JP3800472B2 - 二酸化炭素の固定方法 - Google Patents

二酸化炭素の固定方法 Download PDF

Info

Publication number
JP3800472B2
JP3800472B2 JP31639898A JP31639898A JP3800472B2 JP 3800472 B2 JP3800472 B2 JP 3800472B2 JP 31639898 A JP31639898 A JP 31639898A JP 31639898 A JP31639898 A JP 31639898A JP 3800472 B2 JP3800472 B2 JP 3800472B2
Authority
JP
Japan
Prior art keywords
reaction
exchange resin
cation exchange
reaction liquid
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31639898A
Other languages
English (en)
Other versions
JP2000140651A (ja
Inventor
美紀 渡邉
洋輝 前浪
博人 進
裕明 久野
忠 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Inax Corp
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Inax Corp
Priority to JP31639898A priority Critical patent/JP3800472B2/ja
Publication of JP2000140651A publication Critical patent/JP2000140651A/ja
Application granted granted Critical
Publication of JP3800472B2 publication Critical patent/JP3800472B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は二酸化炭素の固定方法に関する。
【0002】
【従来の技術】
近年、大気中における二酸化炭素の濃度が急激に増加し、地球温暖化の主因とされている。二酸化炭素は、経済活動や日常生活から発生し、排出量削減が地球環境を維持していく上で急務とされている。すなわち、わが国の1994年度における二酸化炭素の総排出量は、炭素換算で3億4000万トンであり、年々2〜5%程度ずつ増加傾向にあると言われている。現在、二酸化炭素分離技術や有効活用技術が活発に検討されてはいる。
【0003】
一方、建築・土木産業ではビルの解体等によってセメント系建築廃材が大量に放出され、また鉄鋼産業では高炉や転炉のスラグが必ず放出される。すなわち、わが国内の無機廃材の発生量は、年間でセメント系建築廃材が4800万トン、スラグが2156万トンであると言われている。従来、これらの無機廃材はそのほとんどが埋め立て等に利用されるだけであった。
【0004】
【発明が解決しようとする課題】
しかし、従来の二酸化炭素分離技術等では、大量に発生する二酸化炭素を経済的かつ大量に処理することが未だ困難である。したがって、産業廃棄物たる無機廃材を用いて二酸化炭素を経済的かつ大量に処理することができれば、無機廃材の有効活用による産業廃棄物の削減と、大気中に排出される二酸化炭素の削減とを両立することが期待される。
【0005】
本発明は、上記従来の実状に鑑みてなされたものであって、産業廃棄物たる無機廃材を用いて二酸化炭素を経済的かつ大量に処理することのできる二酸化炭素の固定方法を提供することを解決すべき課題としている。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を解決するために鋭意研究を行い、無機廃材は、CaOを多く含むため、これからCa2+等のアルカリ土類金属イオンを分離することができれば、そのアルカリ土類金属イオンによりアルカリ土類炭酸塩を生成して二酸化炭素を固定化できると考えた。そして、そのために陽イオン交換樹脂を用いることが有効であることを発見し、本発明を完成するに至った。
【0007】
すなわち、本発明の二酸化炭素の固定方法は、水を主成分とする第1反応液中に無機廃材と、該無機廃材のアルカリ土類金属イオンをイオン交換により吸着可能な陽イオン交換樹脂とを共存させることにより、該アルカリ土類金属イオンを該陽イオン交換樹脂に吸着させるイオン交換工程と、
水を主成分とする第2反応液中に該イオン交換工程後の該陽イオン交換樹脂を存在させ、該第2反応液に二酸化炭素を泡立たせることにより、該第2反応液中に該アルカリ土類金属イオンを分離抽出させて該陽イオン交換樹脂を再生するとともに、該第2反応液中で少なくとも該アルカリ土類金属イオンとCO3 2-とが反応したアルカリ土類炭酸塩を生成して二酸化炭素を固定化するバブリング工程と、からなることを特徴とする。
【0008】
発明者らの試験によれば、本発明の二酸化炭素の固定方法では、まずイオン交換工程において、陽イオン交換樹脂を用いていることから、無機廃材の性状にかかわらず無機廃材が迅速に溶解する。かかる溶解のメカニズムは、水を主成分とする第1反応液中において無機廃材から微量に溶出したアルカリ土類金属イオンと陽イオン交換樹脂との間でイオン交換を生じ、その分だけ第1反応液中の平衡状態が損なわれることから、それを補うために第1反応液中にアルカリ土類金属イオンが溶出していくことによると考えられる。なお、第1反応液中におけるイオン交換は、陽イオン交換樹脂の樹脂基体に導入された官能基から一般には水素イオンが分離する一方、そこに無機廃材のアルカリ土類金属イオンが吸着することにより生じると考えられている。
【0009】
そして、バブリング工程において、第2反応液中にアルカリ土類金属イオンを分離抽出させることができるため、陽イオン交換樹脂を再生することができる。また、第2反応液中で少なくともアルカリ土類金属イオンとCO3 2-とが反応した炭酸カルシウム(CaCO3)等のアルカリ土類炭酸塩を生成することができる。
【0010】
したがって、本発明の二酸化炭素の固定方法によれば、産業廃棄物たる無機廃材を用いて二酸化炭素を経済的かつ大量に処理することができる。
無機廃材は粉末状であることが好ましい。粉末状の無機廃材は、イオン交換工程の際、第1反応液との接触面積が大きいことからアルカリ土類金属イオンを溶出しやすく、全体として溶解しやすいからである。また、陽イオン交換樹脂も粉末状又は粒状であることが好ましい。粉末状又は粒状の陽イオン交換樹脂は、イオン交換工程の際、第1反応液との接触面積が大きいことからアルカリ土類金属イオンを吸着しやすく、反応効率が高いからである。また、粉末状又は粒状の陽イオン交換樹脂は、バブリング工程の際に再生もしやすく、かつ作業性にも優れるからである。また、イオン交換工程の際、第1反応液を攪拌したり、振動を与えたりすることが好ましい。攪拌や振動により、無機廃材からのアルカリ土類金属イオンの溶出が促進されたり、陽イオンと陽イオン交換樹脂との接触が促進され、第1反応液全体でイオン交換を行いやすいと考えられるからである。同様に、バブリング工程の際、第2反応液を攪拌したり、振動を与えたりすることが好ましい。攪拌や振動により陽イオン交換樹脂からのアルカリ土類金属イオンの分離抽出が促進され、二酸化炭素の固定量を向上させることができると考えられるからである。
【0011】
バブリング工程の際、第2反応液中に塩基物を存在させることが好ましい。二酸化炭素の固定化反応はpH10程度の塩基性の下で進行しやすいからである。この塩基物としては、アンモニア水、NaOH水溶液、ジエチルアミン、ジエチレントリアミン、エチレンジアミン、トリメタノールアミン等を採用することができるが、アンモニア水を採用することが好ましい。アンモニア水では二酸化炭素の固定量を向上させることができるからである。
【0012】
イオン交換工程の際の第1反応槽をそのままバブリング工程の際の第2反応槽に用いることもできる。こうであれば、反応装置が単槽式となり、第1、2反応液を収容する反応槽を変えることなくイオン交換工程及びバブリング工程ができるため、良好な作業性を得ることができる。他方、単槽式にした場合、連続した反応を行いにくいため、反応効率が悪くなる。このため、イオン交換工程を行う第1反応槽と、バブリング工程を行う第2反応槽との二槽式で反応装置を主として構成するとともに、無機廃材や陽イオン交換樹脂等の移動をスムーズに行い得るようにすることが好ましい。
【0013】
【発明の実施の形態】
以下、本発明を具体化した実施形態1、2を図面を参照しつつ説明する。
(実施形態1)
実施形態1では、図1の流れ図に従って、以下のイオン交換工程及びバブリング工程を実行する。
【0014】
無機廃材としてモルタル廃材を用いた。このモルタル廃材をジョークラッシャー等で粗砕後、ボ−ルミルで24時間湿式細摩し、90℃の乾燥機で一週間乾燥させ、モルタル廃材粉末4とした。得られたモルタル廃材粉末4の平均粒径は6.55μmである。このモルタル廃材粉末4の構成相は、XRDチャートによると、石英(quartz)、曹長石(albite)、方解石(calcite)、緑泥石(clinochlore)及び白雲母(muscovite)である。また、このモルタル廃材粉末4の化学組成(質量%)は、XRF分析によると、表1の通りであった。
【0015】
【表1】
Figure 0003800472
但し、このモルタル廃材粉末4中にはCaOとともにCaCO3も同時に含まれ、CaCO3におけるCO2の含有量がJlS法(R9011)によれば4.08質量%であったことから、モルタル廃材粉末4中におけるCO2を固定可能なCaOは11.8質量%と見積もられる。
【0016】
さらに、陽イオン交換樹脂5として、ゲル型強酸性陽イオン交換樹脂(ダイヤイオンSK;三菱化学(株)製、直径約0.2mmの粒状、比重は1.1)を用意した。この陽イオン交換樹脂5を多量の蒸留水で洗浄後、減圧濾過して湿潤状態とした。
「イオン交換工程」
まず、ステップS1において、第1反応槽1内に目開き149μmの洗浄籠2を収納する。また、第1反応槽1内に300mlの蒸留水からなる第1反応液3と、4.0gのモルタル廃材粉末4と、5.0gの陽イオン交換樹脂5とを投入する。そして、スターラー6により15分間攪拌する。これにより、陽イオン交換樹脂5にモルタル廃材粉末4から除去したCa2+を吸着させる。
【0017】
この後、ステップS2において、第1反応槽1から洗浄籠2を持ち上げ、Ca2+を吸着した陽イオン交換樹脂5を残りのモルタル廃材粉末4及び第1反応液3から分離する。
そして、ステップS3において、残りのモルタル廃材粉末4と第1反応液3とを濾過により分離する。第1反応液3はステップS1の第1反応槽1内に戻す。また、ステップS4において、蒸留水7を用いて陽イオン交換樹脂5を洗浄し、陽イオン交換樹脂5の表面に付着した処理後のモルタル廃材粉末4を除去する。
「バブリング工程」
次いで、ステップS5において、300mlの蒸留水からなる第2反応液8が収容された第2反応槽9を用意し、第2反応槽9内に洗浄籠2とともに陽イオン交換樹脂5を収納する。そして、スターラー10で攪拌しつつ、CO2ガス(CO2100%)を流量0.15ml/分で10分間泡立たせる。こうして、第2反応液8中のCO2濃度を一定にした後、ピペット11により濃度29%のアンモニア水を塩基物12として第2反応液8に加え、pH10に保持しつつ更に10分間CO2ガスを流量0.15ml/分で泡立たせる。なお、第2反応槽9にはpH計13も設けられている。こうして、陽イオン交換樹脂5から第2反応液8(塩基物12を含む。)中にCa2+を分離抽出させ、陽イオン交換樹脂5を再生するとともに、第2反応液8(塩基物12を含む。)中で少なくともCa2+とCO3 2-とを反応させ(炭酸化)、アルカリ土類炭酸塩14としてのCaCO3を生成し、沈殿させる。
【0018】
この後、ステップS6において、第2反応槽9から洗浄籠2を持ち上げ、Ca2+を分離抽出した陽イオン交換樹脂5をアルカリ土類炭酸塩14及び第2反応液8(塩基物12を含む。)から分離する。
そして、ステップS7において、アルカリ土類炭酸塩14と第2反応液8(塩基物12を含む。)とを濾過により分離する。アルカリ土類炭酸塩14は、80°Cの乾燥器で3日間乾燥後、秤量し、XRDにて方解石と同定した。他方、第2反応液8(塩基物12を含む。)はステップS5の第2反応槽9内に戻す。また、ステップS8において、蒸留水15を用いて陽イオン交換樹脂5を洗浄し、陽イオン交換樹脂5の表面に付着したアルカリ土類炭酸塩14を除去する。
【0019】
次いで、ステップS9において、塩酸及び蒸留水からなる第3反応液16内に陽イオン交換樹脂5を浸漬し、陽イオン交換樹脂5をほぼ完全に再生する。この陽イオン交換樹脂5はステップS1の第1反応槽1内に戻す。
こうして、この実施形態1では、産業廃棄物たるモルタル廃材粉末4を用いることにより、近年地球環境の維持の観点から削減が要求されているCO2を経済的かつ大量に固定化できることがわかる。
「評価1」
塩基物12として、上記アンモニア水の代わりに、NaOH水溶液、ジエチルアミン、ジエチレントリアミン、エチレンジアミン又はトリメタノールアミンを用い、塩基物12の種類によるアルカリ土類炭酸塩14への影響について検討した。
【0020】
この結果、アンモニア水とジエチルアミン以外の塩基物12についてはCaCO3を生成できず、NaOH水溶液を用いればアルカリ土類炭酸塩14としてNa2CO3を主に生成できた。この理由は、NaOH水溶液は高い電離度の強塩基であり、第2反応液8中でのNa+の濃度が高いことからCO3 2‐と反応しやすくなるのに対し、アンモニア水は低い電離度の弱塩基であり、第2反応液8中でのNH4 +の濃度が低いことからCO3 2‐との反応が起こりにくいからであると推測される。他方、ジエチレントリアミン、エチレンジアミン及びトリメタノールアミンについては、炭酸化反応の促進を期待したが、XRDでは同定不可能な黒いタール状の有機物をアルカリ土類炭酸塩14として生成した。pHを調整するためにこれらを多量に添加したためであると思われる。また、アンモニア水では方解石及び霰石(aragonite)を生成できたが、ジエチルアミンを用いると主に霰石を生成することができた。
【0021】
したがって、霰石を生成する上においては、塩化物12としてジエチルアミンを用いることが好ましいことがわかる。
CaCO3の回収率(%)は、アンモニア水を用いた場合では21.0%、ジエテルアミンを用いた場合では7.4%であり、アンモニア水を用いた場合の方が高い回収率を確保できることがわかる。
【0022】
したがって、塩化物12としてアンモニア水を用いることがCO2の固定量を向上させる点で好ましいことがわかる。
「評価2」
また、CO2ガスを泡立たせた反応時間を5〜80分間とし、反応時間(分)と、CaCO3の回収率(%)と、アルカリ土類炭酸塩14への影響との関係について検討した。
【0023】
反応時間と回収率との関係を図2に示す。図2より、反応時間が長いほど回収率が高く、CO2の固定量を向上させ得ることがわかる。
「評価3」
さらに、モルタル廃材粉末4の量を0.5〜8.0gとし、陽イオン交換樹脂5へのCa2+の吸着率(%)と、CaCO3の生成量(g)及び回収率(%)との関係を求めた。結果を図3に示す。
【0024】
図3より、吸着率の向上に伴い、生成量が大きく、回収率が高くなるが、吸着率が50%程度で生成量及び回収率が飽和することがわかる。また、バブリング工程前後の陽イオン交換樹脂5について、断面の線分析及び断面の面分析で比較すると、バブリング工程前にはCa2+が内部まで均―に吸着していること、バブリング工程後にはCa2+の濃度が減少し、表面付近のCa2+の濃度が下がっていることが確認できた。このため、CaCO3の生成は、陽イオン交換樹脂5の内部で起こるのではなく、陽イオン交換樹脂5の表面から第2反応液8(塩基物12を含む。)中にCa2+が溶出し、第2反応液8(塩基物12を含む。)において、そのCa2+とCO3 2‐とが反応することによって起こることがわかる。そして、陽イオン交換樹脂5の表面で不足したCa2+を補うように陽イオン交換樹脂5の内部からCa2+が拡散していくと推測される。よって、吸着率が50%程度で生成量及び回収率が飽和するのは、反応時間が10分と比較的短く、吸着率が50%程度でCa2+の拡散速度若しくはCO2の第2反応液8(塩基物12を含む。)への溶解速度が律速となり、陽イオン交換樹脂5に吸着したCa2+の全量がCaCO3生成に消費されず、CaCO3の生成量が反応時間10分での平衡値に達するからであると推定される。
【0025】
したがって、モルタル廃材粉末4の量を増大させれば、陽イオン交換樹脂5へのCa2+の吸着率を高めることができ、これによりCO2の固定量を向上させ得ることがわかる。
「評価4」
また、第2反応液8に添加する塩基物12としてのアンモニア水量を変化させることにより、第2反応液8(塩基物12を含む。)のpHを9、9.5、10、10.5の4水準に変化させ、第2反応液8(塩基物12を含む。)のpHとCaCO3の回収率(%)との関係を求めた。結果を図4に示す。
【0026】
図4より、第2反応液8(塩基物12を含む。)のpH10程度で最も高い回収率を発揮できるものの、第2反応液8(塩基物12を含む。)のpHによって回収率はほとんど変化しないことがわかる。この原因のひとつは、反応時間が比較的短いために、CO2の溶解が進んでおらず、CO3 2-の濃度が第2反応液8(塩基物12を含む。)のpHにそれほど寄与していないからであると考えられる。また、所定のpHに保つためにアンモニア水量が増え、これにより第2反応液8(塩基物12を含む。)の量も増えることから、CO3 2-とCa2+を吸着した陽イオン交換樹脂5との接触が妨げられることも原因であると考えられる。
【0027】
また、アルカリ土類炭酸塩14のXRDチャートによれば、pHによる生成相の違いは認められなかった。
したがって、第2反応液8(塩基物12を含む。)はpH10程度が好ましいことがわかる。
「評価5」
CO2の供給源としては工場等からの排ガスを使用することが予想される。このため、ガス中のCO2濃度(%)を変化させた。なお、ガスのCO2を除く残部はN2である。こうして、反応時間10〜40分の下、CO2濃度とCaCO3の回収率(%)との関係を求めた。結果を図5に示す。
【0028】
図5より、CO2濃度が下がると、回収率もそれに応じて減少することがわかる。また、CO2濃度の変化に伴う回収率の挙動は、反応時間10分、20分では大きな差は認められないが、反応時間40分では同じCO2濃度における反応時間20分の場合に比べ、約2倍の回収率を示すことがわかる。これは、CO2濃度の滅少に伴い、第2反応液8(塩基物12を含む。)中へのCO2の溶解量が減少することから、CO3 2-とCa2+を吸着した陽イオン交換樹脂5との接触の機会が減少するためにCaCO3の回収率は減少する一方、反応時間を長くすることで第2反応液8(塩基物12を含む。)中のCO3 2-の濃度が確保され、CO2の固定量が向上するからであると推定される。
【0029】
また、アルカリ土類炭酸塩14のXRDチャートによれば、CO2濃度が低く、反応時間が短い場合には、CaCO3の生成量が低かった。特に、CO2濃度が5%、反応時間が10分の場合は、XRD分析が困難なほどCaCO3の生成量が低く、CO2の固定量が低かった。
したがって、CO2濃度の高いガスを使用することが好ましいことがわかる。また、排ガス等のCO2濃度の低いガスをバブリング工程に用いる場合、反応時間を長くする、攪拌速度を上げる、振動させる、CO2ガスの流量を上げる、CO2ガスの気泡を細かくする等、CO2の溶解を促進してCO3 2-とCa2+を吸着した陽イオン交換樹脂5との接触の頻度を増加させる手段が必要となると思われる。
「評価6」
第2反応液8(塩基物12を含む。)の攪拌速度を100〜400(rpm)で変化させ、攪拌速度とCaCO3の回収率(%)との関係を求めた。結果を図6に示す。
【0030】
図6より、攪拌速度を上げるにつれて、CaCO3の回収率が向上し、CO2の固定量も向上することがわかる。攪拌速度を上げることにより、CO2の溶解及びCa2+とCO3 2-との接触頻度が高められるためと思われる。
また、アルカリ土類炭酸塩14のXRDチャートによれば、攪拌速度の違いで生成相に相違を生じないことが確認された。
【0031】
したがって、排ガス等のCO2濃度の低いガスをバブリング工程に用いる場合、攪拌速度を上げることは有効であると考えられる。
「評価7」
第2反応槽9内の第2反応液8(塩基物12を含む。)を振動すべく、第2反応槽9に超音波発信器を設け、28kHz、45kHz、100kHzの3水準で周波数を変化させた。この際、攪拌は行わないこととした。こうして、超音波の周波数とCaCO3の回収率(%)との関係を求めた。結果を図7に示す。
【0032】
図7より、周波数が低いほど、CaCO3の回収率が増大し、CO2の固定量が向上することがわかる。しかし、周波数が高くなるほど、CaCO3の生成量が低下し、CO2の固定量も低下する。超音波を用いることにより発生するキャビテーションの影響により、第2反応液8(塩基物12を含む。)とCa2+を吸着した陽イオン交換樹脂5との間に摩擦力が生じ、これによりCa2+を吸着した陽イオン交換樹脂5の結合が切れることが推定される。
【0033】
また、アルカリ土類炭酸塩14のXRDチャートによれば、周波数が低い場合には霰石の生成が確認された。
したがって、超音波を用いて第2反応液8(塩基物12を含む)を振動させる場合には、比較的低い周波数の方がCO2の固定に適していることがわかる。
「評価8」
評価7と同様、第2反応槽9内の第2反応液8(塩基物12を含む。)を振動すべく、第2反応槽9に超音波発信器を設け、出力を3水準で変化させた。この際、攪拌は行わないこととした。こうして、超音波の強さとCaCO3の回収率(%)との関係を求めた。また、第2反応液8(塩基物12を含む。)をpH10に保持すべく使用したアンモニア水量(l)とCaCO3の回収率(%)との関係を求めた。結果を図8に示す。
【0034】
図8より、超音波の出力の大小はCaCO3の回収率、ひいてはCO2の固定量にあまり影響が無く、超音波により振動させない方がCO2の固定量が向上することがわかる。他方、超音波により振動させない方がアンモニア水の使用量が低いことがわかる。これは、超音波を使用すればキャビテーションの影響で第2反応液8(塩基物12を含む。)の温度が上昇し、これによりイオン積の関係でpHが低下するためである。このため、超音波により振動させると、pH10を維持すべくアンモニア水の使用量が増加するため、第2反応液8(塩基物12を含む。)中のCa2+の割合が減少すると考えられる。また、超音波による振動で第2反応液8(塩基物12を含む)の温度が上昇することにより、CO2の溶解度が低下し、CO2とCa2+との接触頻度が下がると考えられる。
【0035】
また、アルカリ土類炭酸塩14のXRDチャートによれば、3水準共に生成相に違いがなかった。
したがって、超音波を用いて第2反応液8(塩基物12を含む)を振動させる場合には、第2反応液8(塩基物12を含む。)の温度を維持する手段を別に講じる必要があることが想定される。
「評価9」
第2反応液8(塩基物12を含む。)中に供給するCO2ガス(CO2100%)の流量を0〜15l/分で変化させ、CO2ガス流量とCaCO3の回収率(%)との関係を求めた。結果を図9に示す。
【0036】
図9より、流量が小さいほど回収率が低く、CO2の固定量が低いことがわかる。しかし、流量を大きくしても回収率は飽和し、CO2の固定量は頭打ちになることがわかる。第2反応液8(塩基物12を含む。)中のCO3 2-の濃度が飽和するからであると想定される。
また、アルカリ土類炭酸塩14のXRDチャートによれば、CO2ガスの流量の差によって生成相に違いがなかった。
【0037】
したがって、CO2ガスの流量は、第2反応液8(塩基物12を含む。)の量、反応時間等との関係の下、反応効率を考慮して決定することが必要であると考えられる。
(実施形態2)
実施形態2では、図10に示す反応装置を用いる。この反応装置では、処理室20内に第1反応槽21及び第2反応槽22が設けられている。第1反応槽21内には目開き177μmの洗浄籠23が収納され、第2反応槽22内にも目開き177μmの洗浄籠24が収納されている。また、第1反応槽21及び洗浄籠23内には電気伝導率計25及び出力可変のスターラー26が設けられている。他方、第2反応槽22及び洗浄籠24内には、pH計27及び出力可変のスターラー28が設けられているとともに、アンモニア水を収納したボンベ29とポンプ30を介して接続されたノズル31が設けられている。また、洗浄籠24の内部底面にはCO2ガスを収納したボンベ32と接続されたノズル33が設けられ、第2反応槽22の内部底面には超音波発信器34が設けられている。
【0038】
また、第1反応槽21の底部には弁35を介して配管36が接続されており、配管36の下方にはNo.5Bの大型濾紙をもつ脱水籠37を上にして濾液受け槽38が設けられている。濾液受け槽38の底部にはポンプ39を介して二股の配管40が接続されている。配管40の一端は弁41を介して第1反応槽21内に位置され、配管40の他端は弁42を介して外部に位置されている。
【0039】
さらに、第2反応槽22の底部にも弁43を介して配管44が接続されており、配管44の下方にもNo.5Bの大型濾紙をもつ脱水籠45を上にして濾液受け槽46が設けられている。濾液受け槽46の底部にもポンプ47を介して二股の配管48が接続されている。配管48の一端は弁49を介して第2反応槽22内に位置され、配管48の他端は弁50を介して外部に位置されている。
【0040】
処理室20の上部には排気ファン51を介して外部に繋がる排気管52が設けられている。また、処理室20外には制御盤53が設けられ、電気伝導率計25、スターラー26、28、pH計27、ポンプ30、39、47、超音波発信器34及び排気ファン51は、この制御盤53に接続されている。
かかる反応装置により上記実施形態1と同様にイオン交換工程及びバブリング工程を実行する。但し、作業性を考慮し、イオン交換工程を第1反応槽21で行い、バブリング工程を第2反応槽22で行う。
「イオン交換工程」
すなわち、第1反応槽21内にそれぞれ一定量の蒸留水からなる第1反応液と、上記モルタル廃材粉末等の無機廃材と、陽イオン交換樹脂とを投入し、電気伝導率計25により確認しつつスターラー26により一定時間攪拌する。
【0041】
そして、弁35が開かれ、Ca2+を吸着した陽イオン交換樹脂を洗浄籠23に残し、残りの無機廃材及び第1反応液を脱水籠37を介して濾液受け槽38で受ける。この際、脱水籠37の濾紙上に処理後の無機廃材が残留されるため、濾液受け槽38には第1反応液が収納される。この第1反応液は、再利用可能であればポンプ39及び弁41を介して配管40により第1反応槽21内に環流され、再利用不能であればポンプ39及び弁42を介して配管40により外部に排出される。脱水籠37の濾紙上に残留した処理後の無機廃材を脱水し、再度第1反応槽21内に戻したり、他で再利用することもできる。
「バブリング工程」
洗浄籠23上に残されたイオン交換工程後の陽イオン交換樹脂は、洗浄籠24内に移される。ここで、陽イオン交換樹脂を脱水してから移すこともできる。第2反応槽24内には、蒸留水と、ボンベ29からポンプ30及びノズル31を介して添加されたアンモニア水とがそれぞれ一定量貯留されており、これらにより第2反応液が構成されている。そして、pH計27で確認するとともにスターラー28で攪拌しつつ、ボンベ32及びノズル33を介してCO2ガスを一定流量及び一定時間泡立たせる。
【0042】
そして、弁43が開かれ、Ca2+を分離抽出した陽イオン交換樹脂を洗浄籠24に残し、CaCO3及び第2反応液を脱水籠45を介して濾液受け槽46で受ける。この際、脱水籠45の濾紙上にCaCO3が残留されるため、濾液受け槽46には第2反応液が収納される。この第2反応液は、再利用可能であればポンプ47及び弁49を介して配管48により第2反応槽22内に環流され、再利用不能であればポンプ47及び弁50を介して配管48により外部に排出される。ここで、洗浄籠24上に残留した陽イオン交換樹脂を脱水し、塩酸等で洗浄後、再度第1反応槽21内に戻して再利用する。また、脱水籠45の濾紙上に残留したCaCO3を脱水し、他で再利用することもできる。
【0043】
こうして、この実施形態2では、優れた作業性の下でCaCO3の確保とCO2の固定化とを両立することができる。
【図面の簡単な説明】
【図1】実施形態1の流れ図である。
【図2】実施形態1の評価2に係り、反応時間と回収率との関係を示すグラフである。
【図3】実施形態1の評価3に係り、Ca2+の吸着率とCaCO3の生成量及び回収率との関係を示すグラフである。
【図4】実施形態1の評価4に係り、第2反応液(塩基物を含む。)のpHとCaCO3の回収率との関係を示すグラフである。
【図5】実施形態1の評価5に係り、CO2濃度とCaCO3の回収率との関係を示すグラフである。
【図6】実施形態1の評価6に係り、攪拌速度とCaCO3の回収率との関係を示すグラフである。
【図7】実施形態1の評価7に係り、超音波の周波数とCaCO3の回収率との関係を示すグラフである。
【図8】実施形態1の評価8に係り、超音波の出力の強弱と使用したアンモニア水の量とCaCO3の回収率との関係を示すグラフである。
【図9】実施形態1の評価9に係り、CO2の流量とCaCO3の回収率との関係を示すグラフである。
【図10】実施形態2の反応装置の模式構成図である。
【符号の説明】
3…第1反応液
4…無機廃材(モルタル廃材粉末)
5…陽イオン交換樹脂
8…第2反応液
14…アルカリ土類炭酸塩
12…塩基物

Claims (3)

  1. 水を主成分とする第1反応液中に無機廃材と、該無機廃材のアルカリ土類金属イオンをイオン交換により吸着可能な陽イオン交換樹脂とを共存させることにより、該アルカリ土類金属イオンを該陽イオン交換樹脂に吸着させるイオン交換工程と、
    水を主成分とする第2反応液中に該イオン交換工程後の該陽イオン交換樹脂を存在させ、該第2反応液に二酸化炭素を泡立たせることにより、該第2反応液中に該アルカリ土類金属イオンを分離抽出させて該陽イオン交換樹脂を再生するとともに、該第2反応液中で少なくとも該アルカリ土類金属イオンとCO3 2-とが反応したアルカリ土類炭酸塩を生成して二酸化炭素を固定化するバブリング工程と、からなることを特徴とする二酸化炭素の固定方法。
  2. 第2反応液中に塩基物を存在させることを特徴とする請求項1記載の二酸化炭素の固定方法。
  3. イオン交換工程後の第1反応液をバブリング工程前の第2反応液とすることを特徴とする請求項1又は2記載の二酸化炭素の固定方法
JP31639898A 1998-11-06 1998-11-06 二酸化炭素の固定方法 Expired - Fee Related JP3800472B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31639898A JP3800472B2 (ja) 1998-11-06 1998-11-06 二酸化炭素の固定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31639898A JP3800472B2 (ja) 1998-11-06 1998-11-06 二酸化炭素の固定方法

Publications (2)

Publication Number Publication Date
JP2000140651A JP2000140651A (ja) 2000-05-23
JP3800472B2 true JP3800472B2 (ja) 2006-07-26

Family

ID=18076641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31639898A Expired - Fee Related JP3800472B2 (ja) 1998-11-06 1998-11-06 二酸化炭素の固定方法

Country Status (1)

Country Link
JP (1) JP3800472B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214408A1 (en) * 2005-07-05 2009-08-27 Greensols Australia Pty Ltd Preparation and use of cationic halides, sequestration of carbon dioxide
KR100952305B1 (ko) 2008-04-25 2010-04-13 한국원자력연구원 오염 탄산용액의 전해 재생방법 및 그 장치
JP5268719B2 (ja) 2009-03-11 2013-08-21 株式会社東芝 海水を利用した排ガス中の二酸化炭素の除去方法及びシステム
KR101255849B1 (ko) * 2010-07-01 2013-04-17 한국지질자원연구원 섬유상의 석면을 입방형의 탄산칼슘으로 변형시키는 방법
KR101126939B1 (ko) * 2011-09-14 2012-03-21 한국지질자원연구원 탄산염 광물의 형성 방법 및 탄산염 광물의 형성 장치
KR101304944B1 (ko) 2011-09-14 2013-09-06 현대자동차주식회사 이산화탄소 탄산염 고정화 장치

Also Published As

Publication number Publication date
JP2000140651A (ja) 2000-05-23

Similar Documents

Publication Publication Date Title
KR20170138561A (ko) 마그네슘 함유 제련 폐수를 종합 회수하는 방법
UA123164C2 (uk) Спосіб обробки для повторного використання залишків хлорування розплаву солі
WO2014005227A1 (en) Slag stabilization with captured carbon dioxide
JP4328215B2 (ja) 製鋼スラグの処理方法
JP3800472B2 (ja) 二酸化炭素の固定方法
CN112209528A (zh) 一种脱硫废水与飞灰协同处理的方法
CN108211759A (zh) 氯碱工业中产生的盐泥废弃物的处理方法及其应用
CN105967396A (zh) 一种含锰废水的处理方法
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
CN207944006U (zh) 黑臭污泥处理系统
RU2476610C2 (ru) Способ извлечения металлов из металлсодержащего минерального сырья
JP3800471B2 (ja) 無機廃材の処理方法及びそのための反応装置
TWI806025B (zh) 焚化飛灰的處理方法
JP4536257B2 (ja) 塩化ナトリウム水溶液の製造方法
JP2005000875A (ja) 酸性廃水成分の再資源化方法及び酸性廃水処理システム
JP6873112B2 (ja) 金属水銀を安定化する方法
JP2007137716A (ja) ゼオライトの製造方法
WO2021255340A1 (en) Controlling carbonation
KR102096900B1 (ko) 해수탈황 공정의 이산화탄소 포집장치 및 포집방법
JP2000246267A (ja) 排水中のフッ素の固定化方法および排水の安定化処理方法
WO2019107116A1 (ja) 製鋼スラグからカルシウムを溶出させる方法、製鋼スラグからカルシウムを回収する方法、および製鋼スラグからカルシウムを溶出させる装置
JP4014679B2 (ja) 排水の処理方法
CN110201525A (zh) 一种利用碱性废渣进行含硫烟气脱硫的方法
JP3939204B2 (ja) 有機性廃棄物の消化ガスからのメタンの分離回収方法
KR100786223B1 (ko) 환원수를 이용한 사문석의 무기질 성분 침출방법

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees