JP3767998B2 - Mushroom artificial culture medium and mushroom artificial cultivation method using the same - Google Patents

Mushroom artificial culture medium and mushroom artificial cultivation method using the same Download PDF

Info

Publication number
JP3767998B2
JP3767998B2 JP04763598A JP4763598A JP3767998B2 JP 3767998 B2 JP3767998 B2 JP 3767998B2 JP 04763598 A JP04763598 A JP 04763598A JP 4763598 A JP4763598 A JP 4763598A JP 3767998 B2 JP3767998 B2 JP 3767998B2
Authority
JP
Japan
Prior art keywords
culture medium
mushrooms
artificial culture
cas
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04763598A
Other languages
Japanese (ja)
Other versions
JPH11243773A (en
Inventor
秀朗 石田
健吉 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP04763598A priority Critical patent/JP3767998B2/en
Publication of JPH11243773A publication Critical patent/JPH11243773A/en
Application granted granted Critical
Publication of JP3767998B2 publication Critical patent/JP3767998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mushroom Cultivation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、きのこの人工培養基及びそれを用いたきのこの人工栽培方法に関する。
【0002】
【従来の技術とその課題】
従来、きのこの栽培は、くぬぎ、ぶな、及びなら等の原木を利用した、ほだ木栽培がほとんどであり、そのため、気象条件により収穫が左右されることが多いという課題があった。
また、最近では、ほだ木栽培用の原木切り出しのための労働力が不足していることなどによって原木の入手が困難になりつつあるという課題があった。
さらに、ほだ木栽培では栽培期間が長いこと、即ち、種菌の接種からきのこの収穫までに1年半から2年も要することにより、生産コストが相当高くつくのが実情である。
【0003】
近年、えのきたけ、ひらたけ、なめこ、及びしいたけ等は、鋸屑に米糠を配合した培養基を用い、瓶又は箱で栽培を行う菌床人工栽培方法が確立され、一年を通じて、四季に関係なく安定してきのこが収穫できるようになっている。
即ち、従来、農家での副業的性格が強く、小規模生産に頼っていたきのこ栽培が、現在では、大規模専業生産が可能で、かつ、原料が入手しやすい菌床人工栽培方法に移りつつある。
しかしながら、菌床人工栽培方法においても、きのこを大量に連続栽培するには、いまだ収率も低く、かつ、栽培期間がかなり長いため、その生産コストは安価とはいえず、今後これらの生産性の改善が切望されている。
例えば、(Al2O3) X (SiO2)(ただし、式中のx は1以上の数)で示される化合物を前記の人工培養基に含有させたものや、(MgO) W (Al2O3) X (SiO2)y (ただし、式中のw は1〜3の数、x は1〜5の数、y は0〜3の数)で示される化合物を前記の人工培養基に含有させたものがあるが、充分な収率できのこを生産することができていないのが現状である(特開平 3−210126号公報、特開平 3− 58716号公報)。
【0004】
本発明者は、きのこの人工栽培における従来方法の課題を解決するため、鋭意検討を重ねた結果、特定の人工培養基を使用することにより、きのこを高収率で栽培できることを見いだし本発明を完成するに至った。
本発明の目的は高収率できのこを人工栽培する方法を提供することにある。
【0005】
【課題を解決するための手段】
即ち、本発明は、アルミノケイ酸カルシウム又はアルミノケイ酸カルシウムと硫酸塩を含有してなるきのこの人工培養基において、前記アルミノケイ酸カルシウムは、 CaO 含有率が 30 60 重量%、 Al 2 O 3 含有率が 10 60 重量%、及び SiO 2 含有率が5〜 40 重量%であり、ガラス化率が 50 重量%以上であり、かつ、粒度が1 mm 以下であることを特徴とするきのこの人工培養基であり、さらに、前記アルミノケイ酸カルシウムは、ガラス化率が 80 重量%以上であるか、粒度が 100 μm以下であること、前記アルミノケイ酸カルシウムの使用量は、人工培養基 100 重量部中、 0.1 10 重量部であることを特徴とするきのこの人工培養基であり、また、これらの人工培養基を用いてなるきのこの人工栽培方法である。
【0006】
以下、本発明をさらに詳しく説明する。
【0007】
本発明で使用するアルミノケイ酸カルシウム(以下CASという)とは、きのこの収率を向上するために必要なもので、生石灰(CaO) 、消石灰(Ca(OH)2) 、及び石灰石(CaCO3) 等のカルシア原料、アルミナ、ボーキサイト、ダイアスポア、長石、及び粘土等のアルミナ原料、及びケイ石、ケイ砂、石英、及びケイ藻土等のシリカ原料等を所定の割合で配合した後、ロータリーキルン等で焼成したり、電気炉や高周波炉などで溶融することによって製造される。さらに、経済性の面から、冶金や金属精錬などにおいて副生する高炉水砕スラグやポルトランドセメントに前記原料を配合して熱処理することによっても製造可能である。CASの具体的な化合物としては、2CaO・Al2O3・SiO2やCaO・Al2O3・2SiO2 などがあり、溶融物を急冷して得られるガラス質の使用がより好ましい。CAS中の CaO含有率は30〜60重量%、Al2O3含有率は10〜60重量%、及びSiO2含有率5〜40重量%が好ましく、CaO含有率は30〜60重量%、Al2O3含有率は20〜60重量%、及びSiO2含有率5〜30重量%がより好ましい。この範囲外ではきのこの収率が向上しない場合がある。また、前記のカルシア原料、アルミナ原料、及びシリカ原料中には、MgO 、Fe2O3 、TiO2、K2O 、及びNa2O等の不純物が含まれているが、これらの微量成分はCASから溶出し、きのこ中に浸透することにより、ミネラル成分を多く含有したきのこを栽培することができることから、本発明のCASの領域内であれば、合計で10重量%未満存在しても使用可能である。CASのガラス化率は高ければ、高いほどきのこの収率が向上することから好ましい。具体的には、50重量%以上が好ましく、80重量%以上がより好ましく、90重量%以上が最も好ましい。なお、ガラス化率の測定方法は、CASを 1,000℃2時間加熱後、5℃/分の冷却速度で徐冷し、粉末X線回折法により結晶鉱物のメインピーク面積S0を求め、CASの結晶のメインピーク面積Sから、x(重量%)= 100×(1−S/S0)の式を用いてガラス化率xを求めた。CASの粒度(最大粒子径)は、少量の使用量できのこの収率が向上することから、小さければ小さいほど好ましい。具体的には、1mm以下が好ましく、100μm以下がより好ましく、10μm以下が最も好ましい。CASの使用量は、人工培養基 100重量部中、0.01〜20重量部が好ましく、0.1 〜10重量部がより好ましい。この範囲外ではきのこの収率の向上がみられない場合がある。
【0008】
本発明において、CASに硫酸塩を併用することにより、きのこの収率がさらに向上する。
硫酸塩としては、無水セッコウ、半水セッコウ、二水セッコウ、無水硫酸アルミニウム、6、10、16、及び18水塩等の含水硫酸アルミニウム、無水硫酸ナトリウム、7、10水塩などの含水硫酸ナトリウム、無水硫酸マグネシウム、1、6、及び7水塩等の含水硫酸マグネシウム、無水硫酸リチウム、並びに、硫酸リチウム1水塩等が好ましく、特に、無水セッコウが好ましい。
硫酸塩の粒度は、少量の添加量できのこの収率が向上することから小さければ小さいほど好ましい。具体的には、1mm以下が好ましく、 100μm以下がより好ましく、10μm以下が最も好ましい。
硫酸塩の使用量は、人工培養基 100重量部中、0.01〜20重量部が好ましく、0.1 〜10重量部がより好ましい。
【0009】
本発明で使用する人工培養基としては、鋸屑、もみ殻、コーンコブ、バガス、パルプ廃材、ビート粕、及びデンプン粕等の基材に、米ぬか、もろこし粉砕物、及びフスマ等の栄養源の一種又は二種以上を混合したものを使用することが可能である。
きのこの種類、栽培環境、及び条件等に応じて、基材や栄養源の種類、両者の配合割合は任意に変化するもので特に限定されるものではないが、鋸屑 100重量部に対して、栄養源の少なくとも一種を10〜150 重量部混合したものが、きのこを高収率得る面からより好ましい。
【0010】
本発明により、きのこを栽培するにあたっては、各々の環境や状況などに応じて任意に変えることができるので特に限定されるものではないが、通常、CAS又はCASと硫酸塩を混合した人工培養基に水を加えて、人工培養基の水分含有量を50〜70重量%に調整し、必要に応じて殺菌・冷却後、菌を接種し、各々のきのこについて通常採用されている培養工程や生育条件に従って行うとよい。
例えば、ほんしめじ栽培の場合は、菌を接種した培養基を22〜26℃で約30日間培養後、25〜30℃で40〜50日間熟成し、菌かき後に14〜17℃、湿度95〜100 %で20〜25日間育成を行って、ほんしめじを栽培し収穫する。
また、しいたけ栽培の場合は、菌を接種した培養基を20〜25℃で約30日間培養後、26〜30℃で40〜50日間熟成し、その後13〜17℃で1〜3日間低温処理し、17〜20℃、湿度90〜95%で約10日間発生を行ってきのこを収穫し、この際に第1回目の収穫後に再び育生を行い、第2回目の収穫を行うこともできる。
【0011】
本発明では、前記の基材や栄養源の他にも、必要に応じて人工培養基において使用されている、例えば、炭酸カルシウム、卵殻粉末、貝殻粉末、及び消石灰等の成分を含むことができる。
本発明で栽培されるきのこは人工栽培できるきのこであり、例えば、えのきたけ、ひらたけ、なめこ、ぶなしめじ、まいたけ、きくらげ、さるのこしかけ、及びしいたけ等が挙げられる。
【0012】
【実施例】
以下、本発明の実施例を示し、本発明をさらに説明するが、本発明はこれらに限定されるものではない。
【0013】
実施例1
カルシウム原料、アルミナ原料、及びシリカ原料を所定の割合で混合し、高周波炉で溶融後、急冷し、表1に示すCASを生成し、粉砕して 100μm以下として使用した。
広葉樹鋸屑250g、針葉樹鋸屑250g、米糠500g、及び水 140mlをビニール袋に入れ充分に混合し含水率65%の人工培養基を調製した。
調製した人工培養基 100重量部中、表1に示すCASを3重量部添加混合した人工培養基250gをプラスチック製 850mlの広口瓶に圧詰めした。
広口瓶の中央に直径約1cmの穴を開け、打栓後、 120℃で90分間殺菌した。冷却後、ひらたけの鋸屑種菌を植菌し、暗所、温度25℃、湿度55%の条件下で30日間培養し(菌まわし行程)、さらに、30日間培養を続けて熟成させた。
次に、栓を外して培養基の上部から約1cm菌かきをして菌糸層を除いた後、水道水20mlを添加して充分に吸水させた。4時間放置後、上部に残った水を取り除いて、15℃、湿度95%、照度20ルックスの条件下で、4日間培養して子実体原基を形成し、さらに照度を200 ルックスに上げて、10日間培養を続け、CASの組成が子実体収量におよぼす影響について検討した。結果を表1に併記する。
【0014】
<使用材料>
カルシア原料:炭酸カルシウム、試薬
アルミナ原料:酸化アルミニウム、試薬
シリカ原料:二酸化ケイ素、試薬
広葉樹鋸屑:ぶな材の鋸屑
針葉樹鋸屑:すぎ材の鋸屑
米糠 :市販品
【0015】
<測定方法>
コントロール対比:CAS添加の子実体収量(g)/CAS無添加の子実体収量(g)×100 (%)
【0016】
【表1】

Figure 0003767998
【0017】
表1から明らかなように、人工培養基に、CASを添加することにより、ひらたけの収率が増大した。
【0018】
実施例2
ガラス化率の子実体収量におよぼす影響について検討するため、実施例1のCASヲの化学組成のCASのガラス化率を表2に示すように変化したこと以外は実施例1と同様に行った。結果を表2に併記する。
【0019】
【表2】
Figure 0003767998
【0020】
表2から明らかなように、人工培養基に、CASのガラス化率を上げることにより、ひらたけの収率が増大した。
【0021】
実施例3
表3に示す粒度のCASヲを用いたこと以外は実施例1と同様に行った。結果を表3に併記する。
【0022】
【表3】
Figure 0003767998
【0023】
表3から明らかなように、CASの最大粒子径が小さくなればなるほど、ひらたけの収率が向上する。
【0024】
実施例4
人工培養基 100重量部中、表4に示す量のCASヲを用いたこと以外は実施例1と同様に行った。結果を表4に併記する。
【0025】
【表4】
Figure 0003767998
【0026】
表4から明らかなように、人工培養基 100重量部中、CASの使用量が5重量部の場合、最もひらたけの収率が向上した。
【0027】
実施例5
人工培養基 100重量部中、CASヲ2重量部と、表5に示す硫酸塩を用いたこと以外は実施例1と同様に行った。結果を表5に併記する。
【0028】
<使用材料>
硫酸塩A :無水硫酸アルミニウム、試薬一級
硫酸塩B :硫酸アルミニウム18水塩、試薬一級
硫酸塩C :無水硫酸ナトリウム、試薬一級
硫酸塩D :無水硫酸マグネシウム、試薬一級
硫酸塩E :二水セッコウ、試薬一級
硫酸塩F :無水セッコウ、試薬一級
【0029】
<測定方法>
コントロール対比:CASと硫酸塩添加の子実体収量(g)/CASと硫酸塩無添加の子実体収量(g)×100 (%)
【0030】
【表5】
Figure 0003767998
【0031】
表5から明らかなように、人工培養基に、CASと硫酸塩を併用することにより、ひらたけの収率が増大した。
【0032】
実施例6
広葉樹鋸屑350g、針葉樹鋸屑350g、米糠300g、及び水 135mlをビニール袋に入れ充分に混合し、含水率63%の人工培養基を調製した。
調製した人工培養基250gに、表6に示すCAS2重量部と硫酸塩とを添加混合し、プラスチック製 850ml広口瓶に圧詰めした。
各々の中央に直径約1cm程度の穴を開け、打栓後、120 ℃で90分間殺菌した。冷却後、ほんしめじの種菌を植菌し、温度23℃にて30日間培養後、さらに、26℃にて45日間熟成を行った。
次に、菌かきをした後、温度15℃、湿度95%の条件下で生育を行い、21日後にほんしめじを収穫した。結果を表6に示す。
【0033】
【表6】
Figure 0003767998
【0034】
表6から明らかなように、人工培養基に、CAS又はCASと硫酸塩を使用することにより、ほんしめじの収率が増大した。
【0035】
実施例7
広葉樹鋸屑300g、針葉樹鋸屑300g、米糠 40g、フスマ 60g、もろこし粉砕物 30g、及び水 400mlをビニール袋に入れ充分に混合し、含水率65%の人工培養基を調製した。
カルシア原料、アルミナ原料、及びシリカ原料として各々表7に示す生石灰、ボーキサイト、及びケイ石を用い、各原料をカルシア原料/アルミナ原料/シリカ原料重量比45/45/10で混合し、最大電力負荷5,000kVAの直接通電式溶融炉で溶融し、溶融体を水中に落下させて急冷し、CASを製造し、X線回折と化学分析を行った。X線回折結果からは結晶のピークが認められず、ガラス化率 100%であった。化学分析結果は表7に併記する。
調製した人工培養基 250g と、製造したCASと硫酸塩Fを混合し、プラスチック製 850ml広口瓶に圧詰めした。
中央に直径約1cm程度の穴を開け、打栓後、120 ℃で90分間殺菌した。冷却後、しいたけの種菌を植菌し、温度23℃にて30日間培養後、さらに、30℃にて50日間熟成を行った。
その後、15℃で2日間低温処理した後、温度18℃、湿度95%にて育成を行った。10日間で収穫を行った後、再び生育を行い、2回目の収穫を行い、合計量をしいたけの子実体収量とした。結果を表8に示す。
【0036】
【表7】
Figure 0003767998
【0037】
【表8】
Figure 0003767998
【0038】
表8から明らかなように、人工培養基に、CAS又はCASと硫酸塩を使用することにより、しいたけの収率が増大した。
【0039】
【発明の効果】
以上、詳細に説明したとおり、本発明による栽培方法によれば、きのこを高収率で得ることが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an artificial culture medium for mushrooms and an artificial cultivation method for mushrooms using the same.
[0002]
[Prior art and its problems]
Conventionally, the cultivation of mushrooms has mostly been cultivating cypress trees using raw wood such as kunugi, beech, and nara. Therefore, there has been a problem that the harvest is often influenced by weather conditions.
In addition, recently, there has been a problem that it is becoming difficult to obtain raw wood due to a lack of labor for cutting out raw wood for cultivating wood.
Furthermore, in the case of cultivating wood, it takes a long time, that is, it takes about one and a half to two years from the inoculation of the inoculum to the harvest of the mushrooms.
[0003]
In recent years, a method for artificial cultivation of fungus beds, cultivated in bottles or boxes, has been established for enokitake, hiratake, nameko, shiitake, etc. using a culture medium in which rice bran is mixed with sawdust, and is stable throughout the year regardless of the season. The mushrooms can be harvested.
In other words, mushroom cultivation, which has traditionally had a strong side-business character at farmers and relied on small-scale production, is now shifting to a fungus bed artificial cultivation method that allows large-scale specialized production and is easy to obtain raw materials. is there.
However, even in the method for artificial cultivation of fungus beds, the yield is still low and the cultivation period is quite long for continuous cultivation of large amounts of mushrooms. Improvements are eagerly desired.
For example, a compound represented by (Al 2 O 3 ) X (SiO 2 ) (where x is a number of 1 or more) is added to the artificial culture medium, or (MgO) W (Al 2 O 3 ) X (SiO 2 ) y (wherein w is a number from 1 to 3, x is a number from 1 to 5, y is a number from 0 to 3) is contained in the artificial culture medium. However, the present situation is that mushrooms cannot be produced with a sufficient yield (Japanese Patent Laid-Open Nos. 3-210126 and 3-58716).
[0004]
The present inventor has completed the present invention by finding that mushrooms can be cultivated in a high yield by using a specific artificial culture medium as a result of intensive studies to solve the problems of the conventional method in artificial cultivation of mushrooms. It came to do.
An object of the present invention is to provide a method for artificially cultivating mushrooms with a high yield.
[0005]
[Means for Solving the Problems]
That is, the present invention provides a mushroom artificial culture medium containing calcium aluminosilicate or calcium aluminosilicate and sulfate , the calcium aluminosilicate has a CaO content of 30 to 60 % by weight and an Al 2 O 3 content of 10-60 wt%, and an SiO 2 content of from 5 to 40 wt%, the vitrification rate is 50 wt% or more, and an artificial culture of mushrooms, wherein the particle size is 1 mm or less Further, the calcium aluminosilicate has a vitrification rate of 80 % by weight or more or a particle size of 100 μm or less. The amount of the calcium aluminosilicate used is 0.1 to 10 in 100 parts by weight of the artificial culture medium. It is an artificial culture medium for mushrooms characterized by being part by weight, and is an artificial cultivation method for mushrooms using these artificial culture media.
[0006]
Hereinafter, the present invention will be described in more detail.
[0007]
The calcium aluminosilicate (hereinafter referred to as CAS) used in the present invention is necessary for improving the yield of mushrooms, and quick lime (CaO), slaked lime (Ca (OH) 2 ), and limestone (CaCO 3 ). After mixing a predetermined amount of calcia raw materials such as alumina raw materials such as alumina, bauxite, diaspore, feldspar, and clay, and silica raw materials such as quartzite, silica sand, quartz, diatomaceous earth, etc., with a rotary kiln, etc. Manufactured by firing or melting in an electric furnace or high-frequency furnace. Furthermore, from the economical aspect, it can also be manufactured by blending the raw materials with blast furnace granulated slag or Portland cement produced as a by-product in metallurgy, metal refining and the like and heat-treating them. Specific examples of CAS include 2CaO · Al 2 O 3 · SiO 2 and CaO · Al 2 O 3 · 2SiO 2, and the use of vitreous obtained by quenching the melt is more preferable. CaO content in the CAS 30 to 60 wt%, Al 2 O 3 and the content 10 to 60 wt%, and SiO 2 content is preferably from 5 to 40 wt%, the CaO content is 30 to 60 wt%, al 2 O 3 content is 20 to 60 wt%, and SiO 2 content is more preferably 5 to 30 wt%. Outside this range, the yield of mushrooms may not improve. The calcia raw material, alumina raw material, and silica raw material contain impurities such as MgO, Fe 2 O 3 , TiO 2 , K 2 O, and Na 2 O, but these trace components are Since it is possible to grow mushrooms containing a large amount of mineral components by leaching from CAS and penetrating into mushrooms, it is used even if it is less than 10% by weight in total within the CAS region of the present invention. Is possible. The higher the vitrification rate of CAS, the better the yield of mushrooms. Specifically, it is preferably 50% by weight or more, more preferably 80% by weight or more, and most preferably 90% by weight or more. The vitrification ratio was measured by heating CAS at 1,000 ° C. for 2 hours, slowly cooling it at a cooling rate of 5 ° C./min, and determining the main peak area S 0 of the crystalline mineral by powder X-ray diffraction method. From the main peak area S of the crystal, the vitrification rate x was determined using the formula x (wt%) = 100 × (1−S / S 0 ). The CAS particle size (maximum particle size) is preferably as small as possible because the yield can be improved by using a small amount. Specifically, it is preferably 1 mm or less, more preferably 100 μm or less, and most preferably 10 μm or less. The amount of CAS used is preferably 0.01 to 20 parts by weight and more preferably 0.1 to 10 parts by weight in 100 parts by weight of the artificial culture medium. Outside this range, there may be no improvement in the yield of mushrooms.
[0008]
In the present invention, the mushroom yield is further improved by using a sulfate in combination with CAS.
Sulfates include anhydrous gypsum, half-hydrated gypsum, dihydrated gypsum, anhydrous aluminum sulfate, hydrous aluminum sulfate such as 6, 10, 16, and 18 hydrates, anhydrous sodium sulfate, hydrous sodium sulfate such as 7, 10 hydrates, etc. Hydrous magnesium sulfate such as anhydrous magnesium sulfate, 1, 6, and 7 hydrate, anhydrous lithium sulfate, lithium sulfate monohydrate, and the like are preferable, and anhydrous gypsum is particularly preferable.
The particle size of the sulfate is preferably as small as possible because this yield can be improved by adding a small amount. Specifically, it is preferably 1 mm or less, more preferably 100 μm or less, and most preferably 10 μm or less.
The amount of sulfate used is preferably 0.01 to 20 parts by weight and more preferably 0.1 to 10 parts by weight in 100 parts by weight of the artificial culture medium.
[0009]
Examples of the artificial culture medium used in the present invention include sawdust, rice husk, corn cob, bagasse, pulp waste, beet lees, starch lees, and other nutrient sources such as rice bran, corn grind, and bran. It is possible to use a mixture of seeds or more.
Depending on the type of mushrooms, cultivation environment, conditions, etc., the type of base material and nutrient source, the blending ratio of both can be arbitrarily changed and is not particularly limited, but for 100 parts by weight of sawdust, What mixed 10-150 weight part of at least 1 type of nutrient is more preferable from the surface which obtains a high yield of a mushroom.
[0010]
In cultivating mushrooms according to the present invention, it is not particularly limited because it can be arbitrarily changed according to each environment or situation, but usually, CAS or an artificial culture medium in which CAS and sulfate are mixed Add water, adjust the moisture content of the artificial culture medium to 50-70% by weight, and after sterilization and cooling as necessary, inoculate the fungus and follow the culture process and growth conditions normally used for each mushroom It is good to do.
For example, in the case of cultivated shimeji mushrooms, the culture medium inoculated with the fungus is cultured at 22-26 ° C. for about 30 days, then matured at 25-30 ° C. for 40-50 days, and after wiping the fungus, 14-17 ° C., humidity 95-100 Growing for 20 to 25 days in%, cultivate and harvest honshimeji.
In the case of Shiitake cultivation, the culture medium inoculated with the fungus is cultured at 20 to 25 ° C. for about 30 days, then aged at 26 to 30 ° C. for 40 to 50 days, and then subjected to low temperature treatment at 13 to 17 ° C. for 1 to 3 days. It is possible to harvest mushrooms that have been generated for about 10 days at 17 to 20 ° C. and humidity of 90 to 95%, and at this time, grow again after the first harvest and then perform the second harvest.
[0011]
In the present invention, components such as calcium carbonate, eggshell powder, shellfish powder, and slaked lime, which are used in an artificial culture medium as necessary, can be included in addition to the base material and nutrient source.
The mushrooms cultivated in the present invention are mushrooms that can be artificially cultivated, and examples thereof include enokitake mushrooms, octopus mushrooms, nameko mushrooms, bean mushrooms, maitake mushrooms, jellyfish mushrooms, and mushrooms.
[0012]
【Example】
EXAMPLES Hereinafter, although the Example of this invention is shown and this invention is demonstrated further, this invention is not limited to these.
[0013]
Example 1
A calcium raw material, an alumina raw material, and a silica raw material were mixed at a predetermined ratio, melted in a high frequency furnace, and then rapidly cooled to produce CAS shown in Table 1, which was pulverized and used at 100 μm or less.
250 g of hardwood sawdust, 250 g of softwood sawdust, 500 g of rice bran, and 140 ml of water were placed in a plastic bag and mixed well to prepare an artificial culture medium having a water content of 65%.
In 100 parts by weight of the prepared artificial culture medium, 250 g of the artificial culture medium in which 3 parts by weight of CAS shown in Table 1 was added and mixed was packed into a plastic 850 ml wide-mouth bottle.
A hole with a diameter of about 1 cm was made in the center of the wide-mouthed bottle, sterilized at 120 ° C for 90 minutes after stoppering. After cooling, inoculum of scallop sawdust was inoculated and cultured for 30 days in a dark place, at a temperature of 25 ° C. and a humidity of 55% (fungus turning process), and further cultured for 30 days for aging.
Next, the stopper was removed, and about 1 cm of bacteria was scraped from the top of the culture medium to remove the mycelium layer, and then 20 ml of tap water was added to sufficiently absorb water. After standing for 4 hours, remove the water remaining in the upper part, and incubate for 4 days under conditions of 15 ° C, 95% humidity and 20 lux. The culture was continued for 10 days, and the influence of CAS composition on fruit body yield was examined. The results are also shown in Table 1.
[0014]
<Materials used>
Calcia raw material: Calcium carbonate, reagent alumina raw material: aluminum oxide, reagent silica raw material: silicon dioxide, reagent hardwood sawdust: beech sawdust coniferous sawdust: sawwood sawdust rice cake: commercial product
<Measurement method>
Control contrast: fruit body yield (g) with CAS added / yield without CAS (g) × 100 (%)
[0016]
[Table 1]
Figure 0003767998
[0017]
As can be seen from Table 1, the addition of CAS to the artificial culture medium increased the yield of octopus.
[0018]
Example 2
In order to examine the effect of vitrification rate on the fruit body yield, the same procedure as in Example 1 was performed except that the CAS vitrification rate of the chemical composition of CAS in Example 1 was changed as shown in Table 2. . The results are also shown in Table 2.
[0019]
[Table 2]
Figure 0003767998
[0020]
As is apparent from Table 2, the yield of octopus was increased by increasing the vitrification rate of CAS in the artificial culture medium.
[0021]
Example 3
The same procedure as in Example 1 was performed except that CAS having the particle size shown in Table 3 was used. The results are also shown in Table 3.
[0022]
[Table 3]
Figure 0003767998
[0023]
As is clear from Table 3, the lower the maximum particle size of CAS, the higher the yield of octopus.
[0024]
Example 4
The same procedure as in Example 1 was conducted except that the amount of CAS shown in Table 4 was used in 100 parts by weight of the artificial culture medium. The results are also shown in Table 4.
[0025]
[Table 4]
Figure 0003767998
[0026]
As can be seen from Table 4, the yield of octopus was most improved when the amount of CAS used was 5 parts by weight in 100 parts by weight of the artificial culture medium.
[0027]
Example 5
It was carried out in the same manner as in Example 1 except that 2 parts by weight of CAS in 100 parts by weight of the artificial culture medium and sulfates shown in Table 5 were used. The results are also shown in Table 5.
[0028]
<Materials used>
Sulfate A: anhydrous aluminum sulfate, reagent primary sulfate B: aluminum sulfate 18 hydrate, reagent primary sulfate C: anhydrous sodium sulfate, reagent primary sulfate D: anhydrous magnesium sulfate, reagent primary sulfate E: dihydrate gypsum, Reagent primary sulfate F: anhydrous gypsum, reagent first grade
<Measurement method>
Control contrast: fruit body yield (g) with CAS and sulfate added / yield with CAS and sulfate not added (g) × 100 (%)
[0030]
[Table 5]
Figure 0003767998
[0031]
As can be seen from Table 5, the use of CAS and sulfate in an artificial culture medium increased the yield of octopus.
[0032]
Example 6
350 g of hardwood sawdust, 350 g of softwood sawdust, 300 g of rice bran, and 135 ml of water were placed in a plastic bag and mixed well to prepare an artificial culture medium having a water content of 63%.
To 250 g of the prepared artificial culture medium, 2 parts by weight of CAS shown in Table 6 and sulfate were added and mixed, and packed into a plastic 850 ml wide-mouth bottle.
A hole about 1 cm in diameter was made in the center of each, and after sterilization, sterilized at 120 ° C. for 90 minutes. After cooling, an inoculum of shimeji moji was inoculated, cultured at a temperature of 23 ° C. for 30 days, and further aged at 26 ° C. for 45 days.
Next, after mushroom fungi, the plants were grown under conditions of a temperature of 15 ° C. and a humidity of 95%. The results are shown in Table 6.
[0033]
[Table 6]
Figure 0003767998
[0034]
As is apparent from Table 6, the yield of shimeji mushrooms was increased by using CAS or CAS and sulfate as the artificial culture medium.
[0035]
Example 7
300 g of hardwood sawdust, 300 g of coniferous sawdust, 40 g of rice bran, 60 g of bran, 30 g of crushed mash, and 400 ml of water were mixed well in a plastic bag to prepare an artificial culture medium having a water content of 65%.
Using calcia raw material, alumina raw material, and silica raw material shown in Table 7 respectively, quick lime, bauxite, and silica stone, mixing each raw material at a calcia raw material / alumina raw material / silica raw material weight ratio of 45/45/10, maximum power load The melt was melted in a 5,000 kVA direct current melting furnace, the melt was dropped into water and rapidly cooled to produce CAS, and X-ray diffraction and chemical analysis were performed. From the X-ray diffraction results, no crystal peak was observed, and the vitrification rate was 100%. The chemical analysis results are also shown in Table 7.
The prepared artificial culture medium (250 g), the produced CAS and sulfate F were mixed and packed into a plastic 850 ml wide-mouth bottle.
A hole with a diameter of about 1 cm was made in the center, and after sterilization, it was sterilized at 120 ° C. for 90 minutes. After cooling, inoculum of shiitake mushrooms was inoculated, cultured at a temperature of 23 ° C. for 30 days, and further aged at 30 ° C. for 50 days.
Then, after low-temperature treatment at 15 ° C. for 2 days, it was grown at a temperature of 18 ° C. and a humidity of 95%. After harvesting for 10 days, the plant was grown again and harvested for the second time. The results are shown in Table 8.
[0036]
[Table 7]
Figure 0003767998
[0037]
[Table 8]
Figure 0003767998
[0038]
As is apparent from Table 8, the yield of shiitake was increased by using CAS or CAS and sulfate as the artificial culture medium.
[0039]
【The invention's effect】
As described above in detail, according to the cultivation method of the present invention, mushrooms can be obtained in high yield.

Claims (6)

アルミノケイ酸カルシウムを含有してなるきのこの人工培養基において、前記アルミノケイ酸カルシウムは、 CaO 含有率が 30 60 重量%、 Al 2 O 3 含有率が 10 60 重量%、及び SiO 2 含有率が5〜 40 重量%であり、ガラス化率が 50 重量%以上であり、かつ、粒度が1 mm 以下であることを特徴とするきのこの人工培養基。 In the artificial culture medium of mushrooms containing calcium aluminosilicate, the calcium aluminosilicate has a CaO content of 30 to 60 % by weight, an Al 2 O 3 content of 10 to 60 % by weight, and an SiO 2 content of 5 a ~ 40 wt%, the vitrification rate is 50 wt% or more, and an artificial culture of mushrooms, wherein the particle size is less than 1 mm. 前記アルミノケイ酸カルシウムは、ガラス化率がThe calcium aluminosilicate has a vitrification rate. 8080 重量%以上であることを特徴とする請求項1に記載のきのこの人工培養基。The artificial culture medium for mushrooms according to claim 1, which is not less than wt%. 前記アルミノケイ酸カルシウムは、粒度がThe calcium aluminosilicate has a particle size 100100 μm以下であることを特徴とする請求項1又は2に記載のきのこの人工培養基。The artificial culture medium for mushrooms according to claim 1 or 2, wherein the artificial culture medium is m or less. 前記アルミノケイ酸カルシウムの使用量は、人工培養基The amount of calcium aluminosilicate used is an artificial culture medium. 100100 重量部中、In parts by weight, 0.10.1 ~ 10Ten 重量部であることを特徴とする請求項1〜3のいずれか一項に記載のきのこの人工培養基。The artificial culture medium for mushrooms according to any one of claims 1 to 3, wherein the artificial culture medium is part by weight. さらに、硫酸塩を含有してなることを特徴とする請求項1〜4のいずれか一項に記載のきのこの人工培養基。 Further, artificial culture of mushrooms according to claim 1, characterized by containing a sulfate. 請求項1〜5のいずれか一項に記載の人工培養基を用いてなることを特徴とするきのこの人工栽培方法。An artificial cultivation method for mushrooms, characterized by using the artificial culture medium according to any one of claims 1 to 5 .
JP04763598A 1998-02-27 1998-02-27 Mushroom artificial culture medium and mushroom artificial cultivation method using the same Expired - Lifetime JP3767998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04763598A JP3767998B2 (en) 1998-02-27 1998-02-27 Mushroom artificial culture medium and mushroom artificial cultivation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04763598A JP3767998B2 (en) 1998-02-27 1998-02-27 Mushroom artificial culture medium and mushroom artificial cultivation method using the same

Publications (2)

Publication Number Publication Date
JPH11243773A JPH11243773A (en) 1999-09-14
JP3767998B2 true JP3767998B2 (en) 2006-04-19

Family

ID=12780702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04763598A Expired - Lifetime JP3767998B2 (en) 1998-02-27 1998-02-27 Mushroom artificial culture medium and mushroom artificial cultivation method using the same

Country Status (1)

Country Link
JP (1) JP3767998B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578035B2 (en) * 2001-09-04 2010-11-10 電気化学工業株式会社 Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4695907B2 (en) * 2005-03-30 2011-06-08 電気化学工業株式会社 Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP5527803B2 (en) * 2009-11-30 2014-06-25 電気化学工業株式会社 Mushroom cultivation additive, mushroom artificial culture medium, and mushroom artificial cultivation method using the same
JP7055025B2 (en) * 2018-01-19 2022-04-15 デンカ株式会社 Additives for mushroom cultivation, artificial culture groups for mushroom cultivation, medium for mushroom cultivation and artificial cultivation method for mushrooms

Also Published As

Publication number Publication date
JPH11243773A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP7055025B2 (en) Additives for mushroom cultivation, artificial culture groups for mushroom cultivation, medium for mushroom cultivation and artificial cultivation method for mushrooms
JP5527803B2 (en) Mushroom cultivation additive, mushroom artificial culture medium, and mushroom artificial cultivation method using the same
JP3767998B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP3534295B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4695907B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP3652877B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4520568B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP3854093B2 (en) Hatake shimeji fruit body occurrence rate improver
JP4578035B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4520587B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4520616B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4726171B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4578036B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP2766702B2 (en) Culture medium for mushroom cultivation
JP5294270B2 (en) Mushroom cultivation additive, mushroom artificial culture medium, and mushroom artificial cultivation method using the same
JP4570297B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4726170B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4570295B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4570296B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4578037B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP7263612B1 (en) Artificial culture medium for mushroom cultivation, medium for mushroom cultivation, artificial mushroom cultivation method
JP3485775B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP3205083B2 (en) Artificial cultivation method of Hatake shimeji
JP5984255B2 (en) Mushroom cultivation additive, mushroom artificial culture medium, and mushroom artificial cultivation method using the same
JP3512920B2 (en) Artificial cultivation method of Hatake Shimeji

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term