JP3786011B2 - 内燃機関の可変動弁装置 - Google Patents
内燃機関の可変動弁装置 Download PDFInfo
- Publication number
- JP3786011B2 JP3786011B2 JP2002003059A JP2002003059A JP3786011B2 JP 3786011 B2 JP3786011 B2 JP 3786011B2 JP 2002003059 A JP2002003059 A JP 2002003059A JP 2002003059 A JP2002003059 A JP 2002003059A JP 3786011 B2 JP3786011 B2 JP 3786011B2
- Authority
- JP
- Japan
- Prior art keywords
- variable valve
- control
- phase
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Valve-Gear Or Valve Arrangements (AREA)
- Valve Device For Special Equipments (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の属する技術分野】
この発明は、内燃機関の吸気弁に用いられる可変動弁装置、特に、吸気弁のリフト量あるいは作動角を可変制御する第1可変動弁機構と、吸気弁リフトの中心角の位相を可変制御する第2可変動弁機構と、を備え、これらの2つの可変動弁機構により吸入空気量を制御するようにした可変動弁装置に関する。
【0002】
【従来の技術】
特公平5−87643号公報には、内燃機関における吸排気弁のリフト・作動角を可変制御するリフト・作動角可変機構と、リフト中心角の位相を可変制御する位相可変機構と、を組み合わせてなる内燃機関の可変動弁装置が開示されている。この装置では、位相可変機構の制御状態つまりリフト中心角の実位相を検出するセンサを具備しており、検出した実位相に基づいて、リフト・作動角可変機構の制御に制限を加えるようにしている。
【0003】
【発明が解決しようとする課題】
上記公報の装置では、リフト中心角の実位相を検出するセンサとして、位相制御用アクチュエータの可動部の位置を接触子を介して検出するアナログセンサが用いられているが、例えば、位相検出用のセンサとして非接触型のセンサを用い、カムシャフト(カム駆動軸)の1回転毎に位相検出を行うようにした場合などは、実位相の検出間隔とリフト量制御の実行間隔とが大きく異なることになり、位相制御とリフト量制御とを整合させることが困難となる。
【0004】
【課題を解決するための手段】
この発明の内燃機関の可変動弁装置は、吸気弁のリフト量あるいは作動角の少なくとも一方を連続的に変更可能な第1可変動弁機構と、吸気弁リフトの中心角の位相を連続的に変更可能な第2可変動弁機構と、を備えており、これらの2つの可変動弁機構を制御することにより内燃機関の吸入空気量を可変制御している。
【0005】
そして、上記第1可変動弁機構の制御状態を検出する第1センサと、上記第2可変動弁機構の制御状態を検出する第2センサと、を備えている。ここで、上記第1センサは、上記第1可変動弁機構の制御状態を常時検出可能であり、これに対し、上記第2センサは、上記第2可変動弁機構の制御状態を特定のタイミングでのみ検出可能となっている。つまり第2センサでは、例えば、クランク角度の720°毎、あるいは360°毎といった間隔で、第2可変動弁機構の制御状態つまり実位相が検出される。
【0006】
そして、本発明の可変動弁装置は制御装置を備えており、この制御装置は、上記第2センサからの検出信号つまり実位相を示す信号に基づいて上記第2可変動弁機構を制御する。例えば内燃機関の運転条件に応じて設定される目標位相に合致するように、第2可変動弁機構に対し制御指令が出力される。また、制御装置は、この制御指令に応答して変化する上記第2可変動弁機構の制御状態を推定し、この推定結果と上記第1センサからの検出信号に応じて上記第1可変動弁機構を制御する。すなわち、例えば内燃機関の運転条件に応じて目標のリフト量あるいは作動角が設定され、これに合致するように第1可変動弁機構が制御されるが、この目標のリフト量あるいは作動角は、位相が正しく制御されていることを前提とするので、上記制御指令により第2可変動弁機構の制御状態が変化しつつあるときには、第2センサの前回の検出タイミングから次の検出タイミングまでの間に実際の制御状態が変化し、目標のリフト量あるいは作動角が、実際の位相に適合したものとならない。そこで、本発明では、制御指令に応答して変化する第2可変動弁機構のそのときの制御状態つまり実際の位相を推定し、この推定した位相を用いて第1可変動弁機構を制御する。例えば推定した位相に基づいて、目標のリフト量あるいは作動角が補正される。
