JP3794987B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3794987B2
JP3794987B2 JP2002155349A JP2002155349A JP3794987B2 JP 3794987 B2 JP3794987 B2 JP 3794987B2 JP 2002155349 A JP2002155349 A JP 2002155349A JP 2002155349 A JP2002155349 A JP 2002155349A JP 3794987 B2 JP3794987 B2 JP 3794987B2
Authority
JP
Japan
Prior art keywords
light emitting
solder
metal layer
emitting element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002155349A
Other languages
Japanese (ja)
Other versions
JP2003347650A (en
Inventor
賢司 酒井
剛司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2002155349A priority Critical patent/JP3794987B2/en
Publication of JP2003347650A publication Critical patent/JP2003347650A/en
Application granted granted Critical
Publication of JP3794987B2 publication Critical patent/JP3794987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体発光装置に関し、より詳細には半導体発光素子(以下、「発光素子」と記すことがる)が電極上に半田で固着された半導体発光装置に関するものである。
【0002】
【従来の技術】
半導体レーザなどの発光素子に電流を流すと発熱し、その発熱により発光素子の発光性能が低下することがある。そこで発光素子の温度上昇を抑えて発光性能を維持するために一般に、AlNやSiなどの熱伝導性の高い放熱部材(基材)に発光素子を固着している。
【0003】
に、従来の半導体発光装置の概説図を示す。従来の半導体発光装置では、放熱部材(基材)1の表面に形成された電極13上に接着層としての半田層11が蒸着されている。そして半田層11を加熱により溶解した後、発光素子2が押し当てるように取り付けられ、半田を冷却固化させて発光素子2を電極13上に固着させている。このような構造の半導体発光装置では、溶融した半田層11に発光素子2を押し当てた時に、発光素子2の下面からはみ出た溶融半田が発光素子2の下面外周で盛り上がり、P−N接合分岐点に接触しショート不良やリーク不良を起こすことがあった。特に、放熱性を高めるためにP−N接合分岐点が基材に近くなるように発光素子を基材に固着する、いわゆるジャンクションダウンマウントを行っている装置では、P−N接合分岐点は基材からレーザダイオード素子で1〜3μm、青色発光ダイオード素子で2〜4μmと至近距離にあるので前記不良が起こりやすい。また、近年の発光素子の大型化に伴い、接着強度を高くするために半田層を厚くした場合にも前記不良は起こりやすくなる。
【0004】
このような不具合を防止するため、例えば発光素子の側面を絶縁層で被覆する、あるいは半田の蒸着量や溶融温度、発光素子の押し当て強度などを最適制御することが考えられる。しかし、前者の方法では被覆工程が新たに必要となり製造工程が複雑化する。また後者の方法では最適な固着条件とするのに多くの時間と労力を要するとともに、固着面積不足による固着強度低下および放熱性低下も懸念される。
【0005】
また特開平6−326210号公報及び特開平6−350202号公報では、半田層としてのAuSn層をAu層上に形成し、AuSnとAuとの濡れ性のよいことを利用して、溶融したAuSn層に発光素子を押し付けたときに、発光素子下面からはみ出たAuSnが発光素子の下面外周で盛り上がらないようにする技術が提案されている。この提案技術によれば発光素子の下面外周での盛り上がりは抑えられるものの、AuSnとAuとは濡れ性がよいためAuSn層を溶融させるために加熱したときにAu層の一部AuがAuSn層に侵入することがる。AuSn層にAuが侵入するとAuSnの組成比が変化するため、AuSnの融点が変動し充分な固着強度が得られないおそれがある。
【0006】
【発明が解決しようとする課題】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、半田によって基材に固着された発光素子の下面外周に、不具合を生じさせるような半田の盛り上がりがなく、しかも加熱によっても半田層の組成が変化せず発光素子が基材にしっかりと固着した半導体発光装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、基材の表面に形成された電極に半導体発光素子を固着した半導体発光装置において、前記電極と前記半導体発光素子との間に、前記半導体発光素子側から順に、半田層、半田との濡れ性の悪い、Ptからなる第1の金属層を形成するとともに、半導体発光素子を固着していない状態の基材の平面視において、半田との濡れ性の良い、Au,Sn,Ag,Pb,Zn,Al,Cd,In,Biからなる群より選択される少なくとも1つの金属からなる第2の金属層を前記第1の金属層の周縁に露出するように、且つ第1の金属層と第2の金属層の上面が同一平面内となるように形成し、前記半田層を加熱溶融して前記電極上に前記半導体発光素子を固着したことを特徴とする半導体発光装置が提供される。
【0008】
ここで、装置構造を簡略化し生産性を上げる観点などから、前記電極の最上層を第2の金属層として用いることが推奨される。
【0009】
【発明の実施の形態】
本発明者等は、半田と他金属との濡れ性を利用して発光素子の下面外周の半田の盛り上がりを抑えると同時に、半田の加熱溶融時の組成変化を防止できないか鋭意検討を重ねた。その結果、半田との濡れ性の悪い第1の金属層の上に半田層を形成することにより、第1の金属層が壁となって半田が溶融してもその組成に変化が生じることがないこと、また溶融した半田は第1の金属層に弾かれて第1の金属層の中央部、すなわち発光素子の下面の中央部に集まろうとするので、発光素子の下面外周付近での溶融半田の盛り上がりが抑えられることを見出し本発明をなすに至った。
【0010】
図1に、本発明に係る半導体発光装置の一例を示す構成図を示す。放熱部材(基材)1の上面に、電極を兼ねる、半田との濡れ性の良い第2の金属層14が蒸着により形成されている。そして、第2の金属層14上に形成された凹部に、半田との濡れ性の悪い第1の金属層12が、その上面が第2の金属層14の上面と同一平面内となるように蒸着されている。これを平面視で見ると、第1の金属層12の周縁に第2の金属層14が露出している状態となっている。第1の金属層12の上にさらに半田層11が形成されている。同図(b)に示すように、このような構成の装置を加熱し、半田層11を溶融させてその上に発光素子2を載置し押圧すると、発光素子2の下面外周から溶融半田がはみ出そうとする。一方、溶融半田は第1の金属層12に弾かれる結果、第1の金属層の中央部すなわち発光素子2の下面中央部に集まろうとする。この結果、半田層11の半田量を好適範囲とすることにより、溶融半田に対する、発光素子2の押圧による発光素子2の下面外周への押しだし力よりも、第1の金属層12によって弾かれる力の方が強くなり、発光素子2の下面外周での溶融半田の盛り上がりが抑えられる。もちろん半田層11の半田量は、溶融半田の盛り上がり抑制の他、発光素子2の確実な固着という観点からも決定されるべきものであり、その量(層厚など)は第1の金属層12の種類や発光素子の底面積などから適宜決定される。さらに、この図の装置では、たとえ発光素子2の下面外周部分に溶融半田が多量に押し出されたとしても、半田との濡れ性のよい第2の金属層14が、その上面が第 1の金属層12の上面と同一平面内となるように第1の金属層12の周縁に形成されているので、はみ出た溶融半田は第1の金属層12の側面を流下することなく第2の金属層14の表面上を滑らかに流動する。このため、発光素子2の下面外周で半田が盛り上がりを形成することは完全に防止される。また第2の金属層14と半田層11とは第1の金属層12により隔離されているので、第2の金属層14の成分が半田層11に加熱時に侵入することはない。
【0011】
ここで本発明で使用できる半田としては特に限定はなく、従来公知のものが使用でき、AuSn,AgSn,PbSn,ZnAl,SnZn,ZnSn,ZnCd,SnPbBiIn,SnBiからなる群より選択されるものが好ましい。中でもAuSnが好ましい。また半田層は従来公知の方法により形成でき、例えば蒸着やスパッタリング、スクリーン印刷などにより形成する。半田層の好適な層厚としては1〜5μmの範囲である。また、第1の金属層としては半田の種類を問わずPtを用いる。
【0012】
本発明で使用する基材としては特に限定はなく、発光素子がレーザダイオード素子である場合には放熱部材やサブマウントが、また発光素子が発光ダイオード素子である場合にはチップ基板がそれぞれ本発明における基材に該当する。
【0013】
本発明で使用する第2の金属層としては、Au,Sn,Ag,Pb,Zn,Al,Cd,In,Biからなる群より選択される少なくとも1つの金属からなるものを用いる。
【0014】
もちろん、第1の金属層および第2の金属層の種類は、使用する半田の種類から適宜決定される。表1に好適な組み合わせ例を示す。前記の通り、第1の金属層としては半田の種類を問わずPtを用いる。またこれらの組み合わせの中でも、基材上に形成する電極を第2の金属層として使用でき、また汎用性のあることから、半田層:AuSn、第1の金属層:Pt、第2の金属層:Auの組み合わせが特に好ましい。これらの金属層は蒸着やスパッタリングなど従来公知の薄膜形成方法により形成される。また第1の金属層の層厚は、電極や第2の金属層の成分が半田層へ侵入するのを防止する役割も果たすので、Ptを用いる場合には少なくとも0.1〜0.5μm程度の層厚が必要である。第2の金属層の層厚についても特に限定はなく通常数μm程度で足りる。
【0015】
【表1】

Figure 0003794987
【0016】
【発明の効果】
本発明の半導体発光装置では、基材の表面に形成された電極と半導体発光素子との間に、半導体発光素子側から順に、半田層、半田との濡れ性の悪い第1の金属層を形成するとともに、半導体発光素子を固着していない状態の基材の平面視において、半田との濡れ性の良い第2の金属層を第1の金属層の周縁に露出するように、且つ第1の金属層と第2の金属層の上面が同一平面内となるように形成したので、溶融した半田は第1の金属層から第2の金属層へと円滑に流動するこれにより、半田層の層厚などを厳密に調整することなく、発光素子を基材に押圧したときの溶融半田の盛り上がりを確実に抑えられる。
【0017】
さらに電極の最上層を第2の金属層として用いると、積層構造を簡略化でき生産性を向上させることができる。
【図面の簡単な説明】
図1】 本発明の半導体発光装置の一例を示す断面図である。
図2】 従来の半導体発光装置の例を示す断面図である。
【符号の説明】
1 放熱部材(基材)
2 発光素子
3 サブマウント(基材)
4 発光素子
11 半田層
12 第1の金属層
13 電極
14 第2の金属層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device in which a semiconductor light emitting element (hereinafter, referred to as “light emitting element”) is fixed on an electrode by solder.
[0002]
[Prior art]
When a current is passed through a light emitting element such as a semiconductor laser, heat is generated, and the light emission performance of the light emitting element may deteriorate due to the generated heat. Therefore, in order to suppress the temperature rise of the light emitting element and maintain the light emitting performance, the light emitting element is generally fixed to a heat radiating member (base material) having high thermal conductivity such as AlN and Si.
[0003]
FIG. 2 shows a schematic diagram of a conventional semiconductor light emitting device. In a conventional semiconductor light emitting device, a solder layer 11 as an adhesive layer is deposited on an electrode 13 formed on the surface of a heat dissipation member (base material) 1. After the solder layer 11 is melted by heating, the light emitting element 2 is attached so as to be pressed against it, and the solder is cooled and solidified to fix the light emitting element 2 on the electrode 13. In the semiconductor light emitting device having such a structure, when the light emitting element 2 is pressed against the melted solder layer 11, the molten solder protruding from the lower surface of the light emitting element 2 rises on the outer periphery of the lower surface of the light emitting element 2, and the PN junction branching occurs. There was a case where a short-circuit failure or leak failure occurred due to contact with a point. In particular, in a device performing a so-called junction down mount in which a light emitting element is fixed to a base material so that the PN junction branch point is close to the base material in order to improve heat dissipation, the PN junction branch point is a base point. The above-mentioned defects are likely to occur because the distance from the material is 1 to 3 μm for the laser diode element and 2 to 4 μm for the blue light emitting diode element. In addition, with the recent increase in size of light-emitting elements, the above-described defects are likely to occur even when the solder layer is thickened to increase the adhesive strength.
[0004]
In order to prevent such problems, for example, it is conceivable to cover the side surface of the light emitting element with an insulating layer, or to optimally control the solder deposition amount, melting temperature, light emitting element pressing strength, and the like. However, the former method requires a new coating process, which complicates the manufacturing process. Further, in the latter method, it takes a lot of time and labor to obtain the optimum fixing condition, and there is a concern that the fixing strength and heat dissipation may be reduced due to insufficient fixing area.
[0005]
In JP-A-6-326210 and JP-A-6-350202, an AuSn layer as a solder layer is formed on an Au layer, and the melted AuSn is utilized by utilizing the good wettability between AuSn and Au. There has been proposed a technique for preventing AuSn protruding from the lower surface of the light emitting element from rising on the outer periphery of the lower surface of the light emitting element when the light emitting element is pressed against the layer. According to this proposed technique, although the swell at the outer periphery of the lower surface of the light emitting element can be suppressed, AuSn and Au have good wettability, so when heated to melt the AuSn layer, a part of the Au layer becomes AuSn layer. Can invade. When Au intrudes into the AuSn layer, the composition ratio of AuSn changes, so that the melting point of AuSn fluctuates and there is a possibility that sufficient fixing strength cannot be obtained.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a conventional problem. The object of the present invention is to swell the solder so as to cause defects on the outer periphery of the lower surface of the light emitting element fixed to the base material by solder. Furthermore, an object of the present invention is to provide a semiconductor light emitting device in which the composition of the solder layer is not changed by heating and the light emitting element is firmly fixed to the substrate.
[0007]
[Means for Solving the Problems]
According to the present invention, in the semiconductor light emitting device in which the semiconductor light emitting element is fixed to the electrode formed on the surface of the base material, the solder layer, in order from the semiconductor light emitting element side, between the electrode and the semiconductor light emitting element, A first metal layer made of Pt that has poor wettability with solder is formed, and Au, Sn, which has good wettability with solder in a plan view of the substrate in a state where the semiconductor light emitting element is not fixed. A second metal layer made of at least one metal selected from the group consisting of Ag, Pb, Zn, Al, Cd, In, Bi is exposed to the periphery of the first metal layer , and Provided is a semiconductor light emitting device characterized in that the upper surface of the metal layer and the second metal layer are formed in the same plane, the solder layer is heated and melted, and the semiconductor light emitting element is fixed onto the electrode. Is done.
[0008]
Here, it is recommended to use the uppermost layer of the electrode as the second metal layer from the viewpoint of simplifying the device structure and increasing productivity.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention made extensive studies on whether or not the composition change at the time of heating and melting of the solder can be prevented while suppressing the swelling of the solder on the outer periphery of the lower surface of the light emitting element by utilizing the wettability between the solder and another metal. As a result, when the solder layer is formed on the first metal layer having poor wettability with the solder, even if the first metal layer becomes a wall and the solder melts, the composition may change. In addition, the molten solder is bounced by the first metal layer and tries to gather at the center of the first metal layer, that is, the center of the lower surface of the light emitting element. It has been found that solder bulge can be suppressed, and has led to the present invention.
[0010]
FIG. 1 is a configuration diagram showing an example of a semiconductor light emitting device according to the present invention. A second metal layer 14 that also serves as an electrode and has good wettability with solder is formed on the upper surface of the heat dissipation member (base material) 1 by vapor deposition. Then, the first metal layer 12 having poor wettability with solder is placed in the recess formed on the second metal layer 14 so that the upper surface thereof is in the same plane as the upper surface of the second metal layer 14. Vapor deposited. When viewed in a plan view, the second metal layer 14 is exposed at the periphery of the first metal layer 12. A solder layer 11 is further formed on the first metal layer 12. As shown in FIG. 2B, when the apparatus having such a configuration is heated to melt the solder layer 11 and the light emitting element 2 is placed and pressed thereon, the molten solder is applied from the outer periphery of the lower surface of the light emitting element 2. Try to stick out. On the other hand, as a result of the molten solder being repelled by the first metal layer 12, the molten solder tends to gather at the center of the first metal layer, that is, at the center of the lower surface of the light emitting element 2. As a result, by setting the solder amount of the solder layer 11 within a suitable range, the force that is pushed by the first metal layer 12 rather than the pushing force to the outer periphery of the lower surface of the light emitting element 2 due to the pressing of the light emitting element 2 against the molten solder Thus, the rise of molten solder on the outer periphery of the lower surface of the light emitting element 2 is suppressed. Of course, the solder amount of the solder layer 11 should be determined from the viewpoint of suppressing the rise of the molten solder and also securing the light emitting element 2, and the amount (layer thickness, etc.) is determined by the first metal layer 12. It is determined as appropriate from the type of the light emitting device and the bottom area of the light emitting element. Further, in the apparatus of this figure, even if a large amount of molten solder is extruded to the outer peripheral portion of the lower surface of the light emitting element 2, the second metal layer 14 having good wettability with the solder is formed on the upper surface of the first metal. Since it is formed at the periphery of the first metal layer 12 so as to be in the same plane as the upper surface of the layer 12 , the overflowing molten solder does not flow down the side surface of the first metal layer 12, and the second metal layer 14 smoothly flows on the surface. For this reason, it is possible to completely prevent the solder from forming a bulge on the outer periphery of the lower surface of the light emitting element 2. Further, since the second metal layer 14 and the solder layer 11 are separated by the first metal layer 12, the components of the second metal layer 14 do not enter the solder layer 11 during heating.
[0011]
Here, the solder that can be used in the present invention is not particularly limited, and a conventionally known solder can be used. A solder selected from the group consisting of AuSn, AgSn, PbSn, ZnAl, SnZn, ZnSn, ZnCd, SnPbBiIn, and SnBi is preferable. . Of these, AuSn is preferable. The solder layer can be formed by a conventionally known method, for example, vapor deposition, sputtering, or screen printing. A suitable layer thickness of the solder layer is in the range of 1 to 5 μm. Further, Pt is used as the first metal layer regardless of the type of solder.
[0012]
The base material used in the present invention is not particularly limited. When the light emitting element is a laser diode element, the heat dissipation member and the submount are used. When the light emitting element is a light emitting diode element, the chip substrate is used. It corresponds to the base material in.
[0013]
As the second metal layer used in the present invention, a layer made of at least one metal selected from the group consisting of Au, Sn, Ag, Pb, Zn, Al, Cd, In, and Bi is used.
[0014]
Of course, the types of the first metal layer and the second metal layer are appropriately determined from the type of solder used. Table 1 shows suitable combination examples. As described above, Pt is used for the first metal layer regardless of the type of solder. Among these combinations, the electrode formed on the substrate can be used as the second metal layer, and since it is versatile, the solder layer: AuSn, the first metal layer: Pt, and the second metal layer : Au combination is particularly preferred. These metal layers are formed by a conventionally known thin film forming method such as vapor deposition or sputtering. The thickness of the first metal layer also serves to prevent the components of the electrode and the second metal layer from entering the solder layer. Therefore, when Pt is used, it is at least about 0.1 to 0.5 μm. Is required. The layer thickness of the second metal layer is not particularly limited, and is usually about several μm.
[0015]
[Table 1]
Figure 0003794987
[0016]
【The invention's effect】
In the semiconductor light emitting device of the present invention, a solder layer and a first metal layer having poor wettability with solder are formed in this order from the semiconductor light emitting element side between the electrode formed on the surface of the substrate and the semiconductor light emitting element. In addition, in a plan view of the base material in a state where the semiconductor light emitting element is not fixed, the first metal layer is exposed to the periphery of the first metal layer so that the second metal layer having good wettability with the solder is exposed. Since the upper surfaces of the metal layer and the second metal layer are formed in the same plane, the molten solder smoothly flows from the first metal layer to the second metal layer . Thus, the rise of the molten solder can be reliably suppressed when the light emitting element is pressed against the base material without strictly adjusting the layer thickness of the solder layer.
[0017]
Further, when the uppermost layer of the electrode is used as the second metal layer, the laminated structure can be simplified and the productivity can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a semiconductor light emitting device of the present invention.
FIG. 2 is a cross-sectional view showing an example of a conventional semiconductor light emitting device.
[Explanation of symbols]
1 Heat dissipation member (base material)
2 Light emitting element 3 Submount (base material)
4 Light-Emitting Element 11 Solder Layer 12 First Metal Layer 13 Electrode 14 Second Metal Layer

Claims (2)

基材の表面に形成された電極に半導体発光素子を固着した半導体発光装置において、
前記電極と前記半導体発光素子との間に、前記半導体発光素子側から順に、半田層、半田との濡れ性の悪い、Ptからなる第1の金属層を形成するとともに、半導体発光素子を固着していない状態の基材の平面視において、半田との濡れ性の良い、Au,Sn,Ag,Pb,Zn,Al,Cd,In,Biからなる群より選択される少なくとも1つの金属からなる第2の金属層を前記第1の金属層の周縁に露出するように、且つ第1の金属層と第2の金属層の上面が同一平面内となるように形成し、前記半田層を加熱溶融して前記電極上に前記半導体発光素子を固着したことを特徴とする半導体発光装置。
In the semiconductor light emitting device in which the semiconductor light emitting element is fixed to the electrode formed on the surface of the substrate,
Between the electrode and the semiconductor light emitting element, a solder layer and a first metal layer made of Pt having poor wettability with solder are formed in this order from the semiconductor light emitting element side, and the semiconductor light emitting element is fixed. In a plan view of the base material in a state where it has not been removed, the first substrate made of at least one metal selected from the group consisting of Au, Sn, Ag, Pb, Zn, Al, Cd, In, and Bi, which has good wettability with solder. And forming the first metal layer and the second metal layer so that the upper surfaces of the first metal layer and the second metal layer are in the same plane, and the solder layer is heated and melted. A semiconductor light emitting device, wherein the semiconductor light emitting element is fixed on the electrode.
前記電極の最上層を前記第2の金属層として用いる請求項1記載の半導体発光装置。  The semiconductor light emitting device according to claim 1, wherein an uppermost layer of the electrode is used as the second metal layer.
JP2002155349A 2002-05-29 2002-05-29 Semiconductor light emitting device Expired - Lifetime JP3794987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155349A JP3794987B2 (en) 2002-05-29 2002-05-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155349A JP3794987B2 (en) 2002-05-29 2002-05-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2003347650A JP2003347650A (en) 2003-12-05
JP3794987B2 true JP3794987B2 (en) 2006-07-12

Family

ID=29771894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155349A Expired - Lifetime JP3794987B2 (en) 2002-05-29 2002-05-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3794987B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593536B1 (en) 2004-03-08 2006-06-28 엘지전자 주식회사 Manufacturing method of light emitting diode
JP4549103B2 (en) * 2004-05-26 2010-09-22 京セラ株式会社 Method for manufacturing light emitting device
JP2008085272A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Submount and semiconductor device using the same
JP5082613B2 (en) * 2007-06-13 2012-11-28 ウシオ電機株式会社 LED element and manufacturing method thereof
US8664674B2 (en) 2007-08-28 2014-03-04 Panasonic Corporation Light emitting diode device preventing short circuiting between adjacent light emitting diode chips
JP4915670B2 (en) * 2007-08-28 2012-04-11 パナソニック株式会社 Light emitting device
JP6277860B2 (en) * 2013-07-19 2018-02-14 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
US9673364B2 (en) 2013-07-19 2017-06-06 Nichia Corporation Light emitting device and method of manufacturing the same
KR102123039B1 (en) * 2013-07-19 2020-06-15 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method of manufacturing the same
JP2019114624A (en) * 2017-12-22 2019-07-11 スタンレー電気株式会社 Semiconductor light-emitting device and method of manufacturing the same
WO2019180773A1 (en) * 2018-03-19 2019-09-26 三菱電機株式会社 Method for manufacturing semiconductor device
JP7221647B2 (en) * 2018-10-24 2023-02-14 スタンレー電気株式会社 Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP6644921B1 (en) * 2019-01-15 2020-02-12 キヤノンマシナリー株式会社 Solder flattening device, die bonder, solder flattening method, and bonding method
JP7324665B2 (en) * 2019-09-13 2023-08-10 シチズンファインデバイス株式会社 submount
JPWO2021261253A1 (en) * 2020-06-22 2021-12-30

Also Published As

Publication number Publication date
JP2003347650A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP3794987B2 (en) Semiconductor light emitting device
US8472208B2 (en) Submount and method of manufacturing the same
JP3982284B2 (en) Submount and semiconductor device
EP1850400B1 (en) Light-emitting element and method for manufacturing light-emitting element
JP2006287226A (en) Semiconductor chip having layer sequence regulated for forming solder joints, and method for forming solder joint between support and the semiconductor chip
TWI440068B (en) Substrate bonding method and semiconductor device
JP2013016838A (en) Ceramics wiring substrate and semiconductor device using the same
JP4088867B2 (en) Method for fixing semiconductor light emitting device
JP2006278463A (en) Sub-mount
JP4537877B2 (en) Ceramic circuit board and semiconductor device using the same
JPH11145562A (en) Semiconductor laser device
US20070076772A1 (en) Semiconductor laser device
JP2002359425A (en) Sub-mount and semiconductor device
JPH08330672A (en) Semiconductor device
JP2007134744A (en) Submount and semiconductor device
JPH04186688A (en) Semiconductor laser
JP2006216766A (en) Ceramics wiring board and semiconductor device using it
JP7223772B2 (en) Electronic component bonding method and bonding structure
JPH07321412A (en) Semiconductor device
JPH09237941A (en) Manufacture of semiconductor laser device
JPH01134983A (en) Sub-mount for optical semiconductor element
JP5062545B2 (en) Submount and manufacturing method thereof
JP2003347659A (en) Submount for nitride semiconductor laser and method for manufacturing nitride semiconductor laser using same
JP2006286943A (en) Sub-mount substrate and manufacturing method thereof
JP2003258356A (en) Submount

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060411

R150 Certificate of patent or registration of utility model

Ref document number: 3794987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03