JP3794100B2 - 電磁弁一体型膨張弁 - Google Patents

電磁弁一体型膨張弁 Download PDF

Info

Publication number
JP3794100B2
JP3794100B2 JP10458397A JP10458397A JP3794100B2 JP 3794100 B2 JP3794100 B2 JP 3794100B2 JP 10458397 A JP10458397 A JP 10458397A JP 10458397 A JP10458397 A JP 10458397A JP 3794100 B2 JP3794100 B2 JP 3794100B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
valve
valve body
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10458397A
Other languages
English (en)
Other versions
JPH1073345A (ja
Inventor
繁次 大石
喜夫 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10458397A priority Critical patent/JP3794100B2/ja
Priority to US08/884,758 priority patent/US5826438A/en
Priority to EP97122936A priority patent/EP0874202B1/en
Priority to DE69719487T priority patent/DE69719487T2/de
Publication of JPH1073345A publication Critical patent/JPH1073345A/ja
Application granted granted Critical
Publication of JP3794100B2 publication Critical patent/JP3794100B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/323Cooling devices using compression characterised by comprising auxiliary or multiple systems, e.g. plurality of evaporators, or by involving auxiliary cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Description

【0001】
【発明の属する技術分野】
本発明は、電磁弁を膨張弁の下流側に配置し、この両者を一体化した電磁弁一体型膨張弁に関するもので、例えば、車室内のフロント側とリア側の双方に、冷凍サイクルの蒸発器を内蔵する空調ユニットを配設する車両用空調装置等に用いて好適である。
【0002】
【従来の技術】
従来より、例えば車室内のフロント側の空調制御とリア側の空調制御とをそれぞれ独立して行うために、車室内前後の空調ユニット内にそれぞれ冷却用の蒸発器を配設するとともに、この2つの冷却用の蒸発器とこれらの蒸発器に流入する冷媒を減圧するための膨張弁をそれぞれ並列に配置した車両空調用の冷凍サイクルが知られている。
【0003】
そして、この冷凍サイクルにおいては、膨張弁と直列に電磁弁を設置して、これらの蒸発器への冷媒流れを切り替えるようにしている。しかし、この電磁弁の急激な開閉作動に伴って、ウォータハンマー音が発生するという問題がある。
そこで、特開平7−151422号公報では、膨張弁本体に電磁弁を一体化することにより、電磁弁と膨張弁の両者の小型化を図るとともに、電磁弁を膨張弁の下流側(すなわち、気液2相状態の冷媒が流れる低圧側の流路)に配置して、電磁弁の閉弁時におけるウォータハンマー音を低減するようにしたものが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記公報記載の従来技術について、本発明者らが種々実験検討したところ、電磁弁の開弁時には、以下の理由から、騒音低減を図ることができないことが分かった。
すなわち、冷凍サイクルにおいて並列接続された2つの蒸発器のうち、一方の蒸発器が電磁弁の閉弁により冷媒の流れが停止されると、この蒸発器の温度は周囲温度(室温)まで上昇するので、この蒸発器の冷媒出口側に設けられた膨張弁の感温筒温度も室温まで上昇することになる。これに対し、この膨張弁の低圧側圧力は、他方の蒸発器への冷媒循環(圧縮機の運転)により低圧となっている。この結果、膨張弁の弁体には、開弁方向の力が作用し、膨張弁は全開状態になっている。
【0005】
従って、この膨張弁の全開状態において、電磁弁が開弁すると、今まで冷媒流れが停止していた蒸発器に、大流量の冷媒が急激に流れ出し、冷媒流動音を発生するとともに、膨張弁下流部の圧力急降下による騒音を発生することが分かった。
本発明は上記点に鑑みてなされたもので、電磁弁一体型膨張弁において、電磁弁の開弁時における冷媒騒音の低減を図ることを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1〜7記載の発明においては、高圧側冷媒が導入される入口冷媒流路(141a、51)と、この入口冷媒流路(141a、51)より導入された冷媒を減圧膨張させる絞り流路(144a)と、この絞り流路(144a)の開度を調整する弁体(144)と、この弁体(144)を変位させる弁体作動機構(30)と、絞り流路(144a)にて減圧膨張した冷媒を蒸発器(16)に供給する出口冷媒流路(145b、146、147、148、141b)とを備え、電磁弁(20)の弁体(200)により出口冷媒流路(145b、146、147、148、141b)を開閉するようにし、
電磁弁(20)の弁体(200)の閉弁時には、電磁弁(20)の弁体(200)と絞り流路(144a)との間の冷媒圧力に基づいて、弁体作動機構(30)が作動して、絞り流路(144a)の弁体(144)を閉弁させることを特徴としている。
【0007】
上記構成によれば、電磁弁(20)が閉弁している間に、電磁弁(20)の弁体(200)の上流側は、冷凍サイクルの運転により高圧側圧力となる。従って、この高圧側圧力を利用して弁体作動機構(30)を作動させることにより、膨張弁(14)の弁体(144)を閉弁させることができる。
それ故、次に、電磁弁(20)を開弁させるときに、大流量の冷媒が急激に流れ出すという不具合が発生せず、電磁弁(20)の開弁時における冷媒流動音等の発生を効果的に抑制できる。また、電磁弁(20)は、膨張弁(14)の弁体(144)より下流側の気液2相状態の冷媒流域に設置されているから、電磁弁の閉弁時におけるウォータハンマー音も従来通り、良好に低減できる。
【0008】
さらに、請求項4記載の発明では、膨張弁本体(141)に蒸発器(16)出口の冷媒が流れる低圧冷媒流路(140)を設けるとともに、この低圧冷媒流路(140)を貫通するように感温棒(40)を配設して、この感温棒(40)により蒸発器(16)出口の冷媒温度を感知して第1圧力室(34)に伝達し、
膨張弁本体(141)に、電磁弁(20)の弁体(200)と絞り流路(144a)との間に連通する第1の連通手段(43、44)を設け、この第1の連通手段(43、44)を第2圧力室(35)に連通させる第2の連通手段(45、45a、46)を感温棒(40)に設け、
この第1および第2の連通手段(43、44、45、45a、46)により、電磁弁(20)の弁体(200)と絞り流路(144a)との間の冷媒圧力を第2圧力室(35)に導入することを特徴としている。
【0009】
これにより、膨張弁本体(141)に、蒸発器出口冷媒が流れる低圧冷媒流路(140)と、この冷媒温度を感知する感温棒(40)とを内蔵させた、小型簡潔な構成の膨張弁において、請求項1と同様に、電磁弁の開弁時における冷媒流動音等の発生を効果的に抑制できる。
また、請求項5記載の発明では、圧力応動部材(33)の一面側に、蒸発器(16)出口の冷媒温度に対応した圧力が作用する第1圧力室(34)を形成するとともに、圧力応動部材(33)の他面側には、第2圧力室(35)を形成し、この第2圧力室(35)内に、前記圧力応動部材(33)とともに変位するストッパー部材(400)を備え、
このストッパー部材(400)により前記第2圧力室(35)と仕切られた第3圧力室(43)を形成し、
この第3圧力室(43)には、電磁弁(20)の弁体(200)と絞り流路(144a)との間の冷媒圧力を導入し、
第2圧力室(35)には電磁弁(20)の弁体(200)より下流側の冷媒圧力を導入することを特徴としている。
【0010】
上記構成によれば、電磁弁(20)が閉弁している間は、電磁弁上流側に加わるサイクル高圧側圧力を、ストッパー部材(400)に作用させて、膨張弁(14)の弁体(144)を閉弁させることができる。これにより、電磁弁(20)の開弁時における冷媒流動音等の発生を効果的に抑制できるとともに、電磁弁(20)の閉弁時に、サイクル高圧側圧力が弁体作動機構(30)の圧力応動部材(33)には直接作用しないので、弁体作動機構(30)をサイクル高圧側圧力に耐える耐圧構造とする必要がなく、弁体作動機構(30)を低コストで製造できる。
【0011】
なお、上記各構成要素のカッコ内の符号は、後述する実施形態記載の具体的構成要素との対応関係を示すものである。
【0012】
【発明の実施の形態】
(第1実施形態)
図1〜図5は本発明の第1実施形態を示すものであり、図1は、本発明による電磁弁一体型膨張弁14を適用した冷凍サイクルの全体構成を示しており、この図1の冷凍サイクルは、車両のフロントシート側とリアシート側にそれぞれ独立に制御可能な空調ユニットを持つ車両用空調装置に使用されるものである。
【0013】
図1の冷凍サイクルは、圧縮機10を備えており、この圧縮機10には、動力伝達を断続する電磁クラッチ(図示せず)が装着されており、この電磁クラッチが接続状態になると、図示しない車両エンジンから動力が伝達されて圧縮機10は作動し、吸入冷媒を圧縮し、高温高圧のガス冷媒として吐出する。
凝縮器11は、図示しない冷却ファンによる空冷作用を受けて圧縮機10からの吐出ガス冷媒を冷却して凝縮させ、この凝縮後の液冷媒は受液器12内に流入する。この受液器12は、その内部に流入した凝縮冷媒を気液分離して、液冷媒のみを流出させる。
【0014】
受液器12の下流側には、液冷媒を気液2相状態に減圧膨張させる第1、第2の膨張弁13、14と、この第1、第2の膨張弁13、14を通過した冷媒を蒸発させる第1、第2の蒸発器15、16が相互に並列に配設されている。
ここで、第1の膨張弁13および第1の蒸発器15は、車室内前部の計器盤部に配置される前部空調ユニット17内に設けられ、車室内のフロントシート側の空調のために使用される。第1の膨張弁13は周知のごとく第1の蒸発器15の出口冷媒の過熱度を所定値に維持するように弁開度が自動調整される温度式の膨張弁であって、第1の蒸発器15の出口冷媒の温度を感知して内部の冷媒圧力が変化する感温筒13aを有している。
【0015】
一方、第2の膨張弁14および第2の蒸発器16は、車室内後部、例えばワゴンタイプの自動車の天井部に配置される後部空調ユニット18内に設けられ、車室内のリヤーシート側の空調のために使用される。
なお、図示しないが、前部、後部空調ユニット17、18内に空調用の送風機等が内蔵されていることはもちろんである。第1、第2の蒸発器15、16の冷媒出口側は合流して圧縮機10の吸入側に接続されている。
【0016】
そして、第2の膨張弁14は本発明による電磁弁一体型膨張弁で構成されており、以下、この電磁弁一体型膨張弁14の具体例を図1および図2〜5に基づいて説明する。この膨張弁14は、本例では、ボックス型膨張弁として構成されており、蒸発器16の出口冷媒が流れる低圧冷媒流路140およびこの低圧冷媒流路140の冷媒温度を感知する後述の感温機構を一体に内蔵している。
【0017】
このボックス型膨張弁14に常閉型電磁弁20(図2参照)が一体に組付られている。膨張弁14は、アルミニュウム等の金属で成形された角柱状の弁本体141を備えている。この弁本体141は、図1に示すように、その外周壁の下側寄りの位置に、冷媒流入口141a及び冷媒流出口141bを備えており、冷媒流入口141aは、受液器12からの高圧側液冷媒が流入し、一方、冷媒流出口141bは、後述の絞り流路144にて減圧膨張した低圧冷媒を弁本体141から流出させるもので、蒸発器16の冷媒入口16aに接続される。
【0018】
また、弁本体141の上部側の部位において低圧冷媒流路140が弁本体141の軸直角方向に貫通するように設けられており、そして、この低圧冷媒流路140の両端部に、冷媒流入口141cと冷媒流出口141dが開口している。冷媒流入口141cは、蒸発器16の冷媒出口16bと接続され、蒸発器16にて蒸発したガス冷媒が流入する。
【0019】
この流入ガス冷媒は、さらに、低圧冷媒流路140を通って、冷媒流出口141dから弁本体141外へ流出する。冷媒流出口141dは、圧縮機10の吸入側に接続される。
弁本体141の中心部には、段付き内孔142が同軸的に形成されており、この段付き内孔142は、上記低圧冷媒流路140を貫通して、弁本体141の中心部を上下方向に延びている。そして、この段付き内孔142の下端(一端)部に弁座143が形成され、この弁座143に対向して球状の弁体144が上下動可能に配置されている。この弁座143と球状の弁体144との間に、冷媒流入口141aからの高圧側液冷媒を減圧膨張させる絞り流路144a(図2参照)が構成される。
【0020】
段付き内孔142の下側部位には、作動棒145が上下方向に移動可能に嵌合している。この作動棒145の下端部は球状の弁体144に当接して、球状の弁体144を変位させることができる。また、この作動棒145の下側部分に小径部145aを形成して、この小径部145aと段付き内孔142の内周面との間に、環状の冷媒流路145bを形成している。
【0021】
弁本体141において、段付き内孔142から直交する方向に連通孔146および連通室147が形成してある。これにより、環状の冷媒流路145bは連通孔146を介して連通室147に常時連通している。また、連通孔146は複数個設けてあり、この複数の連通孔146の中間部位において、連通室147内に円筒状部分が突出しており、この円筒状部分にて冷媒流路148が形成されている。
【0022】
上記の冷媒流路148の端面には、常閉型電磁弁20の弁体200が対向配置されており、連通室147と冷媒流路148との連通を弁体200により断続するようになっている。ここで、冷媒流路148は、図3に示すように、前記した冷媒流出口141bに連通している。電磁弁20の具体的説明は後述する。
次に、膨張弁14の弁体144を作動させるための弁体作動機構について説明すると、本発明の弁体作動機構を構成するダイヤフラム作動器30は、上下2つのケーシング31、32と、圧力応動部材であるダイヤフラム33とを備えており、両ケーシング部材31、32は、ステンレス系の金属よりなるもので、同じくステンレス系の金属よりなる円板状ダイヤフラム33の外周縁部を挟持し、固定している。
【0023】
ここで、円板状ダイヤフラム33は図1の上下方向に弾性変形可能に組み付けられており、ダイヤフラム33により両ケーシング部材31、32の内部空間は感温室(第1圧力室)34と均圧室(第2圧力室)35とに仕切られている。上側の感温室34内には、所定圧力にて冷凍サイクル循環冷媒と同一の冷媒がキャピラリーチューブ36により封入されている。なお、下側のケーシング部材32の環状開口部32aは、弁本体141の段付き内孔142の一端部(上端部)に形成された大径開口端部142aにネジ止め固定されている。このネジ止め固定部は、ゴム製のOリング(弾性シール材)37にて気密が維持されるようになっている。
【0024】
感温棒40は、アルミニウム等の熱伝導の良好な金属材料により円柱状に形成されており、そして、蒸発器出口冷媒の温度を感知するために、図1、2に示すように、蒸発器出口からのガス冷媒が流れる低圧冷媒流路140を貫通して配設されている。
感温棒40の一端部(上端部)は大径部41として構成され、この大径部41は均圧室35内に配置され、円板状ダイヤフラム33の片側の面(下側面)に当接するようになっている。そのため、感温棒40の温度変化は、金属製の薄板からなるダイヤフラム73を介して感温室34内の冷媒に伝達され、感温室34内の冷媒圧力は、低圧冷媒流路140を流れる蒸発器出口冷媒の温度に対応した圧力となる。
【0025】
また、感温棒40は弁本体141の段付き内孔142内に軸方向に摺動可能に嵌合して、ダイヤフラム33の変位を前述した作動棒145を介して弁体144に伝達する変位伝達部材の役割を兼ねている。このため、感温棒40の他端部(下端部)は、作動棒145の一端部(上端部)に当接している。
ここで、段付き内孔142の軸方向において、低圧冷媒流路140と均圧室35との間の部位にはゴム製のOリング(弾性シール材)42が配設され、このOリング42により低圧冷媒流路140と均圧室35との間の気密が維持されるようになっている。
【0026】
さらに、均圧室35には、本発明独自の下記圧力導入流路にて電磁弁20の弁体200と絞り流路144aとの間の冷媒圧力を導入するようになっている。すなわち、図2に示すように、感温棒40の下端部と、段付き内孔142の中間段付面142bとの間に圧力室43が形成されており、この圧力室43は、弁本体141に設けられた連通孔44により連通室147に連通している。
【0027】
また、感温棒40にはその中心部を軸方向に貫通する連通孔45があけてあり、さらに、感温棒40の下端部には、図4、5に示す断面U状の溝部46が設けられているため、感温棒40の下端部が作動棒145の上端部に当接していても、圧力室43は溝部46を通して連通孔45に常時連通している。以上の圧力導入流路(連通孔44→圧力室43→溝部46→連通孔45)を通して、電磁弁20の弁体200と絞り流路144aとの間の冷媒圧力(具体的には、連通室147の圧力)が均圧室35に導入される。
【0028】
連通孔45には、感温棒40の中心部から半径方向に延びる補助連通孔45aが接続されており、この補助連通孔45aによっても、均圧室35に上記冷媒圧力が導入される。なお、上記連通孔44、45、45aは、例えば直径1.0mm程度の大きさでよい。また、断面U状の溝部46の深さは、例えば、0.5mm程度の大きさでよい。
【0029】
また、段付き内孔142の軸方向において、低圧冷媒流路140と圧力室43との間の部位にはゴム製のOリング(弾性シール材)47が配設され、このOリング47により低圧冷媒流路140と圧力室43との間の気密が維持されるようになっている。
次に、膨張弁14の弁体144に、所定のバネ力を付与するためのスプリング機構50について説明すると、弁本体141において、段付き内孔142の下方側には、スプリング機構50の収容室51が形成されており、この収容室51は、前記した高圧液冷媒が流入する冷媒流入口141aに連通している。収容室51内の上端部には、ステンレス製の弁体144に溶接等の手段で接合された金属製の支持板52が配置されている。
【0030】
この支持板52にコイルスプリング(バネ手段)53の一端が当接して支持されている。コイルスプリング53の他端は金属製プラグ54により支持されている。このプラグ54は収容室51の外部への開口端を閉塞する蓋部材の役割を果たすとともに、弁本体141にネジにより脱着可能に固定されており、プラグ54のネジ止め位置を調整することにより、コイルスプリング53の取付荷重を調整して、弁体144に作用するバネ力を調整できるようにしてある。
【0031】
膨張弁14により設定される蒸発器出口冷媒の過熱度は、上記バネ力の調整により調整可能である。
また、プラグ54の先端側の部位には、ゴム製のOリング(弾性シール材)55が配設され、このOリング55により収容室51と外部との間の気密が維持されるようになっている。
【0032】
ところで、常閉型電磁弁20は、弁体200と、電磁石210と、磁性体からなる円柱状プランジャ220が備えられているパイロット式電磁弁であって、弁体200の形状は略円板状であり、中心部には微細な弁孔202が形成されている。この弁孔202は樹脂部材201に形成されており、この樹脂部材201は、高い寸法精度で成形でき、かつ冷媒流路148の端面との間のシール性が良好な樹脂材質(例えば、フッ素系樹脂)で成形することが好ましい。
【0033】
この樹脂部材201の外周部には、黄銅等の金属で成形されたピストン部材203が配置され、この両者201、203はかしめ等の手段にて一体に結合されている。このピストン部材203は非磁性金属からなる取付ねじ部材230の内周部に、図2の左右方向に摺動可能に嵌合している。
この取付ねじ部材230は常閉型電磁弁20を弁本体141に脱着可能にねじ止め固定するもので、非磁性金属からなる円筒状のものである。取付ねじ部材230のネジ止め固定部には、ゴム製のOリング(弾性シール材)231が配設され、このOリング231により連通室147と外部との間の気密が維持されるようになっている。
【0034】
電磁石210は、ソレノイド211を巻装した樹脂製のボビン212を備えており、このボビン212の中空先端部内には、円柱状磁極部材213が同軸的に嵌装されており、この磁極部材213は磁性材料からなる磁性枠体214にねじ214aにより締めつけ固定されている。
また、ボボン212の中空部内には、非磁性材料からなる円筒状支持部材215が同軸的にかつ嵌着固定されており、この支持部材215は、その一端部にて、磁極部材213の外周壁に嵌着固定され、また、他端部は取付ねじ部材230の内周部に嵌着固定されている。これにより、支持部材215を介して、取付ねじ部材230と電磁石210部分が一体に結合されている。
【0035】
プランジャ220は、磁性材料にて円柱状に成形されており、支持部材215の中空部内に軸方向に摺動可能に嵌装されている。このプランジャ220は、弁体200側の端面に円錐状に突出した弁部222を有している。そして、プランジャ220は、コイルスプリング221により、図示の左方向、すなわち、弁体200側へ付勢されて、その弁部222が弁体200の弁孔202部分に着座することにより、この弁孔202を閉じるようになっている。
【0036】
また、プランジャ220の弁部222側の端面と、弁体200との間には背圧室223が形成され、この背圧室223と連通室147との間を常時、連通させる微小孔204が弁体200に設けられている。
このように構成した常閉型電磁弁20においては、ソレノイド211が通電され、磁束を発生すると、プランジャ220が、コイルスプリング221に抗して磁極部材213により吸引されて、弁部222が弁孔202から開離して、弁孔202が開口状態となる。すると、背圧室223が冷媒流路148を通して冷媒流出口141bに連通して、背圧室223の圧力が冷媒流出口141b側の圧力(すなわち、蒸発器16の低圧)まで低下する。
【0037】
一方、連通室147は、今まで、冷媒流路148との間の連通が弁体200により阻止されて、冷凍サイクルの高圧側圧力になっているので、連通室147の圧力が背圧室223の圧力より高い状態となり、この両室147、223間の圧力差により、弁体200が図2、3の右方へ移動し、冷媒流路148を開口させる。つまり、常閉型電磁弁20はソレノイド211への通電によりプランジャ220を図の右方へ移動させて、両室147、223間の圧力差を生成し、これにより弁体200を開弁状態にする。
【0038】
逆に、ソレノイド211への通電を遮断し、磁束を消滅させると、コイルスプリング221のバネ力によりプランジャ220が図2、3の左方へ移動し、弁部222が弁体200の弁孔202部分に着座して、この弁孔202を閉じる。すると、これまで低圧側圧力になっていた背圧室223内に、弁体200の微小孔204を通して連通室147内の冷媒が導入される。そのため、プランジャ220の弁部222が弁孔202に着座して弁孔202を閉じるとともに、弁体200が図2、3の左方へ移動し、冷媒流路148の端面に着座し、冷媒流路148を閉じる。これにより、常閉型電磁弁20が閉弁状態に復帰する。
【0039】
次に、上記構成に基づいて本実施形態の作動を説明する。図1において、圧縮機10が車両のエンジンから電磁クラッチを介して動力を伝達されて作動すると、圧縮機10は蒸発器15、16の下流側流路の冷媒を吸入、圧縮して、高温高圧のガス冷媒を凝縮器11に向けて吐出する。すると、この凝縮器11ではガス冷媒が冷却されて凝縮する。
【0040】
この凝縮後の冷媒は次に受液器12内に流入し、冷媒の気液が分離され、液冷媒が受液器12から流出して、並列配置された第1、第2の膨張弁13、14側へ向かう。
ここで、車両のリヤーシート側に乗員が搭乗していない場合は、リヤーシート側を空調する必要がないため、後部空調ユニット18を作動させない。そのため、電磁弁20のソレノイド211への通電が遮断され、弁体200が閉弁状態となり、冷媒流路148が閉塞されている。このため、第2の蒸発器16の入口側冷媒流路が閉塞され、第2の蒸発器16には冷媒が循環しない。
【0041】
一方、前部空調ユニット17側においては、第1の膨張弁13にて受液器12からの液冷媒が減圧、膨張して、低温低圧の気液2相状態となる。この気液2相冷媒が第1の蒸発器15で空調空気から吸熱して蒸発するため、空調空気は冷却され冷風となり、車室内のフロントシート側を空調する。
ここで、膨張弁13の開度は、周知のごとく感温筒13aの感知する蒸発器出口冷媒温度に応じた開度に自動調整され、蒸発器出口冷媒の過熱度を所定値に維持する。
【0042】
ところで、後部空調ユニット18に備えられている第2の膨張弁14は電磁弁一体型のもので、電磁弁20の閉弁時には、第2の蒸発器16に冷媒が循環していないため、膨張弁14の弁本体141内に形成されている低圧冷媒流路140の冷媒温度は室温程度の温度まで上昇している。このため、感温室34の温度も室温程度になっている。
【0043】
しかし、本実施形態によると、均圧室35に、連通孔44→圧力室43→溝部46→連通孔45、45aからなる圧力導入流路を通して、電磁弁20の弁体200と絞り流路144aとの間の連通室147の冷媒圧力が導入されている。そして、この連通室147は、電磁弁20の閉弁時には、絞り流路144a等を介して冷凍サイクルの高圧側に連通して、高圧側圧力になっている。
【0044】
従って、電磁弁20の閉弁時には、均圧室35にサイクル高圧側圧力が作用することになり、かつサイクル高圧側圧力は室温の冷媒飽和圧力より十分高い圧力になっているため、感温室34の温度が室温程度まで上昇しても、感温室34の圧力より均圧室35の圧力の方が十分高くなる。この結果、ダイヤフラム作動器30のダイヤフラム33は、図2の上方へ弾性変形し、これに伴って、弁体144、作動棒145、および感温棒40がコイルスプリング53のバネ力により図2の上方へ変位し、弁体144は弁座面143に着座し、閉弁状態となる。
【0045】
但し、弁体144および弁座面143とも金属製であるため、弁体144は厳密な閉弁状態とはならず、弁体144と弁座面143との間の微小隙間を通して収容室51の高圧側圧力が連通室147側へ洩れる。
次に、上記のように膨張弁14の弁体144が閉弁している状態において、後部空調ユニット18を作動させるために、電磁弁20のソレノイド211に通電すると、電磁弁20の弁体200が開弁し、円筒状の冷媒流路148が開口する。しかし、このとき、膨張弁14の弁体144が閉弁しているので、電磁弁20の開弁により大流量の冷媒が急激に流れ始めることがない。
【0046】
つまり、ダイヤフラム作動器30の均圧室35内の圧力は、電磁弁20の開弁後、前述の圧力導入流路を経て徐々に低圧側圧力まで低下するので、膨張弁14の弁体144の開度も徐々に増加することになり、その結果、膨張弁14を通過する冷媒流量も徐々に増加する。従って、電磁弁20の開弁時に、膨張弁14の弁体144前後の急激な圧力変動による騒音や、大流量冷媒の急激な流れによる流動音が発生することを効果的に抑制できる。
【0047】
そして、電磁弁20の開弁後、所定時間が経過すると、ダイヤフラム作動器30の均圧室35内の圧力は蒸発器16の入口側の冷媒圧力(蒸発器入口側の低圧圧力)となるので、これ以後は、この均圧室35内に加わる蒸発器入口側の低圧圧力と、感温室34内の蒸発器出口冷媒温度に対応した冷媒圧力との差圧と、スプリング機構50のコイルスプリング53のバネ力との釣り合いに応じた位置に、膨張弁14の弁体144が変位する。
【0048】
これにより、膨張弁14の弁体144は、蒸発器出口冷媒が所定の過熱度を維持するように、絞り流路144aの開度を調整して冷媒流量を調整する。つまり、膨張弁14は、内部均圧式の膨張弁として、冷媒流量の調整を行う。
なお、上記作動説明から理解されるように、電磁弁20の閉弁時には、ダイヤフラム作動器30の均圧室35内にサイクル高圧側圧力が作用するので、ダイヤフラム作動器30の具体的設計に際しては、ダイヤフラム33を耐疲労性に優れたステンレス系の材質としたり、ケーシング部材31、32の肉厚を厚くした形状にすることが好ましい。
(第2実施形態)
図6は第2実施形態を示すもので、本例ては、第1実施形態における感温棒40を廃止し、その代わりに、図1の感温筒13aに相当する感温筒14aを蒸発器16の冷媒出口部に設け、この感温筒14aをキャピラリーチューブ36′により感温室34に連結している。
【0049】
そして、感温棒40の廃止に伴って、作動棒145とダイヤフラム33との間には、変位伝達用のストッパー部材400が介在してある。このストッパー部材400は、その軸方向の両端部に大径部401、402を有し、中間に小径部403を有する形状に形成され、下側の大径部402の外周面にゴム製のOリング(弾性シール材)47を配設して、大径部402下方の圧力室43と、均圧室35との間を気密に仕切っている。
【0050】
膨張弁14の弁体144の下流側において、作動棒145の小径部145aの周囲に形成される環状の冷媒流路145bは、連通孔146により連通室147に連通している。なお、この連通室147と、冷媒流出口141bに通じている冷媒流路148との間を電磁弁20の弁体200により開閉する点は第1実施形態と同じである。
【0051】
また、スプリング機構50の収容室51を冷媒流入口141aの下流部位に直接、形成している。従って、本例では、第1実施形態におけるプラグ54の代わりに、冷媒流通孔54aを開けた保持板54bを弁本体141にネジ止め固定している。
膨張弁14の弁体144と電磁弁20の弁体200との間に位置する連通孔146と、ストッパー部材400の大径部402下方の圧力室43とを連通させる連通孔44を設けてある。
【0052】
これにより、第2実施形態においても、電磁弁20の閉弁時に、電磁弁20の弁体200の上流側にある連通孔146から連通孔44を通して圧力室43にサイクル高圧側圧力を作用させることができる。その結果、ストッパー部材400が上方へ押し上げられ、膨張弁14の弁体144が閉弁する。
この場合、圧力室43内のサイクル高圧側圧力がストッパー部材400の大径部402に作用するので、第1実施形態の感温棒40に比して、受圧面積を増大することにより、ストッパー部材400の上方押し上げ力を増大できる。
【0053】
また、弁本体141には、冷媒流出口141bを均圧室35に連通させる連通孔149が設けてある。具体的には、この連通孔149は、Oリング47より上方に位置する小径部403の外周側に開口している。これにより、蒸発器16の入口側の冷媒圧力は、冷媒流出口141bから連通孔149を通して均圧室35内に導入される。
【0054】
従って、電磁弁20の開弁時には、感温筒14aが感知する蒸発器出口冷媒温度に応じた感温室34の冷媒圧力と、連通孔149を通して均圧室35内に導入される蒸発器入口側の冷媒圧力に応じて、膨張弁14の弁体144が変位して、絞り流路144aの開度(冷媒流量)を調整する。
上記説明から理解されるように、第2実施形態では、均圧室35と圧力室43との間がOリング47により仕切られ、電磁弁20の閉弁時にも、均圧室35にはサイクル高圧が直接作用しないので、ダイヤフラム作動器30の具体的設計に際して、ダイヤフラム33やケーシング部材31、32の耐圧強度は従来通りでよい。
(第3実施形態)
図7は第3実施形態を示すもので、本例では、第2実施形態における弁本体141の連通孔149、ストッパー部材400の大径部402、および大径部402の外周面のOリング47を廃止し、その代わりにストッパー部材400の小径部403を下端部まで延ばしている。そして、この小径部403の周囲の空隙部403aを連通孔44に連通させている。これにより、ダイヤフラム33下方の均圧室35を、上記空隙部403aおよび連通孔44を介して、電磁弁20の弁体200の上流側にある連通孔146、連通室147に連通させるようにしたものである。
【0055】
従って、第3実施形態は、ダイヤフラム33下方の均圧室35に電磁弁20の弁体200の上流側の冷媒圧力を作用させる点では第1実施形態と同じである。
つまり、第1実施形態および第3実施形態による電磁弁一体型膨張弁14を用いた冷凍サイクルを模式的に図示すると、図8のようになり、膨張弁14においてダイヤフラム作動器30内のダイヤフラム33下方の均圧室35に、膨張弁14の絞り流路144a下流側と電磁弁20の弁体200の上流側との間の冷媒圧力を作用させる圧力導入流路Rを備えている。
【0056】
この圧力導入流路Rは、第1実施形態では、連通孔44→圧力室43→溝部46→連通孔45、45aからなる流路にて構成され、また、第3実施形態では連通孔44および空隙部403aにて圧力導入流路Rが構成されている。
なお、本発明は、車両用冷凍サイクルに限ることなく、一般建造物内に装備した空調装置、冷凍、冷蔵装置等の冷凍サイクルにも、広く適用できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す要部断面を含む冷凍サイクル図である。
【図2】本発明の第1実施形態による電磁弁一体型膨張弁の縦断面図で、図1とは異なる断面位置を示す。
【図3】図2の膨張弁の横断面図である。
【図4】図2の感温棒の下面図である。
【図5】図4のA−A矢視断面図である。
【図6】本発明の第2実施形態による電磁弁一体型膨張弁の縦断面図である。
【図7】本発明の第3実施形態による電磁弁一体型膨張弁の縦断面図である。
【図8】本発明の第1実施形態および第3実施形態による電磁弁一体型膨張弁を包含する冷凍サイクル図である。
【符号の説明】
10…圧縮機、11…凝縮器、13、14…膨張弁、15、16…蒸発器、
20…電磁弁、200…弁体、30…ダイヤフラム作動器、33…ダイヤフラム、34…感温室、35…均圧室、40…感温棒、43…圧力室、
44、45、45a、146…連通孔、140、145b、148…冷媒流路、
141…弁本体、144…弁体、144a…絞り流路、147…連通室。

Claims (7)

  1. 並列接続された複数の蒸発器(15、16)を有する冷凍サイクルに適用され、かつ、冷媒を減圧膨張させる膨張弁(14)と、冷媒流路を開閉する電磁弁(20)とを一体化した電磁弁一体型膨張弁において、
    膨張弁部分の外枠を形成する膨張弁本体(141)と、
    この膨張弁本体(141)に形成され、高圧側冷媒が導入される入口冷媒流路(141a、51)と、
    前記膨張弁本体(141)に形成され、前記入口冷媒流路(141a、51)より導入された冷媒を減圧膨張させる絞り流路(144a)と、
    この絞り流路(144a)の開度を調整する弁体(144)と、
    この弁体(144)を変位させる弁体作動機構(30)と、
    前記膨張弁本体(141)に形成され、前記絞り流路(144a)にて減圧膨張した冷媒を蒸発器(16)に供給する出口冷媒流路(145b、146、147、148、141b)とを備え、
    前記電磁弁(20)は前記膨張弁本体(141)に一体に組付けられ、かつ、前記出口冷媒流路(145b、146、147、148、141b)を開閉するように配設された弁体(200)を有しており、
    前記電磁弁(20)の弁体(200)の閉弁時に、前記電磁弁(20)の弁体(200)と前記絞り流路(144a)との間の冷媒圧力に基づいて、前記弁体作動機構(30)が作動して、前記絞り流路(144a)の弁体(144)を閉弁させるようにしたことを特徴とする電磁弁一体型膨張弁。
  2. 前記弁体作動機構(30)には、前記絞り流路(144a)の弁体(144)を変位させる圧力応動部材(33)が備えられており、
    この圧力応動部材(33)には、前記電磁弁(20)の弁体(200)と前記絞り流路(144a)との間の冷媒圧力が作用するようになっており、
    前記電磁弁(20)の弁体(200)の閉弁時には、前記冷媒圧力により前記圧力応動部材(33)が変位して前記絞り流路(144a)の弁体(144)を閉弁させるようにしたことを特徴とする請求項1に記載の電磁弁一体型膨張弁。
  3. 前記圧力応動部材(33)の一面側に、前記蒸発器(16)出口の冷媒温度に対応した圧力が作用する第1圧力室(34)が形成され、前記圧力応動部材(33)の他面側には、前記電磁弁(20)の弁体(200)と前記絞り流路(144)との間の冷媒圧力が作用する第2圧力室(35)が形成されていることを特徴とする請求項2に記載の電磁弁一体型膨張弁。
  4. 前記膨張弁本体(141)に設けられ、前記蒸発器(16)出口の冷媒が流れる低圧冷媒流路(140)と、
    前記膨張弁本体(141)に前記低圧冷媒流路(140)を貫通するように配設され、前記蒸発器(16)出口の冷媒温度を感知して前記第1圧力室(34)に伝達する感温棒(40)と、
    前記膨張弁本体(141)に設けられ、前記電磁弁(20)の弁体(200)と前記絞り流路(144a)との間に連通する第1の連通手段(43、44)と、
    前記感温棒(40)に設けられ、前記第1の連通手段(43、44)を前記第2圧力室(35)に連通させる第2の連通手段(45、45a、46)とを備え、
    前記第1および第2の連通手段(43、44、45、45a、46)により、前記冷媒圧力を前記第2圧力室(35)に導入することを特徴とする請求項3に記載の電磁弁一体型膨張弁。
  5. 前記弁体作動機構(30)には、前記絞り流路(144a)の弁体(144)を変位させる圧力応動部材(33)が備えられており、
    この圧力応動部材(33)の一面側に、前記蒸発器(16)出口の冷媒温度に対応した圧力が作用する第1圧力室(34)が形成され、前記圧力応動部材(33)の他面側には、第2圧力室(35)が形成されており、
    この第2圧力室(35)内に、前記圧力応動部材(33)とともに変位するストッパー部材(400)を備え、
    このストッパー部材(400)により前記第2圧力室(35)と仕切られた第3圧力室(43)を形成し、
    この第3圧力室(43)には、前記電磁弁(20)の弁体(200)と前記絞り流路(144)との間の冷媒圧力を導入し、
    前記第2圧力室(35)には前記電磁弁(20)の弁体(200)より下流側の冷媒圧力を導入することを特徴とする請求項1に記載の電磁弁一体型膨張弁。
  6. 冷媒を圧縮し吐出する圧縮機(10)と、
    この圧縮機(10)から吐出されたガス冷媒を冷却し凝縮させる凝縮器(11)と、
    この凝縮器(11)で凝縮した液冷媒を減圧膨張させる第1の膨張弁(13)と、
    この第1の膨張弁(13)と並列に設けられ、前記凝縮器(11)で凝縮した液冷媒を減圧膨張させる第2の膨張弁(14)と、
    前記第1の膨張弁(13)にて減圧膨張した冷媒を蒸発させる第1の蒸発器(15)と、
    この第1の蒸発器(15)と並列に設けられ、前記第2の膨張弁(14)にて減圧膨張した冷媒を蒸発させる第2の蒸発器(16)とを備え、
    前記第1、第2の膨張弁(15、16)のうち、少なくとも一方を、請求項1ないし5のいずれか1つに記載の電磁弁一体型膨張弁により構成したことを特徴とする冷凍サイクル。
  7. 前記電磁弁(20)の弁体(200)の開弁時に、前記電磁弁(20)の弁体(200)と前記絞り流路(144a)との間の冷媒圧力、および前記蒸発器(16)出口の冷媒温度に対応した圧力が前記弁体作動機構(30)に作用し、前記両圧力に基づいて、前記弁体作動機構(30)が前記弁体(144)を変位させることを特徴とする請求項6に記載の冷凍サイクル。
JP10458397A 1996-07-01 1997-04-22 電磁弁一体型膨張弁 Expired - Fee Related JP3794100B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP10458397A JP3794100B2 (ja) 1996-07-01 1997-04-22 電磁弁一体型膨張弁
US08/884,758 US5826438A (en) 1996-07-01 1997-06-30 Expansion valve integrated with electromagnetic valve and refrigeration cycle employing the same
EP97122936A EP0874202B1 (en) 1997-04-22 1997-12-29 Expansion valve integrated with electromagnetic valve and refrigeration cycle employing the same
DE69719487T DE69719487T2 (de) 1997-04-22 1997-12-29 Mit einem elektromagnetischen Ventil vereinigtes Entspannungsventil und dieses verwendender Kältekreislauf

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17151796 1996-07-01
JP8-171517 1996-07-01
JP10458397A JP3794100B2 (ja) 1996-07-01 1997-04-22 電磁弁一体型膨張弁

Publications (2)

Publication Number Publication Date
JPH1073345A JPH1073345A (ja) 1998-03-17
JP3794100B2 true JP3794100B2 (ja) 2006-07-05

Family

ID=26445025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458397A Expired - Fee Related JP3794100B2 (ja) 1996-07-01 1997-04-22 電磁弁一体型膨張弁

Country Status (2)

Country Link
US (1) US5826438A (ja)
JP (1) JP3794100B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014688B2 (ja) * 1997-03-27 2007-11-28 株式会社不二工機 膨張弁
EP0874202B1 (en) * 1997-04-22 2003-03-05 Denso Corporation Expansion valve integrated with electromagnetic valve and refrigeration cycle employing the same
US5979780A (en) * 1997-10-03 1999-11-09 Eaton Corporation Thermostatic expansion valve with integral electrically operated inlet valve
JP3882299B2 (ja) * 1997-12-22 2007-02-14 株式会社デンソー 電磁弁一体型膨張弁
JPH11223425A (ja) * 1998-02-10 1999-08-17 Fujikoki Corp 膨張弁
JPH11325660A (ja) * 1998-03-18 1999-11-26 Fujikoki Corp 膨張弁
DE60035409T2 (de) 1999-01-12 2008-03-06 XDX Technology LLC, Arlington Heights Dampfkompressionssystem und verfahren
US6314747B1 (en) 1999-01-12 2001-11-13 Xdx, Llc Vapor compression system and method
US6185958B1 (en) 1999-11-02 2001-02-13 Xdx, Llc Vapor compression system and method
IL144128A0 (en) 1999-01-12 2002-05-23 Xdx Llc Vapor compression system and method
JP4153133B2 (ja) * 1999-05-11 2008-09-17 株式会社不二工機 膨張弁
US6401470B1 (en) 2000-09-14 2002-06-11 Xdx, Llc Expansion device for vapor compression system
US6393851B1 (en) 2000-09-14 2002-05-28 Xdx, Llc Vapor compression system
JP3815978B2 (ja) * 2001-04-13 2006-08-30 株式会社不二工機 温度式膨張弁
JP2002350010A (ja) * 2001-05-29 2002-12-04 Fuji Koki Corp 膨張弁
JP3942848B2 (ja) * 2001-07-19 2007-07-11 株式会社テージーケー 膨張弁ユニット
JP4576076B2 (ja) * 2001-08-22 2010-11-04 株式会社不二工機 電磁弁一体型膨張弁
JP2004053060A (ja) * 2002-07-17 2004-02-19 Fuji Koki Corp 膨張弁
JP4067936B2 (ja) 2002-10-29 2008-03-26 株式会社不二工機 電磁弁一体型膨張弁
US7337625B1 (en) * 2006-11-01 2008-03-04 Advanced Thermal Sciences Thermal control systems for process tools requiring operation over wide temperature ranges
WO2009140584A2 (en) 2008-05-15 2009-11-19 Xdx Innovative Refrigeration, Llc Surged vapor compression heat transfer system with reduced defrost
JP5292540B2 (ja) * 2008-08-22 2013-09-18 株式会社テージーケー 膨張装置
US9310121B2 (en) 2011-10-19 2016-04-12 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having sacrificial evaporator
US9285153B2 (en) 2011-10-19 2016-03-15 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having passive sublimation defrost of evaporator
JP5817609B2 (ja) * 2012-03-21 2015-11-18 株式会社デンソー 車両用空調装置
CN105517823A (zh) * 2013-07-17 2016-04-20 松下知识产权经营株式会社 车辆用空调装置及其结构单元
US11149996B2 (en) 2018-03-23 2021-10-19 Carrier Corporation Pressure reducing variable expansion disc
CN110878996B (zh) * 2018-09-06 2021-09-28 天津华信机械有限公司 多功能膨胀阀和空调系统
CN111928010B (zh) * 2020-08-12 2021-03-02 深圳市亨瑞达制冷设备有限公司 一种水冷式冷水机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936790A (en) * 1955-12-27 1960-05-17 Dole Valve Co Noise reducing flow control device
US5156016A (en) * 1992-02-03 1992-10-20 General Electric Company Pressure controlled switching valve for refrigeration system
JP3257109B2 (ja) * 1993-01-19 2002-02-18 株式会社デンソー 車両用冷凍サイクル制御装置
JP3397862B2 (ja) * 1993-11-30 2003-04-21 株式会社デンソー 電磁弁付膨張弁
US5675982A (en) * 1996-04-26 1997-10-14 Rocky Research Pulsed operation control valve

Also Published As

Publication number Publication date
US5826438A (en) 1998-10-27
JPH1073345A (ja) 1998-03-17

Similar Documents

Publication Publication Date Title
JP3794100B2 (ja) 電磁弁一体型膨張弁
JP3882299B2 (ja) 電磁弁一体型膨張弁
US7036744B2 (en) Solenoid valve-equipped expansion valve
JP4848548B2 (ja) 電磁弁付き膨張弁
US6574976B2 (en) Refrigerant cycle system and valve device for the same
JP2012020599A (ja) 複合弁および車両用冷暖房装置
JP3249483B2 (ja) 複合電磁弁及び複合電磁弁の制御方法
JP3882573B2 (ja) 電磁弁一体型膨張弁
JP2009024945A (ja) 電磁弁付膨張弁
EP0874202B1 (en) Expansion valve integrated with electromagnetic valve and refrigeration cycle employing the same
JP3362990B2 (ja) 電磁弁付膨張弁
JP5499299B2 (ja) 制御弁および車両用冷暖房装置
JP5560439B2 (ja) 制御弁および車両用冷暖房装置
JP2009063233A (ja) 冷凍サイクルの制御方法
JP5699267B2 (ja) 制御弁
JP6702164B2 (ja) 電磁弁一体型膨張弁
JPH0914797A (ja) 電磁弁一体型膨張弁
JP2011255689A (ja) 車両用冷暖房装置および制御弁
JP3924935B2 (ja) 温度式膨張弁
JP2005201484A (ja) 冷凍サイクル
JP4260037B2 (ja) 膨張装置
JP2011245978A (ja) 制御弁および車両用冷暖房装置
JP2009030888A (ja) 流量制御膨張弁
JP2023108658A (ja) 膨張弁、車両用冷暖房装置およびバッテリ冷却装置
JP2009040214A (ja) 冷凍サイクルの制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees