JP3739845B2 - Treatment method of ferric chloride waste liquid - Google Patents

Treatment method of ferric chloride waste liquid Download PDF

Info

Publication number
JP3739845B2
JP3739845B2 JP34637395A JP34637395A JP3739845B2 JP 3739845 B2 JP3739845 B2 JP 3739845B2 JP 34637395 A JP34637395 A JP 34637395A JP 34637395 A JP34637395 A JP 34637395A JP 3739845 B2 JP3739845 B2 JP 3739845B2
Authority
JP
Japan
Prior art keywords
nickel
chromium
liquid
copper
ferric chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34637395A
Other languages
Japanese (ja)
Other versions
JPH09156930A (en
Inventor
信雄 金山
通正 鈴木
文治 平原
克弘 木村
雅博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP34637395A priority Critical patent/JP3739845B2/en
Publication of JPH09156930A publication Critical patent/JPH09156930A/en
Application granted granted Critical
Publication of JP3739845B2 publication Critical patent/JP3739845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銅、ニッケル、クロムを含む塩化第二鉄廃液から塩化第二鉄液を再生するための、塩化第二鉄廃液の処理方法に関する。
【0002】
【従来の技術】
塩化第二鉄(FeCl3 )液は都市下水、工場排水などの凝集沈降剤、あるいはプリント基板等のエッチング剤として用いられているが、例えばIC、LSI用のリ−ドフレ−ムのホトエッチング剤として使用する場合、処理中のエッチング液には、エッチング生成物である塩化第一鉄(FeCl2 )や、リ−ドフレ−ムから溶出した鉄イオン、銅イオン、ニッケルイオン、クロムイオン等が存在し、処理が進行するに連れてエッチング液中のこれらの濃度が高くなってくる。ここで塩化第一鉄にはリ−ドフレ−ムの溶解能力(エッチング能力)がほとんど無いため、エッチング液中の塩化第一鉄濃度が高くなると、エッチング速度(リ−ドフレ−ムの単位時間あたりの溶解量)が低下し、このためエッチング処理の効率が著しく悪化する。
【0003】
従ってエッチング廃液を再生することが必要となるが、この廃液中には上述のように銅イオンやニッケルイオン、クロムイオン等の多種の金属イオンが存在するため、鉄等の還元剤を添加して金属イオンを置換析出させて分離するという一般的な方法で再生すると、種々の金属が混在した析出物が得られ、この析出物から個々の金属を分離しようとすると処理工程が多くなって処理が非常に複雑となる。そこで従来では、例えば水酸化ナトリウム等のアルカリ溶液にて中和することにより、金属類を水酸化物や酸化物として沈殿させ、この沈殿物を投棄処分するようにしていた。
【0004】
【発明が解決しようとする課題】
上述の従来の塩化第二鉄廃液の処理方法では、沈殿物には廃液中に含まれる多種の金属類がまとめて存在しているが、これから個々の金属を分離することは困難であって産業利用は難しく、結局沈殿物は廃棄されていた。このため銅イオンやニッケルイオン等の高価な金属の有効利用が図れず、資源が無駄になってしまうと共に、廃液の投棄処分には上述の中和処理などの面倒な作業が伴ない、手間やコストが増大するという問題があった。このような背景の下では廃液中の有価な金属を回収し、有効利用を図ることができる塩化第二鉄廃液の処理方法の確率が望まれている。
【0005】
本発明はこのような事情の下になされたものであり、その目的は銅、ニッケル、クロムを含む塩化第二鉄廃液から銅、ニッケル、クロム等を回収しながら、塩化第二鉄を再生することができる塩化第二鉄廃液の処理方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1の発明は、銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、前記工程にて得られた液に鉄を添加して、ニッケルを析出させて分離し、クロムを含む塩化第一鉄液を得る脱ニッケル工程と、前記工程にて得られた液のpHを2.8〜3.5に調節して、水酸化クロムを生成させ、分離する脱クロム工程と、前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、を含むことを特徴とする。
【0007】
請求項2の発明は、銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、前記工程にて得られた液のpHを2.8〜3.5に調節して、水酸化クロムを生成させ、分離する脱クロム工程と、前記工程にて得られた液に鉄を添加して、ニッケルを析出させて分離し、クロムを含む塩化第一鉄液を得る脱ニッケル工程と、前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、を含むことを特徴とする。
【0008】
請求項3の発明は、銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、前記工程にて得られた液に鉄を添加してニッケルを析出させるニッケル析出工程と、前記ニッケルが析出した液のpHを2.8〜3.5に調整して水酸化クロムを生成させるクロム生成工程と、前記工程にて得られた、ニッケルが析出し、水酸化クロムが生成した液からニッケル及び水酸化クロムを分離するニッケル・クロム分離工程と、前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、を含むことを特徴とする。
【0009】
請求項4の発明は、 銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、前記工程にて得られた液のpHを2.8〜3.5に調整して水酸化クロムを生成させるクロム生成工程と、前記水酸化物クロムが生成した液に鉄を添加してニッケルを析出させるニッケル析出工程と、前記工程にて得られた、ニッケルが析出し、水酸化クロムが生成した液からニッケル及び水酸化クロムを分離するニッケル・クロム分離工程と、前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、を含むことを特徴とする。
【0010】
請求項5の発明は、銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、前記工程にて得られた液に鉄を添加して当該液中のpHを2.8〜3.5に調整し、ニッケルを析出させると共に水酸化クロムを生成させ、これらニッケル及び水酸化クロムを分離する脱ニッケル・クロム工程と、前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、を含むことを特徴とする。
【0011】
請求項6の発明は、請求項1、2、3、4又は5記載の発明において、脱銅工程は、還元工程にて得られた液のpHを1.8〜2.2に調整して行うことを特徴とする。
【0012】
請求項7の発明は、請求項1、2、3、4、5又は6記載の発明において、ニッケル析出工程又は脱ニッケル・クロム工程にてニッケルを析出させるための鉄の添加量は、脱銅工程にて得られた液中のニッケル量の4〜5倍当量であることを特徴とする。
【0013】
請求項8の発明は、請求項3、4、5、6又は7記載の発明において、ニッケル・クロム分離工程又は脱ニッケル・クロム工程は、ニッケルと水酸化クロムとが含まれる液から、ニッケルを磁石に吸着させる工程を含むことを特徴とする。
【0014】
【発明の実施の形態】
次に本発明の実施の形態について説明する。図1は本発明方法を実施する塩化第二鉄廃液処理装置の一形態を示す構成図である。図中11は塩化第二鉄廃液の廃液貯槽であり、この下流側には廃液受槽12を介して、鉄例えば鉄スクラップが投入されるように構成された1次還元槽2が設けられている。この1次還元槽の下流側には、例えば2槽からなり、夫々鉄例えば鉄粉が供給されるように構成された脱銅槽31、32が設けられており、これらの槽の下流側には第1の固液分離手段例えば遠心分離機41を介して、例えば3槽からなり、夫々鉄例えば鉄粉が供給されるように構成された脱ニッケル・クロム槽51、52、53が設けられている。
【0015】
これらの槽の下流側には第2の固液分離手段例えば磁選機42、第3の固液分離手段例えば無孔壁遠心分離機43を介して塩化第一鉄貯槽54が設けられており、この槽の下流側には酸化槽6が設けられていて、この酸化槽6は塩素ガスが供給されるように構成されている。前記磁選機42は、例えば箱状の本体の底部に磁石を配設して構成される。
【0016】
次にこのような塩化第二鉄廃液処理装置で実施される塩化第二鉄廃液の処理方法について説明する。先ず廃液貯槽11から廃液受槽12を介して1次還元槽2に、例えば銅2.4%、ニッケル0.8%、クロム680ppm、塩化第一鉄12.7%と塩化第二鉄23.5%等を含む塩化第二鉄廃液を供給し、次いでこの槽内に鉄スクラップを例えば還元の当量分投入して、塩化第二鉄廃液の還元工程を実施する。
【0017】
即ち1次還元槽2内では以下の(1)式の反応が進行し、廃液中に含まれる塩化第二鉄が塩化第一鉄に還元される。このようにして塩化第二鉄がほとんどない状態となるまで還元工程を実施し、この工程の終了時のタイミングは例えば酸化還元電位により制御する。なお還元工程で使用される鉄は例えば鉄粉や鉄板のくずでもよいが、製造コストを考慮すると鉄スクラップが望ましい。
2FeCl3 + Fe → 3FeCl2 ・・・ (1)
【0018】
続いて還元工程にて得られた、銅、ニッケル、クロムを含む塩化第一鉄液(以下1次還元液という)を脱銅槽3に送液し、ここに鉄例えば鉄粉を、例えば1次還元液中に含まれる銅の1.2〜1.7倍当量及び塩酸の1倍当量を合わせた量添加すると共に、pHを1.8〜2.2に調整して、液を槽内に例えば1槽3時間ずつ、2槽合わせて6時間滞留させながら、銅の析出工程を実施する。この工程では、以下の(2)式、(3)式の反応が進行して、1次還元液中に塩化第二銅の状態で存在する銅が鉄粉との反応により、鉄粉の表面に銅がメッキされた状態で析出してくる。
CuCl2 + Fe → Cu + FeCl2 ・・・ (2)
2HCl + Fe → FeCl2 + H2 ・・・ (3)
【0019】
ここで添加される鉄は、反応性が高く、不純物の含有量が少ない鉄粉であることが望ましく、その添加量を銅の1.2〜1.7倍当量とするのは、ニッケルの析出を抑えるためである。即ちこの程度の鉄の添加量であれば、イオン化傾向の違いによりニッケルよりも金属になりやすい銅が、ニッケルに優先して析出する。またpHを1.8〜2.2に調整するのは、液中に含まれる鉄やクロムの加水分解反応の進行を抑制して、水酸化鉄や水酸化クロムの発生を抑えるためである。さらに槽内の液の滞留時間を1槽3時間程度とするのは、脱銅反応がある程度進行するには時間がかかるからである。この際槽内の液のpHは、例えば槽内への1次還元液の供給量や鉄粉の供給量、槽内における液の滞留時間等により調整される。即ち1次還元液のpHは0以下であるので、ここに鉄粉を添加すればpHが大きくなり、1次還元液の供給量が多くなるとpHは小さくなる。また液の滞留時間が長くなるとpHは大きくなる。
【0020】
次いで析出工程にて鉄を含む結晶が析出した被処理液を遠心分離機41に送液し、ここで結晶を分離する。このようにして塩化第二鉄廃液から銅が鉄と共に回収されるが、この実施の形態では脱銅槽3と遠心分離機41とにより脱銅工程が実施される。なお第1の固液分離手段としては無孔壁遠心分離機43等を用いてもよい。一方結晶分離後の分離液は、ニッケル、クロムを含む塩化第一鉄液であり、この液を第1脱ニッケル・クロム槽51に送液する。
【0021】
続いて脱ニッケル・クロム槽51、52、53にて、ニッケル及びクロムの析出工程を実施する。即ち前記分離液を第1脱ニッケル・クロム槽51から第2脱ニッケル・クロム槽52を介して第3脱ニッケル・クロム槽53まで各槽を例えば2時間程度滞留させながら送液し、各槽に鉄例えば鉄粉を、例えば分離液中に含まれるニッケルの4〜5倍当量の1/3量ずつ添加する。このように分離液中に鉄粉を添加すると、以下の(4)式の反応が進行して、分離液中に塩化ニッケルの状態で存在するニッケルが鉄粉との反応により、鉄粉の表面にニッケルがメッキされた状態で析出してくる。
NiCl2 + Fe → Ni + FeCl2 ・・・ (4)
【0022】
また分離液中に鉄粉を添加すると液のpHが上昇し、液を滞留させれば鉄粉による液中の塩酸の消費のため、さらにpHは上昇するが、例えば各槽2時間程度滞留させると、最終槽である第3脱ニッケル・クロム槽53ではpHは2.8〜3.5程度になる。液のpHがこの程度になると、クロムや鉄の加水分解反応が進行して、クロムや鉄の水酸化物が生成し、水酸化クロム(Cr(OH)3 )は水酸化鉄(Fe(OH)2 )と共に沈殿する。
【0023】
ここで添加される鉄は、反応性が高く、不純物の含有量が少ない鉄粉であることが望ましく、その添加量をニッケルの4〜5倍当量とするのは、鉄粉の表面にニッケルの被膜が形成され、鉄が不動態化して反応性が低下するからである。またこの工程では、上述のように鉄やクロムの加水分解反応を進行させるためにpHを2.8〜3.5に調整することが望ましく、この際槽内の液のpHは、例えば槽に供給される被処理液の量や、添加される鉄粉の量、液の滞留時間で調整される。
【0024】
このため鉄粉の量を液中のニッケル量の4〜5倍当量添加した場合には、上述のように槽内の液の滞留時間を各槽1〜2時間程度とすることが望ましい。この際滞留時間が短くて、液のpHが前記範囲より小さいと、クロムの加水分解反応があまり進行せず、水酸化クロムの生成量が少なくなって、クロムの除去が困難になり、反対に滞留時間が長すぎると、液のpHが前記範囲より大きくなって水酸化クロムや水酸化鉄の生成量が多くなり、これらの分離が困難になる。
【0025】
次いで脱ニッケル・クロム槽51〜53にてニッケルを含む結晶等が析出した被処理液を磁選機42に送液し、ここで先ずニッケルを含む結晶を分離する。即ち磁選機42ではニッケルが鉄と共に磁石に引き付けられ、磁石上に堆積する。一方水酸化クロムや水酸化鉄は塩化第一鉄液と共に磁石上を流れて通過するので、ニッケル、鉄粉、水酸化クロム、水酸化鉄が存在する被処理液から、ニッケルと鉄粉のみを分離して回収することができる。
【0026】
一方磁選機42を通過した被処理液は、水酸化クロム及び水酸化鉄を含む塩化第一鉄液であり、この液を無孔壁遠心分離機43に送液して、水酸化クロム及び水酸化鉄を濃縮させて分離して回収し、このようにして銅、ニッケル、クロムが除去された塩化第一鉄液を得る。この実施の形態では脱ニッケル・クロム槽51〜53と磁選機42、無孔壁遠心分離機43とにより脱ニッケル・クロム工程が実施される。
【0027】
続いてこの塩化第一鉄液を塩化第一鉄液貯槽53を介して酸化槽6に送液し、この槽内において酸化工程を実施する。即ち槽6内の塩化第一鉄液に例えばエジェクタを介して塩素ガスを供給し、以下の(5)式の反応により、塩化第二鉄液を再生する。このようにして再生された塩化第二鉄液は、塩化第二鉄42.1%、ニッケル30ppm、クロム30ppm程度となる。
2FeCl2 + Cl2 → 2FeCl3 ・・・ (5)
【0028】
このような塩化第二鉄廃液の処理方法では、先ず脱銅工程にて被処理液のpHを1.8〜2.2に調整することにより、ニッケルの析出や鉄やクロムの加水分解反応を抑制して銅と鉄のみを含む結晶を析出させることができ、脱ニッケル・クロム工程では鉄粉をニッケルの4〜5倍当量添加することにより、ニッケルと鉄とを含む結晶を析出させると共に、滞留時間を長くして被処理液のpHを2.8〜3.5に調整することにより、水酸化クロムを水酸化鉄と共に沈殿させることができる。
【0029】
そして磁選機にてニッケルと鉄粉とを磁石に吸着させることにより、ニッケル、鉄粉、水酸化クロム、水酸化鉄が存在する塩化第一鉄液からニッケルと鉄粉のみを分離して回収することができる。従って比較的簡易な手法により銅、ニッケル、クロムを含む塩化第二鉄廃液から銅、ニッケル、クロムを個別に回収することができ、これら有価な金属の有効利用を図ることができて、資源の無駄を低減することができる。
【0030】
ここで脱銅工程では銅は鉄粉の表面に銅がメッキされた状態で回収されるが、この回収された銅と鉄の混合物におけるニッケルやクロムの含有率は極めて低い。また脱ニッケル・クロム工程では、ニッケルは鉄粉の表面にニッケルがメッキされた状態で回収されるが、回収されたニッケルと鉄の混合物には銅やクロムはほとんど含まれていない。従って回収された銅やニッケルの利用価値は極めて高く、例えば回収されたニッケルと鉄の混合物はステンレスの原料として再利用することができる。
【0031】
また塩化第二鉄液中の再生においても廃棄処分に伴う面倒な作業を行なわなくてよいので、手間やこれに要するコストを低減することができる上、脱ニッケル・クロム工程は、液の滞留時間によるpHの調整により、ニッケルの析出と水酸化クロムの生成を同じ反応槽で行なうことができるため、装置構成を簡易にすることができ、不純物濃度が極めて低い有益な塩化第二鉄液を簡易な手法により再生することができる。
【0032】
以上において本発明は、銅、ニッケル、クロムの他にスズやチタン等を含む塩化第二鉄廃液の処理に対しても適用することができ、例えば銅、ニッケル、クロムの他にスズを120ppm、チタンを50ppm程度含む場合には、脱銅工程においてスズおよびチタンは鉄粉との反応により、鉄粉の表面にスズやチタンがメッキされた状態で析出してくるので銅と共に分離され、再生された塩化第二鉄液中のスズ濃度は5ppm以下となり、チタン濃度も5ppm以下となる。
【0033】
なお以上において本発明では、脱銅工程を行って銅を除去した後、当該液に液中のニッケル量の4〜5倍等量の鉄分を添加してニッケルを析出させて分離し(脱ニッケル工程)、次いでニッケルを除去した液中のpHを2.8〜3.5に調整して水酸化クロムを生成させて分離して(脱クロム工程)、塩化第一鉄液を得るようにしてもよいし、脱銅工程を行なった後、脱クロム工程を行ない、次いで脱ニッケル工程を行なってもよい。
【0034】
また脱銅工程を行って銅を除去した後、当該液に鉄粉を添加してニッケルを析出させ(ニッケル析出工程)、続いてこの液のpHを2.8〜3.5に調整してクロムを生成させ(クロム生成工程)、この後ニッケルとクロムとを夫々液から分離するようにしてもよい(ニッケル・クロム分離工程)し、脱銅工程を行なった後、クロム生成工程をニッケル析出工程よりも先に行なってもよく、またニッケルとクロムとは同時に析出させるようにしてもよい。ここでクロムを先に析出させる際には、液中のpHを水酸化クロムの析出分離に適した2.8〜3.5に調整して水酸化クロムを析出させてから、ニッケルを析出させるために液中のニッケル量の4〜5倍等量の鉄分を添加すればよい。
【0035】
さらにまたニッケルが析出し、水酸化クロムが生成した液から、ニッケルと水酸化クロムを分離する際には、ニッケルを先に分離してもよいし、水酸化クロムを先に分離してもよい。
【0036】
【実施例】
以下本発明の実施例を記載する。
実施例1
塩化第二鉄を23.5%、塩化第一鉄を12.7%、銅を2.4%、ニッケルを0.8%、クロムを680ppm、スズを120ppm含む塩化第二鉄廃液1000gに水300.9g、鉄スクラップ40.4gを添加して液を6時間滞留させながら還元工程を実施した。得られた1次還元液は1341.3gであり、塩化第一鉄を30.0%、銅を1.79%、ニッケルを0.60%、クロムを507ppm含むものであった。
【0037】
次いでこの液に鉄粉43.6g添加して液を1槽3時間ずつ2槽合わせて6時間滞留させながら銅を含む結晶を析出させ、この結晶を無孔壁遠心分離機にて分離して脱銅工程を実施した。分離された銅を含む結晶48.7gは、鉄粉の表面に銅がメッキされた状態であり、銅を49.3%、鉄を30.4%、ニッケルを3.3%、クロムを103ppm,スズを200ppm含んでいた。一方脱銅された分離液は1335.9gであり、塩化第一鉄を35.0%、ニッケルを0.48%、クロムを505ppm、スズを9ppm含むものであった。
【0038】
続いてこの分離液に鉄粉30.5gを添加してニッケルを含む結晶を析出させると共に、液を1槽3時間ずつ2槽合わせて6時間滞留させ液のpHを2.8〜3.5に調整して水酸化クロムと水酸化鉄を生成させた。そしてこの被処理液を磁選機に通流させてニッケルを含む結晶を分離した後、水酸化クロムを無孔壁遠心分離機にて分離して、脱ニッケル・クロム工程を実施した。
【0039】
磁選機により分離されたニッケルを含む結晶は30.8gであり、ニッケルが鉄粉の表面にメッキされた状態をなしており、ニッケルを20.8%、鉄を79.2%含んでいた。一方脱ニッケルされた分離液は1335.6gであり、塩化第一鉄を36.1%、ニッケルを30ppmを含むものであった。また無孔壁遠心分離機により分離された水酸化クロムの濃縮液は40.0gであり、塩化第一鉄を28.4%、水酸化クロムを3.0%含んでいた。一方脱クロムされた分離液は1295.6gであり、塩化第一鉄を36.3%、ニッケルを30ppm、クロムを30ppm含み、スズは5ppm以下であった。
続いて得られた液に塩素ガスを添加して酸化工程を実施し、塩化第二鉄液を再生した。再生された塩化第二鉄液は、塩化第二鉄を42.1%、ニッケルを30ppm、クロムを30ppm含み、液量は1434.3gであった。
【0040】
この実施例により、脱銅工程では、ニッケル、クロムの含有量の極めて少ない銅と鉄との混合物を回収することができ、また脱ニッケル・クロム工程では、銅、クロムの含有しない、ニッケルと鉄との混合物を回収することができて、さらにニッケル、クロム等の不純物濃度の極めて低い塩化第二鉄液が再生できることが確認された。
【0041】
【発明の効果】
本発明によれば、簡易な手法により、銅、ニッケル、クロムを含む塩化第二鉄廃液から、銅、ニッケル、クロムを個別に回収することができて、これらの金属の有効利用を図ることができると共に、不純物濃度の極めて低い塩化第二鉄液を再生することができる。
【図面の簡単な説明】
【図1】本発明方法を実施する塩化第二鉄廃液処理装置の一形態を示す構成図である。
【符号の説明】
2 1次還元槽
31 第1脱銅槽
32 第2脱銅槽
41 遠心分離機
42 磁選機
43 無孔壁遠心分離機
51 第1脱ニッケル・クロム槽
52 第2脱ニッケル・クロム槽
53 第3脱ニッケル・クロム槽
6 酸化槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating ferric chloride waste liquid for regenerating ferric chloride liquid from ferric chloride waste liquid containing copper, nickel, and chromium.
[0002]
[Prior art]
Ferric chloride (FeCl 3 ) solution is used as a coagulating sedimentation agent for municipal sewage and factory effluent, or as an etching agent for printed circuit boards. For example, a lead frame photoetching agent for ICs and LSIs. As an etching solution, ferrous chloride (FeCl 2 ), which is an etching product, and iron ions, copper ions, nickel ions, chromium ions, etc. eluted from the lead frame are present in the etching solution. However, as the process proceeds, these concentrations in the etching solution become higher. Here, ferrous chloride has almost no ability to dissolve the lead frame (etching ability), so when the ferrous chloride concentration in the etching solution increases, the etching rate (per unit time of the lead frame). The amount of the solution is reduced, and the efficiency of the etching process is significantly deteriorated.
[0003]
Therefore, it is necessary to regenerate the etching waste liquid. However, since various kinds of metal ions such as copper ions, nickel ions, and chromium ions exist in the waste liquid as described above, a reducing agent such as iron is added. When regenerated by a general method of separating and separating metal ions, a precipitate in which various metals are mixed is obtained. If an attempt is made to separate individual metals from this precipitate, the number of processing steps increases and the processing is performed. It becomes very complicated. Therefore, conventionally, for example, by neutralizing with an alkali solution such as sodium hydroxide, the metals are precipitated as hydroxides or oxides, and the precipitates are disposed of.
[0004]
[Problems to be solved by the invention]
In the above-described conventional ferric chloride waste liquid treatment method, various metals contained in the waste liquid are present together in the precipitate, but it is difficult to separate individual metals from the industry. It was difficult to use and eventually the sediment was discarded. For this reason, it is impossible to effectively use expensive metals such as copper ions and nickel ions, and resources are wasted, and the disposal of waste liquid is accompanied by troublesome work such as the above-described neutralization treatment. There was a problem that the cost increased. Under such a background, there is a demand for a probability of a ferric chloride waste liquid treatment method capable of recovering valuable metals in the waste liquid and making effective use thereof.
[0005]
The present invention has been made under such circumstances, and its purpose is to regenerate ferric chloride while recovering copper, nickel, chromium and the like from a ferric chloride waste liquid containing copper, nickel and chromium. Another object of the present invention is to provide a method for treating ferric chloride waste liquid.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, a ferric chloride waste liquid containing copper, nickel, and chromium is supplied to a primary reduction tank, and iron scrap is added to the primary reduction tank so that ferric chloride remaining in the waste liquid is chlorinated. The reduction process to reduce to ferrous iron, and then the liquid obtained in the above process is sent to a copper removal tank, iron powder is added to the copper removal tank , copper is deposited and separated, nickel A copper removal step for obtaining a ferrous chloride solution containing chromium, and a step of adding iron to the solution obtained in the step to deposit and separate nickel to obtain a ferrous chloride solution containing chromium. A nickel step, a dechromation step for adjusting and adjusting the pH of the liquid obtained in the step to 2.8 to 3.5 to produce and separate chromium hydroxide, and a chloride step obtained in the step. And an oxidation step of oxidizing ferrous liquid to obtain ferric chloride.
[0007]
According to the second aspect of the present invention, a ferric chloride waste liquid containing copper, nickel, and chromium is supplied to a primary reduction tank, and iron scrap is added to the primary reduction tank so that ferric chloride remaining in the waste liquid is chlorinated. The reduction process to reduce to ferrous iron, and then the liquid obtained in the above process is sent to a copper removal tank, iron powder is added to the copper removal tank , copper is deposited and separated, nickel , A copper removal step for obtaining a ferrous chloride solution containing chromium, and dechromation for adjusting the pH of the solution obtained in the step to 2.8 to 3.5 to produce and separate chromium hydroxide. A step of adding nickel to the liquid obtained in the step, precipitating and separating nickel, and obtaining a ferrous chloride solution containing chromium, and the step of obtaining the ferric chloride obtained in the step And an oxidation step of oxidizing ferrous liquid to obtain ferric chloride.
[0008]
In the invention of claim 3, ferric chloride waste liquid containing copper, nickel and chromium is supplied to the primary reduction tank, iron scrap is added to the primary reduction tank, and ferric chloride remaining in the waste liquid is chlorinated. The reduction process to reduce to ferrous iron, and then the liquid obtained in the above process is sent to a copper removal tank, iron powder is added to the copper removal tank , copper is deposited and separated, nickel 1. A copper removal step of obtaining a ferrous chloride solution containing chromium, a nickel precipitation step of depositing nickel by adding iron to the solution obtained in the step, and a pH of the solution in which the nickel is precipitated. The chromium production | generation process which adjusts to 8-3.5 and produces | generates chromium hydroxide, and the nickel obtained by the said process and nickel which precipitates and isolate | separates nickel and chromium hydroxide from the liquid which the chromium hydroxide produced | generated・ Chromium separation step and ferrous chloride solution obtained in the above step Oxidized to, characterized in that it comprises an oxidation step to obtain a ferric chloride, a.
[0009]
According to a fourth aspect of the present invention, ferric chloride waste liquid containing copper, nickel, and chromium is supplied to a primary reduction tank, and iron scrap is added to the primary reduction tank so that ferric chloride remaining in the waste liquid is chlorinated. The reduction process to reduce to ferrous iron, and then the liquid obtained in the above process is sent to a copper removal tank, iron powder is added to the copper removal tank , copper is deposited and separated, nickel A copper removal step for obtaining a ferrous chloride solution containing chromium, a chromium production step for producing chromium hydroxide by adjusting the pH of the liquid obtained in the step to 2.8 to 3.5, and A nickel precipitation step of depositing nickel by adding iron to a solution in which chromium hydroxide is formed, and nickel and chromium hydroxide obtained from the solution in which nickel is precipitated and chromium hydroxide is formed in the step. The nickel-chromium separation process to be separated, and the chloride chloride obtained in the process And an oxidation step of oxidizing ferrous liquid to obtain ferric chloride.
[0010]
According to the fifth aspect of the present invention, a ferric chloride waste liquid containing copper, nickel, and chromium is supplied to a primary reduction tank, and iron scrap is added to the primary reduction tank to ferric chloride remaining in the waste liquid. The reduction process to reduce to ferrous iron, and then the liquid obtained in the above process is sent to a copper removal tank, iron powder is added to the copper removal tank , copper is deposited and separated, nickel , A copper removal step for obtaining a ferrous chloride solution containing chromium, and adding iron to the solution obtained in the step to adjust the pH in the solution to 2.8 to 3.5, thereby precipitating nickel And a nickel removal / chromium step for separating the nickel and the chromium hydroxide, and an oxidation step for oxidizing the ferrous chloride solution obtained in the step to obtain ferric chloride. , Including.
[0011]
The invention of claim 6 is the invention of claim 1, 2, 3, 4 or 5, wherein the copper removal step adjusts the pH of the liquid obtained in the reduction step to 1.8 to 2.2. It is characterized by performing.
[0012]
The invention of claim 7 is the invention of claim 1, 2, 3, 4, 5 or 6, wherein the amount of iron added to precipitate nickel in the nickel precipitation step or the nickel removal / chromium step is copper removal. The amount is 4 to 5 times the amount of nickel in the liquid obtained in the process.
[0013]
The invention according to claim 8 is the invention according to claim 3, 4, 5, 6 or 7, wherein the nickel-chromium separation step or the nickel removal-chromium step comprises removing nickel from a liquid containing nickel and chromium hydroxide. The method includes a step of attracting the magnet.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described. FIG. 1 is a block diagram showing an embodiment of a ferric chloride waste liquid treatment apparatus for carrying out the method of the present invention. In the figure, reference numeral 11 denotes a waste liquid storage tank for ferric chloride waste liquid, and a primary reduction tank 2 configured to be charged with iron, for example, iron scrap, is provided downstream of the waste liquid receiving tank 12. . On the downstream side of the primary reduction tank, there are provided, for example, two tanks, and copper removal tanks 31 and 32 each configured to be supplied with iron, for example, iron powder, are provided downstream of these tanks. Is composed of, for example, three tanks via a first solid-liquid separation means, for example, a centrifuge 41, and is provided with nickel removal / chromium tanks 51, 52, 53 each configured to be supplied with iron, for example, iron powder. ing.
[0015]
On the downstream side of these tanks, a ferrous chloride storage tank 54 is provided via a second solid-liquid separation means such as a magnetic separator 42 and a third solid-liquid separation means such as a non-porous wall centrifugal separator 43, An oxidation tank 6 is provided on the downstream side of the tank, and the oxidation tank 6 is configured to be supplied with chlorine gas. The magnetic separator 42 is configured by arranging a magnet at the bottom of a box-shaped main body, for example.
[0016]
Next, the processing method of the ferric chloride waste liquid implemented with such a ferric chloride waste liquid processing apparatus is demonstrated. First, from the waste liquid storage tank 11 to the primary reduction tank 2 through the waste liquid receiving tank 12, for example, 2.4% copper, 0.8% nickel, 680 ppm chromium, 12.7% ferrous chloride and 23.5 ferric chloride. % Of ferric chloride waste liquid is supplied, and then, for example, iron scrap is introduced into the tank in an amount equivalent to the reduction, and the ferric chloride waste liquid is reduced.
[0017]
That is, the reaction of the following formula (1) proceeds in the primary reduction tank 2, and ferric chloride contained in the waste liquid is reduced to ferrous chloride. In this way, the reduction step is carried out until there is almost no ferric chloride, and the timing at the end of this step is controlled by, for example, a redox potential. The iron used in the reduction step may be, for example, iron powder or scrap of iron plate, but iron scrap is desirable in consideration of manufacturing costs.
2FeCl 3 + Fe → 3FeCl 2 (1)
[0018]
Subsequently, a ferrous chloride solution containing copper, nickel and chromium (hereinafter referred to as a primary reducing solution) obtained in the reduction step is fed to the copper removal tank 3, where iron, for example, iron powder, While adding 1.2 to 1.7 times equivalent of copper and 1 time equivalent of hydrochloric acid contained in the next reducing solution, the pH was adjusted to 1.8 to 2.2, and the solution was placed in the tank. For example, the copper deposition step is carried out while the two tanks are retained for 6 hours for 3 hours each. In this step, the reactions of the following formulas (2) and (3) proceed, and the copper present in the state of cupric chloride in the primary reducing solution reacts with the iron powder, whereby the surface of the iron powder The copper is deposited in a plated state.
CuCl 2 + Fe → Cu + FeCl 2 (2)
2HCl + Fe → FeCl 2 + H 2 (3)
[0019]
The iron added here is preferably iron powder having high reactivity and low impurity content, and the amount added is 1.2 to 1.7 times the equivalent of copper because the precipitation of nickel It is for suppressing. That is, with this amount of iron added, copper that is more likely to be a metal than nickel due to the difference in ionization tendency preferentially precipitates over nickel. The reason for adjusting the pH to 1.8 to 2.2 is to suppress the generation of iron hydroxide and chromium hydroxide by suppressing the progress of the hydrolysis reaction of iron and chromium contained in the liquid. Further, the reason why the residence time of the liquid in the tank is set to about 3 hours per tank is that it takes time for the copper removal reaction to proceed to some extent. At this time, the pH of the liquid in the tank is adjusted by, for example, the supply amount of the primary reducing liquid into the tank, the supply amount of iron powder, the residence time of the liquid in the tank, and the like. That is, since the pH of the primary reducing solution is 0 or less, the pH increases when iron powder is added here, and the pH decreases as the supply amount of the primary reducing solution increases. In addition, the pH increases as the liquid residence time increases.
[0020]
Next, the liquid to be treated in which crystals containing iron are precipitated in the precipitation step is sent to the centrifuge 41, where the crystals are separated. Thus, although copper is collect | recovered with iron from ferric chloride waste liquid, a copper removal process is implemented by the copper removal tank 3 and the centrifuge 41 in this embodiment. As the first solid-liquid separation means, a non-porous wall centrifuge 43 or the like may be used. On the other hand, the separation liquid after crystal separation is a ferrous chloride liquid containing nickel and chromium, and this liquid is sent to the first nickel removal / chromium tank 51.
[0021]
Subsequently, nickel and chromium deposition steps are performed in the nickel removal / chromium tanks 51, 52 and 53. That is, the separation liquid is fed from the first nickel removal / chromium tank 51 through the second nickel removal / chromium tank 52 to the third nickel removal / chromium tank 53 while being retained for about 2 hours, for example. Iron, for example, iron powder, is added to each 1/3 amount, for example, of 4 to 5 times the equivalent of nickel contained in the separated liquid. When iron powder is added to the separation liquid in this way, the reaction of the following formula (4) proceeds, and the nickel present in the state of nickel chloride in the separation liquid reacts with the iron powder, thereby the surface of the iron powder. The nickel is deposited in a state where it is plated.
NiCl 2 + Fe → Ni + FeCl 2 ··· (4)
[0022]
Moreover, when iron powder is added to the separated liquid, the pH of the liquid rises, and when the liquid is retained, the pH further rises due to the consumption of hydrochloric acid in the liquid by the iron powder. For example, each tank is retained for about 2 hours. And in the 3rd nickel removal chrome tank 53 which is the last tank, pH will be about 2.8-3.5. When the pH of the liquid reaches this level, the hydrolysis reaction of chromium and iron proceeds to produce chromium and iron hydroxides, and chromium hydroxide (Cr (OH) 3 ) is converted to iron hydroxide (Fe (OH ) Precipitate with 2 ).
[0023]
The iron added here is desirably iron powder having high reactivity and low content of impurities, and the addition amount is 4 to 5 times equivalent to that of nickel. This is because a film is formed and iron is passivated to reduce reactivity. In this step, it is desirable to adjust the pH to 2.8 to 3.5 in order to advance the hydrolysis reaction of iron or chromium as described above. It is adjusted by the amount of liquid to be treated to be supplied, the amount of iron powder to be added, and the residence time of the liquid.
[0024]
For this reason, when the amount of iron powder is added 4 to 5 times as much as the amount of nickel in the liquid, the residence time of the liquid in the tank is preferably about 1 to 2 hours for each tank as described above. At this time, if the residence time is short and the pH of the solution is smaller than the above range, the hydrolysis reaction of chromium does not proceed so much, the amount of chromium hydroxide produced decreases, and it becomes difficult to remove chromium. If the residence time is too long, the pH of the liquid becomes larger than the above range, and the amount of chromium hydroxide and iron hydroxide generated increases, making it difficult to separate them.
[0025]
Next, the liquid to be treated in which crystals including nickel are deposited in the nickel removal / chromium tanks 51 to 53 is sent to the magnetic separator 42, where the crystals containing nickel are first separated. That is, in the magnetic separator 42, nickel is attracted to the magnet together with iron and is deposited on the magnet. On the other hand, since chromium hydroxide and iron hydroxide flow and pass over the magnet together with ferrous chloride liquid, only nickel and iron powder are removed from the liquid to be treated in which nickel, iron powder, chromium hydroxide, and iron hydroxide exist. It can be separated and recovered.
[0026]
On the other hand, the liquid to be treated that has passed through the magnetic separator 42 is a ferrous chloride liquid containing chromium hydroxide and iron hydroxide, and this liquid is sent to the non-porous wall centrifuge 43 to obtain chromium hydroxide and water. Iron oxide is concentrated and separated and recovered, thus obtaining a ferrous chloride solution from which copper, nickel and chromium are removed. In this embodiment, the nickel removal / chromium process is performed by the nickel removal / chromium tanks 51 to 53, the magnetic separator 42, and the non-porous wall centrifugal separator 43.
[0027]
Subsequently, this ferrous chloride solution is sent to the oxidation tank 6 through the ferrous chloride solution storage tank 53, and the oxidation process is carried out in this tank. That is, chlorine gas is supplied to the ferrous chloride solution in the tank 6 through, for example, an ejector, and the ferric chloride solution is regenerated by the reaction of the following formula (5). The ferric chloride solution regenerated in this manner is about 42.1% ferric chloride, 30 ppm nickel, and 30 ppm chromium.
2FeCl 2 + Cl 2 → 2FeCl 3 (5)
[0028]
In such a ferric chloride waste liquid treatment method, first, the pH of the liquid to be treated is adjusted to 1.8 to 2.2 in the copper removal step, thereby performing nickel precipitation and iron or chromium hydrolysis reaction. While suppressing, crystals containing only copper and iron can be precipitated, and in the nickel removal / chromium process, adding 4 to 5 equivalents of iron powder to precipitate crystals containing nickel and iron, By adjusting the pH of the liquid to be treated to 2.8 to 3.5 by increasing the residence time, chromium hydroxide can be precipitated together with iron hydroxide.
[0029]
And by adsorbing nickel and iron powder to the magnet with a magnetic separator, only nickel and iron powder are separated and recovered from the ferrous chloride liquid containing nickel, iron powder, chromium hydroxide and iron hydroxide. be able to. Therefore, copper, nickel, and chromium can be individually recovered from ferric chloride waste liquid containing copper, nickel, and chromium by a relatively simple method, and effective use of these valuable metals can be achieved. Waste can be reduced.
[0030]
Here, in the copper removal step, copper is recovered in a state where copper is plated on the surface of the iron powder, but the content of nickel and chromium in the recovered copper and iron mixture is extremely low. In the nickel removal / chromium process, nickel is recovered in a state where nickel is plated on the surface of the iron powder, but the recovered mixture of nickel and iron contains almost no copper or chromium. Accordingly, the utility value of the recovered copper and nickel is extremely high. For example, the recovered nickel and iron mixture can be reused as a raw material for stainless steel.
[0031]
In addition, since it is not necessary to perform troublesome work associated with disposal in the reproduction of ferric chloride solution, labor and cost can be reduced. By adjusting the pH with, nickel precipitation and chromium hydroxide production can be performed in the same reaction tank, so that the equipment configuration can be simplified and useful ferric chloride solution with extremely low impurity concentration can be simplified. Can be reproduced by various methods.
[0032]
In the above, the present invention can also be applied to the treatment of ferric chloride waste liquid containing tin, titanium, etc. in addition to copper, nickel, chromium, for example, 120 ppm tin in addition to copper, nickel, chromium, When titanium is contained in an amount of about 50 ppm, tin and titanium are precipitated in a state where tin and titanium are plated on the surface of the iron powder by the reaction with the iron powder in the copper removal process, and thus separated and regenerated with copper. The tin concentration in the ferric chloride solution is 5 ppm or less, and the titanium concentration is 5 ppm or less.
[0033]
In the present invention, in the present invention, after removing copper by performing a copper removal step, iron is added to the liquid in an amount equivalent to 4 to 5 times the amount of nickel in the liquid to precipitate and separate (denicked nickel). Step), and then adjusting the pH in the liquid from which nickel has been removed to 2.8 to 3.5 to produce and separate chromium hydroxide (dechromation step) to obtain a ferrous chloride solution. Alternatively, after the copper removal step, the dechromation step may be performed, and then the nickel removal step may be performed.
[0034]
Moreover, after removing copper by performing a copper removal step, iron powder is added to the solution to precipitate nickel (nickel precipitation step), and then the pH of the solution is adjusted to 2.8 to 3.5. Chromium is produced (chromium production process), and then nickel and chromium may be separated from the liquid (nickel / chromium separation process), and after the copper removal process, the chromium production process is performed as nickel deposition. It may be performed prior to the process, or nickel and chromium may be deposited simultaneously. Here, when chromium is precipitated first, the pH in the liquid is adjusted to 2.8 to 3.5 suitable for precipitation separation of chromium hydroxide to deposit chromium hydroxide, and then nickel is deposited. Therefore, iron equivalent to 4 to 5 times the amount of nickel in the liquid may be added.
[0035]
Furthermore, when nickel and chromium hydroxide are separated from the liquid in which nickel is precipitated and chromium hydroxide is generated, nickel may be separated first, or chromium hydroxide may be separated first. .
[0036]
【Example】
Examples of the present invention will be described below.
Example 1
Water to 1000 g of ferric chloride wastewater containing 23.5% ferric chloride, 12.7% ferrous chloride, 2.4% copper, 0.8% nickel, 680 ppm chromium, 120 ppm tin 300.9 g and 40.4 g of iron scrap were added, and the reduction process was carried out while the liquid was retained for 6 hours. The obtained primary reducing solution was 1341.3 g, and contained 30.0% ferrous chloride, 1.79% copper, 0.60% nickel, and 507 ppm chromium.
[0037]
Next, 43.6 g of iron powder was added to this liquid, and the liquid was mixed for 2 hours each for 3 hours, and a crystal containing copper was precipitated while being retained for 6 hours, and this crystal was separated by a non-porous wall centrifuge. A copper removal process was performed. The separated crystals containing copper, 48.7 g, are in a state in which copper is plated on the surface of iron powder, with 49.3% copper, 30.4% iron, 3.3% nickel, and 103 ppm chromium. , Containing 200 ppm of tin. On the other hand, the separated liquid was 1335.9 g, and contained 35.0% ferrous chloride, 0.48% nickel, 505 ppm chromium, and 9 ppm tin.
[0038]
Subsequently, 30.5 g of iron powder is added to the separated liquid to precipitate nickel-containing crystals, and the liquid is combined for 2 hours for 3 hours and held for 6 hours to adjust the pH of the liquid to 2.8 to 3.5. To produce chromium hydroxide and iron hydroxide. Then, the liquid to be treated was passed through a magnetic separator to separate crystals containing nickel, and then chromium hydroxide was separated using a non-porous wall centrifuge, and a nickel removal / chromium process was performed.
[0039]
The crystal containing nickel separated by the magnetic separator was 30.8 g, nickel was plated on the surface of the iron powder, and contained 20.8% nickel and 79.2% iron. On the other hand, the nickel-free separation liquid was 1335.6 g, which contained 36.1% ferrous chloride and 30 ppm of nickel. The concentrated solution of chromium hydroxide separated by the non-porous wall centrifuge was 40.0 g, and contained 28.4% ferrous chloride and 3.0% chromium hydroxide. On the other hand, the dechromed separation liquid was 1295.6 g, containing 36.3% ferrous chloride, 30 ppm nickel, 30 ppm chromium, and tin at 5 ppm or less.
Subsequently, chlorine gas was added to the obtained liquid to carry out an oxidation step, thereby regenerating the ferric chloride liquid. The regenerated ferric chloride solution contained 42.1% ferric chloride, 30 ppm nickel, and 30 ppm chromium, and the amount was 1434.3 g.
[0040]
According to this embodiment, in the copper removal process, a mixture of copper and iron with a very low nickel and chromium content can be recovered, and in the nickel removal and chromium process, nickel and iron containing no copper and chromium can be recovered. It was confirmed that the ferric chloride solution having a very low impurity concentration such as nickel and chromium can be regenerated.
[0041]
【The invention's effect】
According to the present invention, copper, nickel and chromium can be individually recovered from a ferric chloride waste liquid containing copper, nickel and chromium by a simple method, and effective utilization of these metals can be achieved. In addition, a ferric chloride solution having an extremely low impurity concentration can be regenerated.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a ferric chloride waste liquid treatment apparatus for carrying out the method of the present invention.
[Explanation of symbols]
2 Primary reduction tank 31 First decoppering tank 32 Second decoppering tank 41 Centrifugal separator 42 Magnetic separator 43 Non-porous wall centrifugal separator 51 First denicking / chromium tank 52 Second denicking / chromium tank 53 Third Nickel removal / chromium tank 6 Oxidation tank

Claims (8)

銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、
次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、
前記工程にて得られた液に鉄を添加して、ニッケルを析出させて分離し、クロムを含む塩化第一鉄液を得る脱ニッケル工程と、
前記工程にて得られた液のpHを2.8〜3.5に調節して、水酸化クロムを生成させ、分離する脱クロム工程と、
前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、 を含むことを特徴とする塩化第二鉄廃液の処理方法。
Reduction in which ferric chloride waste liquid containing copper, nickel, and chromium is supplied to the primary reduction tank, and iron scrap is added to the primary reduction tank to reduce the ferric chloride remaining in the waste liquid to ferrous chloride. Process,
Next, the liquid obtained in the above step is sent to a copper removal tank, iron powder is added to this copper removal tank , copper is deposited and separated, and ferrous chloride liquid containing nickel and chromium is separated. A copper removal step to obtain,
Addition of iron to the liquid obtained in the above step, depositing and separating nickel, and denicking step to obtain a ferrous chloride solution containing chromium;
Adjusting the pH of the liquid obtained in the above step to 2.8 to 3.5 to produce and separate chromium hydroxide;
An oxidation step of oxidizing the ferrous chloride solution obtained in the above step to obtain ferric chloride, and a method of treating a ferric chloride waste solution.
銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、
次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、
前記工程にて得られた液のpHを2.8〜3.5に調節して、水酸化クロムを生成させ、分離する脱クロム工程と、
前記工程にて得られた液に鉄を添加して、ニッケルを析出させて分離し、クロムを含む塩化第一鉄液を得る脱ニッケル工程と、
前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、 を含むことを特徴とする塩化第二鉄廃液の処理方法。
Reduction in which ferric chloride waste liquid containing copper, nickel, and chromium is supplied to the primary reduction tank, and iron scrap is added to the primary reduction tank to reduce the ferric chloride remaining in the waste liquid to ferrous chloride. Process,
Next, the liquid obtained in the above step is sent to a copper removal tank, iron powder is added to this copper removal tank , copper is deposited and separated, and ferrous chloride liquid containing nickel and chromium is separated. A copper removal step to obtain,
Adjusting the pH of the liquid obtained in the above step to 2.8 to 3.5 to produce and separate chromium hydroxide;
Addition of iron to the liquid obtained in the above step, depositing and separating nickel, and denicking step to obtain a ferrous chloride solution containing chromium;
An oxidation step of oxidizing the ferrous chloride solution obtained in the above step to obtain ferric chloride, and a method of treating a ferric chloride waste solution.
銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、
次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、
前記工程にて得られた液に鉄を添加してニッケルを析出させるニッケル析出工程と、
前記ニッケルが析出した液のpHを2.8〜3.5に調整して水酸化クロムを生成させるクロム生成工程と、
前記工程にて得られた、ニッケルが析出し、水酸化クロムが生成した液からニッケル及び水酸化クロムを分離するニッケル・クロム分離工程と、
前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、 を含むことを特徴とする塩化第二鉄廃液の処理方法。
Reduction in which ferric chloride waste liquid containing copper, nickel, and chromium is supplied to the primary reduction tank, and iron scrap is added to the primary reduction tank to reduce the ferric chloride remaining in the waste liquid to ferrous chloride. Process,
Next, the liquid obtained in the above step is sent to a copper removal tank, iron powder is added to this copper removal tank , copper is deposited and separated, and ferrous chloride liquid containing nickel and chromium is separated. A copper removal step to obtain,
A nickel precipitation step of adding iron to the liquid obtained in the step to precipitate nickel;
A chromium generation step of adjusting the pH of the liquid in which the nickel is deposited to 2.8 to 3.5 to generate chromium hydroxide;
A nickel-chromium separation step for separating nickel and chromium hydroxide from the liquid obtained by the above-described step, in which nickel is precipitated and chromium hydroxide is generated;
An oxidation step of oxidizing the ferrous chloride solution obtained in the above step to obtain ferric chloride, and a method of treating a ferric chloride waste solution.
銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、
次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、
前記工程にて得られた液のpHを2.8〜3.5に調整して水酸化クロムを生成させるクロム生成工程と、
前記水酸化物クロムが生成した液に鉄を添加してニッケルを析出させるニッケル析出工程と、
前記工程にて得られた、ニッケルが析出し、水酸化クロムが生成した液からニッケル及び水酸化クロムを分離するニッケル・クロム分離工程と、
前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、 を含むことを特徴とする塩化第二鉄廃液の処理方法。
Reduction in which ferric chloride waste liquid containing copper, nickel, and chromium is supplied to the primary reduction tank, and iron scrap is added to the primary reduction tank to reduce the ferric chloride remaining in the waste liquid to ferrous chloride. Process,
Next, the liquid obtained in the above step is sent to a copper removal tank, iron powder is added to this copper removal tank , copper is deposited and separated, and ferrous chloride liquid containing nickel and chromium is separated. A copper removal step to obtain,
A chromium generation step of adjusting the pH of the liquid obtained in the step to 2.8 to 3.5 to generate chromium hydroxide;
A nickel precipitation step of depositing nickel by adding iron to the liquid produced by the hydroxide chromium;
A nickel-chromium separation step for separating nickel and chromium hydroxide from the liquid obtained by the above-described step, in which nickel is precipitated and chromium hydroxide is generated;
An oxidation step of oxidizing the ferrous chloride solution obtained in the above step to obtain ferric chloride, and a method of treating a ferric chloride waste solution.
銅、ニッケル、クロムを含む塩化第二鉄廃液を一次還元槽に供給し、この一次還元槽に鉄スクラップを添加して、廃液中に残存する塩化第二鉄を塩化第一鉄に還元する還元工程と、
次いで、前記工程にて得られた液を脱銅槽に送液し、この脱銅槽に鉄粉を添加して、銅を析出させて分離し、ニッケル、クロムを含む塩化第一鉄液を得る脱銅工程と、
前記工程にて得られた液に鉄を添加して当該液中のpHを2.8〜3.5に調整し、ニッケルを析出させると共に水酸化クロムを生成させ、これらニッケル及び水酸化クロムを分離する脱ニッケル・クロム工程と、
前記工程にて得られた塩化第一鉄液を酸化して塩化第二鉄を得る酸化工程と、 を含むことを特徴とする塩化第二鉄廃液の処理方法。
Reduction in which ferric chloride waste liquid containing copper, nickel, and chromium is supplied to the primary reduction tank, and iron scrap is added to the primary reduction tank to reduce the ferric chloride remaining in the waste liquid to ferrous chloride. Process,
Next, the liquid obtained in the above step is sent to a copper removal tank, iron powder is added to this copper removal tank , copper is deposited and separated, and ferrous chloride liquid containing nickel and chromium is separated. A copper removal step to obtain,
Iron is added to the liquid obtained in the step to adjust the pH in the liquid to 2.8 to 3.5, and nickel is precipitated and chromium hydroxide is generated. A nickel removal / chromium process to separate,
An oxidation step of oxidizing the ferrous chloride solution obtained in the above step to obtain ferric chloride, and a method of treating a ferric chloride waste solution.
脱銅工程は、還元工程にて得られた液のpHを1.8〜2.2に調整して行うことを特徴とする請求項1、2、3、4又は5記載の塩化第二鉄廃液の処理方法。  6. The ferric chloride according to claim 1, wherein the copper removal step is performed by adjusting the pH of the liquid obtained in the reduction step to 1.8 to 2.2. Waste liquid treatment method. ニッケル析出工程又は脱ニッケル・クロム工程にてニッケルを析出させるための鉄の添加量は、脱銅工程にて得られた液中のニッケル量の4〜5倍当量であることを特徴とする請求項1、2、3、4、5又は6記載の塩化第二鉄廃液の処理方法。  The addition amount of iron for precipitating nickel in the nickel precipitation step or the nickel removal / chromium step is 4 to 5 times the amount of nickel in the liquid obtained in the copper removal step. Item 7. A method for treating ferric chloride waste liquid according to Item 1, 2, 3, 4, 5 or 6. ニッケル・クロム分離工程又は脱ニッケル・クロム工程は、ニッケルと水酸化クロムとが含まれる液から、ニッケルを磁石に吸着させる工程を含むことを特徴とする請求項3、4、5、6又は7記載の塩化第二鉄廃液の処理方法。  The nickel / chromium separation step or the nickel removal / chromium step includes a step of adsorbing nickel on a magnet from a liquid containing nickel and chromium hydroxide. The processing method of the ferric chloride waste liquid as described.
JP34637395A 1995-12-11 1995-12-11 Treatment method of ferric chloride waste liquid Expired - Lifetime JP3739845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34637395A JP3739845B2 (en) 1995-12-11 1995-12-11 Treatment method of ferric chloride waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34637395A JP3739845B2 (en) 1995-12-11 1995-12-11 Treatment method of ferric chloride waste liquid

Publications (2)

Publication Number Publication Date
JPH09156930A JPH09156930A (en) 1997-06-17
JP3739845B2 true JP3739845B2 (en) 2006-01-25

Family

ID=18382986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34637395A Expired - Lifetime JP3739845B2 (en) 1995-12-11 1995-12-11 Treatment method of ferric chloride waste liquid

Country Status (1)

Country Link
JP (1) JP3739845B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505952B2 (en) * 2000-06-08 2010-07-21 東亞合成株式会社 Manufacturing method of high purity ferric chloride aqueous solution
KR100348894B1 (en) * 2000-07-14 2002-08-14 한국과학기술연구원 Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution
JP4606951B2 (en) * 2005-06-16 2011-01-05 株式会社アステック入江 Multi-component nickel plating waste sludge recycling method
TWI349721B (en) * 2007-09-14 2011-10-01 Trinity Resources Technology Holding Inc Method for processing used etchant, device for processing used etchant, and system for processing used etchant
JP2010221088A (en) * 2009-03-19 2010-10-07 Astec Irie Co Ltd Method of recycling waste material having metal plating layer
JP5513799B2 (en) * 2008-08-05 2014-06-04 株式会社アステック入江 Recycling method of waste plastic and etching waste liquid
JP6493679B2 (en) * 2015-08-25 2019-04-03 東亞合成株式会社 Copper powder recovery method
CN111621789A (en) * 2020-07-08 2020-09-04 曾夕 Method for recycling ferric trichloride etching waste liquid with low investment, fast effect, high benefit and zero emission
CN114369830A (en) * 2021-12-23 2022-04-19 上海荣和环保科技有限公司 Novel method and device for recovering etching solution through iron powder reduction reaction

Also Published As

Publication number Publication date
JPH09156930A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
CN111018192A (en) Method for preparing high-purity ferrous iron by using heavy metal ions in ferrous solution precipitated by sodium sulfide solid
USH1852H (en) Waste treatment of metal plating solutions
CN115216643B (en) Purification and recovery process of nickel in high-ammonium-salt wastewater
EP0813500B1 (en) Purification of metal containing solutions
JP3597907B2 (en) Regeneration method of ferric chloride solution
JP3255736B2 (en) Treatment method of iron chloride waste liquid
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JP2835772B2 (en) Heavy metal removal method for iron chloride waste liquid
JPS5976593A (en) Treatment of chemical washing waste liquor containing edta
JP2005232517A (en) Method for recycling electroless nickel plating waste solution
JP2003342763A (en) Method of recovering copper alloy pickling waste liquid
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
JPH05125562A (en) Treatment of waste etchant of ferric chloride solution
JPH0336594B2 (en)
JP3226634B2 (en) Purification method of iron chloride waste liquid containing a small amount of chromium ion
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP3523727B2 (en) Etching waste liquid treatment method
JP3018020B2 (en) Purification method of iron chloride waste liquid containing chromium, etc.
JPH06171953A (en) Production of ferric chloride solution
JPH09235684A (en) Method for regenerating waste liquid etchant
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JP2009001856A (en) Water treatment technique
JP2000345357A (en) Method for treating aged electroless nickel plating solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term