【0007】
【発明の効果】
この発明によれば、第2センサによる第2可変動弁機構の制御状態の検出が例えば機関の1サイクル毎に1回といったように大きな間隔で行われる場合でも、その間の第2可変動弁機構の制御状態を推定することにより、リフト量あるいは作動角の制御を高精度に微小間隔で実行することが可能となる。換言すれば、実位相の検出間隔とリフト/作動角制御の実行間隔との大きな相違に起因する両制御の不整合を回避することができ、吸入空気量の制御精度が向上する。
【0008】
【発明の実施の形態】
以下、この発明を、自動車用火花点火式ガソリン機関の吸気弁に適用した実施の形態について説明する。
【0009】
図1は、内燃機関の吸気弁側可変動弁装置の構成を示す構成説明図であり、この可変動弁装置は、可変動弁機構として、吸気弁のリフト・作動角を変化させるリフト・作動角可変機構1(第1可変動弁機構に相当する)と、そのリフトの中心角の位相(図示せぬクランクシャフトに対する位相)を進角もしくは遅角させる位相可変機構21(第2可変動弁機構に相当する)と、を備えている。
【0010】
まず、リフト・作動角可変機構1を説明する。なお、このリフト・作動角可変機構1は、本出願人が先に提案したものであるが、例えば特開平11−107725号公報等によって公知となっているので、その概要のみを説明する。
【0011】
リフト・作動角可変機構1は、シリンダヘッド(図示せず)に摺動自在に設けられた吸気弁11と、シリンダヘッド上部のカムブラケット(図示せず)に回転自在に支持された駆動軸2と、この駆動軸2に、圧入等により固定された偏心カム3と、上記駆動軸2の上方位置に同じカムブラケットによって回転自在に支持されるとともに駆動軸2と平行に配置された制御軸12と、この制御軸12の偏心カム部18に揺動自在に支持されたロッカアーム6と、各吸気弁11の上端部に配置されたタペット10に当接する揺動カム9と、を備えている。上記偏心カム3とロッカアーム6とはリンクアーム4によって連係されており、ロッカアーム6と揺動カム9とは、リンク部材8によって連係されている。
【0012】
上記駆動軸2は、後述するように、タイミングチェーンないしはタイミングベルトを介して機関のクランクシャフトによって駆動されるものである。
【0013】
上記偏心カム3は、円形外周面を有し、該外周面の中心が駆動軸2の軸心から所定量だけオフセットしているとともに、この外周面に、リンクアーム4の環状部が回転可能に嵌合している。
【0014】
上記ロッカアーム6は、略中央部が上記偏心カム部18によって揺動可能に支持されており、その一端部に、連結ピン5を介して上記リンクアーム4のアーム部が連係しているとともに、他端部に、連結ピン7を介して上記リンク部材8の上端部が連係している。上記偏心カム部18は、制御軸12の軸心から偏心しており、従って、制御軸12の角度位置に応じてロッカアーム6の揺動中心は変化する。
【0015】
上記揺動カム9は、駆動軸2の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン17を介して上記リンク部材8の下端部が連係している。この揺動カム9の下面には、駆動軸2と同心状の円弧をなす基円面と、該基円面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらの基円面ならびにカム面が、揺動カム9の揺動位置に応じてタペット10の上面に当接するようになっている。
【0016】
すなわち、上記基円面はベースサークル区間として、リフト量が0となる区間であり、揺動カム9が揺動してカム面がタペット10に接触すると、徐々にリフトしていくことになる。なお、ベースサークル区間とリフト区間との間には若干のランプ区間が設けられている。
【0017】
上記制御軸12は、図1に示すように、一端部に設けられたリフト・作動角制御用アクチュエータ13によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ13は、例えばウォームギア15を介して制御軸12を駆動するサーボモータ等からなり、エンジンコントロールユニット19(制御装置)からの制御信号によって制御されている。ここで、制御軸12の回転角度は、アナログセンサからなる第1センサつまり制御軸センサ14によって検出され、この検出した実際の制御状態に基づいて上記アクチュエータ13がクローズドループ制御される。
【0018】
このリフト・作動角可変機構1の作用を説明すると、駆動軸2が回転すると、偏心カム3のカム作用によってリンクアーム4が上下動し、これに伴ってロッカアーム6が揺動する。このロッカアーム6の揺動は、リンク部材8を介して揺動カム9へ伝達され、該揺動カム9が揺動する。この揺動カム9のカム作用によって、タペット10が押圧され、吸気弁11がリフトする。
【0019】
ここで、リフト・作動角制御用アクチュエータ13を介して制御軸12の角度が変化すると、ロッカアーム6の揺動運動の中心位置が動いて該ロッカアーム6の初期位置が変化し、ひいては揺動カム9の初期揺動位置が変化する。
【0020】
例えば偏心カム部18が図の上方へ位置しているとすると、ロッカアーム6は全体として上方へ位置し、揺動カム9の連結ピン17側の端部が相対的に上方へ引き上げられた状態となる。つまり、揺動カム9の初期位置は、そのカム面がタペット10から離れる方向に傾く。従って、駆動軸2の回転に伴って揺動カム9が揺動した際に、基円面が長くタペット10に接触し続け、カム面がタペット10に接触する期間は短い。従って、リフト量が全体として小さくなり、かつその開時期から閉時期までの角度範囲つまり作動角も縮小する。
【0021】
逆に、偏心カム部18が図の下方へ位置しているとすると、ロッカアーム6は全体として下方へ位置し、揺動カム9の連結ピン17側の端部が相対的に下方へ押し下げられた状態となる。つまり、揺動カム9の初期位置は、そのカム面がタペット10に近付く方向に傾く。従って、駆動軸2の回転に伴って揺動カム9が揺動した際に、タペット10と接触する部位が基円面からカム面へと直ちに移行する。従って、リフト量が全体として大きくなり、かつその作動角も拡大する。
【0022】
上記の偏心カム部18の初期位置は連続的に変化させ得るので、これに伴って、バルブリフト特性は、連続的に変化する。つまり、リフトならびに作動角を、両者同時に、連続的に拡大,縮小させることができる。各部のレイアウトによるが、例えば、リフト・作動角の大小変化に伴い、吸気弁11の開時期と閉時期とがほぼ対称に変化する。
【0023】
次に、位相可変機構21は、図1に示すように、上記駆動軸2の前端部に設けられたスプロケット22と、このスプロケット22と上記駆動軸2とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ23と、から構成されている。上記スプロケット22は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。上記位相制御用アクチュエータ23は、例えば油圧式、電磁式などの回転型アクチュエータからなり、エンジンコントロールユニット19からの制御信号によって制御されている。この位相制御用アクチュエータ23の作用によって、スプロケット22と駆動軸2とが相対的に回転し、バルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この位相可変機構21の実際の制御状態は、駆動軸2の回転位置に応答する第2センサとしての駆動軸センサ16によって検出され、これに基づいて、上記アクチュエータ23がクローズドループ制御される。
【0024】
このような可変動弁装置を吸気弁側に備えた本実施例の内燃機関は、スロットル弁に依存せず、吸気弁11の可変制御によって吸気量が制御される。なお、実用機関では、ブローバイガスの還流等のために吸気系に若干の負圧が存在していることが好ましいので、図示していないが、吸気通路の上流側に、スロットル弁に代えて、負圧生成用の適宜な絞り機構を設けることが望ましい。
【0025】
図2および図3は、上記制御軸センサ14の詳細を示している。この実施例では、制御軸センサ14は、センサ軸81の回転角度に応じたセンサ出力を発生する回転型ポテンショメータからなり、センサ軸81が上記制御軸12に対し同軸上となるように、シリンダヘッドの一部(符号101で示す)に固定されている。センサ軸81と制御軸12とは、それぞれの中心位置の誤差ないしは変位を許容し得るように、互いに直結されておらず、制御軸12の端面の外周部にピン84が設けられているとともに、半径方向のスリット82を備えたベースプレート83が上記センサ軸81に取り付けられており、上記スリット82に上記ピン84が係合して、制御軸12の回転がセンサ軸81に伝達されるように構成されている。
【0026】
図4および図5は、駆動軸2の位相を検出する上記駆動軸センサ16の詳細を示している。この駆動軸センサ16は、ホールIC素子を使用した非接触型のセンサであり、シリンダヘッド101に固定されている。この駆動軸センサ16に対向するように、駆動軸2の端部に、1箇所にスリット86を形成した円形のプレート85が取り付けられており、駆動軸センサ16から得られる出力信号は、スリット86以外の部分でハイに、スリット86部分でローとなる。エンジンコントロールユニット19は、駆動軸センサ16の出力信号がハイからローへと変化するタイミングを検出し、そのときのクランク角度を基準クランク角度(例えば位相可変機構21の最遅角状態に対応するクランク角度)と比較することで、クランクシャフトに対する駆動軸2の回転位相差(これを実位相rθと記す)を求めることができる。ここで、上記スリット86は、駆動軸2の1回転毎に駆動軸センサ16の前面を横切るので、実位相rθの検出は駆動軸2の1回転毎に行われる。つまり、位相制御用アクチュエータ23の回転変位を無視すれば、基本的に、720°CA毎に実位相rθが検出される。
【0027】
次に、上記リフト・作動角可変機構1と上記位相可変機構21とを用いた吸入空気量制御について説明する。図6は、代表的な運転条件における吸気弁のバルブリフト特性を示したもので、図示するように、アイドル等の極低負荷域においては、リフト量が極小リフトとなる。これは特に、リフト中心角の位相が吸気量に影響しない程度にまで小さなリフト量となる。そして、位相可変機構21によるリフト中心角の位相は、最も遅角した位置となり、これによって、閉時期は、下死点直前位置となる。
【0028】
このように極小リフトとすることによって、吸気流が吸気弁11の間隙においてチョークした状態となり、極低負荷域で必要な微小流量が安定的に得られる。そして、閉時期が下死点近傍となることから、有効圧縮比は十分に高くなり、極小リフトによるガス流動の向上と相俟って、比較的良好な燃焼を確保できる。
【0029】
一方、アイドル等の極低負荷域よりも負荷の大きな低負荷領域(補機負荷が加わっているアイドル状態を含む)においては、リフト・作動角が大きくなり、かつリフト中心角は進角した位置となる。このときには、バルブタイミングをも考慮して吸気量制御が行われることになり、吸気弁閉時期を早めることで、吸気量が比較的少量に制御される。この結果、リフト・作動角はある程度大きなものとなり、吸気弁11によるポンピングロスが低減する。
【0030】
なお、アイドル等の極低負荷域における極小リフトでは、前述したように、位相を変更しても吸気量は殆ど変化しないので、極低負荷域から低負荷域へと移行する場合には、位相変更よりも優先して、リフト・作動角を拡大する必要がある。空調用コンプレッサ等の補機の負荷が加わった場合も同様である。
【0031】
一方、さらに負荷が増加し、燃焼が安定してくる中負荷域では、図6に示すように、リフト・作動角をさらに拡大しつつ、リフト中心角の位相を進角させる。リフト中心角の位相は、中負荷域のある点で、最も進角した状態となる。これにより、内部EGRが利用され、一層のポンピングロス低減が図れる。
【0032】
また、最大負荷時には、さらにリフト・作動角を拡大し、かつ最適なバルブタイミングとなるように位相可変機構21を制御する。なお、図示するように、機関回転数によっても最適なバルブリフト特性は異なるものとなる。
【0033】
次に、図7および図8のフローチャートに基づいて上記可変動弁装置の制御の流れを説明する。
【0034】
図7は、位相可変機構21による位相制御を行う位相制御ルーチンであって、このルーチンは、駆動軸センサ16の出力信号がハイからローへ変化する毎にエンジンコントロールユニット19内で実行される。
【0035】
ステップ101では、エンジンコントロールユニット19内のRAMから、目標トルクtT、エンジン回転速度Ne、クランク角度CAを読み込む。上記目標トルクtTは、負荷センサ(例えばアクセル開度センサ)からの信号に基づいて所定時間毎に算出され、エンジンコントロールユニット19内のRAMに最新値が記憶されている。上記エンジン回転速度Neおよび上記クランク角度CAについても同様であり、上記エンジン回転速度Neは図示せぬエンジン回転センサからの信号に基づいて、また上記クランク角度CAは図示せぬクランク角度センサからの信号に基づいて、それぞれ算出・記憶されている。なお、上記クランク角度CAは、このルーチンが実行されたとき、つまり駆動軸センサ16の出力信号がハイからローへ変化したときのクランク角度を示す。
【0036】
ステップ102では、上記目標トルクtTと上記エンジン回転速度Neとに基づいて目標位相tθを算出する。具体的には、目標トルクtTとエンジン回転速度Neとに対応させて目標位相tθを記憶させてある目標位相マップから該当する値をルックアップする。なお、ここで算出した目標位相tθは、次回の算出が行われるまでエンジンコントロールユニット19内のRAMに記憶される。
【0037】
ステップ103では、上記クランク角度CAに基づいて実位相rθを算出する。エンジンコントロールユニット19内のROMには、位相可変機構を基準状態(最遅角状態)に固定した場合にステップ101で読み込まれるはずのクランク角度を基準値として記憶させてあり、この基準値から実際にステップ101で読み込まれたクランク角度CAを減算することで駆動軸2の実位相rθを算出することができる。なお、ここで算出した実位相rθは次回の算出が行われるまでエンジンコントロールユニット19内のRAMに記憶される。
【0038】
ステップ104では、本ルーチンを実行した後の経過時間Timを測定するためのタイマをゼロリセットして計測を再スタートさせる。この経過時間つまりタイマ値Timは、図8のリフト・作動角制御ルーチンで使用される。
【0039】
ステップl05では、上記の目標位相tθと実位相rθとエンジン回転速度Neとに基づき、位相制御用アクチュエータ23を制御するための制御指令つまり指令値sθを生成する。具体的には、目標位相tθと実位相rθとの偏差およびこの偏差の積分値に応じて、比例積分フィードバック制御指令値を生成する。ここで、次回本ルーチンを実行する時点で実位相rθが目標位相tθへ到達するように、フィードバック制御における制御ゲイン(比例ゲイン・積分ゲイン)がエンジン回転速度Neに応じて可変設定される。なお、ここで算出した指令値sθは、次回の算出が行われるまでエンジンコントロールユニット19内のRAMに記憶され、この指令値sθに応じた駆動信号が位相制御用アクチュエータ23に送られる。
【0040】
図8は、リフト・作動角制御ルーチンを示している。このルーチンは、前述した位相制御ルーチンと異なり、微小な所定時間毎にエンジンコントロールユニット19内で繰り返し実行される。
【0041】
ステップ201では、エンジンコントロールユニット19内のRAMから目標トルクtT、エンジン回転速度Ne、実リフト量rLを読み込む。目標トルクtTおよびエンジン回転速度Neは、前述した通りである。実リフト量rLは、制御軸センサ14の出力値をそのまま読み込んだものである。
【0042】
ステップ202では、上記目標トルクtTと上記エンジン回転速度Neとに基づいて目標リフト量基準値tLbを算出する。具体的には、目標トルクtTとエンジン回転速度Neとに対応させて目標リフト量基準値tLbを記憶させてある目標リフト量基準値マップから該当する値をルックアップする。この目標リフト量基準値マップは、機関を定常運転して測定したリフト量の最適値を記憶させてある。換言すると、この目標リフト量基準値tLbは、各運転条件の下で、実位相が目標位相と一致している状態のときのリフト量の最適値である。なお、本実施例では、前述したように、リフト・作動角可変機構1によってリフト量と作動角とが同時に増減変化するので、リフト量によって作動角も定まる。
【0043】
次にステップ203では、第1制御モードとする条件であるか第2制御モードとする条件であるかを判断する。第1制御モードでは、推定位相に基づいて目標リフト量を補正する制御(推定制御)を行い、第2制御モードでは、推定位相に基づく目標リフト量の補正は行わない(請求項2)。例えば、請求項3および請求項4のように、吸入空気量を急速に減少させたい急減速運転時とエンジン回転速度が所定値より高い高回転運転時には推定制御を行なわない(第2制御モード)こととし、その他の場合は推定制御を行う(第1制御モード)。ここで、高回転運転時に推定制御を行なわないのは、回転数に応じて1回転当たりの実時間が変化するためである。すなわち、図9に示すように、エンジン回転に同期して実行される位相制御ルーチンの実行時間間隔(=実位相rθのサンプリング間隔)はエンジン回転が高くなるに従って短くなり、本ルーチンの実行時間間隔(=実リフト量rLのサンプリング間隔)との差が小さくなる。このため、高回転運転時には推定制御を行うメリットが小さくなり、逆に推定制御を行うことによる演算負荷増大のデメリットが大きくなる。
【0044】
上記ステップ203で推定制御を行う条件が成立していると判断された場合はステップ204へ進み、上述した目標位相tθ、実位相rθ、位相制御用アクチュエータに対する指令値sθ、タイマ値Tim、をそれぞれ読み込む。目標位相tθと実位相rθと指令値sθは、直前に実行された位相制御ルーチンのステップ102,ステップ103,ステップ105でそれぞれ算出・記憶されたものである。また、タイマ値Timは位相制御ルーチンのステップ104でゼロリセット・再スタートさせたタイマの値であり、直前に実行された位相制御ルーチンの実行時期から本ルーチンの実行までの経過時間を示す。
【0045】
ステップ205では、位相制御用アクチュエータ23に対する指令値sθに基づいて、位相可変機構21の応答速度dθを算出する。この応答速度dθは、単位時間当たりの位相変化量であり、指令値sθの大小に応じて定まる。なお、エンジン回転速度Neに基づいて位相制御ルーチンの実行時間間隔を算出し、目標位相tθと実位相rθとの偏差をこの実行時間間隔で除した値を応答速度dθとしても良い(請求項8)。
【0046】
ステップ206では、応答速度dθとタイマ値Timと実位相rθとに基づき、下記の式に従って、そのときの推定位相eθを算出する(請求項7)。
【0047】
【数1】
eθ=dθ×Tim+rθ
次に、ステップ207では、そのときの目標トルクtTとエンジン回転速度Neとに基づいて擬似目標位相tθ’を算出する。算出方法は位相制御ルーチンのステップ102で行う目標位相tθの算出と同一であるが、目標位相tθを算出した際のtT,Neと現時点におけるtT,Neとが異なっている場合は、tθ’≠tθとなる。目標リフト量基準値tLbは、現時点における目標トルクtTとエンジン回転速度Neとに基づいて算出されており、これに合わせるために擬似目標位相tθ’を算出している。ただし、本ステップを省略し、次のステップ208では目標位相tθをそのまま使用することとして演算負荷を軽減するようにしても良い。
【0048】
ステップ208では、上記の擬似目標位相tθ’と推定位相eθとに基づいてリフト補正量cLを算出する。例えば、擬似目標位相tθ’と推定位相eθとの偏差に係数を乗じて算出する方法、あるいは擬似目標位相tθ’および推定位相eθに対応させてリフト補正量cLを記憶させてあるリフト補正量マップから該当する値をルックアップする方法、などによる。
【0049】
ステップ209では、目標リフト量基準値tLbとリフト補正量cLとに基づき、下記の式に従って目標リフト量tLを算出する。
【0050】
【数2】
tL=tLb+cL
一方、ステップ203で推定制御を行う条件が成立していないと判断された場合つまり第2制御モードである場合は、ステップ210へ進み、ステップ202で算出した目標リフト量基準値tLbをそのまま目標リフト量tLとする。
【0051】
そして、ステップ211では、ステップ209もしくはステップ210で定めた目標リフト量tLと実リフト量rLとに基づき、リフト・作動角制御用アクチュエータ13を制御するための指令値sLを生成する。具体的には、目標リフト量tLと実リフト量rLとの偏差およびこの偏差の積分値に応じて比例積分フィードバック制御指令値を生成する。なお、ここで算出した指令値sLは、次回の算出が行われるまでエンジンコントロールユニット19内のRAMに記憶され、この指令値sLに応じた駆動信号がリフト・作動角制御用アクチュエータ13に送られる。
【0052】
図10は、上述した種々の値の変化や各ルーチンの実行タイミング等を示すタイムチャートであり、以下、これに基づいて、上記可変動弁装置の作用をさらに説明する。
【0053】
このタイムチャートは、始めに定常運転状態にあり、その後、時刻t1〜t2間の時点で運転条件(tT,Ne)が変化した場合の例を示している。
【0054】
同図の上部には位相の状態を示しているが、ここでは、□印が目標位相tθを、○印が実位相rθを、●印が推定位相eθを、△印が擬似目標位相tθ’を、それぞれ示す。また、下部にはリフトの状態を示しているが、ここでは、△印が目標リフト量基準値tLbを、□印が目標リフト量tLを、○印が実リフト量rLを、それぞれ示している。
【0055】
定常運転状態では、目標位相tθと実位相rθとが一致し、かつ、目標リフト量基準値tLbと目標リフト量tLと実リフト量rLとが一致している。
【0056】
運転条件の変化後、時刻t2において初めて位相制御ルーチンが実行され、目標位相tθが遅角側へ変更される。これに応じて位相が変化し始めるが、次に位相制御ルーチンが実行される時刻t5までは真の実位相がどの位置にあるかを実際に検出することができない。また、この間、新たな目標位相tθの算出は行われないので、時刻t2の時点で算出した指令値sθが維持され、この指令値sθに応じた一定の制御信号が位相制御用アクチュエータ23に送られる。
【0057】
運転条件の変化後、時刻t3において初めてリフト・作動角制御ルーチンが実行され、目標リフト量基準値tLbがリフト小側へ変更される。このtLbを目標値としてリフト量のフィードバック制御を行うと、次のリフト・作動角制御ルーチン実行タイミングである時刻t4において実リフト量を目標値に到達させることが可能(図中の破線丸印)であるが、この時点では実位相が目標位相に到達しておらず、位相とリフト量の制御が整合しなくなる。このため本実施形態では、リフト・作動角制御ルーチンを実行する時点における実位相の位置を推定し、この推定位相eθと目標リフト量基準値tLbとから目標リフト量tLを定め、この目標リフト量tLに応じてリフト・作動角可変機構を制御する。なお、推定位相eθと真の実位相との間に多少のずれが発生するのは避けられないが、推定位相eθを導入しない(つまりt2〜t5間の目標リフト量tL算出の際、位相の情報としてt2時点の実位相rθあるいは目標位相tθをそのまま使用する)場合と比較すると、位相とリフト量の制御不整合の程度が大幅に改善される。
【図面の簡単な説明】
【図1】この発明に係る可変動弁装置全体の構成を示す斜視図。
【図2】制御軸センサの一実施例を示す側面図。
【図3】図2のA−A線に沿った断面図。
【図4】駆動軸センサの一実施例を示す側面図。
【図5】駆動軸側に設けられるプレートの正面図。
【図6】駆動軸側に設けられるプレートの正面図。
【図7】位相制御ルーチンを示すフローチャート。
【図8】リフト・作動角制御ルーチンを示すフローチャート。
【図9】各ルーチンの実行時間間隔の機関回転速度による変化を示す特性図。
【図10】過渡時の各値の変化等を示すタイムチャート。
【符号の説明】
1…リフト・作動角可変機構
2…駆動軸
3…偏心カム
6…ロッカアーム
8…リンク部材
9…揺動カム
11…吸気弁
12…制御軸
14…制御軸センサ
16…駆動軸センサ
19…エンジンコントロールユニット
21…位相可変機構
Claims (8)
- 吸気弁のリフト量あるいは作動角の少なくとも一方を連続的に変更可能な第1可変動弁機構と、吸気弁リフトの中心角の位相を連続的に変更可能な第2可変動弁機構と、を備え、これらの2つの可変動弁機構を制御することにより内燃機関の吸入空気量を制御するようにした内燃機関の可変動弁装置において、
上記第1可変動弁機構の制御状態を常時検出可能な第1センサと、
上記第2可変動弁機構の制御状態を特定のタイミングでのみ検出可能な第2センサと、
上記第2センサからの検出信号に基づいて上記第2可変動弁機構を制御するとともに、この制御指令に応答する上記第2可変動弁機構の制御状態を推定し、この推定結果と上記第1センサからの検出信号に応じて上記第1可変動弁機構を制御する制御装置と、
を備えたことを特徴とする内燃機関の可変動弁装置。 - 上記制御装置は、上記第2可変動弁機構の制御状態の推定結果と上記第1センサからの検出信号とに基づいて上記第1可変動弁機構を制御する第1制御モードと、上記推定結果を用いずに上記第1可変動弁機構を制御する第2制御モードと、を選択的に切り換えて実行することを特徴とする請求項1に記載の内燃機関の可変動弁装置。
- 上記制御装置は、内燃機関の運転条件が低中回転領域にあるときに上記第1制御モードを選択し、内燃機関の運転条件が高回転領域にあるときに上記第2制御モードを選択することを特徴とする請求項2に記載の内燃機関の可変動弁装置。
- 上記制御装置は、吸入空気量を急速に減少させるべき急減速運転時に上記第2制御モードを選択し、上記急減速運転以外の運転時に上記第1制御モードを選択することを特徴とする請求項2に記載の内燃機関の可変動弁装置。
- 上記第1可変動弁機構は、駆動軸により回転駆動される偏心カムと、この偏心カムの外周に相対回転可能に嵌合したリンクアームと、上記駆動軸と平行に設けられ、かつ偏心カム部を備えた少なくとも所定角度範囲内で回転可能な制御軸と、この制御軸の偏心カム部に回転可能に装着され、かつ上記リンクアームにより揺動されるロッカアームと、上記駆動軸に回転可能に支持されるとともに、上記ロッカアームにリンクを介して連結され、該ロッカアームに伴って揺動することにより吸気弁を押圧する揺動カムと、上記制御軸の回転位置を変化させるリフト・作動角制御用アクチュエータと、を備え、上記制御軸の偏心カム部の回転位置によって吸気弁のリフトがその作動角とともに増減変化するように構成されており、
上記第2可変動弁機構は、クランクシャフトに従動するスプロケットと、このスプロケットと上記駆動軸との間に配置されて両者を所定角度範囲内で相対回転させる位相制御用アクチュエータと、から構成されており、
上記第1センサは、上記制御軸の回転角度を検出する制御軸センサであり、
上記第2センサは、上記駆動軸の位相を所定の回転角度毎に検出する駆動軸センサであることを特徴とする請求項1に記載の内燃機関の可変動弁装置。 - 上記制御装置は、上記駆動軸センサが上記駆動軸の実位相を検出する毎に該駆動軸の目標位相の算出を実行し、かつ所定時間間隔で上記第2可変動弁機構の制御状態の推定ならびに目標リフト・作動角の算出を実行することを特徴とする請求項5に記載の内燃機関の可変動弁装置。
- 上記制御装置は、上記制御指令に対応する上記第2可変動弁機構の応答速度を求め、実位相検出時からの経過時間とこの応答速度とに基づいて、その時点の位相を推定することを特徴とする請求項6に記載の内燃機関の可変動弁装置。
- 上記制御装置は、内燃機関の回転速度から上記実位相の検出の実行時間間隔を求め、目標位相と実位相との偏差をこの実行時間間隔で除して上記応答速度を算出することを特徴とする請求項7に記載の内燃機関の可変動弁装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002003059A JP3786011B2 (ja) | 2002-01-10 | 2002-01-10 | 内燃機関の可変動弁装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002003059A JP3786011B2 (ja) | 2002-01-10 | 2002-01-10 | 内燃機関の可変動弁装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003201868A JP2003201868A (ja) | 2003-07-18 |
JP3786011B2 true JP3786011B2 (ja) | 2006-06-14 |
Family
ID=27642747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002003059A Expired - Lifetime JP3786011B2 (ja) | 2002-01-10 | 2002-01-10 | 内燃機関の可変動弁装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3786011B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4701153B2 (ja) * | 2006-10-31 | 2011-06-15 | 本田技研工業株式会社 | 内燃機関の内部egr制御装置 |
JP4583354B2 (ja) * | 2006-10-24 | 2010-11-17 | 本田技研工業株式会社 | 内燃機関の内部egr制御装置 |
US8931445B2 (en) | 2011-01-31 | 2015-01-13 | Nissan Motor Co., Ltd. | Internal combustion engine |
-
2002
- 2002-01-10 JP JP2002003059A patent/JP3786011B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003201868A (ja) | 2003-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3783589B2 (ja) | 内燃機関の可変動弁装置 | |
US7210450B2 (en) | Intake control apparatus and method for internal combustion engine | |
JP3797119B2 (ja) | 内燃機関の吸気制御装置 | |
JP4063026B2 (ja) | 内燃機関の制御装置 | |
JP3815233B2 (ja) | 内燃機関の吸気制御装置 | |
US7594487B2 (en) | Apparatus for and method of controlling motion mechanism | |
JP4103819B2 (ja) | 内燃機関の可変動弁装置 | |
JP3890476B2 (ja) | 内燃機関の吸気弁駆動制御装置 | |
JP5316086B2 (ja) | 内燃機関の制御装置及び制御方法 | |
JP4036057B2 (ja) | 内燃機関の吸気弁駆動制御装置 | |
JP3786011B2 (ja) | 内燃機関の可変動弁装置 | |
JP4254130B2 (ja) | 内燃機関の可変動弁装置 | |
JP4003567B2 (ja) | 内燃機関の吸気制御装置 | |
JP3815332B2 (ja) | 内燃機関の可変動弁装置 | |
JP4380499B2 (ja) | 内燃機関の制御装置 | |
JP4655444B2 (ja) | 内燃機関の吸気制御装置 | |
JP4922514B2 (ja) | 内燃機関の可変動弁装置 | |
JP3933007B2 (ja) | 内燃機関の吸気制御装置 | |
JP4165433B2 (ja) | 内燃機関の制御装置 | |
JP4165432B2 (ja) | 内燃機関の制御装置 | |
JP4329627B2 (ja) | 可変動弁機構の制御装置 | |
JP4100192B2 (ja) | 内燃機関の可変動弁装置 | |
JP4066977B2 (ja) | 内燃機関のリフト特性補正装置 | |
JP2005291186A (ja) | 内燃機関の制御装置 | |
JP4661646B2 (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3786011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090331 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |