JP3770333B2 - 組換えdnaウイルスおよびその製造方法 - Google Patents

組換えdnaウイルスおよびその製造方法 Download PDF

Info

Publication number
JP3770333B2
JP3770333B2 JP27633595A JP27633595A JP3770333B2 JP 3770333 B2 JP3770333 B2 JP 3770333B2 JP 27633595 A JP27633595 A JP 27633595A JP 27633595 A JP27633595 A JP 27633595A JP 3770333 B2 JP3770333 B2 JP 3770333B2
Authority
JP
Japan
Prior art keywords
dna
fragment
gene
cells
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27633595A
Other languages
English (en)
Other versions
JPH08308585A (ja
Inventor
泉 斎藤
裕美 鐘ヶ江
通雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Pharma Co Ltd
Original Assignee
Sumitomo Dainippon Pharma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26425863&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3770333(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Dainippon Pharma Co Ltd filed Critical Sumitomo Dainippon Pharma Co Ltd
Priority to JP27633595A priority Critical patent/JP3770333B2/ja
Priority to CA002171368A priority patent/CA2171368A1/en
Priority to NZ286154A priority patent/NZ286154A/en
Priority to US08/615,048 priority patent/US5700470A/en
Priority to AU48031/96A priority patent/AU704608B2/en
Priority to EP96301766A priority patent/EP0732405A1/en
Priority to CN96107281A priority patent/CN1141340A/zh
Priority to KR1019960006901A priority patent/KR960034419A/ko
Publication of JPH08308585A publication Critical patent/JPH08308585A/ja
Publication of JP3770333B2 publication Critical patent/JP3770333B2/ja
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は動物細胞感染用の組換えDNAウイルスおよびその製造方法に関する。さらに、該組換えDNAウイルスの製造に用いられる、リコンビナーゼの認識配列をコードするDNA配列を含む組換えDNAウイルスベクターに関する。
【0002】
【従来の技術・発明が解決しようとする課題】
これまで遺伝子導入のウイルスベクターとしてレトロウイルスが良く用いられたが、このウイルスは分裂している細胞にしか導入できないことや宿主細胞の染色体に組み込まれてしまうことにより、特に遺伝子治療においてはその安全性の観点より問題があり、その応用範囲は限られていると考えられている。
アデノウイルスベクターは、種々の動物培養細胞で100%近い導入効率を示すこと、またレトロウイルスと異なり積極的な染色体組み込みの機構を持たないこと、さらに、休止期の細胞でも遺伝子導入出来るという利点もあり、外来遺伝子導入実験のベクターとしての応用範囲は極めて広く、近い将来は遺伝子治療の主要技術の一つとして確立するであろうと考えられている。
【0003】
アデノウイルスベクターの利用は遺伝子治療技術の一つとして、また神経系などの高度に分化した細胞での発現研究の面で急速に普及してきている。遺伝子治療技術としては、既に構築され機能している組織へ直接投与することにより機能を担っている生細胞へ直接欠損した遺伝子を補う、いわゆる in vivo遺伝子治療の方法として研究が精力的に進められている。既に嚢胞性繊維症では、米国で5グループが実際に患者への実験治療を認められており、筋ジストロフィー症、家族性高コレステロール血症、また脳腫瘍等に対して活発に研究されるようになった。一方でアデノウイルスベクターは休止期の細胞へも遺伝子導入が可能であり、分化した細胞や、特に神経系への遺伝子導入方法として、初代培養や動物個体への遺伝子導入実験が注目されている。以上より、アデノウイルスベクターは、神経系を含む多くの分化、未分化細胞への遺伝子治療導入だけでなく、動物個体への直接注入・投与による遺伝子発現が可能であることから、特に遺伝子治療への応用が期待されている。
【0004】
しかし、アデノウイルスはレトロウイルスと異なり、積極的な染色体組み込みの機構を持たないことから、発現が一時的である。その期間は1〜2週間から、長くても2ヶ月程度である。そのため治療効果を継続させる必要がある場合には、なるべく長期間細胞内でアデノウイルスが安定に存在し、アデノウイルス中に挿入された外来遺伝子の発現産物を産生し続けることが望ましい。そして、最近、アデノウイルスゲノムのE2A遺伝子領域の存在がアデノウイルスの細胞内安定性に悪影響を及ぼしていることが分かってきた。
従って、本発明の目的は、動物細胞内に導入されたアデノウイルスベクターが、細胞内でより安定に存在し、外来遺伝子産物を産生し続け得る組換えアデノウイルスベクターの系を構築することにあり、さらに、かかる系を遺伝子治療用に提供することにある。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、上記の問題を解決するために鋭意検討し、アデノウイルスE2A遺伝子領域とL3遺伝子領域の間に外来ヌクレオチドを導入し得る領域が存在することを発見した。この領域には常法によりそのまま外来ヌクレオチドを導入することができるが、一旦適当なリンカーを常法により導入して必要な制限酵素部位を導入した後外来ヌクレオチドを導入してもよい。外来ヌクレオチドとしては、動物細胞に感染させた後その細胞内で発現することが望まれるポリペプチドをコードする外来遺伝子でもよく、またその外来ヌクレオチドがそのまま細胞中に共存する酵素の基質となるものであってもよい。
さらに、本発明者らは、上記の領域に外来ヌクレオチドとしてリコンビナーゼの認識配列を導入することにより、動物細胞内で発現しうるリコンビナーゼ遺伝子を挿入した動物細胞感染用の組換えDNAウイルスベクターと併用すれば動物細胞内でアデノウイルスゲノムのE2A遺伝子領域を欠失させることができるようなアデノウイルスベクターの系を動物細胞感染用のDNAウイルスベクターとして構築できることを見い出した。
【0006】
ここに、リコンビナーゼとは、特異的なDNA組換え酵素で、数十塩基からなる特異的なDNA配列を認識し、この配列間でDNAの切断・鎖の交換と結合の全行程を行う。そこで、この酵素を発現する組換えアデノウイルスベクターと、E2A遺伝子領域の両側にこの認識配列を同じ向きに2コピーを持つ組換えアデノウイルスベクターを作製し、両方を細胞に共感染させると、発現したリコンビナーゼにより2つの認識配列間の再構成が起き、挟まれた部分が環状分子として切り出される。従って、こうして得られるE2A遺伝子領域を欠失したアデノウイルスベクターは、E2A遺伝子領域を含むアデノウイルスベクターに比して顕著に安定になり、遺伝子治療に有利に使用できると期待できる。
【0007】
しかし、従来はE2A遺伝子領域の右側(図1参照)すなわちE3領域内には外来DNA配列を導入できることが知られていたが、E2A遺伝子領域の左側には外来DNA配列を挿入できる部位の存在は知られていなかった。今回本発明者らにより、E2A遺伝子の終止コドンとL3遺伝子の終止コドンとの間に外来DNA配列を導入できる部位が存在することが発見された。これにより、初めてE2A遺伝子の機能を損なわずまたアデノウイルスの増殖の機能を保持したままE2A遺伝子領域を挟んでリコンビナーゼ認識配列を導入できることが明らかにされたのである。
本発明は、かかる知見に基づいて、さらに研究を進めて完成するに至ったものである。
【0008】
即ち、本発明の要旨は、E2A遺伝子の終止コドンとL3遺伝子の終止コドンの間に、リコンビナーゼ認識配列が挿入されたことを特徴とする動物細胞感染用の組換えアデノウイルス、に関する。
【0009】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明における動物細胞感染用のDNAウイルスベクターは、アデノウイルスのように細胞に感染後染色体外でしか存在し得ないようなDNAウイルス由来のベクターであれば、特に制限されることなく用いることができる。例えば、アデノウイルスベクター、ワクシニアウイルスベクター、パポパウイルスベクター等が挙げられる。以下、リコンビナーゼ遺伝子又はリコンビナーゼ認識配列をもつ動物細胞感染用のDNAウイルスベクターの好適な例として、アデノウイルスベクターを用いて本発明を説明する。
【0010】
本発明に用いられるアデノウイルスは、動物を自然宿主とするものであり、特にヒトを宿主とするヒトアデノウイルスが好適に用いられる。ヒトアデノウイルスのゲノムは、約36kbpの2本鎖線状DNAであって、DNA鎖両端にはおよそ100bpからなる逆方向反復塩基配列があり、そのDNA鎖両端の5’末端にはE2B遺伝子産物が切断加工された55kのタンパク質が共有結合しているという特異な構造をしている。
【0011】
本発明に用いられるアデノウイルスのゲノムは、E1遺伝子領域特にE1A遺伝子領域を欠失していることが好ましい。これは、アデノウイルスの細胞ガン化活性に関与するE1A遺伝子領域を欠失させることにより、アデノウイルスを無毒化し、ゲノム中に組み込んだ外来の遺伝子配列のみを発現させるためである。必ずしもE1A遺伝子領域の全てを欠失させる必要はないが、例えば1.3〜9.3%の断片を除去すれば、目的は達成される。
また、本発明に用いられるアデノウイルスのゲノムは、E3遺伝子領域を欠失させてもよい。特に、E3遺伝子領域の79.6〜84.8%を欠失させたものが好ましい。アデノウイルスの複製には不要であるからである。
したがってE1A、E1B遺伝子を持続的に発現しているヒト胎児腎由来細胞株(293細胞)を除き、宿主細胞内で増殖することができないという特徴を有する。
【0012】
しかしながら、実際にヒトや動物に投与した場合、E1A蛋白と同様の機能を有する蛋白が細胞中に存在し、これによりわずかにアデノウイルス蛋白が発現する。これが細胞免疫を引起し、ウイルスDNAを保持する細胞が攻撃を受け排除されることがわかっている。現在使用されているE1A、E1B欠損型アデノウイルスベクターによる遺伝子発現が短期間である原因はここにある。これを防ぐためには、E2A遺伝子の機能を欠失させることが有効であることがYangらにより明らかにされた(Nature Genetics, vol.7, 362-369, 1993)。これは、温度感受性のE2A遺伝子変異株を利用したものであるが、動物に投与した場合、E2A遺伝子の機能発現が抑制されるものの機能発現を完全に止めることができない。E2A遺伝子の機能発現を完全に止める手段としてはE2A遺伝子領域を欠失させることが考えられるが、E2A遺伝子産物はアデノウイルスゲノムの複製に必須であるため、E2A遺伝子を欠失したアデノウイルス自身は293細胞においても増殖できない。
本発明は、E2A遺伝子の両端にリコンビナーゼ認識配列を配置した組換えアデノウイルスとリコンビナーゼ発現用アデノウイルスを動物培養細胞に共感染させ、細胞内で発現したリコンビナーゼによりE2A遺伝子欠失型感染性ウイルス粒子を作製するというものである。E2A遺伝子産物は少なくともリコンビナーゼ発現用アデノウイルスから十分量補充される。得られるE2A遺伝子欠失型ウイルスはE2A遺伝子の発現が皆無であるため、目的とする遺伝子の発現期間が大幅に延長することは間違いない。
【0013】
リコンビナーゼの認識配列の挿入位置は、E2A遺伝子領域の右側には従来から知られている領域があるが、E2A遺伝子領域の左側については、E2A遺伝子の終止コドンとL3遺伝子の終止コドンの間であって、得られる組換えアデノウイルスの増殖を阻害しない部位が選択される。E2A遺伝子領域やL3遺伝子領域の一部欠失あるいはポリA付加シグナル領域が一部欠失することになると、得られる組換えアデノウイルスの増殖が阻害されるため好ましくない。
【0014】
本発明に用いられるプロモーターとしては、動物ウイルス遺伝子プロモーターおよび動物細胞遺伝子プロモーターが挙げられる。前者の例としてはSV40遺伝子プロモーター、アデノウイルス主要後期遺伝子プロモーター等があり、また、後者の例としては、チミジンキナーゼ遺伝子プロモーター、メタロチオネイン遺伝子プロモーター、免疫グロブリン遺伝子プロモーター等がある。しかし本発明には、CAGプロモーターが特に有利に用いられる。このプロモーターは、サイトメガロウイルスエンハンサー、ニワトリβ−アクチンプロモーター、ウサギβグロビンのスプライシングアクセプターおよびウサギβグロビン由来のポリA配列からなるハイブリッドプロモーターであり、高発現ベクターとして特開平3−168087号公報に開示されている。その調製は同公報に記載されているpCAGGS(特開平3−168087、13頁20行〜20頁14行および22頁1行〜25頁6行)から制限酵素SalI,HindIII で切り出すことにより行うことができ、本発明に利用することができる。
【0015】
本発明に用いられるリコンビナーゼは、特異的なDNA組換え酵素で、特定の塩基配列を認識し、この配列間でDNAの切断、鎖の交換と結合の全行程を行う。かかる酵素としては、大腸菌のバクテリオファージP1がコードするもの(リコンビナーゼCre)がある。これはバクテリオファージP1内のloxP(Abremskiら、J. Biol. Chem.1984、1509−1514;および Hoessら、P.N.A.S.、1984、81、1026−1029)配列を基質とする。即ち、loxP配列がリコンビナーゼCreの認識配列となる。また、他のリコンビナーゼとして酵母の2μプラスミド由来のFLP遺伝子がコードするリコンビナーゼが挙げられる(James R. Broarchら、Cell、29、227-234)。さらに、チゴサッカロマイセス・ルーイイのpSR1プラスミド由来のものも使用できる。これはR遺伝子にコードされる(Matsuzaki ら、Molecular and Cellular Biology、、955-962 (1988)) 。これらの中では、バクテリオファージP1のリコンビナーゼが本発明に特に好適である。
【0016】
リコンビナーゼ遺伝子は、例えば、リコンビナーゼCre遺伝子の場合は、バクテリオファージP1のDNAのリコンビナーゼ遺伝子をコードする部分をポリメラーゼ・チェイン・リアクション(PCR)法を用いて増幅して本発明に使用することができる。その他のリコンビナーゼ遺伝子の場合も同様にPCR法を用いて調製することができる。この場合に使用するプライマーは、リコンビナーゼ遺伝子の全配列がカバーされるように選択され、さらに組換えアデノウイルスベクターの構築の便宜のため、各プライマーの外側に適当な制限酵素切断配列を付加したものを使用することが好ましい。
【0017】
上記のリコンビナーゼの認識配列(基質となる配列)は数十bpであり、例えばloxP配列は34bpであり、全て、塩基配列が知られているので(Abremskiら、J. Biol. Chem.1984、1509-1514 ;および Hoessら、P.N.A.S.、1984、81、1026−1029) 、常法により化学合成して本発明に使用することができる。
【0018】
本発明に用いられるポリA配列としては、特に限定されるものでないが、ウサギβグロビン由来のものが特に好ましい。
【0019】
本発明においては、リコンビナーゼ遺伝子をアデノウイルスベクターに組み込む場合に、同時に核移行シグナル配列を組み込むことが好ましい。例えば、SV40の核移行シグナルが利用できる。これは、アデノウイルスベクターにより感染細胞の細胞質内で発現したリコンビナーゼがその認識配列を有するアデノウイルスベクターに作用するには、核内に移行する必要があり、核移行シグナル配列はこれを促進する(Daniel Kalderon ら、Cell. 39、499-509 (1984)) からである。
【0020】
本発明に使用される外来遺伝子としては、上記のハイブリッドプロモーター(CAGプロモーター)あるいはその他のプロモーターにより発現することができる遺伝子であれば、特に限定されるものではなく、有用性の観点から、ヒトの欠損遺伝子に対応する正常遺伝子の配列(例えばアデノシンデアミナーゼ、ジストロフィン、低密度リポ蛋白レセプター、α−1アンチトリプシン、血液凝固第8因子、血液凝固第9因子、ガラクトシダーゼα、もしくはβ)、サイトカイン類(例えばインターロイキン−1〜12、インターフェロン−α,βもしくはγ、腫瘍壊死因子−αもしくはβ、顆粒球コロニー刺激因子、顆粒球マクロファージコロニー刺激因子、エリスロポエチン、成長ホルモン、インシュリン、インシュリン様成長ホルモン)、神経栄養因子類、非自己抗原遺伝子(例えばアロHLA(HLA−B7))、ウィルス抗原等をコードするヌクレオチド配列、ガン抑制遺伝子(例えば、p53、RB、WT−1、NM23、NF−1)、ガン遺伝子であるRas等のアンチセンス配列、またはチミジンキナーゼやシトシンデアミナーゼのような自殺遺伝子と呼ばれるものが挙げられる。
【0021】
本発明の組換えアデノウイルスベクターに組み込まれるプロモーター、外来遺伝子およびポリA配列は上流からこの順に配向していても逆の順に配向していてもよい。
【0022】
次に、本発明の組換えアデノウイルスの製造方法について説明する。
(1) まず、E2A遺伝子領域の両側にある同方向を向いた二つのリコンビナーゼ認識配列、プロモーター、外来遺伝子およびポリA配列を有する組換えアデノウイルスベクターの製造方法について述べる。便宜上、リコンビナーゼとしてはリコンビナーゼCreを、その認識配列としてはloxPを、プロモーターおよびポリA配列としては前記のCAGプロモーターを、外来遺伝子としてはLacZ遺伝子を使用する場合について述べるが、その他のリコンビナーゼ、その認識配列、プロモーターおよびポリA配列を使用する場合も実質的に同様の手法を利用することができる。
【0023】
(a)(pAdexlCAwtの構築)
▲1▼ CAGプロモーターを含むプラスミドpCMwCH31の構築
CAGプロモーターを含むプラスミドpCAGGS(Niwaら、Gene、108 、193-200(1990) )をEcoRIで切断した後、Klenow酵素により平滑化し、SwaIリンカーとのリガーゼ反応を行う。次に、得られたプラスミドをSalIで切断した後、Klenow酵素により平滑化し、ClaIリンカーとのリガーゼ反応を行う。さらに、得られたプラスミドをPstIで切断した後、Klenow酵素により平滑化し、XhoIリンカーとのリガーゼ反応を行い、CAGプロモーターを含むプラスミドpCMwCH31を取得する。
元の制限酵素部位の消失および各リンカーの挿入は各制限酵素切断の後、アガロースゲル電気泳動により確認する。
【0024】
▲2▼ pAdex1cの構築
実施例1▲2▼(i)〜(vi)に記載の方法により構築する。その概要は以下のとおりである。
E1遺伝子領域を欠失したアデノウイルスゲノム左側末端の17%を含むプラスミド(pUAF0−17D)、5型アデノウイルスDNAにBamHリンカーを結合させた後HindIII 消化して得られるフラグメント(2.8kb、アデノウイルスゲノムの左側末端の8%に当たる)をpUC19に挿入して得られるプラスミド(pUAF0−8)、およびアデノウイルスDNAをHindIII 消化して得られる3.4kbフラグメント(アデノウイルスゲノムの左側末端の8−17%に当たる)をpUC19のHindIII 部位へ挿入して得られるプラスミド(pUAF8−17)とを調製し、ついでpUAF0−8由来の454bpのBamHI−ClaIフラグメントと、pUAF8−17由来の2.9kbのHindIII −ClaIフラグメントをつなぎ、pUC19のBamHI/HindIII 部位へ挿入してpUAF0−17Dを得る。
【0025】
さらに、5型アデノウイルスDNAをBst1107とEcoRIで消化し21.6kbのフラグメントを得る。また、アデノウイルスゲノム由来のpX2WのEcoRI−SalIフラグメント(6.5kb)を調製する。
一方、charomid9−11(I. Saito & G. Stark, Proc. Natl. Acad. Sci. U.S.A., vol. 83, p8664-8668, 1986) をAsp718とBamHIで消化し、Klenow酵素で平滑化後、セルフライゲーションする。ついでそのEcoRI部位へBamHIリンカーを挿入し、シャロミドをchdRBR7−11を調製する。
【0026】
上記のpUAF0−17DのBamHI−Bst1107フラグメント(2.9kb)とアデノウイルスゲノムのBst1107−EcoRIフラグメント(21.6kb)とpX2WのEcoRI−SwaIフラグメント(6.5kb)をEcoRIとEcl36Iで消化したchdRBR7−11とライゲーションする。その後、in vitroパッケージングし、DH5αへ感染させる。形質転換株から目的のフラグメントをもつものを単離し、pAdex1cと名づける。
【0027】
▲3▼ カセットコスミドpAdex1cwの構築
ClaIで切断した後エタノール沈澱により回収したpAdex1cと、5’末端リン酸化を施した下記の合成リンカー(1)(配列番号:2)(SwaI、ClaI、SalI、NruI部位を含む)を混合し、ATP、T4DNAリガーゼを含む反応液中で一晩結合させる。リガーゼを熱失活させた後、SwaIで消化する。この切断はリンカーが複数個挿入されたものからSwaI断片を切り出し、リンカーが1個のみ挿入された構造のコスミドを得るために行う。次に、反応液をSpun column(Pharmacia社製)にかけ、リンカー由来の小断片を除去した後、T4DNAリガーゼでライゲーションを行い、セルフアニーリングによる環状化を行う。ついでイン・ビトロ・パッケージングを行い、各コロニーから調製したコスミドDNAの構造をBamHIおよびNruI同時消化により確認する。目的とする方向に挿入された場合483bp、逆方向に挿入された場合、464bpの断片を生じる。この確認により目的とするカセットコスミドpAdex1cw(図1)を取得する。
合成リンカー
Figure 0003770333
【0028】
▲4▼ カセットコスミドpAdexlpCAwの構築
▲1▼で構築したプラスミドpCMwCH31をHindIII およびClaIで同時消化し、Klenow酵素により平滑化し、5'末端リン酸化を施したPmeIリンカーとのライゲーションを行う。リガーゼを熱失活させた後、Psp1406Iで消化する。この切断はリンカーが複数個挿入されたものからPsp1406I断片を切り出し、リンカーがDNA断片の両端にそれぞれ1個連結した構造の断片を得るために行う。このあと、反応液をアガロースゲル電気泳動に供し、2.3kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。次に、pAdexlcwをClaIで切断した後、生じた小断片をSpun column(Pharmacia製)により除去した後のDNA断片と前述の2.3kbのDNA断片をT4DNAリガーゼでライゲーションさせる。リガーゼを熱失活させた後、ClaIを添加し、セルフアニーリングにより生じた環状コスミドを切断する。ついで、イン・ビトロ・パッケージングに用いる。
更に、各コロニーから調製したコスミドDNAの構造をBamHIおよびXhoI同時消化により確認する。目的とする方向に挿入された場合483bpと4.8kb、逆方向に挿入された場合、2.7及び2.5kbの断片を生じる。この確認により目的とするカセットコスミドpAdexlpCAwを取得する。
【0029】
▲5▼ カセットコスミドpAdexlCAwt(細胞工学、Vol.13、No.8、P759)の構築
SwaIで切断した後エタノール沈澱により回収したpAdexlpCAwを、5'末端リン酸化を施した下記の合成リンカー(2)(配列番号:3)(ClaI、XbaI、SpeI、PacI、SwaI、ClaI部位を含む)を混合し、ATP、T4DNAリガーゼを含む反応液中で一晩結合させる。リガーゼを熱失活させた後、PacI(20unit)を添加し、反応させる。この切断はリンカーが複数個挿入されたものからPacI断片を切り出し、リンカーが1個のみ挿入された構造のコスミドを得るために行う。次に、反応液をSpun column(Pharmacia製)にかけ、リンカー由来の小断片を除去した後、T4DNAリガーゼを含む反応液中で一晩結合させ、セルフアニーリングによる環状化を行う。リガーゼを熱失活させた後、イン・ビトロ・パッケージングに用いる。次に、各コロニーから調製したコスミドDNAの構造をXbaIおよびXhoI同時消化により確認する。目的とする方向に挿入された場合552bp、逆方向に挿入された場合、568bpの断片を生じる。これを確認することにより目的とするカセットコスミドpAdexlCAwt(図2)を取得する。
合成リンカーの構造
Figure 0003770333
【0030】
(b)(loxP挿入コスミドの構築その1)
pAdex2L3LCAwtの作製
▲1▼ pA60X99Xの作製
pAdexlCAwtをBamHIで切断した後、熱処理によりBamHIを失活させる。次にT4DNAリガーゼにより一晩結合させる。次いでこの反応混液を用いて大腸菌DH5α(GIBCO BRL製)を形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpA60X99Xを得る。
【0031】
▲2▼ pA60X99の作製(アデノウイルス以外のXbaI部位の除去)
pA60X99XをXbaI処理し、反応混液をアガロースゲル電気泳動し、2ヶ所のXbaI部位のうち1ヶ所のみで切断された23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。次に、この断片をKlenow酵素(宝酒造製)で両末端を平滑化し、T4DNAリガーゼで一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製する。これらのプラスミドDNAをBsrGIおよびXbaIで同時消化し、6.2kbの断片すなわちプラスミドpA60X99(図3)を得る。
【0032】
▲3▼ pA2L60X99の作製(BsrGI部位へのloxPの挿入)
pULL2rをXholで切断した後、Klenow酵素(宝酒造製)で両末端を平滑化する。その後フェノール:クロロホルム(1:1)処理を施した後、エタノール沈澱する。沈澱物を遠心分離により取得し、TE60μlに溶解する。これと5’末端リン酸化KpnIリンカー(宝酒造製)、ATPおよびT4DNAリガーゼを含むリガーゼ反応液(最終容量50μl)中で一晩結合させる。次に、Asp718(ベーリンガー製)で消化する。反応混液をアガロースゲル電気泳動し、loxPを含む64bpのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。
【0033】
なお、上記のpULL2rは以下のようにして調製する。pUC119(宝酒造製)を制限酵素Ecl136IIで切断し、アルカリホスファターゼ処理を施した後、末端にMluI部位およびXhoI部位を有しこれが連結するとNruI部位を生じるように設計されているloxP配列を含む下記の合成DNA断片(配列番号:4)とのligation反応を行い該合成DNA断片が2つ挿入されたプラスミドpULL2rを得る。
Figure 0003770333
(下線部分の配列がloxP部位である。)
【0034】
一方、プラスミドpA60X99(10μg)をBsrGI(50unit)を含む反応系50μl中で切断した後、反応混液をアガロースゲル電気泳動し、23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。このDNA断片と前述のloxPを含む64bpのDNA断片、ATPおよびT4DNAリガーゼを含むリガーゼ反応液中で一晩結合させる。これに滅菌水、BsrGI反応bufferを加え、70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、BsrGIで処理してセルフアニーリングにより生じた環状のpA60X99を切断する。次いでこの反応混液10μlを用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製する。
【0035】
挿入されたloxPの方向を確認するため、ApaIとMluIの同時消化を行い、反応混液をアガロースゲル電気泳動する。目的とする方向に挿入された場合、366および219bp、逆方向に挿入された場合、334および251bpの断片が生じる。また、NruIで消化した場合、目的とする方向に挿入された場合573bp、逆方向に挿入された場合、533bpの断片が生じる。さらに、DraIとKpnIで同時消化した場合、目的とする方向にloxPが1つ挿入された場合320bp、2つ挿入された場合、384bpの断片が生じる。これら3種の条件をすべて満たす、すなわち、目的とする方向にloxPが1つ挿入された目的のプラスミドpA2L60X99(図4)を取得する。
【0036】
▲4▼ pA2L3L6099の作製(XbaI部位へのloxPの挿入)
pULL2rをXhoIを含む反応系100μl中で切断した後、Klenow酵素(宝酒造製)で両末端を平滑化する。ついで、フェノール:クロロホルム(1:1)処理を施した後、エタノール沈澱する。沈澱物を遠心分離により取得し、TEに溶解する。これと5’末端リン酸化SpeIリンカー(宝酒造製)、ATPおよびT4DNAリガーゼを含む反応液中で一晩結合させる。さらに、SpeIを加え消化した後、反応混液をアガロースゲル電気泳動し、loxPを含む64bpのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。
【0037】
一方、pA2L60X99を、XbaIで切断した後、反応混液をアガロースゲル電気泳動し、23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNAを回収する。このDNA断片と前述のloxPを含む64bpのDNA断片、ATPおよびT4DNAリガーゼを含む反応液中で一晩結合させる。リガーゼを熱失活させ、ついでこれをXbaIで処理し、セルフアニーリングにより生じた環状のpA2L60X99を切断する。この反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製する。
【0038】
挿入されたloxPの方向を確認するため、BglIIとMluIの同時消化を行い、反応混液をアガロースゲル電気泳動する。目的とする方向に挿入された場合、366および503bp、逆方向に挿入された場合、398および471bpの断片が生じる。また、ApaIとMluIで同時消化した場合、目的とする方向に挿入された場合660bp、逆方向に挿入された場合、628bpの断片が生じる。EcoNIとMluIで消化した場合、目的とする方向に挿入された場合311bp、逆方向に挿入された場合、343bpの断片が生じる。さらに、HpaIとSacIで同時消化した場合、目的とする方向にloxPが1つ挿入された場合397bp、2つ挿入された場合、461bpの断片が生じる。これら4種の条件をすべて満たす、すなわち、目的とする方向にloxPが1つ挿入された目的のプラスミドpA2L3L6099(図5)を取得する。
【0039】
▲5▼ pAdex2L3LCAwtの作製
pAdex1CAwtを、Csp45I(東洋紡製)で切断し、次いで、同反応液中でBamHI、さらにEcoRIで切断した後、アガロースゲル電気泳動によるチェックを行う。21kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。なお、Csp451およびEcoRIによる切断は21kbのBamHIDNA断片を回収する際、他の断片が混入するのを防ぐためである。
【0040】
pA2L3L6099をBamHIで切断した後、フェノール:クロロホルム(1:1)処理を施し、水層をTEで平衡化したSephadexG25によりゲル濾過する。回収したDNA断片と前述の21kbのDNA断片、ATPおよびT4DNAリガーゼを含む反応液中で一晩結合させる。リガーゼを熱失活させた後、これをイン・ビトロ・パッケージングに用いる。
【0041】
即ち、ラムダ・イン・ビトロ・パッケージングキットであるギガバックXL(Stratagene製)を用い、残りは−80℃に凍結する。ギガバックXLは42kb以下のコスミドのパッケージ効率が低いのでインサートが入って大きくなったコスミドをある程度選択することができる。本発明では、10個のコロニーを拾えば大半はインサートを含んでおり、目的のクローン(ウイルスゲノムが正しく連結されたクローン)を容易に得ることができる。コスミドの扱い方については、常法(斎藤 泉他、実験医学:7:183-187, 1989)に従って行う。
【0042】
パッケージングされたコスミドを大腸菌DH5α(GibcoBRL製)に感染させる。即ち、Ap+ (アンピシリン添加)寒天プレートとAp+ LB(pool)に各種の濃度で接種し、一晩培養する。poolのminiprepDNAを抽出・調製し、制限酵素DraI切断によりインサートがはいったものの割合を調べる。コロニーは丸ごと寒天ごと取りAp+ LBで一晩培養し、miniprepDNAを調製する。次に、各コロニーから調製したコスミドDNAの構造をDraI切断により確認する。目的とする方向に挿入された場合891bp、逆方向に挿入された場合1.4kbの断片を生じる。これにより目的とするカセットコスミドpAdex2L3LCAwtを取得する。
【0043】
(c)(loxP挿入コスミドの構築その2)
pAdex2LA3LCAwtの作製
▲1▼ pUCA6065の作製
pA60X99をBamHIおよびPstIにより切断し、反応混液をアガロースゲル電気泳動し、BsrGI部位を含む1.7kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。同様の操作によりpUC19をBamHIおよびPstIにより切断し、2.7kbの断片を回収する。次に両断片をリガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpUCA6065を得る。
【0044】
▲2▼ p2LA6065の作製
pUCA6065をBamHIおよびAflIII で切断し、780bpの断片を調製し、また、同プラスミドをBamHIおよびBsrGIで切断し、3.6kbの断片を調製する。これら両断片とloxP配列を含む下記のリンカーDNA(配列番号:11)を混合しリガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、リンカーDNAが1つ挿入された、目的とするプラスミドp2LA6065を得る。
Figure 0003770333
【0045】
▲3▼ pA2LA3L6099の作製
p2LA6065をBamHIおよびSfiI(あるいはBglI)により切断し、1.5kbの断片を調製する。また、pA2L3L6099をBamHIおよびSfiIにより切断し、約22kbの断片を調製する。次に両断片をリガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpA2LA3L6099を得る。
【0046】
▲4▼ pAdex2LA3LCAwtの作製
pAdex2L3LCAwt作製の際の▲5▼と同様の操作により、pA2LA3L6099とpAdexlCAwtからpAdex2LA3LCAwtを作製する。
【0047】
(d)(loxP挿入コスミドの構築その3)
pAdex2LD3LCAwtの作製
▲1▼ pHSGA6065の作製
pA60X99をBamHIおよびPstIにより切断し、反応混液をアガロースゲル電気泳動し、BsrGI部位を含む1.7kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収する。pHSG299(宝酒造)をBamHIおよびPstIにより切断し、同様の操作により2.7kbの断片を回収する。次に両断片をリガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpHSGA6065を得る。
【0048】
▲2▼ p2LD6065の作製
pHSGA6065をBsrGIおよびDraIで切断し4.4kbの断片を調製し、これとloxP配列を含む下記のリンカーDNA(配列番号:12)を混合し、リガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、リンカーDNAが1つ挿入された目的とするプラスミドp2LD6065を得る。
Figure 0003770333
【0049】
▲3▼ pA2LD3L6099の作製
p2LD6065をBamHIおよびSfiI(あるいはBglI)により切断し1.5kbの断片を調製する。また、pA2L3L6099をBamHIおよびSfiIにより切断し、約22kbの断片を調製する。次に両断片をリガーゼ反応buffer中に加え、さらにATP、T4DNAリガーゼを加え、一晩結合させる。次いでこの反応混液を用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpA2LD3L6099を得る。
【0050】
▲4▼ pAdex2LD3LCAwtの作製
pAdex2L3LCAwt作製の際の▲5▼と同様の操作により、pA2LD3L6099とpAdexlCAwtからpAdex2LD3LCAwtを作製する。
【0051】
(e)アデノウイルスDNA−末端蛋白複合体(Ad5 dlX DNA−TPCおよびAdex1CANLacZ DNA−TPC)の調製
▲1▼ アデノウイルスDNAとしては、Ad5 dlX(I. Saito et al., J.Virology, vol.54, 711-719 (1985))またはAdex1CANLacZを用いる。Ad5 dlXをHeLa細胞(Roux 10本分)に、Adex1CANLacZを293細胞にそれぞれ感染させ、培養を行う。
即ち、Ad5−dlXまたはAdex1CANLacZのウイルス液(〜109 PFU/ml)を0.2ml/Roux感染させ、3日後に、はがれた細胞を遠心分離により集める。アデノウイルス粒子のほとんどはメディウム中ではなく細胞の核内にいるので感染細胞からウイルスを精製できる利点がある。(以下の操作は非無菌的に行う。)
【0052】
▲2▼ 得られた細胞をTris−HCl(pH8.0)に懸濁し、密封型ソニケーターを用いて細胞を破砕し、ウイルスを細胞内から放出させる。
▲3▼ 得られた破砕物を遠心分離により沈澱を除いた後、超遠心分離機 SW28チューブに塩化セシウム溶液(比重1.43)を入れ、その上に上清を重層し、クッション遠心による濃縮を行う。
▲4▼ 界面直下のウイルス層をSW50.1チューブに移す。界面直下のウイルス層は通常目視でき、ウイルス層とその下層の塩化セシウムを5ml採取する。同時にもう一本に塩化セシウム溶液(比重1.34)を満たす。
これらを、35krpm、4℃で一晩超遠心にかけた。次いで、白いウイルスのバンドを分取し、既に勾配ができたチューブに乗せ替える。さらに、35krpm、4℃4時間以上超遠心にかける。
【0053】
▲5▼ 白いウイルスのバンドを分取し、等量の8M塩酸グアニジンと室温で混合し、4M塩酸グアニジン飽和塩化セシウムを加えてVTi65チューブに満たす。4M塩酸グアニジンにより、粒子蛋白は変性を受けて解離し、DNA−TPCが放出される。
【0054】
▲6▼ 上記のチューブを、55krpm、15℃で一晩超遠心にかけ、0.2mlずつ分画し、その1μlずつを1μg/mlのエチジウムブロミド水溶液20μlと混合し、蛍光染色することによりDNAの有無を確認する。DNAを含む2〜3フラクションを集める。
▲7▼ 500mlのTEに一晩透析(2回)し、−80℃に保存した。こうして得られたAd5dlX DNA−TPCまたはAdex1CANLacZ DNA−TPCの量をOD260 から通常のDNAと同様に算出する。
▲8▼ 得られたAd5dlX DNA−TPCまたはAdex1CANLacZDNA−TPCを、次のステップのloxP挿入組換えアデノウイルス作成のため、充分量のAgeIで2時間切断し、Sephadex G25カラムでゲル濾過後、−80℃に保存する。
【0055】
(f)loxP挿入組み換えアデノウイルスの作製
なお、NLacZは大腸菌LacZ遺伝子のN末端にSV40の核移行シグナルを付加したものである。
▲1▼ 10%FCS添加DMEで培養した293細胞の6cm、10cmシャーレ各1枚用意する。
▲2▼−1.(Ad5dlX2L3LまたはAdex2L3LCANLacZの作製)
発現ユニットを組み込んだloxPを挿入したコスミドpAdex2L3LCAwt DNAの8μgとAgeIで切断したAd5dlX DNA−TPCまたはAgeIで切断したAdex1CANLacZ DNA−TPCの1μgを混合し、セルフェクト(ファルマシア製)キットを用いて、6cmシャーレ1枚にリン酸カルシウム法でトランスフェクションを行う。6cmシャーレのメディウムの上から混合液を滴下し、培養を続ける。
一晩培養(約16時間)し、午前中に培養液を交換し、夕方、コラーゲンコート96穴3枚(原液・10倍希釈・100倍希釈)に、5%FCS添加DMEを用い、各ウエル当たり0.1mlでまき直す。細胞数が各プレートで大きく違わないように、希釈2枚分には10cmシャーレの293細胞を1/3ずつ混ぜて播く。
【0056】
▲2▼−2.(Ad5dlX2LA3LまたはAdex2LA3LCANLacZの作製)
発現ユニットを組み込んだloxPを挿入したコスミドpAdex2LA3LCAwt DNAの8μgとAgeIで切断したAd5dlX DNA−TPCまたはAgeIで切断したAdex1CANLacZ DNA−TPCの1μgを混合し、セルフェクト(ファルマシア製)キットを用いて、6cmシャーレ1枚にリン酸カルシウム法でトランスフェクションを行う。6cmシャーレのメディウムの上から混合液を滴下し、培養を続ける。
一晩培養(約16時間)し、午前中に培養液を交換し、夕方、コラーゲンコート96穴3枚(原液・10倍希釈・100倍希釈)に、5%FCS添加DMEを用い、各ウエル当たり0.1mlでまき直す。細胞数が各プレートで大きく違わないように、希釈2枚分には10cmシャーレの293細胞を1/3ずつ混ぜて播く。
【0057】
▲2▼−3.(Ad5dlX2LD3LまたはAdex2LD3LCANLacZの作製)
発現ユニットを組み込んだloxPを挿入したコスミドpAdex2LD3LCAwt DNAの8μgとAgeIで切断したAd5dlX DNA−TPCまたはAgeIで切断したAdex1CANLacZ DNA−TPCの1μgを混合し、セルフェクト(ファルマシア製)キットを用いて、6cmシャーレ1枚にリン酸カルシウム法でトランスフェクションを行う。6cmシャーレのメディウムの上から混合液を滴下し、培養を続ける。
一晩培養(約16時間)し、午前中に培養液を交換し、夕方、コラーゲンコート96穴3枚(原液・10倍希釈・100倍希釈)に、5%FCS添加DMEを用い、各ウエル当たり0.1mlでまき直す。細胞数が各プレートで大きく違わないように、希釈2枚分には10cmシャーレの293細胞を1/3ずつ混ぜて播く。
【0058】
▲3▼ 3〜4日後と8〜10日後に、各ウエルに50μlの10%FCS添加DMEを加える。293細胞がやせてきたら早めに加える。
ウイルスが増殖し細胞が死滅したウエルが7〜20日の間に現れる。ウエルの細胞が完全に死滅するごとに滅菌パスツールピペットで培養液(死細胞ごと)を滅菌した1.5mlチューブに無菌的に移して、ドライアイスで急凍して−80℃に保存する。
▲4▼ 15〜25日で判定は終了する。比較的遅く細胞が死んだウエルから回収した培養液チューブを約10個選び、超音波破砕後、5000rpm10分遠心して得られた上清を1次ウイルス液(first seed)として−80℃に保存する。早めにウイルス増殖が起こったウエルは複数のウイルス株の混合感染の可能性が高いからである。
【0059】
▲5▼ 24穴プレートに293細胞を用意し、5%FCS−DME(0.4ml/ウエル)と1次ウイルス液10μlをそれぞれ2ウエルずつ添加する。
▲6▼ 約3日で細胞が完全に死滅したら、1ウエルは1次ウイルス液作製と同様に超音波破砕と遠心分離で上清を得、これを2次ウイルス液(second seed) として−80℃に保存する。他の1ウエルの死滅した細胞を5000rpmで5分間遠心し、上清を捨てて細胞だけを−80℃に保存する(セルパック)。10種類のウイルス株のセルパックが集まったら以下の方法で感染細胞の全DNAを抽出する。セルパックには、400μlのcell DNA用TNE (50mM Tris-HCl pH7.5, 100mM NaCl, 10mM EDTA)、4μlのproteinaseK (10mg/ml) および4μlの10%SDSを加える。
【0060】
▲7▼ 50℃で1時間処理した後、フェノール・クロロホルム抽出2回、クロロホルム抽出2回、ついでエタノール沈澱により得られた核酸をRNaseを20μg/ml含む50μlのTEに溶かす。その15μlを発現ユニットを切断する酵素の中で認識配列にCGを含む酵素であるXhoIで切断し、発現コスミドカセットのXhoI切断と共に、15cm位の長さのアガロースゲルで一晩電気泳動を行い、パターンを比較する。XhoIは挿入したloxP配列内に認識部位があるので、loxPが2個挿入された切断パターンを示すクローンを選択する。説明できないバンドが薄く見えるクローンは、欠失のあるウイルスとの混合の可能性があるので廃棄する。
【0061】
ここで得られるloxP挿入組換えアデノウイルスAd5dlX2L3L、Ad5dlX2LA3L、Ad5dlX2LD3L等と、目的の外来遺伝子発現ユニットを含むコスミドを用いて、公知の組換えアデノウイルス作製方法、例えばCOS−TPC法(「実験医学別冊」バイオマニュアルシリーズ4、遺伝子導入と発現・解析法、43〜58頁)に従って、目的の外来遺伝子発現ユニットとloxPが挿入された組換えアデノウイルスを作製することができる。
【0062】
(g)E2A遺伝子欠損アデノウイルスの作製と構造確認
組み換えアデノウイルスAdex2L3LCANLacZおよびAdex1CANCreをそれぞれmoi=10および3で293細胞に感染させ、培養を行う。4日目に細胞を回収し、前述の方法によりDNAを調製する。loxPで挟まれた領域(E2A遺伝子を含む)が切り出された構造を有するAdexdl23CANLacZの生成を2つの方法で確認する。
なお、Adex2LA3LCANLacZおよびAdex2LD3LCANLacZに関しても同様の操作により構造が確認できる。
【0063】
1.SmaI消化
SmaI消化の後、ゲル電気泳動した結果、loxPで挟まれた領域が切り出されて生ずる4.7kbの断片が認められる。このバンドとAdex2L3LCANLacZ、Adex1CANCre、およびAdexdl23CANLacZにおいて共通して見られる4.45kbのバンドの濃さの比較から、回収した組換えアデノウイルス中の約何%がAdexdl23CANLacZであるかが分かる。
【0064】
2.PCRによる確認
調製したDNA0.1ngをテンプレートとし、通常の条件でPCRを行い、生成物をアガロースゲル電気泳動により分析する。用いるプライマーは、下記に示すオリゴヌクレオチド(1)(配列番号:5)、オリゴヌクレオチド(2)(配列番号:6)、オリゴヌクレオチド(3)(配列番号:7)およびオリゴヌクレオチド(4)(配列番号:8)が好ましい。
Figure 0003770333
PCR反応液組成は、10mMのTris・HCl(pH8.3)中、50mMのKCl、1.5mMのMgCl2 、0.2mMのdNTP mixture および各0.2μMのプライマー、0.1ngのテンプレートDNAおよび0.5unitのTaq ポリメラーゼを含むものが好ましい。
PCR反応条件としては、二本鎖解離を95℃で1.5分、アニーリングを64℃で1.0分、伸長反応を70℃で1.0分、反応サイクル30回、が好ましい1例である。
プライマーとして(1)と(4)を用いた場合、393bpと推定されるバンドが検出され、E2A遺伝子が欠失したAdexdl23CANLacZの存在が明らかとなり、また、(2)と(3)を用いた場合、221bpと推定されるバンドが検出され、Cre遺伝子産物により切り出された環状のE2A遺伝子の存在も裏付けられ、Adex2L3LCANLacZからloxPではさまれた領域(E2A遺伝子を含む)が切り出されたAdexdl23CANLacZの生成が明らかになる(図6)。
【0065】
(2) 次に、プロモーター、リコンビナーゼ遺伝子およびポリA配列を有する組換えアデノウイルスベクターの製造方法について説明する。
以下に、リコンビナーゼ遺伝子としてリコンビナーゼCre遺伝子を使用した場合について述べるが、他のリコンビナーゼ遺伝子の場合もほぼ同様である。
【0066】
▲1▼ PCR法で調製したリコンビナーゼCre遺伝子およびプラスミドpUC19(宝酒造製)とをそれぞれ制限酵素PstI(宝酒造製)およびXbaI(宝酒造製)で同時消化したのち混合・ライゲーションし、リコンビナーゼCre遺伝子が組み込まれたプラスミドpUCCreを得る。
▲2▼ CAGプロモーターを含むカセットコスミドpAdex1CAwtを制限酵素SwaI(Boehringer製)で処理したものと、pUCCreを制限酵素PstI(宝酒造製)およびXbaI(宝酒造製)で同時消化したのちKlenow酵素(宝酒造製)で両端を平滑化したものとを混合する。ついでカセットコスミドを沈澱させ、T4 DNAリガーゼで結合させ、リコンビナーゼCre遺伝子を組み込んだカセットコスミドを得る。
【0067】
CAGプロモーター以外のプロモーターを使用する場合は、まず、アデノウイルスゲノム(36kb)の全長のうち、複製に不要なE3領域(1.9kb)とE1A・E1B領域(2.9kb)を欠失させた約31kbのゲノムDNAをもつカセットコスミドを作成し、他方、使用しようとするプロモーター、リコンビナーゼCre遺伝子およびポリA配列を含むプラスミドを作製し、適当な制限酵素で処理してアデノウイルスゲノムのE1A・E1B欠失部位にリコンビナーゼCre遺伝子発現ユニットを組み込んだカセットコスミドを得る。
▲3▼ 次に、得られたカセットコスミドを、ラムダ・インビトロ・パッケージングキットであるギガパックXL(Stratagene製)を用いて、インビトロ・パッケージングを行う。
【0068】
▲4▼ 一方、アデノウイルスDNA−末端蛋白複合体(Ad5dlX DNA−TPC)を調製する。アデノウイルスDNAとしては、Ad5dlX(I. Saito et al., J.Virology, vol.54, 711-719 (1985) )を用い、Ad5dlXをHeLa細胞(Roux瓶10本分)に感染させ、培養を行う。ウイルス粒子を回収し、塩酸グアニジン処理・超遠心によりDNA−TPCを分離・回収する。
こうして得られたAd5dlX DNA−TPCを次のステップの組換えアデノウイルス作製のため充分量のEcoT22Iで処理する。
【0069】
▲5▼ 最後のステップとして、リコンビナーゼCre遺伝子を組み込んだカセットコスミドとEcoT22Iで処理したAd5dlX DNA−TPCを混合し、セルフェクト(ファルマシア製)キットを用いてリン酸カルシウム法でトランスフェクションを行う。ウイルスの増殖のため細胞が死滅したものからウイルス液を回収しプロモーター、リコンビナーゼ遺伝子およびポリA配列を有する組換えアデノウイルスベクターを得る。
【0070】
本発明の方法により上記のようにして得られる、目的の外来遺伝子発現ユニットを有し、E2A遺伝子の機能が完全に欠失した本発明の組換えアデノウイルスの高力価ウイルス溶液は、適宜希釈して局所注入(中枢神経系・門脈など)、経口(腸溶剤を用いる)投与、経気道投与、経皮投与等の投与方法により共感染させ、遺伝病を含む各種疾患の治療に用いることができる。
【0071】
【実施例】
以下、実施例、参考例により本発明をさらに詳しく説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
なお、実施例中のファージ、プラスミド、DNA、各種酵素、大腸菌、培養細胞などを取り扱う諸操作は、特に断らない限り、「Molecular Cloning, A Laboratory Manual. T. Maniatis ら編、第2版(1989 )、Cold Spring Harbor Laboratory 」に記載の方法に準じて行った。また、DNA制限酵素および修飾酵素は、宝酒造、New England Biolabs(NEB)社、Stratagene社又はBoehringer社から購入し、製造者指示書に従って使用した。
【0072】
実施例1(pAdex1CAwtの構築)
▲1▼ CAGプロモーターを含むプラスミドpCMwCH31の構築
CAGプロモーターを含むプラスミドpCAGGS(Niwaら、Gene、108 、193-200(1990) )をEcoRIで切断した後、Klenow酵素により平滑化し、SwaIリンカーとのリガーゼ反応を行った。次に、得られたプラスミドをSalIで切断した後、Klenow酵素により平滑化し、ClaIリンカーとのリガーゼ反応を行った。さらに、得られたプラスミドをPstIで切断した後、Klenow酵素により平滑化し、XhoIリンカーとのリガーゼ反応を行った。元の制限酵素部位の消失および各リンカーの挿入は各制限酵素切断の後、アガロースゲル電気泳動により確認した。
【0073】
▲2▼ pAdex1cの構築
(i)E1遺伝子領域を欠失したアデノウイルスゲノム左側末端の17%を含むプラスミド(pUAF0−17D)の調製
5型アデノウイルスDNAをS1処理して平滑末端とし、その平滑末端にBamHリンカーを結合させ、その後HindIII 消化し、目的のフラグメント(2.8kb、アデノウイルスゲノムの左側末端の8%に当たる)をアガロースゲル電気泳動で分離・回収し、BamHI/HindIII 消化したpUC19のBamHI/HindIII 部位へ挿入した。得られた目的のプラスミドをpUAF0−8と名づけた。
【0074】
(ii)アデノウイルスDNAをHindIII 消化し、アガロースゲル電気泳動で分離し、目的の3.4kbのフラグメント(アデノウイルスゲノムの左側末端の8−17%に当たる)をゲルから回収し、pUC19のHindIII 部位へ挿入した(pUAF8−17と命名)。
pUAF0−8の塩基番号(ここでいう塩基番号はアデノウイルスDNA由来)454番目のPvuII部位をClaIリンカーを用いてClaI部位に変換した。そして、このプラスミドをBamHI/ClaI消化し、454bpのBamHI−ClaIフラグメントをアガロースゲル電気泳動で回収した。
pUAF8−17の塩基番号3328番目のBglII部位をClaIリンカーを用いてClaI部位に変換した。そしてこのプラスミドをHindIII /ClaI消化し、2.9kbのHindIII −ClaIフラグメントをアガロースゲル電気泳動で回収した。
pUAF0−8由来の454bpのBamHI−ClaIフラグメントと、pUAF8−17由来の2.9kbのHindIII −ClaIフラグメントをつなぎ、pUC19のBamHI/HindIII 部位へ挿入した。得られたプラスミドをpUAF0−17Dと命名した。このプラスミドはE1遺伝子領域を欠失したアデノウイルスゲノム左側末端の17%を含む。
【0075】
(iii)アデノウイルスゲノムのBst1107−EcoRIフラグメント(21.6kb)の調製
5型アデノウイルスDNAをBst1107とEcoRIで消化し、アガロースゲル電気泳動で分離した後、目的の21.6kbのフラグメントを回収した。
【0076】
(iv)アデノウイルスゲノムのEcoRI−SalIフラグメント(6.5kb)の調製
pX2S(I. Saito et. al., J. of Virology, vol. 54, p711-719, 1985)のSalI部位をSwaIリンカー(メーカー名)を用いてSwaI部位へ変換しpX2Wを得た。pX2WをEcoRIとSwaIで消化し、アガロースゲル電気泳動で分離した後、目的の6.5kbのフラグメントを回収した。
【0077】
(v)シャロミド(chdRBR7−11)の調製
charomid9−11(I. Saito & G. Stark, Proc. Natl. Acad. Sci. U.S.A., vol. 83, p8664-8668, 1986) のKpnI、SmaI、BamHIを除くため、charomid9−11をAsp718とBamHIで消化し、Klenow酵素で平滑化後、セルフライゲーションした。これを用いて形質転換し、目的のシャロミドを単離し、charomid6−11と名づけた。charomid6−11のEcoRI部位へBamHIリンカーを挿入し、得られたシャロミドをchdRBR7−11と名づけた。
【0078】
(vi)pAdex1cの調製
pUAF0−17DのBamHI−Bst1107フラグメント(2.9kb)とアデノウイルスゲノムのBst1107−EcoRIフラグメント(21.6kb)とpX2WのEcoRI−SwaIフラグメント(6.5kb)をEcoRIとEcl36Iで消化したchdRBR7−11とライゲーションした。その後、in vitroパッケージングし、大腸菌DH5αへ感染させた。形質転換株から目的のフラグメントをもつものを単離し、pAdex1cと名づけた。
【0079】
▲3▼ カセットコスミドpAdex1cwの構築
ClaI(20unit)で切断した後エタノール沈澱により回収したpAdex1c(1μg)と、5’末端リン酸化を施した下記の合成リンカー(1)(配列番号:2)0.01μg(SwaI、ClaI、SalI、NruI部位を含む)を混合し、ATP、T4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させた。70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、SwaI(20unit)を添加し、反応させた。この切断はリンカーが複数個挿入されたものからSwaI断片を切り出し、リンカーが1個のみ挿入された構造のコスミドを得るために行った。次に、反応液をSpun column(Pharmacia製)にかけ、リンカー由来の小断片を除去した後、ATP、T4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させ、セルフアニーリングにより環状化を行った。70℃で10分間インキュベートすることによりリガーゼを熱失活させ、1μlをイン・ビトロ・パッケージングに用いた。次に、各コロニーから調製したコスミドDNAの構造をBamHIおよびNruI同時消化により確認した。目的とする方向に挿入された場合483bp、逆方向に挿入された場合、464bpの断片を生じる。この確認により目的とするカセットコスミドpAdex1cw(図1)を取得した。
合成リンカー
Figure 0003770333
【0080】
▲4▼ カセットコスミドpAdexlpCAwの構築
▲1▼で構築したプラスミドpCMwCH31をHindIII およびClaIで同時消化し、Klenow酵素により平滑化し、5'末端リン酸化を施したPmeIリンカーとのリガーゼ反応を行った。70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、Psp1406Iを添加し、反応させた。この切断はリンカーが複数個挿入されたものからPsp1406I断片を切り出し、リンカーがDNA断片の両端にそれぞれ1個連結した構造の断片を得るために行った。このあと、反応液をアガロースゲル電気泳動に供し、2.3kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。次に、pAdexlcwをClaIで切断した後、生じた小断片をSpun column(Pharmacia製)により除去した後のDNA断片1μgと前述の2.3kbのDNA断片0.1μgをATP、T4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させた。70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、これの1/4量にClaIを添加し(最終容量20μl)、セルフアニーリングにより生じた環状コスミドを切断した。1μlをイン・ビトロ・パッケージングに用いた。
次に、各コロニーから調製したコスミドDNAの構造をBamHI及びXhoI同時消化により確認した。目的とする方向に挿入された場合483bpと4.8kb、逆方向に挿入された場合、2.7および2.5kbの断片を生じる。この確認により目的とするカセットコスミドpAdexlpCAwを取得した。
【0081】
▲5▼ カセットコスミドpAdexlCAwt(細胞工学、Vol.13、No.8、P759)の構築
SwaI(20unit)で切断した後エタノール沈澱により回収したpAdexlpCAw(1μg)と、5'末端リン酸化を施した下記の合成リンカー(2)(配列番号:3)(0.01μg)(ClaI、XbaI、SpeI、PacI、SwaI、ClaI部位を含む)を混合し、ATP、T4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させた。70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、PacI(20unit)を添加し、反応させた。この切断はリンカーが複数個挿入されたものからPacI断片を切り出し、リンカーが1個のみ挿入された構造のコスミドを得るために行った。次に、反応液をSpun column(Pharmacia製)にかけ、リンカー由来の小断片を除去した後、ATP、T4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させ、セルフアニーリングによる環状化を行った。70℃で10分間インキュベートすることによりリガーゼを熱失活させた1μlをイン・ビトロ・パッケージングに用いた。次に、各コロニーから調製したコスミドDNAの構造をXbaIおよびXhoI同時消化により確認した。目的とする方向に挿入された場合552bp、逆方向に挿入された場合、568bpの断片を生じる。これを確認することにより目的とするカセットコスミドpAdexlCAwt(図2)を取得した。
合成リンカーの構造
Figure 0003770333
【0082】
実施例2(loxP挿入コスミドの構築)
▲1▼ pA60X99Xの作製
pAdexlCAwt(0.5μg)をBamHI(15unit)を含む反応系20μl中で切断した後、熱処理(70℃、15分間)によりBamHIを失活させた。次にその1/4量を用いリガーゼ反応buffer中でATP、T4DNAリガーゼを加え、最終容量20μlで一晩結合させた。次いでこの反応混液10μlを用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製し、目的とするプラスミドpA60X99Xを得た。
【0083】
▲2▼ pA60X99の作製(アデノウイルス以外のXbaI部位を除去する)pA60X99X(5μg)をXbaI(10unit)を含む反応系50μl中で5分間反応させ、反応混液をアガロースゲル電気泳動し、2ヶ所のXbaI部位のうち1ヶ所のみで切断された23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。次に、この断片0.2μgをKlenow酵素(宝酒造製)5unitを含む反応系50μl中で反応させ両末端を平滑化し、さらに、これの1/5量、ATPおよびT4DNAリガーゼを含む反応液(最終容量20μl)中で一晩結合させた。次いでこの反応混液10μlを用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製した。これらのプラスミドDNAをBsrGIおよびXbaIで同時消化し、6.2kbの断片を生じる、すなわち図1の構造を有するプラスミドpA60X99(図3)を得た。
【0084】
▲3▼ pA2L60X99の作製(BsrGI部位へのloxPの挿入)
pULL2r(30μg)をXhol(150unit)を含む反応系125μl中で切断した後、熱処理(70℃、15分間)によりXhoIを失活させた。続いてKlenow酵素(宝酒造製)12unitを含む反応系中で両末端を平滑化し、その後フェノール:クロロホルム(1:1)処理を施した後、エタノール沈澱した。沈澱物を遠心分離により取得し、10mMトリス−塩酸(pH7.5)に1mMのEDTAを添加した溶液(TE)60μlに溶解した。次に、これの1/2量と5’末端リン酸化KpnIリンカー(宝酒造製)0.2μg、ATPおよびT4DNAリガーゼを含むリガーゼ反応液(最終容量50μl)中で一晩結合させた。次に、熱処理(70℃、15分間)によりリガーゼを失活させた後、Asp718(100unit)を含む反応系80μl中で消化した。反応混液をアガロースゲル電気泳動し、loxPを含む64bpのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。
【0085】
なお、上記のpULL2rは以下のようにして調製した。pUC119(宝酒造製)を制限酵素Ecl136IIで切断し、アルカリホスファターゼ処理を施した後、末端にMluI部位およびXhoI部位を有しこれが連結するとNruI部位を生じるように設計されているloxP配列を含む下記の合成DNA断片(配列番号:4)とのligation反応を行い該合成DNA断片が2つ挿入されたプラスミドpULL2rを得た。
Figure 0003770333
(下線部分の配列がloxP部位である。)
【0086】
一方、プラスミドpA60X99(10μg)をBsrGI(50unit)を含む反応系50μl中で切断した後、反応混液をアガロースゲル電気泳動し、23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。このDNA断片0.5μgと前述のloxPを含む64bpのDNA断片0.005μg、ATPおよびT4DNAリガーゼを含むリガーゼ反応液(最終容量25μl)中で一晩結合させた。これの1/2量に滅菌水、BsrGI反応bufferを加えて18μlとしてから、70℃で10分間インキュベートすることによりリガーゼを熱失活させた。さらに、20unitのBsrGIを加え(最終容量20μl)37℃で1時間反応させることによりセルフアニーリングにより生じた環状のpA60X99を切断した。次いでこの反応混液10μlを用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製した。
【0087】
挿入されたloxPの方向を確認するため、ApaIとMluIの同時消化を行い、反応混液をアガロースゲル電気泳動した。目的とする方向に挿入された場合、366および219bp、逆方向に挿入された場合、334および251bpの断片が生じる。また、NruIで消化した場合、目的とする方向に挿入された場合573bp、逆方向に挿入された場合、533bpの断片が生じる。さらに、DraIとKpnIで同時消化した場合、目的とする方向にloxPが1つ挿入された場合320bp、2つ挿入された場合、384bpの断片が生じる。これら3種の条件をすべて満たす、すなわち、目的とする方向にloxPが1つ挿入された目的のプラスミドpA2L60X99(図4)を取得した。
【0088】
▲4▼ pA2L3L6099の作製(XbaI部位へのloxPの挿入)
pULL2r(20μg)をXhoI(100unit)を含む反応系100μl中で切断した後、熱処理(70℃、15分間)によりXhoIを失活させた。続いてKlenow酵素(宝酒造製)8unitを含む反応系において両末端を平滑化し、その後フェノール:クロロホルム(1:1)処理を施した後、エタノール沈澱した。沈澱物を遠心分離により取得し、TE30μlに溶解した。これの全量と5’末端リン酸化SpeIリンカー(宝酒造製)0.4μg、ATPおよびT4DNAリガーゼを含む反応液(最終容量50μl)中で一晩結合させ、70℃で10分間インキュベートすることによりリガーゼを熱失活させた。さらに、SpeI(54unit)を加え消化した後、反応混液をアガロースゲル電気泳動し、loxPを含む64bpのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。
【0089】
一方、pA2L60X99(10μg)を、XbaI(100unit)を含む反応系50μlにおいて切断した後、反応混液をアガロースゲル電気泳動し、23.8kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNAを回収した。このDNA断片0.5μgと前述のloxPを含む64bpのDNA断片0.005μg、ATPおよびT4DNAリガーゼを含む反応液(最終容量16μl)中で一晩結合させた。これに5倍希釈したTE14μlを加え、70℃で10分間インキュベートすることによりリガーゼを熱失活させた。次いでこれの1/4量に20unitのXbaIを添加し(最終容量20μl)、セルフアニーリングにより生じた環状のpA2L60X99を切断した。この反応混液10μlを用いて大腸菌DH5αを形質転換し、得られた形質転換体からプラスミドDNAを調製した。
【0090】
挿入されたloxPの方向を確認するため、BglIIとMluIの同時消化を行い、反応混液をアガロースゲル電気泳動した。目的とする方向に挿入された場合、366および503bp、逆方向に挿入された場合、398および471bpの断片が生じる。また、ApaIとMluIで同時消化した場合、目的とする方向に挿入された場合660bp、逆方向に挿入された場合、628bpの断片が生じる。EcoNIとMluIで消化した場合、目的とする方向に挿入された場合311bp、逆方向に挿入された場合、343bpの断片が生じる。さらに、HpaIとSacIで同時消化した場合、目的とする方向にloxPが1つ挿入された場合397bp、2つ挿入された場合、461bpの断片が生じる。これら4種の条件をすべて満たす、すなわち、目的とする方向にloxPが1つ挿入された目的のプラスミドpA2L3L6099(図5)を取得した。
【0091】
▲5▼ pAdex2L3LCAwtの作製
pAdex1CAwt(10μg)を、Csp45I(40unit)を含む反応系100μl中で切断し、次いで、同反応液中にBamHI(30unit)、さらにEcoRI(40unit)を順次添加した。21kbのDNA断片を含むゲルを切り出し、電気泳動によりゲルからDNA断片を回収した。なお、Csp451およびEcoRIによる切断は21kbのBamHIDNA断片を回収する際、他の断片が混入するのを防ぐためである。
【0092】
pA2L3L6099(5μg)を、BamHI(30unit)を含む反応系50μl中で切断した後フェノール:クロロホルム(1:1)処理を施し、水層をTEで平衡化したSephadexG25によりゲル濾過した。回収したDNA断片0.5μgと前述の21kbのDNA断片0.5μg、ATPおよびT4DNAリガーゼを含む反応液(最終容量18μl)中で一晩結合させた。70℃で10分間インキュベートすることによりリガーゼを熱失活させた後、1μlをイン・ビトロ・パッケージングに用いた。
【0093】
即ち、ラムダ・イン・ビトロ・パッケージングキットであるギガバックXL(Stratagene社製)を1/4スケールで用い、残りは−80℃に凍結した。ギガバックXLは42kb以下のコスミドのパッケージ効率が低いのでインサートが入って大きくなったコスミドをある程度選択することができる。本実験では、10個のコロニーを拾えば大半はインサートを含んでおり、目的のクローン(ウイルスゲノムが正しく連結されたクローン)を容易に得ることができた。コスミドの扱い方については、常法(斎藤 泉他、実験医学:7:183-187, 1989)に従って行った。
【0094】
パッケージングされたコスミドを大腸菌DH5α(GibcoBRL)に感染させた。即ち、3枚のAp+ (アンピシリン添加)寒天プレートと5mlのAp+ LB(pool)にそれぞれ1/200量、1/20量、1/2量、残り全量を接種し、一晩培養した。
poolのminiprepDNAを抽出・調製し、制限酵素DraI切断によりインサートがはいったものの割合を調べた。コロニーは丸ごと寒天ごと取り1.5mlのAp+ LBで、一晩培養し、miniprepDNAを調製した。次に、各コロニーから調製したコスミドDNAの構造をDraI切断により確認した。目的とする方向に挿入された場合891bp、逆方向に挿入された場合1.4kbの断片を生じる。これにより目的とするカセットコスミドpAdex2L3LCAwtを取得した。
【0095】
実施例3
(アデノウイルスDNA−末端蛋白複合体(Ad5 dlX DNA−TPCおよびAdex1CANLacZ DNA−TPC)の調製)
▲1▼ アデノウイルスDNAとしては、Ad5 dlX(I. Saito et al., J.Virology, vol.54, 711-719 (1985))またはAdex1CANLacZを用いる。Ad5 dlXをHeLa細胞(Roux 10本分)にまたAdex1CANLacZを293細胞にそれぞれ感染させ、培養を行った。
即ち、Ad5−dlXまたはAdex1CANLacZのウイルス液(〜109 PFU/ml)を0.2ml/Roux感染させ、3日後に、はがれた細胞を遠心分離により集めた。アデノウイルス粒子のほとんどはメディウム中ではなく細胞の核内にいるので感染細胞からウイルスを精製できる利点がある。(以下の操作は非無菌的に行う。)
【0096】
▲2▼ 得られた細胞をTris−HCl(pH8.0)に懸濁し、密封型ソニケーターを用いて細胞を破砕し、ウイルスを細胞内から放出させた。
▲3▼ 得られた破砕物を遠心分離により沈澱を除いた後、超遠心分離機 SW28チューブに塩化セシウム溶液(比重1.43)を入れ、その上に上清を重層し、クッション遠心による濃縮を行った。
【0097】
▲4▼ 界面直下のウイルス層をSW50.1チューブに移した。界面直下のウイルス層は通常目視でき、ウイルス層とその下層の塩化セシウムを5ml採取した。同時にもう一本に塩化セシウム溶液(比重1.34)を満たした。
これらを、35krpm、4℃で一晩超遠心にかけた。次いで、白いウイルスのバンドを分取し、既に勾配ができたチューブに乗せ替えた。さらに、35krpm、4℃4時間以上超遠心にかけた。
【0098】
▲5▼ 白いウイルスのバンドを分取し、等量の8M塩酸グアニジンと室温で混合し、4M塩酸グアニジン飽和塩化セシウムを加えてVTi65チューブに満たした。4M塩酸グアニジンにより、粒子蛋白は変性を受けて解離し、DNA−TPCが放出された。
【0099】
▲6▼ 上記のチューブを、55krpm、15℃で一晩超遠心にかけ、0.2mlずつ分画し、その1μlずつを1μg/mlのエチジウムブロミド水溶液20μlと混合し、蛍光染色することによりDNAの有無を確認する。DNAを含む2〜3フラクションを集めた。
▲7▼ 500mlのTEに一晩透析(2回)し、−80℃に保存した。こうして得られたAd5dlXおよびAdex1CANLacZ DNA−TPCの量をOD260 から通常のDNAと同様に算出した。
▲8▼ 得られたAd5dlXおよびAdex1CANLacZ DNA−TPCを、第3ステップの組換えアデノウイルス作成のため、充分量のAgeIで2時間切断し、Sephadex G25カラムでゲル濾過後、−80℃に保存した。
【0100】
なお、DNA−TPCは制限酵素による切断、透析、ゲル濾過はできるが電気泳動・フェノール処理・エタノール沈澱はできない。濃縮法は塩化セシウム平衡遠心しかないのでなるべく濃厚状態に保った。10Rouxの感染細胞から約300μg程度のDNA−TPCを得ることができた。
▲9▼ 一部を分取し、泳動用BPB bufferを10μl加えた後に、1μlのプロテイナーゼK(10mg/ml)を加えて37℃で10分間反応させて末端蛋白を消化した。フェノール抽出し、上清をアガロースゲル電気泳動で分離し、完全切断を確認した。
AgeI切断DNA−TPC中の制限酵素bufferを、遠心ゲル濾過によって除いた後、分注し−80℃に保存した。
【0101】
実施例4
(loxP挿入組み換えアデノウイルス(Ad5dlX2L3LまたはAdex2L3LCANLacZ)の作製)
なお、NLacZは大腸菌LacZ遺伝子のN末端にSV40の核移行シグナルを付加したものである。
▲1▼ 10%FCS添加DMEで培養した293細胞の6cm、10cmシャーレ各1枚用意した。
▲2▼ 発現ユニットを組み込んだloxPを挿入したコスミドpAdex2L3LCAwt DNAの8μgとAgeIで切断したAd5dlX DNA−TPCまたはAgeIで切断したAdex1CANLacZ DNA−TPCの1μgを混合し、セルフェクト(ファルマシア製)キットを用いて、6cmシャーレ1枚にリン酸カルシウム法でトランスフェクションを行った。6cmシャーレのメディウムの上から混合液を滴下し、培養を続けた。
一晩培養(約16時間)し、午前中に培養液を交換し、夕方、コラーゲンコート96穴3枚(原液・10倍希釈・100倍希釈)に、5%FCS添加DMEを用い、各ウエル当たり0.1mlでまき直した。細胞数が各プレートで大きく違わないように、希釈2枚分には10cmシャーレの293細胞を1/3ずつ混ぜて播いた。
【0102】
▲3▼ 3〜4日後と8〜10日後に、各ウエルに50μlの10%FCS添加DMEを加えた。293細胞がやせてきたら早めに加えた。
ウイルスが増殖し細胞が死滅したウエルが7〜20日の間に現れた。ウエルの細胞が完全に死滅するごとに滅菌パスツールピペットで培養液(死細胞ごと)を滅菌した1.5mlチューブに無菌的に移して、ドライアイスで急凍して−80℃に保存した。
▲4▼ 15〜25日で判定は終了した。比較的遅く細胞が死んだウエルから回収した培養液チューブを約10個選び、超音波破砕後、5000rpm10分遠心分離して得られた上清を1次ウイルス液(first seed)として−80℃に保存した。
早めにウイルス増殖が起こったウエルは複数のウイルス株の混合感染の可能性が高いからである。
【0103】
▲5▼ 24穴プレートに293細胞を用意し、5%FCS−DME(0.4ml/ウエル)と1次ウイルス液10μlをそれぞれ2ウエルずつ添加した。
▲6▼ 約3日で細胞が完全に死滅したら、1ウエルは1次ウイルス液作製と同様に超音波破砕と遠心分離で上清を得、これを2次ウイルス液(second seed) として−80℃に保存した。他の1ウエルの死滅した細胞を5000rpmで5分間遠心し、上清を捨てて細胞だけを−80℃に保存した(セルパック)。10種類のウイルス株のセルパックが集まったら以下の方法で感染細胞の全DNAを抽出した。セルパックには、400μlのcell DNA用TNE (50mM Tris-HCl pH7.5, 100mM NaCl, 10mM EDTA)、4μlのproteinaseK (10mg/ml) および4μlの10%SDSを加えた。
【0104】
▲7▼ 50℃で1時間処理した後、フェノール・クロロホルム抽出2回、クロロホルム抽出2回、ついでエタノール沈澱により得られた核酸をRNaseを20μg/ml含む50μlのTEに溶かした。
その15μlを発現ユニットを切断する酵素の中で認識配列にCGを含む酵素であるXhoIで切断し、発現コスミドカセットのXhoI切断と共に、15cm位の長さのアガロースゲルで一晩電気泳動を行い、パターンを比較した。XhoIは挿入したloxP配列内に認識部位があるので、loxPが2個挿入された切断パターンを示すクローンを選択する。説明できないバンドが薄く見えるクローンは、欠失のあるウイルスとの混合の可能性があるので廃棄した。
【0105】
実施例5
(E2A遺伝子欠損アデノウイルスの作製と構造確認)
組み換えアデノウイルスAdex2L3LCANLacZおよびAdex1CANCreをそれぞれmoi=10および3で293細胞に感染させ、培養を行った。なお、NCreは、NLacZと同様、SV40の核移行シグナルをCreのN末端に付加したものである。
4日目に細胞を回収し、前述の方法によりDNAを調製した。loxPで挟まれた領域(E2A遺伝子を含む)が切り出された構造を有するAdexd123CANLacZの生成を2つの方法で確認した。
【0106】
1.SmaI消化
SmaI消化の後、ゲル電気泳動した結果、loxPで挟まれた領域が切り出されて生じる4.7kbの断片が認められた。このバンドとAdex2L3LCANLacZ、Adex1CANCre、およびAdexd123CANLacZにおいて共通して見られる4.45kbのバンドの濃さの比較から、回収した組換えアデノウイルス中の約30%がAdexd123CANLacZであることが分かった。
【0107】
2.PCRによる確認
調製したDNA0.1ngをテンプレートとし、下記の条件でPCRを行い、生成物をアガロースゲル電気泳動により分析した。用いたプライマーは、下記に示すオリゴヌクレオチド(1)(配列番号:5)、オリゴヌクレオチド(2)(配列番号:6)、オリゴヌクレオチド(3)(配列番号:7)およびオリゴヌクレオチド(4)(配列番号:8)である。
Figure 0003770333
PCR反応液組成(総容量20μl)
Tris・HCl(pH8.3) 10 mM
KCl 50 mM
MgCl2 1.5mM
dNTP mixture 0.2mM
プライマー 各0.2μM
テンプレートDNA 0.1ng
Taq polymerase 0.5unit
PCR反応条件
二本鎖解離 : 95℃ 1.5分
アニーリング: 64℃ 1.0分
伸長反応 : 70℃ 1.0分
反応サイクル: 30回
その結果を図6に示す。
プライマーとして(1)と(4)を用いた場合、393bpと推定されるバンドが検出され、E2A遺伝子が欠失したAdexd123CANLacZの存在が明らかとなった(図6、レーン1)。
また、(2)と(3)を用いた場合、221bpと推定されるバンドが検出され、Cre遺伝子産物により切り出された環状のE2A遺伝子の存在が裏付けられた(図6、レーン2)。
以上、1および2の結果から、Adex2L3LCANLacZからloxPではさまれた領域(E2A遺伝子を含む)が除去されたAdexd123CANLacZの生成が明らかになった。
【0108】
参考例1
<リコンビナーゼCre遺伝子およびCAGプロモーターを有する組換えアデノウイルスベクターの作製>
(1)リコンビナーゼCre遺伝子発現用カセットコスミドの作製
▲1▼ リコンビナーゼCre遺伝子を含む大腸菌ファージP1DNA(ATCC11303−B23)をテンプレートとし、5’−プライマーとして下記の(配列番号:9)のオリゴヌクレオチドを、3’−プライマーとして下記の(配列番号:10)のオリゴヌクレオチドを、耐熱性ポリメラーゼとしてNEB社製のVentR を用い、以下の条件でPCR反応を行い、生成物をアガロースゲル電気泳動にかけ、約1kbのバンドを切り出し、リコンビナーゼCre遺伝子を含む約1kbのDNA断片を得た。
Figure 0003770333
(下線部分は、制限酵素の認識部位である。)
【0109】
PCR反応条件
緩衝液: 10mMのKCl、20mMのTris−HCl(pH8.8)、10mMの(NH4 2 SO4 、2mMのMgSO4 、0.1%のTriton X−100(NEB社添付の緩衝液を使用)
耐熱性ポリメラーゼ: 2ユニット
dNTP: 400μM
プライマー: 1μM
P1ファージDNA: 1ng
2本鎖解離温度: 95℃ 1.5分間
アニーリング温度: 60℃ 1.5分間
伸長反応温度: 74℃ 2.0分間
反応サイクル: 20回
【0110】
この断片およびpUC19(宝酒造製)をそれぞれ制限酵素PstI(宝酒造製)およびXbaI(宝酒造製)により同時消化したのち、回収し、モル比が約3:1になるように混合し、T4DNAリガーゼ(宝酒造製)を用いてligation反応を行った。さらに、この反応混液を用いて大腸菌JM109株(ATCC53323)を形質転換した。アンピシリン(100μg/ml)を添加したLB寒天プレートから形質転換株を拾い、リコンビナーゼCre遺伝子を含むプラスミドpUCCreを得た。
【0111】
次に、CAGプロモーターを含むカセットコスミドpAdex1CAwtをSwaIで切断したもの1μgと、pUCCreをPstIおよびXbaIにより同時消化し、さらにKlenow酵素(宝酒造製)により両端を平滑化して得た約1kbの断片0.1μgとを混合した。
【0112】
▲2▼ 次に、混合液にエタノールを加えてコスミドを沈澱させた。沈澱物を遠心分離により取得し、10mMトリス−塩酸(pH7.5)に1mMのEDTAを添加した溶液(TE)の5倍希釈液に溶解した。
▲3▼ 得られたコスミドをリガーゼ反応buffer中でATP,T4DNAリガーゼを加え、最終容量7μlで一晩結合させた。ついで滅菌水、SwaI反応bufferを加えて48μlとしてから70℃10分でリガーゼを熱失活させた。
この際、プラズミドと異なり、コスミドでは、環状ではなく直鎖状タンデムに結合した巨大分子が効率よくパッケージされる。
【0113】
▲4▼ 2μlのSwaI(Boehringer製)を加え、25℃で1時間切断した。
SwaI切断を行う意味は、カセットコスミドが発現ユニットをくわえ込むことなく再結合するとSwal認識配列が再生されるため、このステップで発現ユニットの組み込まれていないコスミドを再切断し、コロニーを作らなくするためである。この方法はインサートをもつカセットコスミドだけを選択する強力な方法である。
▲5▼ 常法(Molecular Cloning vol.3 E.34)に従い、カセットコスミドのフェノール抽出、遠心分離、ついでゲル濾過を行った。
▲6▼ 再度、Swal切断を行った。即ち、SwaI反応buffer中、5μlのSwaIを加え、25℃で2時間切断した。その理由は上記の通りである。
【0114】
▲7▼ 得られたコスミドの1μlについてイン・ビトロ・パッケージングを行った。
即ち、ラムダ・イン・ビトロ・パッケージングキットであるギガバックXL(Stratagene製)を1/4スケールで用い、残りは−80℃に凍結した。ギガバックXLは42kb以下のコスミドのパッケージ効率が低いのでインサートが入って大きくなったコスミドをある程度選択することができる。本実験では、10個のコロニーを拾えば大半はインサートを含んでおり、目的の向き(左向き)のクローンを容易に得ることができた。
コスミドの扱い方については、常法(斎藤 泉他、実験医学:7:183-187, 1989)に従って行った。
【0115】
▲8▼ パッケージングされたコスミドを大腸菌DH1(ATCC33849)に感染させた。
即ち、3枚のAp+ (アンピシリン添加)寒天プレートと5mlのAp+ LB(pool)にそれぞれ1/200量、1/20量、1/2量、残り全量を接種し、一晩培養した。
poolのminiprepDNAを抽出・調製し、全酵素切断によりインサートが入ったものの割合を調べた。コロニーは丸ごと寒天ごと取り1.5mlのAp+ LBで、一晩培養し、miniprepDNAを調製した。
▲9▼ 次に、制限酵素切断により、発現ユニットの向きと構造を確認した。
なお、NruIとリガーゼを用いて、発現単位を含むが大部分のアデノウイルスDNAを欠失したプラスミドを作製し、DNAを調製して、cDNAクローン化の最終確認をした。
【0116】
(2)アデノウイルスDNA−末端蛋白複合体(Ad5 dlX DNA−TPC)の調製
▲1▼ アデノウイルスDNAとしては、Ad5 dlX(I. Saito et al., J.Virology, vol.54, 711-719 (1985))を用いた。Ad5 dlXを293細胞(Roux 10本分)に感染させ、培養を行った。
即ち、Ad5−dlXのウイルス液(〜109 PFU/ml)を0.2ml/Roux感染させ、3日後に、はがれた細胞を1500rpm、5分にて遠心分離して集めた。アデノウイルス粒子のほとんどはメディウム中ではなく細胞の核内にいるので感染細胞からウイルスを精製できる利点がある。(以下の操作は非無菌的に行った。)
【0117】
▲2▼ 得られた細胞を10mMのTris−HCl(pH8.0)の20mlに懸濁し、密封型ソニケーターを用い、200W、2分(30秒×4)で細胞を破砕し、ウイルスを細胞内から放出させた。
ウイルスを細胞内から放出させるには5ml以下なら凍結融解5回でもよいが、それ以上の容量ではソニケーターが便利である。ただし、必ず密封型(専用カップのあるもの)を用いる。通常の投げ込み型は、たとえ安全キャビネットの中でも危険性がある。
【0118】
▲3▼ 得られた破砕物を遠心分離(10krpm、10分)により沈澱を除いた後、超遠心機 SW28チューブに15mlの塩化セシウム溶液(比重1.43)を入れ、その上に上清を重層し、クッション遠心(25krpm、1時間、4℃)による濃縮を行った。
▲4▼ 界面直下のウイルス層をSW50.1チューブに移した。界面直下のウイルス層は通常目視でき、ウイルス層とその下層の塩化セシウムを5ml採取した。同時にもう一本に塩化セシウム溶液(比重1.34)を満たした。
これらを、35krpm、4℃で一晩超遠心にかけた。次いで、白いウイルスのバンドを分取し、既に勾配ができたチューブに乗せ替えた。さらに、35krpm、4℃4時間以上超遠心にかけた。
【0119】
▲5▼ 白いウイルスのバンドを分取し、等量の8M塩酸グアニジンと室温で混合し、4M塩酸グアニジン飽和塩化セシウムを加えてVTi65チューブに満たした。4M塩酸グアニジンにより、粒子蛋白は変性を受けて解離し、DNA−TPCが放出された。エチジウムブロミドは後で除く方法が確立されていないため利用できなかった。
【0120】
▲6▼ 上記のチューブを、55krpm、15℃で一晩超遠心にかけ、0.2mlずつ分画し、その1μlずつを1μg/mlのエチジウムブロミド水溶液20μlと混合し、蛍光染色することによりDNAの有無を確認した。DNAを含む2〜3フラクションを集めた。
▲7▼ 500mlのTEに一晩透析(2回)し、−80℃に保存した。こうして得られたAd5dlX DNA−TPCの量をOD260 から通常のDNAと同様に算出した。
【0121】
▲8▼ 得られたAd5d1X DNA−TPCを、第3ステップの組換えアデノウイルス作成のため、充分量のEcoT22Iで2時間切断した後、−80℃に保存した。
【0122】
なお、DNA−TPCは制限酵素による切断、透析、ゲル濾過はできるが電気泳動・フェノール処理・エタノール沈澱はできなかった。濃縮法は塩化セシウム平衡遠心しかないのでなるべく濃厚状態に保った。10Rouxの感染細胞から約300μg程度のDNA−TPCを得ることができた。
▲9▼ 一部を分取し、泳動用BPB bufferを10μl加えた後に、1μlのプロテイナーゼK(10mg/ml)を加えて37℃で10分間反応させて末端蛋白を消化した。フェノール抽出し、上清をアガロースゲル電気泳動で分離し、完全切断を確認した。
EcoT22I切断DNA−TPC中の制限酵素bufferを、遠心ゲル濾過によって除いた後、分注し−80℃に保存した。
【0123】
(3)組換えウイルスの分離と高力価ウイルス液の作製
▲1▼ 10%FCS添加DMEで培養した293細胞の6cm、10cmシャーレ各1枚用意した。
▲2▼ 発現ユニットを組み込んだpAdex1w DNAの8μg(3〜9μgが適当である)とEcoT22Iで切断したAd5dlX DNA−TPCの1μgを混合し、セルフェクト(ファルマシア製)キットを用いて、6cmシャーレ1枚にリン酸カルシウム法でトランスフェクションを行った。6cmシャーレのメディウムの上から混合液を滴下し、培養を続けた。
一晩培養(約16時間)し、午前中に培養液を交換し、夕方、コラーゲンコート96穴3枚(原液・10倍希釈・100倍希釈)に、5%FCS添加DMEを用い、各ウエル当たり0.1mlでまき直した。細胞数が各プレートで大きく違わないように、希釈2枚分には10cmシャーレの293細胞を1/3ずつ混ぜて播いた。
【0124】
▲3▼ 3〜4日後と8〜10日後に、各ウエルに50μlの5%FCS添加DMEを加えた。293細胞がやせてきたら早めに加えた。
ウイルスが増殖し細胞が死滅したウエルが7〜15日の間に現れた。ウエルの細胞が完全に死滅するごとに滅菌パスツールピペットで培養液(死細胞ごと)を滅菌した1.5mlチューブに無菌的に移して、ドライアイスで急凍して−80℃に保存した。
▲4▼ 15〜18日で判定は終了した。比較的遅く細胞が死んだウエルから回収した培養液チューブを約10個選び、凍結融解6回後、5krpm10分遠心して得られた上清を1次ウイルス液(first seed)として−80℃に保存した。
早めにウイルス増殖が起こったウエルは複数のウイルス株の混合感染の可能性が高いからである。
【0125】
▲5▼ 24穴プレートに293細胞を用意し、5%FCS−DME(0.4ml/ウエル)と1次ウイルス液10μlをそれぞれ2ウエルずつ添加した。
▲6▼ 約3日で細胞が完全に死滅したら、1ウエルは1次ウイルス液作製と同様に6回の凍結融解と遠心で上清を得、これを2次ウイルス液(second seed) として−80℃に保存した。2次ウイルス液の力価は107 〜108 PFU/ml程度であった。他の1ウエルの死滅した細胞を5krpmで5分間遠心し、上清を捨てて細胞だけを−80℃に保存した(セルパック)。10種類のウイルス株のセルパックが集まったら以下の方法で感染細胞の全DNAを抽出した。セルパックには、400μlのcell DNA用TNE (50mM Tris-HCl pH7.5, 100mM NaCl, 10mM EDTA)、4μlのproteinaseK (10mg/ml) および4μlの10%SDSを加えた。
【0126】
▲7▼ 50℃で1時間処理した後、フェノール・クロロホルム抽出2回、クロロホルム抽出2回、ついでエタノール沈澱により得られた核酸をRNaseを20μg/ml含む50μlのTEに溶かした。
その15μlを発現ユニットを切断する酵素の中で認識配列にCGを含む酵素であるXhoIで切断し、発現コスミドカセットのXhoI切断と共に、15cm位の長さのアガロースゲルで一晩電気泳動を行い、パターンを比較した。発現ユニット内の切断点からアデノウイルスゲノムの左端までのバンドが正確に出現しているものを選択した。また、説明できないバンドが薄く見えるクローンは、欠失のあるウイルスとの混合の可能性があるので廃棄した。
アデノウイルスDNAは細胞あたり10,000コピーに増殖するので、細胞DNAと一緒に全DNAを抽出し制限酵素切断によりウイルスDNAのバンドをみることができる。Xholなどのように認識配列にCGを含む酵素は、細胞DNAを切断しないので、パターンが見やすい。これ以外の酵素を用いるときは、非感染293細胞DNAをコントロールにおくことが必要であった。(ヒト細胞の反復配列由来のバンドが出現した)。
【0127】
▲8▼ Xhol切断で同定された目的のウイルス株の2次ウイルス液の0.1mlを、コラーゲンコートした150cm2 ボトル(培地は25ml)の293細胞へ感染させた。
3日後に細胞が死滅したら、死細胞ごと25mlの培地を無菌的に密閉型ソニケーター200w最高出力2分(30秒×4回)で破砕してウイルスを遊離させた。
3krpm、4℃で10分間遠心して沈澱を除去し、5ml凍結用チューブに2mlずつ13本に分注し、ドライアイスで急凍して−80℃に保存し、3次ウイルス液を調製した。3次ウイルス液は本発明の組換えアデノウイルスを含む液であり、109 PFU/ml程度の高力価のものであった。
なお、3次ウイルス液5μlを24穴プレートの293細胞1ウエルに感染し、増殖したウイルスDNAの酵素切断パターンを上記の方法で確認した。もし、欠失ウイルスあるいは親ウイルスとの混合物であることが疑われたら、2次ウイルス液の段階で既にわずかに混在していた欠失ウイルスが増殖が早いため見えてきた可能性があるので、全ての3次シードを廃棄して、別の2次ウイルス液から改めてやり直すか、その1次ウイルス液から限界希釈法により、目的のウイルスを純化した。
【0128】
【発明の効果】
本発明により、広範な動物細胞に外来遺伝子を安定な形で導入することのできる組換えDNAウイルスを提供することができる。また、本発明はこの組換えDNAウイルスの簡易な製造方法を提供する。特に、本発明の組換えアデノウイルスは遺伝病の治療に有用である。
【0129】
【配列表】
Figure 0003770333
【0130】
Figure 0003770333
【0131】
Figure 0003770333
【0132】
Figure 0003770333
【0133】
Figure 0003770333
【0134】
Figure 0003770333
【0135】
Figure 0003770333
【0136】
Figure 0003770333
【0137】
Figure 0003770333
【0138】
Figure 0003770333
【0139】
Figure 0003770333
【0140】
Figure 0003770333

【図面の簡単な説明】
【図1】図1は、コスミドpAdex1cwの構造を示す概念図である。
【図2】図2は、コスミドpAdex1CAwtの構造を示す概念図である。
【図3】図3は、プラスミドpA60X99の構造を示す概念図である。
【図4】図4は、プラスミドpA2L60X99の構造を示す概念図である。
【図5】図5は、プラスミドpA2L3L6099の構造を示す概念図である。
【図6】図6は、組換えアデノウイルスAdex2L3LCANLacZおよびAdex1CANCreを293細胞に共感染させた後に回収した細胞からDNAを抽出し、これをテンプレートとしてPCRを行った結果を示す図である。レーン1はプライマー(1)と(4)を用いた場合、レーン2はプライマー(2)と(3)を用いた場合の電気泳動図をそれぞれ示す。

Claims (1)

  1. E2A遺伝子の終止コドンとL3遺伝子の終止コドンの間に、リコンビナーゼ認識配列が挿入されたことを特徴とする動物細胞感染用の組換えアデノウイルス。
JP27633595A 1995-03-15 1995-09-29 組換えdnaウイルスおよびその製造方法 Expired - Fee Related JP3770333B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP27633595A JP3770333B2 (ja) 1995-03-15 1995-09-29 組換えdnaウイルスおよびその製造方法
CA002171368A CA2171368A1 (en) 1995-03-15 1996-03-08 Recombinant dna virus and method for preparation thereof
NZ286154A NZ286154A (en) 1995-03-15 1996-03-11 Recombinant dna virus bearing a foreign gene and a promoter for regulating expression of the gene where the function of e2a gene is deleted
US08/615,048 US5700470A (en) 1995-03-15 1996-03-12 Recombinant adenovirus with removed EZA gene and method of preparation
AU48031/96A AU704608B2 (en) 1995-03-15 1996-03-13 Recombinant DNA virus and method for preparation thereof
EP96301766A EP0732405A1 (en) 1995-03-15 1996-03-14 Recombinant DNA virus and method for preparation thereof
CN96107281A CN1141340A (zh) 1995-03-15 1996-03-14 重组dna病毒和其制备方法
KR1019960006901A KR960034419A (ko) 1995-03-15 1996-03-14 재조합 dna 바이러스 및 이의 제조방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-84891 1995-03-15
JP8489195 1995-03-15
JP27633595A JP3770333B2 (ja) 1995-03-15 1995-09-29 組換えdnaウイルスおよびその製造方法

Publications (2)

Publication Number Publication Date
JPH08308585A JPH08308585A (ja) 1996-11-26
JP3770333B2 true JP3770333B2 (ja) 2006-04-26

Family

ID=26425863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27633595A Expired - Fee Related JP3770333B2 (ja) 1995-03-15 1995-09-29 組換えdnaウイルスおよびその製造方法

Country Status (8)

Country Link
US (1) US5700470A (ja)
EP (1) EP0732405A1 (ja)
JP (1) JP3770333B2 (ja)
KR (1) KR960034419A (ja)
CN (1) CN1141340A (ja)
AU (1) AU704608B2 (ja)
CA (1) CA2171368A1 (ja)
NZ (1) NZ286154A (ja)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705686B1 (fr) 1993-05-28 1995-08-18 Transgene Sa Nouveaux adénovirus défectifs et lignées de complémentation correspondantes.
US6133028A (en) * 1993-05-28 2000-10-17 Transgene S.A. Defective adenoviruses and corresponding complementation lines
US7252989B1 (en) * 1994-04-04 2007-08-07 Board Of Regents, The University Of Texas System Adenovirus supervector system
DE69535178T2 (de) 1994-06-10 2006-12-14 Genvec, Inc. Adenoviren-vektor systeme und zelllinien
JP4216350B2 (ja) * 1994-09-19 2009-01-28 大日本住友製薬株式会社 動物細胞感染用の組換えdnaウイルスベクター
FR2737501B1 (fr) * 1995-07-31 1997-10-24 Transgene Sa Nouveaux virus auxiliaires pour la preparation de vecteurs viraux recombinants
US5801030A (en) * 1995-09-01 1998-09-01 Genvec, Inc. Methods and vectors for site-specific recombination
DE19623203A1 (de) * 1995-11-24 1997-05-28 Max Planck Gesellschaft Virusvektor für den Transfer stabiler Episome
US20030027250A1 (en) * 1995-12-15 2003-02-06 Mitchell Lloyd G. Methods and compositions for use in spliceosome mediated RNA trans-splicing
US20020193580A1 (en) * 1995-12-15 2002-12-19 Mitchell Lloyd G. Methods and compositions for use in spliceosome mediated RNA trans-splicing
US20060088938A1 (en) * 1995-12-15 2006-04-27 Mitchell Lloyd G Methods and compositions for use in spliceosome mediated RNA trans-splicing in plants
FR2763959A1 (fr) * 1997-06-02 1998-12-04 Transgene Sa Nouveaux vecteurs adenoviraux recombinants comprenant une sequence d'epissage
CA2262500C (en) 1997-06-04 2004-03-16 The Research Foundation For Microbial Diseases Of Osaka University Measles virus mutant antigen and gene coding for the same
US6348450B1 (en) 1997-08-13 2002-02-19 The Uab Research Foundation Noninvasive genetic immunization, expression products therefrom and uses thereof
US6706693B1 (en) 1997-08-13 2004-03-16 The Uab Research Foundation Vaccination by topical application of genetic vectors
US20030125278A1 (en) * 1997-08-13 2003-07-03 Tang De-Chu C. Immunization of animals by topical applications of a salmonella-based vector
US6716823B1 (en) 1997-08-13 2004-04-06 The Uab Research Foundation Noninvasive genetic immunization, expression products therefrom, and uses thereof
US20030045492A1 (en) * 1997-08-13 2003-03-06 Tang De-Chu C. Vaccination by topical application of recombinant vectors
US6696423B1 (en) 1997-08-29 2004-02-24 Biogen, Inc. Methods and compositions for therapies using genes encoding secreted proteins such as interferon-beta
CA2313028A1 (en) * 1997-12-01 1999-06-10 Cfy Biomedicals, Inc. Multivalent recombinant antibodies for treating hrv infections
JP2003528029A (ja) * 1998-08-14 2003-09-24 アヴェンティス ファーマシューティカルズ インコーポレイテッド 遺伝子治療用のアデノウイルス配合物
CN1342206A (zh) * 1998-08-28 2002-03-27 杜克大学 在IVa2,100K和/或preterminal protein序列上有缺失的腺病毒
WO2000022106A1 (fr) * 1998-10-12 2000-04-20 Sumitomo Pharmaceuticals Company, Limited Cellules exprimant une recombinase
JP4153607B2 (ja) * 1998-11-18 2008-09-24 大日本住友製薬株式会社 新規な組換えアデノウイルス
US6303362B1 (en) 1998-11-19 2001-10-16 The Board Of Trustees Of The Leland Stanford Junior University Adenoviral vector and methods for making and using the same
US20030035798A1 (en) 2000-08-16 2003-02-20 Fang Fang Humanized antibodies
US20040009936A1 (en) * 1999-05-03 2004-01-15 Tang De-Chu C. Vaccine and drug delivery by topical application of vectors and vector extracts
NZ521199A (en) 2000-03-13 2004-11-26 Engene Inc Mucosal cells producing nutrient-regulated protein expressed by a transgene comprising an expression control element linked with a nucleic acid encoding protein, for treating diabetes
US20040102388A1 (en) * 2000-03-22 2004-05-27 High Katherine A. Modified blood clotting factors and methods of use
AU5882801A (en) * 2000-05-26 2001-12-03 Sumitomo Pharmaceuticals Company, Limited Novel recombinant adenovirus vector with relieved side effects
US20040126774A1 (en) * 2001-01-08 2004-07-01 Mitchell Lioyd G. Correction of factor VIII genetic defects using spliceosome mediated RNA trans splicing
AU2002252370A1 (en) * 2001-03-12 2002-09-24 Irm, Llc. Genomics-driven high speed cellular assays, development thereof, and collections of cellular reporters
US20030170642A1 (en) * 2001-03-12 2003-09-11 Irm, Llc Identification of cellular targets for biologically active molecules
US20030138440A1 (en) 2001-07-19 2003-07-24 Fang Fang Multimeric proteins and methods of making and using same
US6838285B2 (en) 2001-09-18 2005-01-04 Becton Dickinson Site specific recombinase based method for producing adenoviral vectors
AU2002341905A2 (en) * 2001-09-27 2003-04-07 University Of Delaware Composition and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration
WO2003046205A2 (en) * 2001-11-28 2003-06-05 The Burnham Institute Methods for identifying modulators of apoptosis
US7399753B2 (en) * 2002-02-25 2008-07-15 Virxsys Corporation Trans-splicing mediated photodynamic therapy
JP2005518817A (ja) * 2002-03-07 2005-06-30 ユニバーシティー、オブ、デラウェア ヒストン・デアセチラーゼ・インヒビタ、ラムダファージベータ蛋白、またはヒドロキシウレアを含む組成物を使用してオリゴヌクレオチド媒介性核酸配列改変を高める方法、組成物およびキット
JP2005536231A (ja) * 2002-05-08 2005-12-02 イントロン,インコーポレーテッド アデノウイルスに細胞選択的複製をもたらすための、スプライセオソーム媒介型rnaトランススプライシングの使用
ATE471387T1 (de) * 2002-10-23 2010-07-15 Virxsys Corp Screening-verfahren zur identifizierung wirksamer prä-trans-spleissmoleküle
CA2522624C (en) * 2003-04-18 2011-08-30 Izumu Saito Novel cosmid vector
US7026164B2 (en) * 2003-07-03 2006-04-11 Cell Genesys, Inc. Adenovirus packaging cell lines
US8053232B2 (en) * 2004-01-23 2011-11-08 Virxsys Corporation Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated RNA trans splicing
US20060177933A1 (en) * 2004-01-23 2006-08-10 Madaiah Puttaraju Expression of apoA-1 and variants thereof using spliceosome mediated RNA trans-splicing
US7968334B2 (en) * 2004-01-23 2011-06-28 Virxsys Corporation Expression of apoAI and variants thereof using spliceosome mediated RNA trans-splicing
WO2005086967A2 (en) * 2004-03-11 2005-09-22 Shantha West, Inc. Therapeutic use of rm1 antigen
US20060094110A1 (en) * 2004-07-30 2006-05-04 Mcgarrity Gerard J Use of spliceosome mediated RNA trans-splicing for immunotherapy
US20060134658A1 (en) * 2004-08-09 2006-06-22 Garcia-Blanco Mariano A Use of RNA trans-splicing for generation of interfering RNA molecules
DE102004047492B4 (de) * 2004-09-23 2006-07-20 Jost-Werke Gmbh & Co. Kg Verfahren zum Übertragen von elektrischer, pneumatischer oder hydraulischer Energie sowie ein Energieübertragungssystem
US7871795B2 (en) 2004-10-08 2011-01-18 Virxsys Corporation Targeted trans-splicing of highly abundant transcripts for in vivo production of recombinant proteins
WO2006083331A2 (en) * 2004-10-08 2006-08-10 Intronn, Inc Use of rna trans-splicing for antibody gene transfer and antibody polypeptide production
US8124091B2 (en) 2004-12-06 2012-02-28 Kyowa Hakko Kirin Co., Ltd. Human monoclonal antibodies to influenza M2 protein and methods of making and using same
CN101163494A (zh) 2005-02-23 2008-04-16 Uab研究基金会 烷基糖苷增强的接种
CA2524619A1 (en) 2005-11-22 2007-05-22 Ottawa Health Research Institute Novel stem cells, nucleotide sequences and proteins therefrom
TWI461436B (zh) 2005-11-25 2014-11-21 Kyowa Hakko Kirin Co Ltd 人類cd134(ox40)之人類單株抗體及其製造及使用方法
CA2651800A1 (en) * 2006-04-24 2007-11-08 Shantha West, Inc. Agrm2 antigen
AU2007355108B2 (en) 2006-11-27 2013-07-11 Patrys Limited Novel glycosylated peptide target in neoplastic cells
US8211698B2 (en) 2007-08-02 2012-07-03 California Stem Cells, Inc. Methods of derivation of neuronal progenitor cells from embryonic stem cells
US20120040367A1 (en) * 2007-10-15 2012-02-16 The University Of Queensland Construct system and uses therefor
US8999919B2 (en) 2008-10-22 2015-04-07 Trustees Of Dartmouth College Compositions and methods for inhibiting the interaction between CFTR and CAL
US8211487B2 (en) * 2008-11-26 2012-07-03 Srinivasan Damodaran Inhibition of ice crystal growth
US8647623B2 (en) 2009-04-10 2014-02-11 Kyowa Hakko Kirin Co., Ltd Method for treatment of blood tumor using anti-TIM-3 antibody
CN102459342B (zh) 2009-04-27 2015-01-07 协和发酵麒麟株式会社 用于治疗血液肿瘤的抗il-3ra抗体
US9556272B2 (en) 2009-11-11 2017-01-31 The Trustees Of The University Of Pennsylvania Anti-TEM1 antibodies and uses thereof
US9795658B2 (en) 2010-04-20 2017-10-24 Admedus Vaccines Pty Ltd Expression system for modulating an immune response
AU2012279237B2 (en) 2011-07-01 2016-09-29 Ngm Biopharmaceuticals, Inc. Compositions, uses and methods for treatment of metabolic disorders and diseases
WO2013162748A1 (en) 2012-04-27 2013-10-31 The Trustees Of The University Of Pennsylvania Anti-tumor endothelial marker-1 (tem1) antibody variants and uses thereof
WO2014050927A1 (ja) * 2012-09-26 2014-04-03 国立大学法人 東京大学 Va遺伝子破壊アデノウイルスベクターおよびそれを調製するための前駆体ベクター
WO2014070957A1 (en) 2012-10-30 2014-05-08 Esperance Pharmaceuticals, Inc. Antibody/drug conjugates and methods of use
ES2828505T3 (es) 2012-11-28 2021-05-26 Ngm Biopharmaceuticals Inc Composiciones y métodos para el tratamiento de trastornos y enfermedades metabólicos
RU2675514C2 (ru) 2012-12-27 2018-12-19 ЭнДжиЭм БАЙОФАРМАСЬЮТИКАЛЗ, ИНК. Способы модуляции гомеостаза желчных кислот и лечение расстройств и заболеваний, ассоциированных с желчными кислотами
JP2016514091A (ja) 2013-02-08 2016-05-19 ミスフォールディング ダイアグノスティクス, インコーポレイテッド トランスサイレチン抗体およびその使用
EP3013945B1 (en) 2013-06-25 2020-05-27 Temple University Of The Commonwealth System Of Higher Education Cortical bone-derived stem cells
CA2964782A1 (en) 2014-10-23 2016-04-28 Ngm Biopharmaceuticals, Inc. Pharmaceutical compositions comprising peptide variants and methods of use thereof
US9901639B2 (en) 2015-02-13 2018-02-27 Temple University—Of the Commonwealth System of Higher Education Bone marrow origin progenitor cell or endothelial progenitor cell in combination with DNMT1 gene therapy for vascular repair in metabolic disease
US10149887B2 (en) 2015-10-23 2018-12-11 Canbas Co., Ltd. Peptides and peptidomimetics in combination with t cell activating and/or checkpoint inhibiting agents for cancer treatment
EP3377090B1 (en) 2015-11-09 2021-04-07 NGM Biopharmaceuticals, Inc. Methods for treatment of bile acid-related disorders
WO2017096432A1 (en) 2015-12-09 2017-06-15 Admedus Vaccines Pty Ltd Immunomodulating composition for treatment
EP4271482A2 (en) 2020-12-31 2023-11-08 Alamar Biosciences, Inc. Binder molecules with high affinity and/ or specificity and methods of making and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1293460C (en) * 1985-10-07 1991-12-24 Brian Lee Sauer Site-specific recombination of dna in yeast
DE3876327D1 (de) * 1987-07-21 1993-01-14 Du Pont Merck Pharma Verfahren fuer die herstellung von in tierischen zellen stabilen und lebensfaehigen rekombinanten viralen vektoren.
US5585362A (en) * 1989-08-22 1996-12-17 The Regents Of The University Of Michigan Adenovirus vectors for gene therapy
FR2705686B1 (fr) * 1993-05-28 1995-08-18 Transgene Sa Nouveaux adénovirus défectifs et lignées de complémentation correspondantes.
WO1995002697A1 (fr) * 1993-07-13 1995-01-26 Rhone-Poulenc Rorer S.A. Vecteurs adenoviraux defectifs et utilisation en therapie genique
US7252989B1 (en) * 1994-04-04 2007-08-07 Board Of Regents, The University Of Texas System Adenovirus supervector system
DE69535178T2 (de) * 1994-06-10 2006-12-14 Genvec, Inc. Adenoviren-vektor systeme und zelllinien

Also Published As

Publication number Publication date
CN1141340A (zh) 1997-01-29
US5700470A (en) 1997-12-23
KR960034419A (ko) 1996-10-22
EP0732405A1 (en) 1996-09-18
JPH08308585A (ja) 1996-11-26
AU704608B2 (en) 1999-04-29
AU4803196A (en) 1996-09-26
CA2171368A1 (en) 1996-09-16
NZ286154A (en) 1997-11-24

Similar Documents

Publication Publication Date Title
JP3770333B2 (ja) 組換えdnaウイルスおよびその製造方法
JP4216350B2 (ja) 動物細胞感染用の組換えdnaウイルスベクター
Chartier et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli
US7195896B2 (en) Complementary adenoviral vector systems and cell lines
EP0866873B1 (en) Non-group c adenoviral vectors
Aoki et al. Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro
US7476539B2 (en) DNA containing variant FRT sequences
WO1997012986A9 (en) Non-group c adenoviral vectors
JPH10507927A (ja) 改良されたアデノウイルスおよびその使用法
JPH11196880A (ja) 変異型loxP配列とその応用
WO1998053087A1 (en) Method for the production of non-group c adenoviral vectors
US7132290B2 (en) Recombinase-based system for combustion of adenovirus vectors
JP2001505047A (ja) 高キャパシティーアデノウイルスベクターの開発の促進に使用するためのパッケージング細胞系
US8088621B2 (en) Adenoviral fiber exchange shuttle system
WO1999061034A1 (en) Improved vectors
JP4288259B2 (ja) 動物細胞感染用の組換えdnaウイルスベクター
JP4159620B2 (ja) 組換えアデノウイルスの製造方法
JP3713038B2 (ja) 組換えアデノウイルス
JPH104973A (ja) 組換えバキュロウイルス及びその利用
AU3688399A (en) Complementary adenoviral vector systems and cell lines

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees