁波照射により放出された電子が第1電極部に引き寄せられて捕捉されると、第1電極部、電源およびこの結合容量を経由して検査対象配線の他端部から一端部に至る導電経路(検査回路)が形成される。そして、光電効果に起因して生じる電荷の移動をこの導電経路を流れる電流として検出し、その検出結果に基づいて配線の導通状態を判定する。
【0007】
このように構成された発明では、端子部より高い電位を与えた第1電極部を配置することによって、電磁波照射を受けた端子部から光電効果により放出される電子を確実に捕捉することができる。さらに、こうして捕捉した電子を、検査対象配線と第2電極部とで形成された結合容量を介した閉回路を流れる電流として検出しているので、光電効果に起因する電荷の流れを精度よく、しかも安定して検出することができる。したがって、この検出結果に基づいて配線の導通状態を判定することで、配線の検査を精度よく安定して行うことが可能となっている。
【0008】
また、上記のとおり回路基板上に設けられた端子部の1つに電磁波を照射した後に、さらに他の端子部に対して電磁波照射を行い、そのときの上記閉回路に流れる電流量またはその変化に基づいて配線の導通状態を判定するようにしてもよい。こうすることによって、電磁波照射を受けた両端子部の間が導通しているか否かを判別することができ、その結果に基づいて配線の断線/短絡を判定することができる。この場合においても、光電効果により発生する電子を確実に捕捉するとともに、閉回路に流れる電流として検出することで、精度よく安定した検査を行うことが可能となる。
【0009】
なお、このような配線検査においては、光電効果による電子放出効率を高めるとともに、放出された電子が確実に第1電極部まで到達するように、端子部への電磁波放射は真空下で行われることが望ましい。そこで、この発明では、回路基板の一方主面に当接して複数の配線の一端部を取り囲んで閉空間を形成するハウジングを設け、その閉空間内を減圧するようにしている。
【0010】
このハウジングについては、例えば、その上壁に透明電極またはメッシュ電極を設けたり、側面に電極を設けて上壁を透明とすること等により、ハウジング外部から電磁波を導入するようにすることができる。この場合、ハウジングは回路基板に形成された一端部を少なくとも覆うように形成されていればよく、こうすることでハウジングを小型に形成して装置の小型化・低コスト化を図ることができるとともに、減圧すべき閉空間の容積を小さくすることで、減圧にかかる時間を短縮して配線検査に要する時間も短縮することが可能となる。
【0011】
【発明の実施の形態】
図1は、この発明にかかる回路基板の検査装置の、第1の実施形態を示す図である。また、図2はこの検査装置の電気的構成を示すブロック図である。この検査装置は、回路基板10を検査されるべきワークとして検査する検査装置である。この回路基板10では、図1に示すように、ベース基板11に複数の検査対象配線12、121、122が形成されている。なお、図1では、3本の配線のみを、検査対象配線として代表的に示しているが、実際の被検査回路基板では、周知のように多数の配線が検査対象配線としてベース基板11の上下面および内面のいずれかまたは全てに形成されている。また例えば配線12は、回路基板10の表面に実装部品や外部配線と接続されるべく形成された端子部12a、12bと、回路基板10の表面あるいは内部に形成されてこれらの端子部を相互に電気的に接続する導電部12cとで構成されている。なお、この実施形態では、上記のように構成された回路基板10を検査対象たるワークとして検査する場合について説明するが、本発明の適用対象となる回路基板はこれに限定されるものでないことは言うまでもない。例えば、図1では回路基板10の両面に端子部12a、12bが設けられ、これらを接続すべく導電部12cがベース基板11の内部に形成されているが、端子部が回路基板の片面のみに形成され、回路基板表面に形成された導電部によってこれらが接続されているものであってもよい。
【0012】
この検査装置には、1枚の回路基板をワーク10として保持する保持部を備えた下部治具40が設けられている。下部治具40には、第2電極部として機能する金属板41と、金属板41の上面に設けられた絶縁膜42と、これらを一体的に保持する下部治具ベース45とが備えられている。金属板41はワーク10に形成された配線12等との間に形成される容量を大とするためワーク10の下面をほぼ覆うように設けられている。そして、金属板41の上面は絶縁膜42で覆われており、これによって、下部治具40に被検査回路基板10が載置され、回路基板10が金属板41に密着した際に、回路基板10の下面に形成された端子部12b等と金属板41との間の絶縁が確保される。また、下部治具ベース45は下部治具駆動機構46と連結されており、装置全体を制御する制御部1から下部治具駆動機構46への制御信号により、ワーク10の検査を行うための検査位置(図1に示す位置)と、下部治具40へのワーク10の搬入および下部治具40からのワーク10の搬出を行うためのロード/アンロード位置(図示省略)との間を往復移動する。
【0013】
また、検査位置には導電プローブ81が設けられており、上記した下部治具40の検査位置への移動により、この導電プローブ81と下部治具40に設けられた金属板41とが接触して、金属板41と後述する電源70との導通を確保する。
【0014】
なお、上記実施形態では、絶縁膜42は本発明の必須構成要件ではなく、例えばワーク10が片面に配線を有しない、あるいは片面が絶縁膜で被覆されている回路基板であれば、絶縁膜42を設けず金属板41と回路基板とを直接当接させてもよい。また、ワーク10が両面に配線を有する回路基板であっても、後に詳述するように、絶縁膜42を設けない構成の検査装置で検査を行うことが有効な場合がある。
【0015】
一方、検査位置に位置決めされるワーク10の上方には、上部治具50が配置されている。この上部治具50では、ワーク10の表面に形成された端子部12a、121a、121aa、122aを一括して覆うようキャップ状に形成されたハウジング51の側面に排気口54が設けられ、ハウジングは例えば透明な石英ガラスで形成されている。ハウジング51の開放端にはゴム製のパッキン52が装着されており、ハウジング51の上壁内面には透明導電体からなるプレート電極53が貼り付けられ、あるいは蒸着されている。なお、ハウジング51は、側壁を金属で構成し、上面に透明なガラス板をはめ込んでもよい。この場合、側壁を電極として利用してもよい。これら上部治具の構成要素51〜54は、上部治具駆動機構56に連結され、制御部1(図2)からの制御信号により、一体的にワーク10に向かって移動し、また、ワーク10から離れるよう移動するようになっている。
【0016】
上記したように、上部治具50がワーク10に向かって移動し、ハウジング51の開放端がパッキン52を介してワーク10に当接すると、パッキン52がハウジング51の開放端とワーク10との間に挟み込まれて弾性変形し、その結果、ハウジング51とワーク10とで取り囲まれる気密閉空間SPが形成される。
【0017】
ハウジング51に設けられた排気口54は、排気管(図示省略)を介して排気装置90に連結されている。そして、制御部1からの制御信号によって排気装置90が作動すると気密閉空間SP内の空気が排出され、気密閉空間SP内が減圧状態となる。検査時における気密閉空間SPの真空度は、10−2気圧程度が望ましい。これよりも真空度が低いと光電効果による電子の放出効率が悪い。真空度を高めれば電子の放出効率は高まるが、気密閉空間SP内を所望真空度にするまでに時間がかかり、検査時間が長くなってしまう。本発明者の実験によれば、10−2気圧で十分な電子放出効果が得られた。また、この程度の真空度であれば、比較的短時間で達成できる。
【0018】
また、この検査装置においては、ワーク10に形成された複数の配線のうち、検査される1つの配線につながる端子部に電磁波を照射するための電磁波照射ユニット60が設けられている。この電磁波照射ユニット60は、制御部1からの制御指令にしたがって電磁波Lを発射する電磁波発射部61と、電磁波発射部61から発射された電磁波Lを制御部1からの制御指令にしたがってワーク10上の所望の位置に照射させる電磁波走査部62とを用いて構成されている。本実施形態における電磁波発射部61は、266nmの波長の紫外線レーザー光を発光するように構成されている。また、電磁波発射部61は、光収斂光学系が付設されており、レーザー光が所望端子部に収斂されて投射されるようになっている。このように、この実施形態では、電磁波照射ユニット60が本発明にいう「電磁波照射手段」として機能している。
【0019】
本実施形態において、電磁波発射部61は、光電効果の効率の面から紫外線レーザー光を発射する装置が用いられているが、本発明はこの構成に限定されるものではなく、必要に応じて可視光線や赤外線等を用いてもよい。
【0020】
ここで、一般に、光電効果の発生条件は、
(光子エネルギー)≧(材料固有の仕事関数:固体内部からの電子の放出エネルギー)
であるから、この不等式を満足させるレーザー光のような電磁波を入射させればよい。
【0021】
また、この電磁波発射部61は、Qスイッチ素子等を用いてパルス駆動が可能であるように構成されている。さらに、電磁波Lの走査を行う電磁波走査部62は、ガルバノミラーを用いて構成されている。そして、本実施形態にかかる電磁波照射ユニット60においては、制御部1からの動作指令に基づきガルバノミラーを駆動させることにより、電磁波発射部61から発射された電磁波Lを、ワーク10の表面の所望の箇所に正確かつ高速に照射することができる。
【0022】
また、この検査装置では、プレート電極53と金属板41との間に電位差を与える直流電源70が設けられており、この電源70は制御部1からの制御指令にしたがって所定の電圧を出力する。この実施形態にかかる検査装置では、このように電位差を与えることによって、後に詳述するように、光電効果によって生ずる電子の戻りや散乱、さらには空間電荷領域の形成を抑制し、測定を効率的に行うことができる。
【0023】
また、この検査装置では、電源70の一方端子からプレート電極53、検査対象配線および金属板41を介して電源70の他方端子に戻る導電経路に電流検出部80が介挿されて、当該導電経路を流れる電流を検出する。具体的には、電源70のプラス側端子がプレート電極53と電気的に接続され、電源70のマイナス側端子が電流検出部80を介して導電プローブ81に接続されている。導電プローブ81は、下部治具40およびワーク10が検査位置にあるとき金属板41と接触しており、こうして上記導電経路が形成される。
【0024】
そして、本実施形態において、電源70からの電圧がプレート電極53と金属板41との間に印加された状態では、金属板41からプレート電極53に向かって電位が高くなるような電界が発生している。この状態で例えば端子部12aに電磁波Lが照射されると、端子部12aでは光電効果が起こり電子が放出される。こうして放出された電子は上記電界によりプレート電極53側に引き寄せられ、従来技術のように放出された電子が再びその端子部に戻ったり、散乱したり、さらには、放出された電子が空間電荷領域を形成して光電効果による電子放出効率を低下させることがない。一方、配線12は金属板41との間で容量を形成しているため、配線12側で光電効果によって電子が放出されてプレート電極53に捕捉され、電源70のプラス側端子に流れると、電源70のマイナス側端子から電流検出部80および導電プローブ81を経由して金属板41にこれと同量の電子が流れ込む。このようにして、電源70のプラス側端子からプレート電極53、配線12、金属板41、導電プローブ81および電流検出部80を経由して電源70へ戻る導電経路が形成され、この導電経路に沿って流れた電流が電流検出部80で検出される。電流検出部80によって検出された電流値は、A/D変換回路81によってデジタル信号に変換されて制御部1に送られる。このように、本実施形態においては、プレート電極53、金属板41および電流検出部80が、それぞれ本発明の「第1電極部」、「第2電極部」および「電流検出手段」として機能している。
【0025】
さらに、この実施例では、ワーク10の上下両面に対して電極部が非接触で電気的に結合している。すなわち、上面の端子部に対しては、空間を介して光電子を第1電極部が捕捉するようになっており、下面の端子部には第2電極部が容量結合していて、両面の端子部がファインあるいは密に配置されていても高精度で検出ができる。
【0026】
なお、この実施形態では、電流検出部80は電源70のマイナス側端子と導電プローブ81との間に介挿されているが、これ以外にも上記導電経路に流れる電流を検出することができる構成であれば、例えば電源70のプラス側端子とプレート電極53との間に設ける構成としてもよい。
【0027】
ここで、例えば図1に示すように、ワーク10に形成された配線のうちの1つの配線121を構成する端子部121aに電磁波Lが照射された場合について検討する。この場合、配線121が電磁波照射を受ける端子部を含む本発明の「被検査配線」に相当することになる。このとき、被検査配線121が正常な導通状態にあるとき、配線121および金属板41は、端子部121a、121aaおよび121cを一方極板とし、金属板41を他方極板とするキャパシタを形成している。
【0028】
端子部121aに電磁波Lが照射されると、光電効果によって端子部121aから電子が放出される。この電子は電界によってプレート電極53に引き寄せられて捕捉され、電源70のプラス側端子へと流れる。そして、電子を放出したことにより配線121には正の電荷が蓄積される。一方、配線121とキャパシタを形成している他方極板、すなわち金属板41には負の電荷、すなわち電子が電源70のマイナス側端子から供給されて蓄積されている。このように、端子部121aへの電磁波照射によって、上記導電経路に電流が流れ、配線121と金属板41とが成すキャパシタには電荷が蓄積される。
【0029】
このときの配線121の電位、電流検出部80に流れる電流および電流を積算して求まる電荷量の変化は、それぞれ例えば図3に示す各グラフの波形aのようになる。図3は、電磁波照射の前後における被検査配線の電位、上記導電経路に流れる電流およびこの導電回路に流れて上記キャパシタに蓄積される電荷量の変化を示す図である。電磁波Lを照射開始すると、端子部121aから放出された電子がプレート電極53へ引き寄せられることにより電流が流れるが、配線121が電子を放出するにつれてその電位は上昇し、そのため電流も次第に減少する。そして、配線121がプレート電極53と同電位となると、端子部121aから放出された電子がプレート電極53に引き寄せられることはなくなり、電流は停止する。このとき、電流検出部80に流れた電荷量Qoは、配線121と金属板41とがつくるキャパシタの容量をCo、電源70の出力電圧をVとすると、
Qo=CoV
となる。一方、配線121が、例えば図1に示すx部で断線していた場合、上記キャパシタの一方極板は、端子部121aと、導電部121cのx部までとを含む面積のみとなり、正常な配線より極板の面積が小さくなって、その結果、このときのキャパシタの容量は、上記した正常な配線の容量Coより小さな値となる。この状態で端子部121aに電磁波Lを照射したとき、配線121の電位、電流検出部80に流れる電流および電荷量の変化は、それぞれ例えば図3に示す各グラフの波形bのようになる。また、配線121が、例えば図1に示すy部で他配線122と短絡している場合、配線121および配線122が上記キャパシタの一方極板を構成することとなり、その容量は上記正常な配線の容量Coより大きな値となる。この状態で端子部121aに電磁波Lを照射したとき、配線121の電位、電流検出部80に流れる電流および電荷の変化は、それぞれ例えば図3に示す各グラフの波形cのようになる。このように、電流検出部80に流れる電荷量は、被検査配線が断線しているときQoより小さく、また被検査配線が他の配線と短絡状態にあるときQoより大きくなる。
【0030】
制御部1は、電流検出部80で検出された電流値を時間積分することによってこのキャパシタに蓄積された電荷量Qを算出し、その値を予め求めた正常な配線に流れる電荷量と比較して、配線12の導通状態を判定する。このように、本実施形態においては、制御部1が本発明にいう「判定手段」として機能している。
【0031】
次に、この検査装置の動作について、図4を参照しつつ以下に説明する。図4は、図1に示す検査装置の動作を示すフローチャートである。この検査装置では、ロード/アンロード位置に位置している下部治具40に対して未検査のワーク(回路基板)10が検査装置に並設されたハンドリング装置(図示省略)やオペレータのマニュアル操作などによってローディングされる(ステップS1)と、制御部1が装置各部を制御し、以下のステップS2〜S11を実行してワーク10を検査する。
【0032】
ワーク10が下部治具40にローディングされると、下部治具40はワーク10を保持したまま検査位置に移動する(ステップS2)。こうしてワーク10が検査位置に位置決めされるとともに、金属板41が導電プローブ81と接触して電流検出部80に接続される。
【0033】
それに続いて、上部治具50がワーク10に向かって接近移動し、下部治具40との間にワーク10を挟み込んで固定する(ステップS3)。その結果、ハウジング51、パッキン52およびワーク10に取り囲まれる気密閉空間SPが形成される。その後、排気装置90が作動して、気密閉空間SP内を約10−2気圧まで減圧する(ステップS4)。そして、電源70が所定の直流電圧を出力し、プレート電極53および金属板41の間にその電圧を印加する(ステップS5)。
【0034】
こうしてワーク10の検査準備が完了すると、配線検査(ステップS6)を実行して配線の導通状態を検査する。なお、この検査内容については後で詳述する。
【0035】
そして、検査が終了すると、電源70が電圧出力を停止し(ステップS7)、排気装置90が停止した後、外気が気密閉空間SP内に導入される(ステップS8)。それに続いて、上部治具50がワーク10から離間移動した後(ステップS9)、下部治具40がロード/アンロード位置へ移動する(ステップ10)。最後に、ステップS11で検査が完了したワーク10が搬出されたことを確認すると、ステップS1に戻って上記一連の処理を実行する。
【0036】
次に、配線検査(ステップS6)について、図5を参照しつつ以下に詳述する。図5は、この発明にかかる検査装置における配線検査を示すフローチャートである。
【0037】
ステップS5までの処理により、ハウジング51とワーク10とで取り囲まれる気密閉空間SP内は約10−2気圧まで減圧されており、一方、プレート電極53と金属板41との間には電圧が印加されてプレート電極53側が高電位となる電界が発生している。この状態で、制御部1がガルバノミラー62の角度を制御し、電磁波Lが配線121の端子部121aに照射されるようにし、電磁波照射ユニット60から266nmの波長の紫外線レーザー光を発射させ、端子部121aにレーザー光を照射する(ステップS61)。このとき、光電効果によって端子部121aから放出された電子が上記電界によりプレート電極53に引き寄せられることで電流が流れる。この電流を電流検出部80で測定する(ステップS62)。そして、所定の時間が経過するまで測定を行った後(ステップS63)、制御部1が、電流検出部80で検出された電流値から電荷量を算出する(ステップS64)。具体的には、検出された電流値を時間積分することによって電荷量Qを算出する。そして、この電荷量Qに基づいて、制御部1が被検査配線121の導通状態を判定する(ステップS65)。すなわち、実測によって求められた、被検査配線に蓄積された電荷量Qの値が、正常な導通状態にある配線において予め求めた電荷量Qoを中心値とした所定の許容範囲内にあれば配線121は正常な導通状態にあると判定する。一方、Qがこの許容範囲の下限未満であれば配線121は断線していると判定する。また、Qがこの許容範囲の上限より大きければ、配線121は他配線と短絡していると判定する。
【0038】
こうして、1つの被検査配線についての検査が終了する。そして、全ての配線の検査が終了するまで、上記一連の検査が繰り返して実行される(ステップS66)。
【0039】
以上のように、この実施形態にかかる検査装置では、被検査配線につながる端子部に電磁波を照射して光電効果を生じさせ、この端子部に近接して配置した第1電極部たるプレート電極53にこの端子部より高い電位を与えることで放出された電子を引き寄せて確実に捕捉する。一方、第2電極部たる金属板41をワーク10に対向配置して被検査配線と容量結合させているが、この容量は被検査配線の導通状態によって変化するため、蓄積される電荷量もこれに伴って変化する。この容量を介して流れる電流を検出してこの蓄積された電荷量を求め、その値に基づいて配線の断線/短絡を判定しているので、回路基板に形成された配線の検査を、非接触にて、しかも精度よく安定して行うことができる。
【0040】
ところで、上記の実施形態においては、選択された1つの端子部に電磁波を照射したときに電流検出部に流れる電荷量に基づいて、この端子部につながる被検査配線の断線および当該被検査配線と他の配線との短絡を検査しているが、この検査装置は、上記した検査の手順を一部変更することで、2つの端子間あるいは2つの検査対象配線の間の導通状態を検査することも可能である。図6は、このような検査を可能とする本発明にかかる検査装置の第2の実施形態の配線検査を示すフローチャートである。また、図7は、電磁波照射の前後における各端子部の電位、上記導電経路に流れる電流およびこの導電経路に流れて上記容量に蓄積される電荷量の変化を示す図である。なお、この実施形態にかかる検査装置の構成は図1と同一であるので、ここではこの実施形態による配線検査の動作について、図6のフローチャートを参照しつつ以下に説明する。
【0041】
この実施形態の配線検査では、まず1つの端子部、例えば図1に示す端子部121aを選択してこれに電磁波Lを照射する(ステップS611)。そして、所定時間が経過した後(ステップS612)、例えば時刻t1に、電磁波Lの照射対象を第2の端子部、例えば図1に示す端子部121aaに切り替える(ステップS613)とともに、所定の期間にわたって電流値を計測する(ステップS614およびS615)。ここで、第1の端子部121aと第2の端子部121aaとの間に導通がなければ、ステップS611での第1の端子部121aへの電磁波照射により第1の端子部121aから放出された電子が高電位のプレート電極53へ流れることによって電流が生じるとともに、第1の端子部121aの電位が上昇する。そして、その後、ステップS613で第2の端子部121aaに電磁波を照射すると、低電位にある第2の端子部121aaから高電位のプレート電極53に向かって電子の流れが生じる。このときの各端子部の電位、電流検出部80を流れる電流および電流を積算して求まる電荷量は、それぞれ例えば図7(a)のようになる。
【0042】
一方、第1の端子部121aと第2の端子部121aaとが導通しているとき、ステップS611での第1の端子部121aへの電磁波照射によって端子部121aの電位が上昇すると、これと導通している第2の端子部121aaの電位も同じく上昇する。したがって、ステップS613で電磁波を第2の端子部121aaに照射しても、光電効果によって放出された電子をプレート電極53へ引き寄せる電界は形成されず、電子がプレート電極53に向かって流れることはないので、電流検出部80で検出される電流値はゼロあるいは上記の導通時の電流より大きく低下した値となる。このときの各端子部の電位、電流検出部80を流れる電流および電荷量は、それぞれ例えば図7(b)のようになる。
【0043】
こうして電流値の計測が終了すると、制御部1がその検出された電流値を時間積分することによって電荷量Qの時間変化を算出し(ステップS616)、その結果に基づいて両端子部の間の導通状態を判定する(ステップS617)。すなわち、実測によって求められた、電荷量Qの値が、図7(a)に示すように時刻t1の前後で変化していれば、両端子部の間は導通なしと判定する。一方、Qの値が図7(b)に示すように時刻t1の前後で変化がなければ両端子部の間は導通していると判定する。こうして、1つの検査対象配線についての検査が終了する。そして、全ての配線の検査が終了するまで、上記一連の検査が繰り返して実行される(ステップS618)。
【0044】
なお、ここでは、図1に示すように、本来接続されているべき端子部121a、121aaの間について検査を行う場合について説明した。つまり、端子部121aおよび121aを含む配線121が本発明の「検査対象配線」に相当している。この場合、端子部121a、121aa間に導通があれば検査対象配線121は正常、導通がなければ断線ありと判定される。一方、本来接続されていない端子部、例えば図1に示す端子部121a、122aを選択して上記検査を行う場合には、これらの端子部の間に導通がなければ正常、導通があれば両者の間が短絡していると判定する。つまり、この場合、端子部121aを含む配線121および端子部122aを含む配線122が「検査対象配線」である。このように、この実施形態の検査装置は、回路基板に形成された端子部の任意の組み合わせについてその導通状態を検査することで、所望の検査対象配線の断線および短絡を検査することができる。
【0045】
以上のように、複数の端子部に順次、電磁波を照射して、そのときに電流検出部80に流れた電荷量の変化に基づいて、選択された端子間の導通を判定している。これらの端子部に近接してプレート電極53を配置してこれらの端子部より高い電位を与え、放出された電子を確実に捕捉できるように構成しているので、これらの任意の端子間の断線/短絡の有無を精度よく安定して求めることができ、検査対象配線の検査を効率よく行うことができる。
【0046】
なお、本実施形態においては、電磁波照射対象を第2の端子部に切り替えたときに電流検出部80に流れる電流を計測しているが、これ以外にも、例えば、第1選択端子部に電磁波を照射する前から電流を計測し、電荷を積算するようにしてもよい。
【0047】
また、これらの実施形態では、電流が流れ始めてから停止するまでを観測して電流値を積分し電荷量Qを求める必要があるので、電磁波照射を開始してから所定の計測時間にわたって電流を計測することで電荷の移動を確実に検出する方法を採っているが、これ以外にも、例えば電流をモニタしてその大きさが所定の値以下に減少するまで電流測定を続ける方法や、電流あるいは電荷量の変化分が所定の値以下になるまで電流測定を続ける方法としてもよい。
【0048】
また、これらの実施形態では、電流値を時間積分して電荷量Qを算出し、その値によって配線の良否を判定しているが、これ以外にも、例えば電流のピーク値を検出してその大小によって判定する方法や、電流が所定の値以下に低下するまでの時間を計測する方法としてもよい。
【0049】
また、第1の実施形態と第2の実施形態とを組み合わせて検査を行う構成としてもよい。例えば、第1の端子部に電磁波を照射してその端子部につながる配線の検査を行った後、この配線に断線あるいは短絡があると判定されたとき引き続いて他の端子部との間で導通検査を行う構成とすれば、配線の不良状態を確認することができる。
【0050】
さらに、先に述べたように、これらの実施形態において、ワーク10が両面に配線を有する回路基板であっても、絶縁膜42を設けない構成の検査装置で検査を行うことが有効な場合がある。というのは、このような回路基板を直接金属板41に接触させた場合には、回路基板の下面に形成された端子部12bが金属板41と電気的に接続されることでこの端子部12bにつながる配線12が本発明にいう第2電極部の一部として機能することになるからである。したがって、ワーク10が例えばその下面をグラウンド層とした回路基板や、内層に設けられたグラウンド層に接続される端子部が下面に設けられた回路基板等である場合、ワーク10と金属板41とを直接接触させることで、そのグラウンド層を第2電極部の一部として機能させることが可能となり、このとき検査対象配線と第2電極部との間の容量を大きく取ることが可能になって、この容量を流れる電流が大きくなって電流検出部80での検出が容易になる。さらに、検査対象となる配線と第2電極部との位置関係が確定するのでこれらの間の容量のばらつきが少なくなり、検査の精度および安定性を向上させることができる。
【0051】
ところで、上に述べた2つの実施形態の検査装置は、金属板41を下部治具40に設けてワーク10と対向配置し、電源70に接続することで本発明の第2電極部として機能させているが、例えば、ワーク10が、配線が形成された複数の層を積層してなる多層基板である場合においては、検査対象配線と金属板41との間に他の配線や電源あるいはグラウンド層などが設けられているために検査対象配線と金属板41との間に十分な容量を形成させることができず、検査の精度および安定性が低下する場合がある。このような場合には、回路基板内に設けられた配線、例えばグラウンド層を第2電極部の一部として機能させることによって、精度よく安定して配線の検査を行うことが可能となる。
【0052】
図8は、回路基板内に形成されたグラウンド層を第2電極部の一部として機能させることを可能とした、この発明にかかる検査装置の第3の実施形態を示す図である。この検査装置は、回路基板20を検査する検査装置である。この回路基板20では、図8に示すように、ベース基板21に複数の配線22、221、222が形成されている。例えば、配線22は、回路基板20の表面に形成された端子部22a、22bと、回路基板20の表面あるいは内部に形成されてこれらの端子部と電気的に接続される導電部22cとで構成されている。また、ベース基板21の内部には、回路基板20に形成される電子回路に動作基準となる電位を与えるためのグラウンド層23が設けられている。グラウンド層23は、導電部22cが貫通している部分を除いて回路基板20のほぼ全面を覆っており、また回路基板20の表面に形成された端子部23aと接続されて、外部グラウンドと電気的に接続できるようになっている。なお、この実施形態では、上記のように構成された回路基板20を検査対象たるワークとして検査する場合について説明するが、本発明の適用対象となる回路基板はこれに限定されるものでないことは言うまでもない。例えば、グラウンド層23がメッシュ状に形成された導電体で構成されている回路基板についても、本発明を適用することができる。
【0053】
また、この検査装置では、下部治具40は、図1の金属板41と絶縁膜42とが省かれ、非導電性の保持台43が備えられている。これは、回路基板20の内部に形成されたグラウンド層23を第2電極部として機能させているために、下部治具40に大きな面積を持つ電極板を設ける必要がないからである。
【0054】
この検査装置においても、図1の検査装置と同様に、上部治具50がワーク20に向かって移動し、下部治具40との間にワーク20を挟み込んで固定することで、ハウジング51、パッキン52およびワーク20に取り囲まれる気密閉空間SPが形成されるように構成されているが、このときグラウンド層23につながる端子部23aがその気密閉空間SPの外部に位置するようにハウジング51が構成されている。そして、上部治具50には導電プローブ57が設けられて、電流検出部80と接続されている。導電プローブ57は、検査位置に位置決めされたワーク20への上部治具50の移動に伴ってワーク20のグラウンド層につながる端子部23aと接触し、グラウンド層23と電流検出部80との導通を確保する。なお、この実施形態では、下部治具40と電流検出部80との間の導通を取る必要がないので、この目的で図1の検査装置において設けられていた導電プローブ81は設けられていない。上記以外の構成は図1の検査装置と同一であるので、同一の構成に対しては同一番号を付して説明を省略する。
【0055】
この実施形態においては、グラウンド層23が導電プローブ57によって電流検出部80に接続されており、一方、回路基板に形成された複数の配線22は、グラウンド層23との間でそれぞれ容量結合している。このように、グラウンド層23は、本発明の「第2電極部」としての要件、つまり外部電源と接続されて、かつ回路基板内の検査対象となる配線と容量結合しているという条件を満たしており、したがって、この検査装置は、グラウンド層23を第2電極部として機能させることができる。
【0056】
この検査装置の動作は、以下の点を除き図1の検査装置の動作と同じである。その相違点とは、光電効果に伴い流れる電流が、金属板41から導電プローブ81を通って電流検出部80へ流れるのでなく、グラウンド層23から導電プローブ57を通って電流検出部80へ流れる点である。その他の動作については、図1の検査装置の動作と同じである。したがって、先に述べた、第2電極部として金属板41を設けた検査装置と同様にして、検査対象配線の断線/短絡の検査および任意の端子部間の導通状態の検査を、精度よく安定して行うことができる。
【0057】
以上のように、この検査装置における配線の検査では、回路基板20内に設けられたグラウンド層23と各配線との間に形成される容量に蓄積される電荷量に基づいて配線の断線および短絡を判定している。このように、検査対象配線と第2電極部とが同一の回路基板に設けられているので、回路基板を下部治具にセットする際の位置ずれや、回路基板のそり、厚みのばらつき等によって生じる容量の変動がなく、その結果、精度よくかつ安定して配線の検査を行うことができる。
【0058】
なお、この実施形態では、グラウンド層23に接続される端子部23aが回路基板20の上面に形成された例について説明したが、ワーク20としては、これ以外の構造を有するものであっても、本実施形態を適宜改変することで本発明を適用することができる。例えば、回路基板20が下面にグラウンド端子を有する構造であれば、絶縁膜を設けない金属板41で下部治具を構成し、グラウンド端子と金属板41を接触させることでグラウンド層23を電源70に電気的に接続する構成や、ワーク20の下部から導電プローブ57をグラウンド端子に接触させる構成とすればよい。
【0059】
また、本実施形態では、回路基板20の内層に設けられたグラウンド層を第2電極部として機能させているが、これ以外にも、例えば、回路基板の片面のほぼ全面を覆うように設けられたグラウンド面や、回路基板に設けられたグラウンド以外の配線、例えば電源ラインとして設けられた配線を第2電極部の一部として用いてもよい。
【0060】
図9は、この発明にかかる検査装置の、第4の実施形態を示す図である。この検査装置の構成および動作は、図1の検査装置と基本的に同じであるが、電圧の印加方法が異なっており、これに伴って構成が一部相違しているので、ここでは図1の検査装置との差異について説明し、同一の構成については同一の番号を付して説明を省略する。
【0061】
この検査装置は、回路基板30を検査する検査装置である。この回路基板30では、図9に示すように、ベース基板31に複数の配線32、321、322等が形成されている。例えば配線32は、回路基板30の表面に実装部品や外部配線と接続されるべく形成された端子部32a、32bと、回路基板30の表面あるいは内部に形成されてこれらの端子部に接続される導電部32cとで構成されている。なお、この実施形態では、上記のように構成された回路基板30を検査対象たるワークとして検査する場合について説明するが、本発明の適用対象となる回路基板はこれに限定されるものでないことは言うまでもない。
【0062】
この検査装置においても、図1の検査装置と同様に、上部治具50がワーク30に向かって接近移動し、下部治具40との間にワーク30を挟み込んで固定することで、ハウジング51、パッキン52およびワーク30に取り囲まれる気密閉空間SPが形成されるように構成されているが、このとき複数の端子部322a、322aaを含む配線322の、1つの端子部322aがその気密閉空間SPの外部に位置する一方、配線322の他の端子部322aaが気密閉空間SP内部に配置するようにハウジング51が構成されている。そして、上部治具50には導電プローブ58が設けられており、電源70のプラス側端子に接続されている。導電プローブ58は、検査位置に位置決めされたワーク30への上部治具50の接近移動に伴って端子部322aと電源のプラス側端子とを電気的に接続し、これによって、この端子部322aにつながる配線322と第2電極部たる金属板41との間に電源70からの電圧が印加される。この電圧のため、この配線322に接続されて気密閉空間SP内に形成されている端子部322aaの近傍には電界が発生している。そして、制御部1が配線321を検査対象として選択し、電磁波照射ユニット60がその配線321を構成する端子部321aに電磁波Lを照射すると、この端子部321aから放出された電子はこの電界によって端子部322aaに引き寄せられて捕捉され、導電プローブ58を通って電源70に流れる。一方、検査対象配線321と容量結合している金属板41には、上記の電子の流れに伴って電源70から電流検出部80および導電プローブ81を経由して電子が流れ込み、その電流が電流検出部80にて検出される。したがって、先に述べた検査装置と同様にして、この検査装置で配線の検査を行うことができる。
【0063】
以上のように、この実施形態にかかる検査装置では、回路基板30に形成された配線322の一方端子部322aが気密閉空間SP外に、他方端子部322aaが気密閉空間SP内に配置されるように上部治具50が構成されており、導電プローブ58によって一方端子部322aを電源70に接続することで、配線322を本発明の「第1電極部」の一部として機能させている。その結果、図1の検査装置において設けられていたプレート電極53を設ける必要がなくなり、ハウジング51はワーク30の表面の検査すべき端子部を覆う最小限の面積に構成すればよいので装置の小型化を図ることができるとともに、減圧すべき気密閉空間SPの容積を小さくすることができ、減圧に要する時間を短縮して短時間にて配線の検査を行うことができる。
【0064】
また、本発明は、上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、ハウジング内を減圧処理する場合について説明したが、本発明はこの構成に限定されるものではなく、必要に応じて、減圧処理を行わず、あるいは減圧状態を適宜加減してもよい。また、これらの実施形態では、回路基板表面の電磁波照射対象となる端子部を覆うようにハウジングを構成しているが、この他にも、例えば、ハウジングの外縁と下部治具の外縁とが当接して密閉空間を形成し、回路基板全体をその内部に収容して減圧する構成としてもよいし、また、回路基板および下部治具全体を収容するようなハウジングを設けてこれら全体を減圧する構成としてもよい。
【0065】
さらに、これらの実施形態を適宜組み合わせて実施することも可能である。例えば、上述した第3の実施形態と第4の実施形態を組み合わせて、例えば、ワークとなる回路基板に形成された電源配線を本発明の第1電極部として機能させるとともに、回路基板に形成されたグラウンド層を本発明の第2電極部として機能させて配線の検査を行うことも可能である。
【0066】
【発明の効果】
以上のように、この発明によれば、被検査配線につながる端子部に近接して配置した第1電極部に端子部より高い電位を与えているので、光電効果によって端子部から放出された電子を第1電極部が引き寄せて確実に捕捉することができる。一方、配線と容量結合するよう第2電極部を配置しているので、上記電子の流れを、この容量を介した閉回路に沿って流れる電流として確実に検出することができる。そして、この電流値に基づいて配線の検査を行うようにしているので、配線の断線/短絡の検査を非接触で、しかも精度よく安定して行うことができる。
【図面の簡単な説明】
【図1】この発明にかかる検査装置の第1の実施形態を示す図である。
【図2】この検査装置の電気的構成を示すブロック図である。
【図3】電磁波を照射したときの配線の電位・電流・電荷量の変化を示す図である。
【図4】この検査装置の動作を示すフローチャートである。
【図5】この検査装置における配線検査を示すフローチャートである。
【図6】この発明にかかる検査装置の第2の実施形態の配線検査を示すフローチャートである。
【図7】第2の実施形態において電磁波を照射したときの配線の電位・電流・電荷量の変化を示す図である。
【図8】この発明にかかる検査装置の第3の実施形態を示す図である。
【図9】この発明にかかる検査装置の第4の実施形態を示す図である。
【符号の説明】
10…ワーク(回路基板)
12、121、122…配線(検査対象配線)
12a、12b、121a、121aa…端子部
12c、121c…導電部
41…金属板(第2電極部)
42…絶縁膜
51…ハウジング
53…プレート電極(第1電極部)
60…電磁波照射ユニット
70…電源
80…電流検出部(電流検出手段)
81…導電プローブ
SP…気密閉空間
Claims (6)
- 回路基板の一方主面に設けられた一端部と、前記回路基板の前記一方主面と反対側の他方主面に設けられた他端部とを電気的に接続してなる配線を複数有する回路基板の検査装置において、
一端が開放されるとともに前記回路基板の一方主面に前記一端が当接し、前記複数の配線の一端部を取り囲み閉空間を形成するハウジングと、
前記閉空間を減圧する減圧手段と、
前記閉空間の外部から、前記複数の配線のうち検査対象とする一の検査対象配線の一端部に選択的に電磁波を照射し、光電効果によって電子を放出させる電磁波照射手段と、
前記閉空間内に放出された電子を捕捉する位置に設けられた第1電極部と、
前記回路基板の他方主面に近接配置され、前記複数の配線それぞれの他端部と容量結合される第2電極部と、
高電位側極が前記第1電極部に、低電位側極が前記第2電極部にそれぞれ接続されて、前記第1電極部に前記第2電極部よりも高電位を与える直流電源と、
光電効果により前記検査対象配線の一端部から放出された電子が前記第1電極部に引き寄せられ捕捉されることに起因して、前記第1電極部、前記直流電源および前記第2電極部を経由して前記検査対象配線の他端部から前記一端部に至る導電経路に流れる電流値を検出する電流検出手段と、
前記電流検出手段による検出結果に基づき前記検査対象配線の導通状態を判定する判定手段と
を備えたことを特徴とする回路基板の検査装置。 - 前記第2電極部は、絶縁層を挟んで前記各配線の他端部に当接される請求項1に記載の回路基板の検査装置。
- 前記ハウジングの上壁は透明になされ、前記ハウジングの側壁に前記第1電極部が設けられるとともに、
前記電磁波照射手段は、前記透明上壁を透過して電磁波を照射する請求項1または2に記載の回路基板の検査装置。 - 前記ハウジングの上壁に透明電極またはメッシュ電極が形成されて前記第1電極部として作用するとともに、前記電磁波照射手段は、前記透明電極を透過してまたは前記メッシュ電極の間隙を透過して電磁波を照射する請求項1または2に記載の回路基板の検査装置。
- 前記ハウジングと前記第2電極部とで前記回路基板を挟み込むように構成されている請求項1ないし4のいずれかに記載の回路基板の検査装置。
- 回路基板の一方主面に設けられた一端部と、前記回路基板の前記一方主面と反対側の他方主面に設けられた他端部とを電気的に接続してなる配線を複数有する回路基板の検査方法において、
前記回路基板の一方主面の前記複数の配線の一端部を一端が開放されたハウジングで取り囲むように覆い、前記一方主面と前記ハウジングにより閉空間を形成して、該閉空間を減圧し、
前記複数の配線のうち検査対象となる一の検査対象配線の一端部の近傍に第1電極部を設ける一方、前記複数の各配線の他端部と容量結合するように前記回路基板の他方主面に近接して第2電極部を配置し、
直流電源の高電位側極を前記第1電極部に、前記直流電源の低電位側極を前記第2電極部に接続することにより前記第1電極部に前記第2電極部よりも高電位を与え、
前記検査対象配線の一端部に電磁波を照射して光電効果により空間に電子を放出させ、
光電効果により前記検査対象配線の一端部から放出された電子が前記第1電極部に引き寄せられ捕捉されることに起因して、前記第1電極部、前記直流電源および前記第2電極部を経由して前記検査対象配線の他端部から前記一端部に至る導電経路に流れる電流値を検出し、
該電流検出結果に基づき前記検査対象配線の導通状態を判定する
ことを特徴とする回路基板の検査方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002009492A JP3804047B2 (ja) | 2001-04-10 | 2002-01-18 | 回路基板の検査装置および検査方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001111132 | 2001-04-10 | ||
JP2001-111132 | 2001-04-10 | ||
JP2002009492A JP3804047B2 (ja) | 2001-04-10 | 2002-01-18 | 回路基板の検査装置および検査方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006067136A Division JP2006184291A (ja) | 2001-04-10 | 2006-03-13 | 回路基板の検査装置および検査方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002372562A JP2002372562A (ja) | 2002-12-26 |
JP2002372562A5 JP2002372562A5 (ja) | 2004-10-28 |
JP3804047B2 true JP3804047B2 (ja) | 2006-08-02 |
Family
ID=26613352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002009492A Expired - Lifetime JP3804047B2 (ja) | 2001-04-10 | 2002-01-18 | 回路基板の検査装置および検査方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3804047B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4287255B2 (ja) * | 2003-11-27 | 2009-07-01 | 日本電産リード株式会社 | 基板検査装置及び基板検査方法 |
-
2002
- 2002-01-18 JP JP2002009492A patent/JP3804047B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002372562A (ja) | 2002-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100877243B1 (ko) | 회로 기판 검사 장치 및 회로 기판을 검사하기 위한 방법 | |
JP2940815B2 (ja) | 導体回路基板の検査方法およびその検査装置 | |
JPH06213955A (ja) | テストプローブ | |
JPH03135778A (ja) | 電気回路の開路/短絡試験を非接触に行う方法及び装置 | |
US5969530A (en) | Circuit board inspection apparatus and method employing a rapidly changing electrical parameter signal | |
US7202690B2 (en) | Substrate inspection device and substrate inspecting method | |
JPH07191080A (ja) | 電気接続の完全性を測定するための装置と方法 | |
KR20060053842A (ko) | 기판 검사장치 및 기판 검사방법 | |
JP2007108110A (ja) | 基板の検査方法および基板の検査装置 | |
JP3804047B2 (ja) | 回路基板の検査装置および検査方法 | |
JP3804046B2 (ja) | 回路基板の検査装置および検査方法 | |
US4621232A (en) | Inspection of unsintered single layer or multilayer ceramics using a broad area electrical contacting structure | |
JP2006029997A5 (ja) | ||
JP3934665B2 (ja) | 回路基板の検査装置および検査方法 | |
JP2006184291A (ja) | 回路基板の検査装置および検査方法 | |
JP4287255B2 (ja) | 基板検査装置及び基板検査方法 | |
JP3804049B2 (ja) | 回路基板の検査装置および検査方法 | |
JP4181019B2 (ja) | 基板検査装置及び基板検査方法 | |
JP3361311B2 (ja) | 基板検査装置および基板検査方法 | |
JP2008292372A (ja) | 検査支援システムを搭載する回路検査装置とその検査支援方法 | |
JPH01162103A (ja) | はんだ付けの面積の電子的測定を用いてはんだ付けを検査する装置 | |
JP3934664B2 (ja) | 回路基板の検査装置および検査方法 | |
JP3080158B2 (ja) | プリント基板の検査方法及び検査装置 | |
JP2006308327A (ja) | 基板検査装置及び基板検査方法 | |
JPH02302679A (ja) | 導通検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3804047 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130519 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |