JP3747818B2 - 有機性廃棄物の処理方法 - Google Patents

有機性廃棄物の処理方法 Download PDF

Info

Publication number
JP3747818B2
JP3747818B2 JP2001229329A JP2001229329A JP3747818B2 JP 3747818 B2 JP3747818 B2 JP 3747818B2 JP 2001229329 A JP2001229329 A JP 2001229329A JP 2001229329 A JP2001229329 A JP 2001229329A JP 3747818 B2 JP3747818 B2 JP 3747818B2
Authority
JP
Japan
Prior art keywords
slurry
liquid
organic waste
treatment
slurrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001229329A
Other languages
English (en)
Other versions
JP2003039050A (ja
Inventor
隆正 大木
恒夫 岩水
昇 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2001229329A priority Critical patent/JP3747818B2/ja
Publication of JP2003039050A publication Critical patent/JP2003039050A/ja
Application granted granted Critical
Publication of JP3747818B2 publication Critical patent/JP3747818B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、厨芥を含む生活系、事業系ごみ等の固形有機性廃棄物を嫌気性消化処理する方法に係わり、さらには、し尿、下水汚泥、浄化槽汚泥等の液状有機性廃棄物を含めた有機性廃棄物の処理方法に係わるものである。さらに詳しくは、有機性廃棄物中に含有されるプラスチックやし尿し渣等の嫌気性消化不適物を酸化処理により部分分解して可溶化し、この可溶化物も嫌気性消化処理することによって、有機性廃棄物から効率よくメタンガスを回収する方法に関する。
【0002】
【従来の技術】
従来、し尿や有機性汚泥の処理方法として湿式酸化法が知られている。この湿式酸化法とは、ジンマーマン法と呼ばれる液相酸化法で特定温度で水が液相を保持する圧力の下に水中の有機物を空気等の酸素含有ガスの酸素を利用して酸化分解する方法である。かような湿式酸化法においては、被湿式酸化処理物を加熱するのに必要な熱量を、酸化反応で生ずる酸化熱で充足させ、自燃させている。
【0003】
例えば、特公昭46−1511号公報、特公昭63−25839号公報、特公昭63−49560号公報等には、下水汚泥やし尿を嫌気性消化槽で嫌気性消化し、次いでこの嫌気性消化槽からの消化汚泥を湿式酸化した後、固液分離し、その分離液を再び前記嫌気性消化槽に返送することが示されている。このように湿式酸化した後の分離液を嫌気性消化槽に返送することにより、嫌気性消化槽で発生するメタンガス量を増加させ、得られたメタンガスを発電や燃料に使用してエネルギーの回収をより効率的にしようとするものである。
【0004】
一方、廃棄物処理として考えた場合、大量生産、大量消費から廃棄物量の増大が生じ、大量廃棄、大量処分により埋立処分地の確保が問題となり、廃棄物の排出抑制や資源化再利用等の資源循環型社会システムの構築が求められ、さらに廃棄物処理を焼却処分に頼っていた我が国では、そのつけがダイオキシンの発生の問題に発展し、廃棄物の処理、処分そのものが見直されてきた。その結果、従来のし尿単独処理に厨芥を含む生活系ごみ、事業系ごみさらには下水汚泥をも同時に処理する総合廃棄物処理システムの開発が進められている。この総合廃棄物処理に近いものが例えば特開平9−201599号公報に提案されている。
【0005】
この処理方法は、し尿、浄化槽汚泥、下水汚泥、厨芥等の性状や濃度の異なる有機性廃棄物を混合して同一システムにおいて処理する技術に係わり、有機性廃棄物からの有用物質の回収と資源化方法に関するものである。図5を参照してこの処理方法を説明すると、複数種類の有機性廃棄物を粉砕機およびスクリーンで前処理した後、固液分離する固液分離工程と、固液分離工程で分離した分離液を生物処理する生物処理工程を有する処理系において、前処理工程で分離したし渣及び固液分離工程で分離した汚泥等の固形分を嫌気性発酵工程に導入して、嫌気性条件下で発酵させてメタンガスを回収するとともに、嫌気性発酵工程における消化汚泥を脱水工程に導いて脱水し、脱水ケーキ(脱水消化汚泥)をコンポスト化して肥料として、脱離液をリン除去工程に導いて晶析法により、物理化学的に脱リンすることにより、脱離液中のリン成分をリン酸マグネシウムアンモニウムとして回収するものである。
【0006】
しかしながら、上記した方法では、前処理工程で分離したし渣を嫌気性発酵工程に導入して、嫌気性消化させているが、し渣には嫌気性細菌である加水分解細菌、酸生成細菌が分解しにくいトイレットペーパ等の紙類が多量に含まれていること、さらに、消化汚泥を脱水してコンポスト化して肥料とした場合、消化汚泥の量は原汚泥に比べ1/2〜1/3に減容するものの、そこから回収されるコンポスト化した肥料の量は膨大であり、事実、各市町村では、その需要と供給のバランスに苦慮しており、やむえず廃棄処分しているのが実態である。
【0007】
この問題を解決するものとして、特開昭54−123246号公報、特開昭55−81794号公報記載の処理方法のように、厨芥および厨芥類を主とする都市ごみを粉砕等の前処理をして嫌気性消化した後、消化汚泥を可溶化処理し、その可溶化液を嫌気性消化工程へ返送し、メタンガス発生量を増大させるとともに消化汚泥の発生を減量化している。
【0008】
しかし、従来の厨芥は、これらの公報に記載されているようなすりつぶすとか細かく砕くといった前処理を施すことで対応可能であったが、生活様式が変化するにつれ厨芥そのものに問題が生じてきた。つまり、厨芥からコンポスト化した肥料の需要があり、厨芥の分別収集がなされている農村地域は別として、厨芥に包装容器用の新聞紙、広告紙等の紙類、ポリエチレン、ポリプロピレン等のプラスチック類、および木片等の嫌気性消化に不適な天然、人工の有機性廃棄物が混入し、さらにほとんどの市町村では紙、プラスチック製のごみ袋に厨芥を入れ、収集運搬処理されており、これら嫌気性消化にとって不適物である有機性廃棄物を除去する手段はこれらの公報には記載されていない。
【0009】
具体的に数値を挙げると、レストラン、コンビニエンスストア等の事業系ごみでは、乾重量ベースで厨芥76.3%、プラスチック類15.5%、紙類5.7%、生活系ごみとなると厨芥24.8%、プラスチック類20.5%、紙類42.3%となっており、プラスチック類及び紙類が廃棄物の中に占める比率が高いことが報告されている(バイオガス利用システムの新展開:Bio − Industry Vol.15 No.10 1998)。
【0010】
この問題の一部を解決するものとして、特開平2000−51821号公報では、廃棄物を機械的に処理し、生物学的方法には利用できない物質を除去し、有機物はさらに熱的、化学的および生化学的な前処理を施した後、嫌気性消化する有機性廃棄物の処理方法および処理装置が提案されている。この処理方法および処理装置を図6を参照して説明すると、廃棄物を粥状物製造用容器13に入れ、水を加えてインペラ14で攪拌し、粥状物を作り、金属等の重い異物は閉じ込め室18に集め、プラスチック等の軽い異物は、レーキ装置22で取って貯蔵箱28に投入され、運び出される。粥状物はふるい板17を通してポンプ29で汲み出され、攪拌反応装置30に送られ、熱的および化学的な前処理を受け、水可溶性の有機物に変化する。熱的および化学的な前処理の後、懸濁液はポンプ32によって懸濁液貯蔵タンク33へ移され、計量ポンプ34によって固液分離機35へ送られる。液体はポンプ36によって貯蔵タンク37ヘ、固体は粥状物ポンプ38によって加水分解槽39へ送られた後、一部が可溶性の化合物に分解され、ポンプ44によって第2の固液分離機45へ送られる。脱水された液体はポンプ47によって貯蔵タンク37ヘ送られ、そこで攪拌反応装置30からの液体と混合し、計量ポンプ48によってメタン発酵槽43へ送られ、そこでメタンバクテリアによってメタンと二酸化炭素からなるバイオガスに変換されるものである。これにより、嫌気性消化に対する不適物である金属等の重い異物、プラスチック等の軽い異物は、粥状物製造用容器13から系外に運び出されるため、メタン発酵槽43における嫌気性消化処理運転でのトラブルもなく効率良いバイオガスの製造が行えるものとしている。
【0011】
【発明が解決しようとする課題】
しかしながら、特開平2000−51821号公報記載の処理方法および処理装置におけるように、粥状物製造用容器から系外に運び出される嫌気性消化に不適なプラスチック等の軽い異物は、天然資源から製造された人工有機物であり、その廃棄量が膨大であるため、そのまま廃棄処分するのでは資源の無駄となり、さらに、その処分として焼却、埋め立てが想定され、ダイオキシンの発生等の問題に発展してしまう。
【0012】
本発明は、上記に鑑みてなされたもので、有機性廃棄物に含まれる嫌気性消化に不適なプラスチック等の有機物についても、これを可溶化処理して可溶性有機物に変換することにより嫌気性消化させて効率よくメタンガスを発生させることができ、その結果、嫌気性消化に不適なプラスチック等の有機物の焼却設備を必要とせず、ダイオキシンの発生もない、新規かつ改良された有機性廃棄物の処理方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するための本発明の請求項1による有機性廃棄物の処理方法は、
厨芥等の固形有機性廃棄物を水とのスラリーに形成する第一スラリー化工程と、
前記第一スラリー化工程中またはその工程の前後に設けられた、発酵不適物であるプラスチックを分離する発酵不適物分離工程と、
前記プラスチックの少なくとも一部が除かれた前記第一スラリー化工程からのスラリーを嫌気性消化処理する嫌気性消化工程と、
少なくとも前記発酵不適物分離工程で分離された前記プラスチックを破砕して水とのスラリーを形成する第二スラリー化工程と、
前記第二スラリー化工程からのスラリーを、処理温度が160〜220℃で、かつ該スラリーの液相を保持する圧力で、処理時間が15〜60分とする条件で、該スラリーの単位容積当たりの酸素供給量が該スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値の10〜50%に相当する酸素含有ガスを供給して部分分解する可溶化工程と、
前記可溶化工程からの可溶化液の少なくとも一部を前記嫌気性消化工程へ供給する可溶化液返送工程と、
を備えたことを特徴とする。
【0014】
本発明の請求項2の有機性廃棄物の処理方法は、前記請求項1の処理方法において、し尿や浄化槽汚泥等の液状有機性廃棄物の夾雑物を除去する夾雑物除去工程を設け、前記夾雑物除去工程で除去分離された前記夾雑物を前記プラスチックと共に破砕して前記第二スラリー化工程において水とのスラリーを形成することを特徴とする。
【0015】
本発明の請求項3の有機性廃棄物の処理方法は、前記請求項2の処理方法において、前記夾雑物除去工程で夾雑物の少なくとも一部が除去された液状有機性廃棄物を凝集固液分離する凝集固液分離工程を設け、前記第一スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記凝集固液分離工程からの凝集汚泥を使用することを特徴とする。
【0016】
本発明の請求項4の有機性廃棄物の処理方法は、前記請求項1の処理方法において、浄化槽汚泥等の液状有機性廃棄物を凝集固液分離する凝集固液分離工程を設け、前記第一スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記凝集固液分離工程からの凝集汚泥を使用することを特徴とする。
【0017】
本発明の請求項5の有機性廃棄物の処理方法は、前記請求項1〜4のいずれか1つの処理方法において、前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記嫌気性消化工程からの消化汚泥を使用することを特徴とする。
【0018】
本発明の請求項6の有機性廃棄物の処理方法は、前記請求項1〜5のいずれか1つの処理方法において、前記嫌気性消化工程からの消化脱離液を生物学的に処理する生物処理工程を設け、前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記生物処理工程からの余剰汚泥を使用することを特徴とする。
【0019】
本発明の請求項7の有機性廃棄物の処理方法は、前記請求項3または4の処理方法において、前記嫌気性消化工程からの消化脱離液と、前記凝集固液分離工程からの分離液とを生物学的に処理する生物処理工程を設け、前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記生物処理工程からの余剰汚泥を使用することを特徴とする。
【0020】
本発明の請求項8の有機性廃棄物の処理方法は、前記請求項1〜7のいずれか1つの処理方法において、前記可溶化工程は、処理温度が180〜200℃で、かつ該スラリーの液相を保持する圧力で、処理時間が30〜60分とする条件で、該スラリーの単位容積当たりの酸素供給量が該スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値の25〜50%に相当する酸素含有ガスを供給するとを特徴とする。
【0021】
なお、前記請求項1〜8のいずれか1つの有機性廃棄物の処理方法において、前記第二スラリー化工程で形成されるスラリーの固形物は、幅が5mm以下、長さが10mm以下に破砕されることが望ましい。
【0022】
また、前記請求項1〜8のいずれか1つの有機性廃棄物の処理方法において、前記可溶化液返送工程の途中で、可溶化液にアンモニア除去処理を施すアンモニア除去工程を設けることも可能である。
【0023】
さらに、可溶化液返送工程の途中にアンモニア除去工程を設ける前記の有機性廃棄物の処理方法において、前記可溶化工程からの可溶化液を固液分離して得られる酸化スラリーの少なくとも一部または/および前記嫌気性消化工程で生成する消化汚泥の少なくとも一部を、脱水して堆肥とする堆肥化工程を設け、前記アンモニア除去工程で除去されたアンモニアを硫安として回収し、回収された硫安を窒素成分補強剤として前記堆肥化工程で使用することも可能である。
【0024】
【発明の実施の形態】
本発明では、図1に示すように、厨芥を含む生活系ごみ、事業系ごみ等の固形有機性廃棄物を、内部に穴径45mmのスクリーンと破砕羽根を備えた乾式破砕分別機1に供給し、スクリーンを通過する破砕されやすい厨芥、紙及び小さな土砂、ガラス等と、スクリーンを通過しない強度のある金属、紙(ダンボール)及び変形しやすい繊維、さらには、ごみ袋、トレイ等のプラスチック類とに分別する。
【0025】
スクリーンを通過した分離物は攪拌機を備えた混合槽2に送られ、スクリーンを通過しない分離物(発酵不適物)は、磁選別機3により重量物である金属と、軽量物である紙、繊維及びプラスチック類とに選別される。なお、乾式破砕分別機1は、破砕と選別機能が一体でなくともよく、破砕機で粗く破砕した後、ふるい、風力、振動機能等を具備した別体の分別機で分別してもよい。
【0026】
搬出された重量物は資源化あるいは廃棄処分され、プラスチックを主体とする軽量物はベルトコンベヤ、フライトコンベヤ等により粗破砕機4へ送られ、幅が5〜10mm、長さが10〜30mmに裁断された後、混合受槽5に供給される。
【0027】
図1においては、乾式破砕分別機1と磁選別機3の周囲を取り囲む二点鎖線の部分が発酵不適物分離工程に相当し、混合槽2が第一スラリー化工程に相当する。従ってこの場合には、第一スラリー化工程の前段に発酵不適物分離工程が設けられていることになる。
【0028】
一方、し尿、浄化槽汚泥等の液状有機性廃棄物は、目開き2〜5mmの夾雑物除去装置であるドラムスクリーン6に供給され、除去されたし尿し渣のごとき夾雑物は粗破砕機4へ送られ、幅が5〜10mm、長さが10〜30mmに裁断された後、混合受槽5に供給される。なお、ドラムスクリーン6にて除去された夾雑物はトイレットペーパー、新聞紙等の紙類の場合が多く、微破砕が比較的容易であることから直接混合受槽5に供給してもよい。また、夾雑物をスクリュープレス7に送り脱水後、粗破砕機4へ供給してもよい。夾雑物が除去された除渣汚泥は、凝集固液分離装置8に送られ、固液分離される。この場合、凝集固液分離装置8の前段でカチオン系ポリマー等の高分子凝集剤を添加して凝集処理させてもよい。なお、浄化槽汚泥は夾雑物の混入がきわめて少ないことから、図2に示すように、ドラムスクリーンのごとき夾雑物除去装置を通さずに直接凝集固液分離装置8へ供給してもよい。凝集固液分離装置8で分離された濃縮除渣汚泥(凝集汚泥)は混合槽2へ供給され、分離液は生物処理装置9へ供給されて活性汚泥による生物処理が施される。図2においては、図1と同じ装置には図1と同じ参照番号を付すことにより、装置名の記載を省略する。
【0029】
さらに、図3に示すように、乾式破砕分別機1の代わりに、固形有機性廃棄物を粗破砕機1−1により粗く破砕した後、水と一緒に湿式破砕分別機1−2に供給してもよい。湿式破砕分別機1−2は、例えば図6に図示した特開2000−51821号公報に記載されている粥状物製造用容器(別名称:パルパー)13に代表されるもので、インペラ14等の特殊な形状の攪拌羽根を有する攪拌機が備えられており、固形有機性廃棄物は強力な攪拌力により20〜30分で微破砕、スラリー化される。
【0030】
ここで使用する水は、湿式破砕分別機1−2で固形有機性廃棄物を破砕、スラリー化することを目的としており、運転開始時は上水、工業用水等を使用してもよいが、定常運転時では生物処理装置9からの生物処理水、あるいは湿式酸化が行われる反応器19からの可溶化物を固液分離して得られた酸化分離液を使用することができる。また、スラリー化する際の水の量は、固形有機性廃棄物の成分組成にもよるが、スラリーに流動性が保たれ、輸送に支障の生じない程度でよい。湿式破砕分別機1−2では、固形有機性廃棄物中の発酵不適物であるプラスチックを主体とした軽量物は、湿式破砕分別機1−2の上部より、オバーフローさせたり、スクリュー状の掻き揚げ翼を突出させたスクリューコンベヤ、図6に図示した特開2000−51821号公報に記載されているホーク状のレーキ装置22等により搬出される。湿式破砕分別機1−2中の重量物は、下部より搬出される。湿式破砕分別機1−2で形成された嫌気性消化に適したスラリーは混合槽2へ供給される。
【0031】
図3においては、二点鎖線で囲まれた部分で発酵不適物分離工程と第一スラリー化工程とが行われており、この場合には、運転方法によって、第一スラリー化工程の後に発酵不適物分離工程が設けられていることになったり、第一スラリー化工程中に発酵不適物分離工程が設けられていることになったりする。
【0032】
例えば、図6に図示した特開2000−51821号公報に記載されている方法では、粥状物製造用容器13の底部に設けられたふるい板17を介して懸濁液を抜き出した後、新たに水を該容器13に充填することにより、該容器13底部に残留するプラスチックを浮上または浮遊させ、これを歯列運搬設備23で捕捉し、レーキ装置22により水から分離される。従ってこの場合には、第一スラリー化工程の後に発酵不適物分離工程が設けられていることになる。
当然、スラリー形成中に、プラスチックを歯列運搬設備23で捕捉し、レーキ装置22によりスラリーから分離させれば、第一スラリー化工程中に発酵不適物分離工程が設けられていることになる。
【0033】
なお、第一スラリー化工程で形成されたスラリーから発酵不適物であるプラスチックを分離する方法は、図1、図3および図6に図示した方法以外にも、種々の方法を採用できる。例えば、図7に示した特許第2965693号公報に記載されている方法は、パルパー等によって形成されたプラスチックなどを含むスラリーが入口46からタンク52内へ圧送され、この入口46に接続されている空気入口48から注入される圧縮空気によってスラリー中のプラスチックなどを浮上または遊離させ、入口46と反対側のタンク52上部に取り付けられたふるい分けドラム54によりこれを捕捉して出口56から排出することによって、スラリーから分離される。なお、図7の58は、屑トラップであり、金属片、電池等の重量物をそこに選り分けるものである。屑トラップ58に近接して白水入口60が設けられており、重量物だけが分離されるのに適した上向流をつくる作用をする。従ってこの場合には、第一スラリー化工程の後に発酵不適物分離工程が設けられていることになる。
【0034】
さらに、図8に示した特表平2−501369号公報に記載されている方法では、タンク42内に形成されたプラスチックなどを含むスラリーの液面45の高さ位置に設けられたギロチン弁47が、攪拌機67が低速で回転している状態で、開放されると、プラスチックを含むスラリーは貯留タンク49へ排出され、ろ過器を備えた管50を通過したスラリーのみがポンプ52,管53を介してタンク42内に還流され、ろ過器を備えた管50を通過しないプラスチックは捕捉されてスラリーから分離される。そして、攪拌機67が高速で回転してスラリー化が完了した後に、タンク42のスラリーが貯留タンク63を介してポンプ65により排出される。従ってこの場合には、第一スラリー化工程の前に、又は、第一スラリー化工程中に、発酵不適物分離工程が設けられていることになる。
【0035】
本発明における発酵不適物分離工程においては、これら公知の分離方法も使用でき、これらの方法以外にも、プラスチックをスラリーから効果的に分離できる方法であれば、いかなる方法でも採用することができる。
【0036】
プラスチック及び重量物が除去された厨芥を含む生活系ごみ、事業系ごみ等のスラリーと、し尿、浄化槽汚泥等からの濃縮除渣汚泥(凝集汚泥)とは、TS濃度8〜12%のスラリーに調整するため混合槽2で水と混合され、均一化した後、嫌気性消化槽10に供給され、ここで嫌気性消化工程が施される。このTS濃度とは、JIS K0102(1998)工業排水試験法に規定される全蒸発残留物である。
【0037】
嫌気性消化槽10では、メタンガス生成に関与する嫌気性細菌の働きにより、混合槽2からのスラリー中の有機物が分解されて、メタンガス、二酸化炭素等に変換され、未分解有機性固形物は消化汚泥として固液分離装置11へ流出し、固液分離装置11で消化脱離液と濃縮消化汚泥に分離され、消化脱離液は生物処理装置9へ供給され生物処理される。
【0038】
なお、混合槽2および嫌気性消化槽10では、嫌気性消化に支障をきたさないよう、前工程で除去しきれないプラスチック及び重量物を分離・除去する機能を持たせ、系外に搬出するための専用の排出口を上部と下部にそれぞれ設置する場合もある。
【0039】
固液分離装置11からの濃縮消化汚泥は、生物処理装置9で生成した余剰汚泥及びドラムスクリーン6からの夾雑物、さらに粗破砕機4へ送られ裁断化されたプラスチックとともに混合受槽5へ送られ貯留される。なお、濃縮消化汚泥の一部を嫌気性消化槽10に返送し、槽内の嫌気性消化菌の菌数を高め、嫌気性消化槽10の過負荷時の対応としてもよい。さらにコンポストの需要が見込まれる地域にあっては、濃縮消化汚泥の一部を脱水装置12に送り、脱水処理後、堆肥製造装置13へ供給し、好気性発酵させコンポスト化(堆肥化)してもよい。
【0040】
攪拌機を備えた混合受槽5において均一化されたプラスチック等の固形有機性廃棄物と濃縮消化汚泥等の液状有機性廃棄物は、微破砕機14に送られ、ここで固形物が幅5mm以下、長さ10mm以下に破砕された後、混合貯留槽15に送られる。図示の例では、微破砕機14で第二スラリー化工程が施され、必要により粗破砕機4や混合受槽5が設けられたものである。なお、後述する熱交換機17、18や反応器19の形状を大きくすることによって、微破砕機14を省略し粗破砕機4や混合受槽5のみで第二スラリー化工程を施してもよいが、経済的には微破砕機14で第二スラリー化工程を施すようにした方が好ましい。
【0041】
混合貯留槽15内の有機性スラリーは、有機性スラリー供給ポンプ16によって第一熱交換器17、第二熱交換器18及び反応器19と順次に移送され、この反応器19において湿式酸化による加水分解あるいは部分的に酸化分解される可溶化工程が施される。第一熱交換器17においては、有機性スラリーと反応器19から排出された湿式酸化処理物との熱交換が行われ、第二熱交換器18においては、第一熱交換器17で温められた有機性スラリーと加温用ボイラー20からの蒸気との熱交換が行われる。
【0042】
有機性スラリーは150〜200℃に昇温された状態で反応器19に供給される。反応器19において有機性スラリーは、自己の酸化熱により温度がさらに10〜20℃上がるため、温度が160〜220℃、好ましくは180〜200℃、処理時間が15〜60分、好ましくは30〜60分、絶対圧力が1.0〜2.5MPa(所要処理温度における液相保持圧力)好ましくは1.5〜2.5MPaの条件で加水分解、さらに部分酸化処理される。
【0043】
反応器19への酸素の供給は、空気(酸素含有ガス)を圧縮するコンプレッサー21のスナッパー(圧縮空気貯留槽)から流量調整弁(FCV)22を介して反応器19の下部へ供給される。酸素供給量は、夾雑物と各種濃縮汚泥の混合物を可溶性有機物に分解させることが目的であり、得られた可溶性有機物がさらに酸化され二酸化炭素、水等に分解されてはならない。そのための条件として、有機性スラリー単位容積当たりの酸素供給量は、有機性スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値に対して10〜50%相当分、好ましくは25〜50%相当分となるように酸素含有ガスの供給量を流量調整弁22によって制御する。
かように、本発明の可溶化工程では、酸素の供給量を制限して部分酸化で止めるため、有機性スラリーを加熱するのに必要な熱量を、酸化反応で生ずる酸化熱で充足させる、すなわち自燃させる従来の湿式酸化法とは異なり、処理温度を160〜220℃に維持するためには、外部から加熱し続けなければならない。かかる加熱は、加熱ボイラー20と第二熱交換器18からなる前述の間接加熱や有機性スラリーに直接スチーム等を接触させる直接加熱のいずれでもよい。
【0044】
この有機性スラリー中のプラスチック濃度に対するCODcr換算値は、次の理由により設定されたものである。すなわち、プラスチック自体が二クロム酸カリウムで完全には分解されないために、JIS K0102(1998)工業排水試験法で測定しても二クロム酸カリウムによる酸素消費量は、ある一定値以上にはならなず、酸化分解に必要な酸素量を把握することが出来ない。このため、酸化分解に必要な酸素量を算出するために、スラリー中のプラスチック濃度に対するCODcr換算値を本発明においては、次のように定める。
【0045】
一般に、各種有機物が1gの酸素を燃焼に消費するとき(1g−CODcrに相当)に発生する燃焼熱は、約3.3Kcalである。この約3.3Kcal/g−CODcrをもちいて、各種プラスチックの既知の燃焼熱から、スラリー中のそれぞれの各種プラスチック濃度に対するCODcrを換算して合算すればよいのである。
【0046】
例えば、各種プラスチックの燃焼熱を挙げると下記のようになる。
軟質ポリエチレン 11.1Kcal/g
硬質ポリエチレン 11.0
ポリプロピレン 10.5
ポリスチレン 9.6
塩化ビニル 4.3
【0047】
しかし、スラリー中のプラスチックの組成を逐一調べることは困難である。厨芥等の固形有機性廃棄物の中に含まれるプラスチックは、現状では、ポリエチレンが多く、プラスチックの主体がポリエチレンであるので、本発明のスラリー中のプラスチックの燃焼熱は、ポリエチレンの燃焼熱である約11Kcal/gと見なすことができ、本発明では
CODcr換算値=スラリー中のプラスチック濃度(g/L)×11(Kcal/g)÷3.3(Kcal/g-CODcr)
として算出して差し支えない。
【0048】
一方、該スラリーのCODcr測定値とは、JIS K0102(1998)工業排水試験法に規定される二クロム酸カリウムによる酸素消費量である。
例えば、CODcr測定値が20g/Lであるスラリー中のプラスチック濃度が5g/Lの場合、スラリー中のプラスチック濃度に対するCODcr換算値は、
5(g/L)×11(Kcal/g) ÷3.3(Kcal/g-CODcr)=18.3g/L
となり、CODcr合算値は、38.3g/Lとなる。
【0049】
したがって本発明においては、このCODcr合算値の10〜50%、すなわち有機性スラリー1Lに対して3.83〜19.2g、好ましくは9.58〜19.2gの酸素を含む酸素含有ガスとを混合すればよいことになる。
【0050】
なお、湿式酸化が行われる反応器19へ供給するプラスチック及び夾雑物と各種濃縮汚泥の混合物のCODcr濃度は高い方がよいが、混合物の成分組成、流動性も考慮し、輸送に支障の生じない程度に水で希釈することも必要となる。一般的には、濃縮消化汚泥と余剰汚泥の混合汚泥1m3 に対して、裁断化されたプラスチックが10kg−乾重量、夾雑物が15kg−乾重量までのスラリーであれば流動性に問題は無いが、プラスチック及び夾雑物がそれ以上であれば水で希釈する必要がある。もちろん、ここで使用する水も生物処理装置9からの生物処理水でよい。
【0051】
酸素の反応器19への供給箇所は反応器19の下部に限定されるものではなく、第二熱交換器18から流出する有機性スラリーに酸素を合流させて反応器19へ供給してもよく、有機性スラリー供給ポンプ16から流出する有機性スラリーに酸素を合流させて第一熱交換器17の入口に供給しても差し支えない。さらに、酸素源は空気に限定されるものでなく、爆発や有害性物質含有などの危険性がない酸素含有ガスであればよく、場合によっては加温用ボイラー20からの排ガスを使用することも可能である。その場合は、排ガス中の残留酸素濃度を測定し、その酸素濃度に応じた必要排ガス量を供給するようにすればよい。
【0052】
反応器19から排出された湿式酸化処理物は、第一熱交換器17を経て液温50〜80℃となって圧力制御弁(PVC)23に流れ、ここで反応系内の圧力を一定に保ちながら絶対圧力1.5〜2.5MPaから大気圧の0.1MPaまで減圧された後、気液分離器24に流入し、酸化ガスと酸化混合液(可溶化液)に分離される。酸化ガスは、排ガス処理装置25により処理されて大気放出、あるいは、嫌気性消化工程の後処理として生物処理装置9内の脱膣槽撹拌用ガスの一部として用いられる。一方、酸化混合液は酸化混合液移送ポンプ26によって固液分離装置27に流入し、酸化分離液と酸化スラリーとに固液分離される。
【0053】
酸化分離液は嫌気性消化槽10へ返送され、嫌気性消化槽10では、湿式酸化処理により生成した可溶性有機物がメタンガス生成に関与する嫌気性細菌の働きにより分解され、メタンガス、二酸化炭素等に変換される。なお、酸化分離液の一部を生物処理装置9へ供給して嫌気性消化槽10の有機物負荷を低減させたり、混合槽2へ供給して固形有機性廃棄物のスラリー化に工業用水等の水の代替として使ってもよい。
【0054】
図示の例では、酸化混合液を固液分離した後、酸化分離液を嫌気性消化槽10へ返送しているが、酸化混合液を固液分離せずに、酸化混合液のまま嫌気性消化槽10へ返送することもできる。本発明の請求項1における“可溶化液”という用語は、酸化混合液と酸化分離液の両者を含むものとして用いている。
【0055】
一方、酸化スラリーは脱水装置28に移送され、含水率75%以下の脱水ケーキに脱水され、脱水ろ液は酸化分離液の一部とともに生物処理装置9へ送られ処理される。脱水ケーキは堆肥製造装置13へ送られ、脱水処理された濃縮消化汚泥とともにコンポスト化される。なお、酸化スラリーの少なくとも一部を嫌気性消化槽10へ返送してもよい。これにより、反応器19での湿式酸化処理により生物分解が容易となった酸化スラリー中の固形有機物がメタンガス生成に関与する嫌気性細菌の働きにより分解され、メタンガス、二酸化炭素等に変換される。また、酸化スラリー中の未分解有機性固形物が嫌気性細菌の固定床となり、嫌気性消化槽10内の加水分解菌、酸生成菌およびメタン生成菌の菌数を増加させ、嫌気性消化のVTS高負荷運転を可能にする。
【0056】
また、酸化分離液の液温が熱交換後でも約60℃あることから、その熱エネルギーを利用して図4に示すような脱窒素処理を行ってもよい。すなわち、固液分離装置27からの酸化分離液をpH調整槽29に送り、ここで所定のpHになるようアルカリが添加された後、アンモニア除去装置30に送られる。アンモニア除去装置30では空気もしくは蒸気が供給され、酸化分離液中のアンモニア性窒素がアンモニアガスとしてストリッピングされ、アンモニア除去工程が施される。アンモニア回収装置31では変換されたアンモニアガスと硫酸から硫安が回収され、堆肥製造装置13に送られて窒素成分の補強剤として使用される。一方、アンモニアが除去された酸化分離液は中和槽32において硫酸等の酸により中和処理され、嫌気性消化槽10へ供給される。なお、アンモニアが除去された酸化分離液の少なくとも一部を生物処理装置9へ供給して嫌気性消化槽10の有機物負荷及び窒素を低減させたり、混合槽2へ供給して固形有機性廃棄物のスラリー化に工業用水等の水の代替として使ってもよい。なお、図4においては、図1と同じ装置には図1と同じ参照番号を付すことにより、装置名の記載を省略する。
【0057】
酸化分離液に脱窒素処理を施すことによって、生物処理装置9において生物学的脱窒素処理を行う際の水素供与体としての有機炭素源が少なくてすむ。さらに、有機性廃棄物中の有機物を可能な限り嫌気性消化槽10へ供給しメタンガスとしてエネルギー回収することができ、また、嫌気性消化槽10において嫌気性消化処理におけるアンモニア高濃度阻害を回避することが可能となる。
【0058】
【実験例】
以下、本発明を、厨芥を含む事業系ごみとし尿の混合有機性廃棄物に適用した場合の実験例を挙げて説明する。
【0059】
〈第1実験例〉
ポリエチレン製の市販ごみ袋(以下プラスチックという)と高負荷膜分離処理方式のし尿処理場から発生するし尿し渣を湿式酸化により可溶化処理し、処理された可溶化液を嫌気性消化工程に返送するにあたり、可溶化工程における湿式酸化処理条件である、1)処理温度、2)酸素供給量、3)処理時間について検討した。ここで使用した振盪式オートクレーブ実験装置は、高圧空気製造設備(コンプレッサー、増圧器、空気溜)、振盪機能付き電気炉および反応容器からなっている。内容積760mlの反応容器に、CODcr濃度として約30g/Lになるよう水道水とシュレッダーにより裁断化したプラスチックまたはし尿し渣を入れ、所定の酸化度に必要な酸素量を圧縮空気として充填した後、振盪させながら昇温し、所定温度になったことを確認した後、所定時間湿式酸化処理した。
【0060】
1) 処理温度について
酸素供給量を上記CODcr値の50%、処理時間を60分とした時の、各処理温度と有機物の可溶化率、無機化率および固形化率との関係を表1に示す。
【0061】
【表1】
Figure 0003747818
【0062】
表1中の可溶化率、無機化率及び固形化率は、し尿し渣、プラスチックの湿式酸化処理前の混合液(裁断化したプラスチックまたはし尿し渣と水との混合液)、湿式酸化処理後の混合液(酸化混合液)、湿式酸化処理後の濾過液(酸化混合液を固液分離した後の酸化分離液)のCODcr濃度を測定し、下式から算出したものである(表2および表3も同じ)。なお、湿式酸化処理前のプラスチックのCODcr濃度は、ポリエチレンの燃焼熱(11kcal/g)とCODcr1g当り3.3kcalの発熱量から算出した値を用いた。
【0063】
Figure 0003747818
【0064】
表1からわかるように、プラスチックは固形物として残留する割合は少なく、可溶化率の最も高い温度領域は180〜220℃である。一方、し尿し渣は固形物として残留する割合が比較的多く、温度が高いほど可溶化率が高い。しかし、同時に無機化率も高くなり、可溶化、固形物として残留する割合が高い温度領域は160〜200℃である。これらの結果から、可溶化工程における湿式酸化処理での最適な処理温度は160〜220℃、好ましくは180〜200℃であることがわかる。
【0065】
2) 酸素供給量について
処理温度180℃、処理時間を60分とした時の、酸素供給量と有機物の可溶化率、無機化率および固形物率との関係を表2に示す。
【0066】
【表2】
Figure 0003747818
【0067】
表2からわかるように、プラスチックは酸素供給量が多くなるにつれ可溶化率が低くなり、無機化率が高くなる。一方、し尿し渣は可溶化率が50%で最も高く、酸素供給量が多くなるにつれ無機化率が高くなる。この結果から、可溶化工程での湿式酸化処理の最適な酸素供給量は低いほどよく、CODcr値の25〜50%であることがわかる。
【0068】
3) 処理時間について
処理温度180℃、酸素供給量をCODcr値の50%とした時の、各処理時間と有機物の可溶化率、無機化率および固形物率との関係を表3に示す。
【0069】
【表3】
Figure 0003747818
【0070】
表3からわかるように、可溶化率はプラスチックが30分、し尿し渣が60分でほぼ最大に達し、処理時間が長くなると可溶化率が低くなるとともに無機化率が高くなる。この結果から、湿式酸化工程での最適な処理時間は30〜60分であることがわかる。
【0071】
〈第2実験例〉
厨芥を含む事業系ごみを湿式破砕分別機(図3)により処理して得られた有機スラリーと、事業系ごみに含まれるプラスチックとし尿し渣および消化汚泥の混合物を湿式酸化処理して得られる可溶化液(酸化混合液)とを試料として、有機スラリーの単独嫌気性消化処理、および有機スラリーと酸化混合液との混合物を嫌気性消化処理した場合と比較した。
【0072】
比較試験に先立ち、容量7Lの嫌気性消化槽に、厨芥を嫌気性消化した消化汚泥5Lを入れ、前記有機スラリーを1回/日嫌気性消化槽へ投入し、VTS負荷1.5kg/m3 ・d、消化温度36℃として1ヶ月馴養させた。
プラスチック2.0g、し尿し渣5.6g(含水率55.6%)および消化汚泥230mLを、処理温度180℃、処理時間60分、酸素供給量をCODcr合算値の50%の条件で湿式酸化し、得られた酸化混合液と有機スラリーとの容量混合比を0:1(有機スラリーの単独嫌気性消化処理)、1:1、2:1(有機スラリーと酸化混合液との混合物の嫌気性消化処理)とし、前記した馴養後の嫌気性消化槽に投入して嫌気性消化処理を施した。この時の有機スラリーと酸化混合液の性状を表4に示す。
【0073】
【表4】
Figure 0003747818
【0074】
この嫌気性消化処理を継続し、メタンガス発生量が安定した時点の嫌気性消化結果を表5に示す。
【0075】
【表5】
Figure 0003747818
【0076】
表5中の消化日数は、嫌気性消化槽の容量を、投入した有機スラリー量と酸化混合液量の和で除してあり、有機スラリーと酸化混合液との混合物を嫌気性消化処理した場合の実質滞留日数は、容量混合比1:1では有機スラリーを単独嫌気性消化処理した場合の1/2、1:2では1/3となる。この表5からわかるように、有機スラリーと酸化混合液との混合物を嫌気性消化処理した場合には、有機スラリーを単独嫌気性消化処理した場合と比較し、消化日数が短縮されたにもかかわらず、ガス発生量が容量混合比1:1で15%、1:2で28%増加している。
【0077】
なお、以上の説明においては、湿式酸化処理をベースとして本発明の可溶化工程を実施する形態を説明したが、第二スラリー化工程からのスラリーとスチームとを直接接触させて特定の温度で加熱することにより有機物を熱変性させ脱水性を改善するポーチャスプロセスや水熱反応を利用する熱処理により可溶化工程を実施することもできる。かような熱処理を行う場合も、処理温度が160〜220℃、好ましくは180〜200℃で、かつ供給スラリーの液相を保持する圧力で、処理時間が15〜60分、好ましくは30〜60分とする条件で、該スラリー単位容積当たりの酸素供給量が該スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値の10〜50%、好ましくは25〜50%に相当する酸素含有ガスを供給することにより、可溶化工程を実施することができる。
【0078】
【発明の効果】
以上詳述したところからわかるように、請求項1の発明によれば、固形有機性廃棄物に含まれる嫌気性消化に適さない有機物、例えば厨芥ごみに混入しているポリエチレン製のごみ袋は可溶化処理され、可溶性有機物および生物分解が容易な固形有機物に変換されるので、これらを嫌気性消化工程に返送することにより、メタンガスの発生量および有機物の除去量を増加させることができる。また、従来のようにポリエチレン製のごみ袋を焼却、埋立処分する必要がなくなるため、焼却処分することから生ずるダイオキシンの発生、埋立処分地の確保等の問題が解消できる。
【0079】
また、請求項2の発明によれば、液状有機性廃棄物に含まれる嫌気性消化に適さない有機物、例えばし尿し渣等の夾雑物が可溶化処理され、可溶性有機物および生物分解が容易な固形有機物に変換されるので、これらを嫌気性消化工程に返送することにより、メタンガスの発生量および有機物の除去量を増加させることができる。また、従来のようにし尿し渣を焼却、埋立処分する必要がなくなるため、焼却処分することから生ずるダイオキシンの発生、埋立処分地の確保等の問題が解消できる。
【0080】
請求項3の発明によれば、夾雑物を少なくとも一部除いたし尿や浄化槽汚泥等の液状有機性廃棄物の凝集汚泥を、第一スラリー化工程における上水および工業用水の補給水として利用できると共に、第一スラリー化工程では、混合槽でpHが低くなる場合が多く、この場合、第一スラリー化工程での凝集汚泥の酸分解が促進され、後段の嫌気性消化でより効率的な処理が行なえるため、メタンガス発生量を増加させることができる。
【0081】
また、請求項4の発明によれば、浄化槽汚泥等の液状有機性廃棄物の凝集汚泥を第一スラリー化工程における上水および工業用水の補給水として利用できると共に、第一スラリー化工程では、混合槽でpHが低くなる場合が多く、この場合、第一スラリー化工程での凝集汚泥の酸分解が促進され、後段の嫌気性消化でより効率的な処理が行なえるため、メタンガス発生量を増加させることができる。
【0082】
さらに、請求項5の発明によれば、消化汚泥が可溶化され、再度嫌気性消化させることにより、メタンガスの発生量を増加できると共に、第二スラリー化工程における上水および工業用水の補給水として利用できる。また、消化汚泥から製造されるコンポスト量の低減が図れる。
【0083】
請求項6の発明によれば、消化脱離液を生物処理し、発生する余剰汚泥を可溶化し、嫌気性消化することにより、メタンガスの発生量を増加できると共に、この余剰汚泥を第二スラリー化工程における上水および工業用水の補給水として利用できる。
【0084】
請求項7の発明によれば、消化脱離液と凝集分離液を生物処理し、発生する余剰汚泥を可溶化し、嫌気性消化することにより、メタンガスの発生量を増加できると共に、この余剰汚泥を第二スラリー化工程における上水および工業用水の補給水として利用できる。
【0085】
さらに、請求項8の発明によれば、可溶化工程の処理温度、処理時間および酸素供給量を最適化することにより、固形有機性廃棄物および液状有機性廃棄物から分離された嫌気性消化に適さないプラスチック、木片、紙、繊維質等から可溶性有機物をより多く可溶化できる。さらに、高温熱処理が施されているため、消化汚泥および可溶化スラリーを堆肥化する場合に、衛生的で安全性の高い高品質の堆肥を得ることができる。
【図面の簡単な説明】
【図1】 本発明の基本的な実施例を示すフローシート。
【図2】 本発明の変形実施例を示すフローシート。
【図3】 本発明の別な変形実施例を示すフローシート。
【図4】 本発明の更に別な変形実施例を示すフローシート。
【図5】 従来の有機性廃棄物処理方法の例を示すフローシート。
【図6】 従来の有機性廃棄物処理方法の別な例を示すフローシート。
【図7】 従来の水とプラスチックとの分離方法の例を示す説明図。
【図8】 従来の水とプラスチックとの分離方法の別な例を示す説明図。

Claims (8)

  1. 固形有機性廃棄物を水とのスラリーに形成する第一スラリー化工程と、
    前記第一スラリー化工程中またはその工程の前後に設けられた、発酵不適物であるプラスチックを分離する発酵不適物分離工程と、
    前記プラスチックの少なくとも一部が除かれた前記第一スラリー化工程からのスラリーを嫌気性消化処理する嫌気性消化工程と、
    少なくとも前記発酵不適物分離工程で分離された前記プラスチックを破砕して水とのスラリーを形成する第二スラリー化工程と、
    前記第二スラリー化工程からのスラリーを、処理温度が160〜220℃で、かつ該スラリーの液相を保持する圧力で、処理時間が15〜60分とする条件で、該スラリーの単位容積当たりの酸素供給量が該スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値の10〜50%に相当する酸素含有ガスを供給して部分分解する可溶化工程と、
    前記可溶化工程からの可溶化液の少なくとも一部を前記嫌気性消化工程へ供給する可溶化液返送工程と、
    を備えたことを特徴とする有機性廃棄物の処理方法。
  2. 液状有機性廃棄物の夾雑物を除去する夾雑物除去工程を設け、
    前記夾雑物除去工程で除去分離された前記夾雑物を前記プラスチックと共に破砕して前記第二スラリー化工程において水とのスラリーを形成することを特徴とする請求項1に記載の有機性廃棄物の処理方法。
  3. 前記夾雑物除去工程で夾雑物の少なくとも一部が除去された液状有機性廃棄物を凝集固液分離する凝集固液分離工程を設け、
    前記第一スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記凝集固液分離工程からの凝集汚泥を使用することを特徴とする請求項2に記載の有機性廃棄物の処理方法。
  4. 液状有機性廃棄物を凝集固液分離する凝集固液分離工程を設け、
    前記第一スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記凝集固液分離工程からの凝集汚泥を使用することを特徴とする請求項1に記載の有機性廃棄物の処理方法。
  5. 前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記嫌気性消化工程からの消化汚泥を使用することを特徴とする請求項1〜4の何れか1つに記載の有機性廃棄物の処理方法。
  6. 前記嫌気性消化工程からの消化脱離液を生物学的に処理する生物処理工程を設け、
    前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記生物処理工程からの余剰汚泥を使用することを特徴とする請求項1〜5の何れか1つに記載の有機性廃棄物の処理方法。
  7. 前記嫌気性消化工程からの消化脱離液と、前記凝集固液分離工程からの分離液とを生物学的に処理する生物処理工程を設け、
    前記第二スラリー化工程においてスラリーを形成するための水の少なくとも一部として、前記生物処理工程からの余剰汚泥を使用することを特徴とする請求項3または4に記載の有機性廃棄物の処理方法。
  8. 前記可溶化工程は、処理温度が180〜200℃で、かつ該スラリーの液相を保持する圧力で、処理時間が30〜60分とする条件で、該スラリーの単位容積当たりの酸素供給量が該スラリー中のプラスチック濃度に対するCODcr換算値と該スラリーのCODcr測定値との合算値の25〜50%に相当する酸素含有ガスを供給するとを特徴とする請求項1〜7のいずれかに記載の有機性廃棄物の処理方法。
JP2001229329A 2001-07-30 2001-07-30 有機性廃棄物の処理方法 Expired - Fee Related JP3747818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001229329A JP3747818B2 (ja) 2001-07-30 2001-07-30 有機性廃棄物の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001229329A JP3747818B2 (ja) 2001-07-30 2001-07-30 有機性廃棄物の処理方法

Publications (2)

Publication Number Publication Date
JP2003039050A JP2003039050A (ja) 2003-02-12
JP3747818B2 true JP3747818B2 (ja) 2006-02-22

Family

ID=19061691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001229329A Expired - Fee Related JP3747818B2 (ja) 2001-07-30 2001-07-30 有機性廃棄物の処理方法

Country Status (1)

Country Link
JP (1) JP3747818B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125320A (ja) * 2003-09-30 2005-05-19 Ebara Corp 有機性廃棄物の処理方法及び装置
JP4557779B2 (ja) * 2005-04-06 2010-10-06 前澤工業株式会社 排水処理装置
JP2007117996A (ja) * 2005-09-28 2007-05-17 Ebara Corp 有機性固形汚濁物質含有廃棄物の処理方法及び装置
JP2009207957A (ja) * 2008-02-29 2009-09-17 Ibiden Co Ltd 被処理物の処理方法
AU2010201398B2 (en) * 2010-04-08 2012-01-12 Sung-Ho Joo System for producing gas from organic waste
UA107669C2 (en) * 2010-11-09 2015-02-10 Kompoferm Gmbh Method for treating waste
CN107262490A (zh) * 2016-04-08 2017-10-20 深圳华云环保科技发展有限公司 生活垃圾综合处理系统及工艺
CN107671111B (zh) * 2017-11-03 2023-05-12 深圳市阳光三环生态环境股份有限公司 小型生活垃圾自动分类系统
CN107876550B (zh) * 2017-12-12 2023-05-02 广东利世康低碳科技有限公司 一种能高效回收有机物的餐厨垃圾预处理系统
CN110511063A (zh) * 2019-08-19 2019-11-29 深圳市新舟生物科技有限公司 一种综合有机废弃物快速处理设备及其方法
CN111570466A (zh) * 2020-04-28 2020-08-25 中国恩菲工程技术有限公司 协同处理厨余垃圾和餐饮垃圾的系统及方法
CN112792102A (zh) * 2021-01-14 2021-05-14 中铁三局集团桥隧工程有限公司 一种盾构渣土环保处理方法
CN114042738B (zh) * 2021-10-20 2023-07-11 湖北天宜机械股份有限公司 一种餐厨垃圾资源化综合利用处理方法
JPWO2023095314A1 (ja) * 2021-11-26 2023-06-01
CN114990166A (zh) * 2022-07-04 2022-09-02 沈阳航空航天大学 一种聚乳酸塑料垃圾湿式氧化-厌氧消化产甲烷的方法

Also Published As

Publication number Publication date
JP2003039050A (ja) 2003-02-12

Similar Documents

Publication Publication Date Title
JP3747818B2 (ja) 有機性廃棄物の処理方法
US7854841B2 (en) Combined anaerobic process apparatus for treating organic wastes
CN102950137B (zh) 一种餐厨垃圾的协同处理方法
WO2011054298A1 (zh) 综合处理生活污水和有机垃圾的方法及其设备
CN102268310A (zh) 一种利用餐厨垃圾制备生物质燃料的方法
JP3442288B2 (ja) 有機性廃棄物のメタン発酵方法
JP3755982B2 (ja) 有機性廃棄物の再資源化方法
JP4642203B2 (ja) 有機性廃棄物の処理方法
CN105921497A (zh) 生活垃圾资源化综合处理方法和处理系统
KR100972178B1 (ko) 유기성 폐기물의 혐기성 소화장치 및 방법
JP3484539B2 (ja) 食品廃棄物等循環資源のリサイクル方法及びリサイクルシステム
US9975795B2 (en) Waste processing method and apparatus
JP3554689B2 (ja) 廃棄物処理方法
KR20150049087A (ko) 유기성 폐기물이 혼재된 생활폐기물의 에너지화 방법 및 시스템
CN106077029A (zh) 生活垃圾资源化综合处理方法和处理系统
JPH11197636A (ja) 有機性廃棄物の処理方法
KR100374485B1 (ko) 혼합 단상 혐기성 소화설비를 이용한 유기성 폐기물처리방법
JP2002167209A (ja) 活性炭製造装置とその製造方法及び活性炭製造システム
JPH10316982A (ja) 固形燃料製造方法
CN212703648U (zh) 一种城市生活垃圾湿式工艺处理系统
JPH11197639A (ja) 有機性廃棄物の処理方法
CN212504525U (zh) 一种同步卸污和预处理装置
CN210736465U (zh) 处理乡镇垃圾和污水的系统
JP2009248042A (ja) 有機性廃棄物のメタン発酵処理方法及び該システム
JP2004322070A (ja) 厨芥の嫌気性処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080711

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees