KR100348894B1 - Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution - Google Patents

Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution Download PDF

Info

Publication number
KR100348894B1
KR100348894B1 KR1020000040535A KR20000040535A KR100348894B1 KR 100348894 B1 KR100348894 B1 KR 100348894B1 KR 1020000040535 A KR1020000040535 A KR 1020000040535A KR 20000040535 A KR20000040535 A KR 20000040535A KR 100348894 B1 KR100348894 B1 KR 100348894B1
Authority
KR
South Korea
Prior art keywords
iron
nickel
amount
concentration
added
Prior art date
Application number
KR1020000040535A
Other languages
Korean (ko)
Other versions
KR20020006947A (en
Inventor
안병성
서인석
김용진
박건유
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020000040535A priority Critical patent/KR100348894B1/en
Publication of KR20020006947A publication Critical patent/KR20020006947A/en
Application granted granted Critical
Publication of KR100348894B1 publication Critical patent/KR100348894B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

본 발명은 니켈을 함유하는 폐염화철수용액에 철분(鐵粉)을 투입하여 니켈을 석출시켜 제거함에 있어서, 철분을 투입하는 방법에 관한 것으로 철분투입량을 최소화하고 슬러지 발생량을 최소화하는 것을 목적으로 한다.The present invention relates to a method for injecting iron in depositing and removing nickel by adding iron (鐵粉) to the waste iron chloride solution containing nickel, and aims to minimize the amount of iron input and the amount of sludge generated.

폐염화철 내의 니켈농도가 변화함에 따라 주기적으로 다음 [수학식 6]에 의하여 결정되는 양의 철분을 투입한다.As the nickel concentration in the spent iron chloride is changed, iron in an amount determined by the following Equation 6 is periodically added.

[수학식 6][Equation 6]

WFe/WL= △/[k'*{ln(CNi o(1 - △*t)} + b')]W Fe / W L = Δ / [k ' * (ln (C Ni o (1-Δ * t)) + b ' )]

여기에서, WFe/WL는 폐염화철수용액 단위부피당 투입되는 철분의 양이고, △는 반응율이고, CNi o는 니켈의 초기농도로 단위는 ppm이고, t의 단위는 시간이고, k'와 b'는 철분에 따라 달라지는 상수이다.Here, W Fe / W L is the amount of iron added per unit volume of waste iron chloride solution, △ is the reaction rate, C Ni o is the initial concentration of nickel, the unit is ppm, the unit of t is time, k ' and b ' is a constant that depends on iron.

Description

폐염화철수용액에서 니켈을 제거하기 위한 철분의 투입방법{Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution}Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution

본 발명은 니켈을 함유하는 폐염화철수용액에서 니켈을 제거하여 재생하는 방법에 관한 것으로 특히, 철분(鐵粉)을 첨가하여 니켈을 석출시켜 제거하는 방법에 있어서 철분을 첨가하는 방법에 관한 것이다.The present invention relates to a method of removing and regenerating nickel in a waste iron chloride solution containing nickel, and more particularly, to a method of adding iron in a method of depositing and removing nickel by adding iron (鐵粉).

25인치 이하의 소형 TV나 소형 컴퓨터 모니터의 브라운관에 사용되는 섀도우마스크(shadow mask)는 그 재질이 순수한 철이므로 에칭에 사용된 염화철수용액은 회수하여 염소가스로 산화처리하는 것만으로도 재생할 수 있다. 그러나, 25인치 이상의 대형 TV와 차세대 TV인 HDTV(high definition television), 대형 컴퓨터 모니터의 브라운관에 사용되는 섀도우마스크는 철-니켈 합금(Invar합금, Alloy-42 등)으로 제작되기 때문에 에칭에 사용된 폐염화철수용액은 니켈을 1∼3% 정도 함유하게 되고, 축적된 니켈은 에칭 홀(hole)을 불균일하게 하고 에칭효율이 저하시킨다. 따라서, 니켈이 함유된 폐염화철수용액에서 니켈을 효과적으로 제거하는 방법이 요구된다.The shadow mask used for small-sized TVs and small computer monitors of 25 inches or smaller is made of pure iron, so the iron chloride solution used for etching can be recovered by simply oxidizing with chlorine gas. However, shadow masks used in large-sized TVs larger than 25 inches, high definition television (HDTV), and CRT of large computer monitors are made of iron-nickel alloys (Invar alloy, Alloy-42, etc.). The waste iron chloride solution contains about 1 to 3% of nickel, and the accumulated nickel makes the etching holes uneven and the etching efficiency decreases. Therefore, there is a need for a method for effectively removing nickel from nickel-containing waste iron chloride solution.

폐염화철수용액에서 니켈을 제거하는 방법으로는 철환원법, 이온교환법, 전기분해법, 결정형성법 등이 있으나 철분을 과량으로 첨가하여 철보다 이온화 경향이 철보다 낮은 니켈을 석출시켜 제거하는 철환원법이 주로 채택되고 있다.The method of removing nickel from waste iron chloride solution includes iron reduction method, ion exchange method, electrolysis method, crystal formation method, etc.However, iron reduction method is used to precipitate and remove nickel having lower ionization tendency than iron by adding iron in excess. It is becoming.

철환원법은 금속철을 투입하여 염화제이철을 염화제일철로 환원시키는 제1 반응(반응식 1)과, 다시 금속철분을 과량으로 첨가하여 니켈을 석출시키는 제2 반응(반응식 2)으로 이루어진다.The iron reduction method consists of a first reaction (Scheme 1) in which ferric chloride is reduced to ferrous chloride by adding metal iron, and a second reaction (Scheme 2) in which an excess amount of iron is added to precipitate nickel.

2FeCl3+ Fe → 3FeCl2 2FeCl 3 + Fe → 3FeCl 2

NiCl2+ Fe → FeCl2+ NiNiCl 2 + Fe → FeCl 2 + Ni

여기에서, 제1 반응인 환원반응은 발열반응으로 상온에서 자발적으로 일어나는 반응이기 빠르기 때문에 투입되는 철의 형태에 구애되지 않는다. 이를테면, 저가의 스크랩 등을 사용할 수 있다. 그러나, 제2 반응인 니켈제거반응은 반응속도도 느릴뿐만 아니라 철의 표면에 석출된 니켈이 반응이 진행되는 것을 방해하기 때문에 반응면적을 향상시키기 위해서 분말형태의 철 즉, 철분(鐵粉)을 사용하는 것이필수적이다. 통상, 철분은 이론적 요구량의 3배∼7배를 사용하는데 값이 비싸기 때문에 사용량을 최소화하기 위한 여러 가지 방법이 제시되고 있다.Here, the first reaction, the reduction reaction, is a reaction occurring spontaneously at room temperature due to an exothermic reaction, so it is not limited to the type of iron introduced. For example, inexpensive scrap and the like can be used. However, the second nickel removal reaction is not only slow but also inhibits the reaction of nickel precipitated on the surface of the iron, so that the iron in powder form, i.e. iron powder, is used to improve the reaction area. It is essential to use. In general, iron is used three to seven times the theoretical demand is expensive, and various methods have been proposed to minimize the amount used.

이를테면, 철분의 형태적 측면에서 접근한 발명으로는 일본공개특허 특개평3-253584와 특개평5-85740이 있다. 특개평3-253584에는 입도 150∼350 메쉬, 비표면적 1 m2/g 이상인 철분을 사용하는 방법이 개시되어 있고, 특개평5-85740에는 다공성 철분을 사용하는 방법이 개시되어 있다.For example, Japanese Patent Application Laid-open No. Hei 3-253584 and No. Hei 5-85740 have approached in terms of the form of iron. Japanese Patent Laid-Open No. 3-253584 discloses a method of using iron powder having a particle size of 150 to 350 mesh and a specific surface area of 1 m 2 / g or more, and Japanese Patent Laid-Open Publication No. 5-85740 discloses a method of using porous iron powder.

또한, 재사용에 의하여 사용량을 줄이는 방법이 있는데 여기에는 일본공개특허 특개평1-167235, 특개평5-140667, 특개평9-156930 및 특개평8-260166이 있다. 특개평1-167235에는 철과 니켈의 슬러리를 회수하여 재사용하는 방법이 개시되어 있고, 일본공개특허 특개평5-140667에는 사용한 철분을 반응기에 침전시켜 반복하여 사용하는 방법이 개시되어 있고, 일본공개특허 특개평9-156930과 특개평8-260166에는 제2 반응를 다단계로 구성하여 1단계로 철분 슬러리의 니켈함량을 높여 여과분리시킴으로써 니켈을 제거하고, 2단계로 니켈함량이 낮은 철분 슬러리를 여과분리하여 1단계 반응에 다시 사용하는 방법이 개시되어 있다. 그러나, 이 방법에 의하면 3회 이상 재사용하는 경우에는 반응속도가 급격히 저하되는 문제점과 철분/니켈 슬러리 분쇄장치가 추가되어야 하는 단점이 있다. 특히, 니켈농도에 따른 다단계 반응의 경우에는 여러 개의 교반 반응기가 필요하게 되고, 각 반응기에서 철분/니켈 슬러리를 여과/분리시키기 위한 공정 및 장치가 추가되어야 하므로 경제적이지 못하다.In addition, there is a method of reducing the amount of use by reuse, and there are Japanese Patent Laid-Open Nos. Hei 1-67235, Hei 5-140667, Hei 9-156930 and Hei 8-260166. Japanese Patent Laid-Open No. Hei 1-67235 discloses a method of recovering and reusing a slurry of iron and nickel. Japanese Laid-Open Patent Publication Hei 5-140667 discloses a method of precipitating used iron powder in a reactor and repeatedly using it. In Patent Laid-Open Nos. 9-156930 and 8-260166, the second reaction is composed of multiple steps to remove nickel by increasing the nickel content of the iron slurry by filtration in one step to remove nickel, and filtering the iron slurry having low nickel content in two steps. To use again in a one-step reaction. However, this method has a problem in that the reaction rate is sharply lowered and the iron / nickel slurry pulverization device is added when reused three or more times. In particular, in the case of multi-stage reaction according to nickel concentration, several stirring reactors are required, and it is not economical because a process and apparatus for filtering / separating iron / nickel slurry in each reactor must be added.

상기 문제점을 개선하기 위해 초음파를 사용하여 철분/니켈 슬러리를 재생하는 방법(한국특허 출원96-35940)이 제시되고 있으나 이 방법 역시 여과/분리장치는 필요하고, 초음파 발생장치가 추가로 필요하게 되는 단점이 있다.In order to improve the problem, a method of regenerating iron / nickel slurry using ultrasonic waves (Korean Patent Application No. 96-35940) has been proposed, but this method also requires a filtration / separation device, and an additional ultrasonic generator is required. There are disadvantages.

또한, 철분을 분할하여 투입하는 방법이 있는데 여기에는 일본공개특허 특개평5-125562와 특개평5-263273가 있다. 특개평5-125562에는 철분을 2회로 분할하여 투입하는 방법을 제시되어 있으나 투입량 결정방법에 대하여는 명시되어 있지 않고, 특개평5-263273에는 2회∼4회로 분할하여 투입하는 방법이 제시되어 있는데 철분/니켈 슬러리를 여과하여 재투입하는 방법을 병용하고 있다.In addition, there is a method of dividing the iron powder, there are Japanese Patent Laid-Open No. Hei 5-125562 and Japanese Patent Laid-Open No. Hei 5-263273. In Japanese Patent Laid-Open Publication No. 5-125562, a method of dividing iron into two pieces is presented, but the method of determining the input amount is not specified, and Japanese Patent Laid-Open Publication No. Hei 5-263273 discloses a method of dividing iron into two to four times. The method of filtering and re-nickel slurry is used together.

위에서 살펴본 바와 같이, 철분사용의 최소화와 과량의 철분사용으로 발생되는 고형폐기물의 양을 최소화하기 위해서 니켈제거속도를 고려한 최적의 철분투입방법은 아직 제시되어 있지 않다. 따라서, 폐염화철수용액에서 니켈을 제거하기 위해 철분을 투입하는 방법에 있어서, 투입되는 철분의 양과 분할투입하는 회수, 투입시점에 대한 실제적인 최적화가 요구된다.As described above, in order to minimize the use of iron and to minimize the amount of solid waste generated by the use of excess iron, the optimal method of iron input considering the removal rate of nickel has not yet been proposed. Therefore, in the method of adding iron to remove nickel from the waste iron chloride solution, practical optimization of the amount of iron added, the number of divided doses, and the timing of addition is required.

본 발명의 목적은 니켈을 함유하는 폐염화철수용액에서 니켈을 제거함에 있어서 값이 비싼 철분(鐵粉)의 사용량을 최소화하고 적절한 반응속도를 유지하기 위한 효율적인 철분투입방법을 제공하는 것이다.It is an object of the present invention to provide an efficient iron input method for minimizing the use of expensive iron in the removal of nickel from the waste iron chloride solution containing nickel and maintaining an appropriate reaction rate.

도 1은 폐염화철수용액에 철분을 일시에 투입하는 경우에 있어서 니켈의 농도변화를 나타낸다.1 shows a change in the concentration of nickel when iron is added to a waste iron chloride solution at one time.

도 2는 폐염화철수용액에 철분을 일시에 투입하는 경우와 본 발명의 방법에 따라 분할투입하는 경우에 있어서의 니켈의 농도변화를 비교하여 도시한 것이다.Figure 2 shows a comparison of the concentration change of nickel in the case of the iron in the waste iron chloride solution at the time and in the case of split dosing according to the method of the present invention.

전술한 [반응식 2]의 반응에 의하여 니켈이 제거되는 반응속도는 일단 반응물인 철분의 양과 니켈농도에 의존하는 것으로 가정할 수 있다. 그러나, 초기반응에 의하여 철분표면(입자표면 및 다공성인 경우 내부세공의 벽)에 니켈이 석출되어 니켈층이 형성되면 반응속도가 급격히 떨어지는 것으로 관찰된다. 이는 니켈이온이 철과 반응하려면 철분표면에 석출된 니켈층을 통과해야 하고, 니켈층 하부의 미반응 철과 반응하여 생성된 철이온은 다시 니켈층을 통과하여 용액으로 확산되어야 하기 때문으로 판단된다. 즉, 용액 내의 니켈이온이 표면의 철과 반응하여 철의 표면이 석출된 니켈층으로 덮이게 되면 반응속도는 니켈층에서의 니켈 및 철 이온의 확산속도에 의해 지배되는 것이다.The reaction rate at which nickel is removed by the reaction of [Scheme 2] may be assumed to depend on the amount of iron and nickel concentration. However, it is observed that the reaction rate drops rapidly when nickel is deposited on the iron surface (particle surface and the wall of internal pores in the porous case) by the initial reaction to form a nickel layer. This is because the nickel ions must pass through the nickel layer deposited on the iron surface in order to react with iron, and the iron ions produced by the reaction with the unreacted iron below the nickel layer must pass through the nickel layer and diffuse into the solution. . That is, when nickel ions in the solution react with iron on the surface and the iron surface is covered with the deposited nickel layer, the reaction rate is controlled by the diffusion rate of nickel and iron ions in the nickel layer.

따라서 니켈제거반응은 반응물인 철분의 양과 니켈농도에 의해 지배되는 초기반응단계와 니켈층에서의 니켈 및 철 이온의 확산속도에 의해 지배되는 후기반응단계로 나누어 볼 수 있다.Therefore, the nickel removal reaction can be divided into an initial reaction stage governed by the amount of reactant iron and nickel concentration, and a late reaction stage governed by the diffusion rate of nickel and iron ions in the nickel layer.

이를 실험으로 확인한 것이 [도 1]인데 일련의 실험결과 초기반응속도(r ini )로 유지되는 초기반응속도 유지시간은 니켈의 농도와 투입되는 철분의 종류 및 양에 따라 다르나 니켈의 농도가 3% 이하이고 투입되는 다공성 철분의 양이 니켈당량의 1배∼10배일 때 약 1시간 정도 유지됨을 확인하였다.This is confirmed by the experiment [FIG. 1]. As a result of a series of experiments, the initial reaction rate holding time maintained at the initial reaction rate (r ini ) depends on the concentration of nickel and the type and amount of iron added, but the concentration of nickel is 3%. When the amount of the porous iron to be added is 1 to 10 times the nickel equivalent, it was confirmed that it is maintained for about 1 hour.

본 발명의 발명자는 투입되는 철분의 양과 분할회수, 투입시점을 최적화하기 위하여 다음과 같이 일련의 실험 및 수학적 조작을 하였다.The inventors of the present invention performed a series of experiments and mathematical operations as follows to optimize the amount of iron input, the number of times of recovery, and the timing of input.

1. 초기반응속도식의 결정1. Determination of Initial Reaction Rate Formula

일단, 초기반응속도(r ini )는 투입되는 철분의 양(WFe/WL, 여기에서 WFe와 WL은각각 철분과 용액의 양)과 초기니켈농도(CNi)의 함수로 하여 다음과 같이 표시할 수 있다.First, the initial reaction rate (r ini ) is a function of the amount of iron input (W Fe / W L , where W Fe and W L are the amounts of iron and solution, respectively) and the initial nickel concentration (C Ni ) Can be displayed as:

r ini = -dCNi/dt = f(WFe/WL)*g(CNi)r ini = -dC Ni / dt = f (W Fe / W L ) * g (C Ni )

함수 f(WFe/WL)와 g(CNi)를 정하기 위하여 (1) WFe/WL를 일정하게 하고 CNi를 변화시켜가며 초기반응속도를 측정하고, (2) CNi를 일정하게 하고 WFe/WL를 변화시켜가며 초기반응속도를 측정하였다. 실험은 다음과 같이 진행하였다.To determine the functions f (W Fe / W L ) and g (C Ni ), (1) make W Fe / W L constant, change the C Ni , measure the initial reaction rate, and (2) set C Ni constant The initial reaction rate was measured by changing W Fe / W L. The experiment proceeded as follows.

(1) 함수 f(WFe/WL)의 결정(1) Determination of the function f (W Fe / W L )

초기니켈농도를 일정하게 하고, 32% 염화제일철 수용액에 투입하는 철분의 양을 변화시켜가며 일련의 반응을 실시하였다. 철분은 입도 45∼150㎛(평균 75㎛), 순도 95% 이상인 다공성 환원철(겉보기비중 2.71, 일본 Dowa Iron Powder사 제품 DKP-100)을 사용하였다. 반응온도는 60℃로 유지하였으며 150rpm으로 교반하였다.The initial nickel concentration was constant, and a series of reactions were performed while varying the amount of iron added to the 32% ferrous chloride solution. Iron powder used was porous reduced iron (average specific gravity 2.71, DKP-100 manufactured by Dowa Iron Powder, Japan) having a particle size of 45 to 150 µm (average 75 µm) and a purity of 95% or more. The reaction temperature was maintained at 60 ℃ and stirred at 150rpm.

초기 니켈농도를 10,000ppm으로 일정하게 유지하고 WFe/WL를 0.01에서 0.04(초기니켈함량의 1배몰∼4배몰)까지 변화시킨 실험과, 초기 니켈농도를 1,000ppm으로 일정하게 유지하고 WFe/WL를 0.001에서 0.01(초기 니켈함량의 1배몰∼10배몰)까지 변화시킨 실험과, 초기 니켈농도를 200ppm으로 일정하게 유지하고 WFe/WL를 0.00025에서 0.005(초기 니켈함량의 1배몰∼20배몰)까지 변화시킨 실험에서 초기반응속도는 WFe/WL에 정비례함을 확인하였다. 따라서, 함수 f(WFe/WL)는 다음과 같이 표현할 수 있다.Experiments in which the initial nickel concentration was kept constant at 10,000 ppm and the W Fe / W L was changed from 0.01 to 0.04 (1 to 4 times the molar amount of the initial nickel content), and the initial nickel concentration was kept at 1,000 ppm at constant W Fe Experiments in which / W L was changed from 0.001 to 0.01 (1 mole to 10 times mole of initial nickel content), the initial nickel concentration was kept constant at 200 ppm, and W Fe / W L was 0.00025 to 0.005 (1 mole of initial nickel content). The initial reaction rate was found to be directly proportional to W Fe / W L in the experiment. Therefore, the function f (W Fe / W L ) can be expressed as follows.

f(WFe/WL) = k1*(WFe/WL)f (W Fe / W L ) = k 1 * (W Fe / W L )

(2) 함수 g(CNi)의 결정(2) Determination of the function g (C Ni )

철분투입량을 일정하게 하고, 초기니켈농도를 변화시켜가며 반응을 실시하였다. 나머지 조건은 (1)과 동일하게 하였다.The iron input was made constant, and the reaction was performed while changing the initial nickel concentration. The remaining conditions were the same as in (1).

WFe/WL을 0.01, 0.005 및 0.001로 일정하게 유지하면서 초기니켈농도(CNi)를 200ppm에서 10,000ppm까지 변화시킨 실험에서 니켈농도의 변화에 따른 초기반응속도를 측정한 결과, 농도의 로그값의 일차식에 비례하는 것으로 밝혀졌다. 이를 수학식으로 표현하면 다음과 같다.In the experiment where the initial nickel concentration (C Ni ) was changed from 200ppm to 10,000ppm while maintaining W Fe / W L constant at 0.01, 0.005 and 0.001, the log of concentration It was found to be proportional to the linear equation of the value. This is expressed as an equation.

g(CNi) = k2*(a*lnCNi+ b)g (C Ni ) = k 2 * (a * lnC Ni + b)

이상 [수학식 2]와 [수학식 3]을 [수학식 1]에 대입하면 초기반응속도식은다음과 타이 표현된다.The substitution rate of Equation 2 and Equation 3 in Equation 1 is expressed as follows.

r ini = -dCNi/dt = k*(WFe/WL)*(a*lnCNi+ b)r ini = -dC Ni / dt = k * (W Fe / W L ) * (a * lnC Ni + b)

여기에서 k는 k1*k2이다.Where k is k 1 * k 2 .

평균입도 45㎛, 순도 95% 이상인 또 하나의 다공성 환원철인 DKPC(겉보기비중 2.15, 일본 Dowa Iron Powder 회사제품)를 사용한 일련의 추가실험에서 상수 k, a, b의 값은 다르나 상기 [수학식 4]의 관계식이 유지됨을 확인하였다.In a series of additional experiments using another porous reduced iron DKPC (average specific gravity 2.15, manufactured by Dowa Iron Powder Co., Ltd.), which has an average particle size of 45 µm and a purity of 95% or more, the values of the constants k, a, and b are different. ] Is maintained.

그런데 전술한 바와 같이 철분을 한꺼번에 투입하면 철분 표면이 석출된 니켈로 덮이게 되어 용액의 니켈농도가 낮아지면 니켈제거 반응속도가 급격히 떨어지게 된다. 따라서 철분을 적절히 분할하여 공급함으로써 니켈의 제거속도 즉, 반응속도를 일정하게 유지하는 것이 중요하다. (본 발명은 철분의 적절한 분할공급방법을 제공하는 것이 목적이다.) 이를 [도 2]를 통하여 상세히 설명하면 다음과 같다.However, when the iron is added at the same time as described above, the iron surface is covered with the precipitated nickel, so that the nickel removal reaction rate is drastically reduced when the nickel concentration of the solution decreases. Therefore, it is important to keep the removal rate of nickel, that is, the reaction rate constant, by appropriately dividing iron powder. (It is an object of the present invention to provide a suitable method of split supply of iron.) This will be described in detail with reference to [2] as follows.

농도곡선 1([도 1]과 동일함)은 철분을 초기에 모두 투입하는 경우의 니켈의 농도변화를 나타낸 것으로, 초기반응속도는 빠르나 상업적으로 요구되는 니켈농도인 100ppm 이하가 되기 위해서는 상당한 시간이 요구됨을 알 수 있다.Concentration curve 1 (same as [Fig. 1]) shows the change in the concentration of nickel when all iron is initially added. The initial reaction rate is fast, but a considerable time is required to reach a commercially required nickel concentration of 100 ppm or less. It can be seen that required.

그런데, 수학적으로 철분 소요량을 최소화하면서 최단시간 내에 상업적으로요구되는 니켈농도에 도달하게 하려면 농도곡선 1을 직선(농도곡선 2)에 접근시켜야 하며 이는 철분을 분할하여 투입함으로써 반응속도가 일정하게 유지되도록 하는 것에 의하여 달성될 수 있음을 알 수 있다.However, in order to mathematically reach the commercially required nickel concentration in the shortest time while minimizing the iron requirement, the concentration curve 1 should be approached to a straight line (concentration curve 2). It can be seen that it can be achieved by doing.

즉, 상기 [수학식 4]에서 니켈제거반응의 전과정을 통하여 초기반응속도로 일정하게 유지하기 위해서는 -dCNi/dt = △(상수)로 유지시켜야 하는 것으로, 용액의 니켈농도(CNi)에 따른 철분투입량 WFe/WL을 다음 [수학식 5]와 같이 조절해야 하는 것이다.That is, in order to maintain a constant initial reaction rate throughout the entire process of removing the nickel in [Equation 4] to be maintained at -dC Ni / dt = △ (constant), to the nickel concentration (C Ni ) of the solution The iron input amount W Fe / W L according to the following [Equation 5] is to be adjusted.

WFe/WL= △/[k*(a*lnCNi+ b)]W Fe / W L = Δ / [k * (a * lnC Ni + b)]

반응율 X = CNi/CNi o이므로 [수학식 5]는 [수학식 6]으로 표현할 수도 있다.Since the reaction rate X = C Ni / C Ni o [Equation 5] can also be expressed as [Equation 6].

WFe/WL= △/[k'*{ln(CNi o(1 - △*t)} + b')]W Fe / W L = Δ / [k ' * (ln (C Ni o (1-Δ * t)) + b ' )]

여기에서, WFe/WL는 폐염화철수용액 단위부피당 투입되는 철분의 양이고, △는 반응율이고, CNi o는 니켈의 초기농도(ppm)이고, t는 반응시간이고, k'와 b'는 철분에 따라 달라지는 상수이다. 이를테면, 전술한 DKP-100의 경우에는 k'= -12.29, b'= -11이다.Here, W Fe / W L is the amount of iron added per unit volume of waste iron chloride solution, △ is the reaction rate, C Ni o is the initial concentration of nickel (ppm), t is the reaction time, k ' and b ' Is a constant that depends on iron. For example, in the case of the above-described DKP-100, k ' = -12.29, b ' = -11.

[수학식 6]을 이용하면 이를테면, 다공성 철분으로 DKP-100을 매시간마다 투입하여 초기 니켈농도(CNi o)가 10,000ppm인 폐염화철수용액의 니켈농도를 6시간만에 500ppm으로 낮추고자 하는 경우에 있어서 매시간당 투입해야 하는 철분의 양을 계산할 수 있다.For example, using Equation 6, for example, DKP-100 is injected every hour with porous iron to reduce the nickel concentration of the waste iron chloride solution with an initial nickel concentration (C Ni o ) of 10,000 ppm to 500 ppm in 6 hours. We can calculate the amount of iron that should be put in every hour.

△ = (10,000 - 500)/10,000/6 = 0.1583이며, 매시간당 투입하는 철분량은 다음과 같다.△ = (10,000-500) / 10,000 / 6 = 0.1583, and the amount of iron added per hour is as follows.

시간(hr)Hours (hr) 용액의 니켈농도(ppm)Nickel concentration of the solution (ppm) WFe/WL(kg/kg)W Fe / W L (kg / kg) 00 10,00010,000 0.007200.00720 1One 8,4178,417 0.006720.00672 22 6,8346,834 0.005930.00593 33 5,2515,251 0.005290.00529 44 3,6683,668 0.004610.00461 55 2,0852,085 0.003840.00384 66 500500 --

철분의 총투입량은 용액 1kg당 0.03359kg이고, 초기에 한꺼번에 투입하는 경우 철분소요량이 용액 1kg당 0.04kg인 것과 비교하면 약 17% 절감됨을 알 수 있다.The total dose of iron is 0.03359 kg per kg of solution, and the initial dose of iron is about 17% lower than the iron requirement of 0.04 kg per kg of solution.

이로써 니켈을 함유하는 폐염화철수용액에 철분을 투입하여 니켈을 제거함에 있어서, 니켈농도가 변화함에 따라 [수학식 6]에 의하여 결정되는 철분을 투입하는 것이 가장 효과적임을 알 수 있다.Thus, in the removal of nickel by adding iron to the waste iron chloride solution containing nickel, it can be seen that it is most effective to add the iron determined by Equation 6 as the nickel concentration changes.

철분은 위와 같이 매시간 투입할 수도 있지만 임의의 시점에 적절한 횟수로 나누어 투입할 수 있으며, 주기를 매우 짧게 하면 궁극적으로 철분을 연속적으로 투입하는 것으로 할 수도 있다.Iron may be added every hour as described above, but may be added at an appropriate number of times at any time. If the cycle is very short, ultimately iron may be continuously added.

이에 대한 수학적 조작은 통상의 당업자라면 쉽게 할 수 있을 것이다.Mathematical manipulations to this will be readily apparent to those of ordinary skill in the art.

본 발명의 효과는 다음의 실시예로부터 보다 확실히 입증될 것이다.The effect of the present invention will be more evident from the following examples.

<실시예 1><Example 1>

반응기는 용적 1m3의 교반기가 부착된 FRP 반응기, 철분은 DKP-100 산화철 분말(일본 Dowa Iron Powder 회사 제품), 시료 폐염화철수용액은 니켈농도 10,000ppm의 34% 염화제1철 수용액을 만들어 사용하였다.The reactor volume of 1m 3 reactor equipped with a stirrer FRP, iron DKP-100 iron oxide powder (JP Dowa Iron Powder Co., Ltd.), the sample waste iron chloride aqueous solution was made using a 34% ferrous chloride solution of nickel concentration 10,000ppm .

700kg의 폐염화철수용액에 필요한 철분(700 kg*0.03628 = 25.4 kg)을 위의 표에서와 같이 매시간 분할공급하였다. 반응온도는 80℃로 유지하였으며 니켈농도는 원자흡광분석기(AA6200, Shimadzu)를 사용하여 분석하였다.Iron (700 kg * 0.03628 = 25.4 kg) required for 700 kg of waste iron chloride solution was dividedly fed hourly as shown in the above table. The reaction temperature was maintained at 80 ℃ and nickel concentration was analyzed using an atomic absorption spectrometer (AA6200, Shimadzu).

반응개시후 니켈농도가 6시간후에는 455ppm, 7시간후에는 25ppm이 되었다.After initiation of the reaction, the nickel concentration became 455 ppm after 6 hours and 25 ppm after 7 hours.

<실시예 2><Example 2>

실시예 1과 동일한 반응기와 동일한 시료를 사용하여 실험하였다.The experiment was carried out using the same reactor and the same sample as in Example 1.

철분은 연속적으로 분할하여 투입하는 방법을 사용하였다. 초기 1시간동안은 분당 철분투입량을 0.091kg에서 0.077kg까지 변화시켜 평균투입량이 분당 0.084kg이 되도록 하였으며 1시간에 필요한 5.04 kg의 철분을 투입하였다. 또한 비슷한 방법으로 철분을 연속적으로 변화시키며 투입하였다.Iron was used to continuously divide and input. During the first hour, the iron input per minute was changed from 0.091kg to 0.077kg, so that the average dose was 0.084kg per minute, and 5.04 kg of iron needed per hour was added. In addition, iron was continuously added in a similar manner.

반응개시후 니켈농도가 6시간후에는 465ppm, 7시간후에는 15ppm이 되었다.After the initiation of the reaction, the nickel concentration became 465 ppm after 6 hours and 15 ppm after 7 hours.

<비교예 1>Comparative Example 1

실시예 1과 동일한 반응기와 동일한 시료를 사용하여 실험하였다.The experiment was carried out using the same reactor and the same sample as in Example 1.

철분 28kg을 일시에 투입한 후 니켈농도를 측정하였다.28 kg of iron was added at a time and nickel concentration was measured.

반응개시후 니켈농도가 6시간후에는 490ppm, 7시간후에는 380ppm, 8시간후에는 300ppm이 되었다.After the initiation of the reaction, the nickel concentration became 490 ppm after 6 hours, 380 ppm after 7 hours, and 300 ppm after 8 hours.

<비교예 2>Comparative Example 2

실시예 1과 동일한 반응기와 동일한 시료를 사용하여 실험하였다.The experiment was carried out using the same reactor and the same sample as in Example 1.

철분 28kg을 6등분하여 매시간 4.667kg씩 투입한 후 니켈농도를 측정하였다.28 kg of iron was divided into 6 equal parts and 4.667kg was added every hour, and nickel concentration was measured.

반응개시후 니켈농도가 6시간후에는 670ppm, 7시간후에는 350ppm, 8시간후에는 220ppm이 되었다.After the start of the reaction, the nickel concentration became 670 ppm after 6 hours, 350 ppm after 7 hours, and 220 ppm after 8 hours.

본 발명에 의하면 철환원법에 의하여 폐염화철수용액으로부터 니켈을 제거함에 있어서, 철분 사용량을 최소화하고 적절한 반응속도를 유지되게 할 수 있으며 결과적으로, 슬러지 발생량을 최소화할 수 있다.According to the present invention, in removing nickel from the waste iron chloride solution by the iron reduction method, it is possible to minimize the amount of iron used and to maintain an appropriate reaction rate, and as a result, to minimize the amount of sludge generated.

또한, 니켈뿐만 아니라 철보다 이온화경향이 낮은 금속을 철환원법으로 석출시킬 때 철분의 종류에 관계없이 철분의 최적투입방법으로 사용될 수 있다.In addition, when depositing not only nickel but also a metal having a lower ionization tendency than iron, it may be used as an optimal injection method of iron regardless of the type of iron.

Claims (3)

니켈을 함유하는 폐염화철수용액에 철분을 투입하여 니켈을 제거함에 있어서, 니켈농도가 변화함에 따라 니켈제거 반응속도가 일정하게 유지되도록 다음의 [수학식 6]에 의하여 결정되는 양의 철분을 투입하는 것을 특징으로 하는 철분투입방법.In the removal of nickel by adding iron to the waste iron chloride solution containing nickel, the amount of iron determined by the following [Equation 6] is added so that the reaction rate of nickel removal is kept constant as the nickel concentration changes. Iron injection method characterized in that. [수학식 6][Equation 6] WFe/WL= △/[k'*{ln(CNi o(1 - △*t)} + b')]W Fe / W L = Δ / [k ' * (ln (C Ni o (1-Δ * t)) + b ' )] 여기에서, WFe/WL는 폐염화철수용액 단위부피당 투입되는 철분의 양이고, △는 반응율이고, CNi o는 니켈의 초기농도이고, t는 반응시간이고, k'와 b'는 상수이다.Here, W Fe / W L is the amount of iron added per unit volume of the waste iron chloride solution, △ is the reaction rate, C Ni o is the initial concentration of nickel, t is the reaction time, k ' and b ' is a constant . 제1항에 있어서, [수학식 6]에 의하여 계산되는 양의 철분을 임의의 시점에 투입하는 것을 특징으로 하는 철분투입방법.The iron injection method according to claim 1, wherein the amount of iron calculated by Equation 6 is added at an arbitrary time point. 제1항에 있어서, [수학식 6]에 의하여 계산되는 양의 철분을 연속적으로 투입하는 것을 특징으로 하는 철분투입방법.The iron input method according to claim 1, wherein the amount of iron calculated by Equation 6 is continuously added.
KR1020000040535A 2000-07-14 2000-07-14 Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution KR100348894B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000040535A KR100348894B1 (en) 2000-07-14 2000-07-14 Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000040535A KR100348894B1 (en) 2000-07-14 2000-07-14 Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution

Publications (2)

Publication Number Publication Date
KR20020006947A KR20020006947A (en) 2002-01-26
KR100348894B1 true KR100348894B1 (en) 2002-08-14

Family

ID=19678090

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000040535A KR100348894B1 (en) 2000-07-14 2000-07-14 Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution

Country Status (1)

Country Link
KR (1) KR100348894B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116948A (en) * 1991-10-30 1993-05-14 Tosoh Corp Treatment of waste etching solution of ferric chloride
JPH06127946A (en) * 1992-10-16 1994-05-10 Astec Irie:Kk Treatment of iron chloride base waste liquid
JPH09156930A (en) * 1995-12-11 1997-06-17 Tsurumi Soda Co Ltd Treatment of ferric chloride waste liquor
KR19980016380A (en) * 1996-08-28 1998-05-25 허남준 Method for regenerating ferric chloride aqueous solution by continuous process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116948A (en) * 1991-10-30 1993-05-14 Tosoh Corp Treatment of waste etching solution of ferric chloride
JPH06127946A (en) * 1992-10-16 1994-05-10 Astec Irie:Kk Treatment of iron chloride base waste liquid
JPH09156930A (en) * 1995-12-11 1997-06-17 Tsurumi Soda Co Ltd Treatment of ferric chloride waste liquor
KR19980016380A (en) * 1996-08-28 1998-05-25 허남준 Method for regenerating ferric chloride aqueous solution by continuous process

Also Published As

Publication number Publication date
KR20020006947A (en) 2002-01-26

Similar Documents

Publication Publication Date Title
EP1175381B1 (en) Continuous process for preparing halogenated compounds
CA2236125C (en) Method for purifying nickel sulfate
US5871705A (en) Process for producing trichlorosilane
GB2146978A (en) Process of preparing nitrogen trifluoride by gas-solid reaction
US4956097A (en) Waste treatment of metal containing solutions
CN110498537A (en) A kind of technique that the phosphorus fluorine sewage containing ammonia nitrogen efficiently removes ammonia nitrogen
KR100348894B1 (en) Feeding Method of Fe-powder for Removing Ni from the Used Iron-chloride Aqueous Solution
CN113428902A (en) Method for preparing ammonium paratungstate
CN113149091A (en) Battery-grade nickel salt and preparation method thereof
CA2098262C (en) Process for producing nickel hydroxide
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
CA2463268C (en) Process for purification of aqueous solution of nickel sulfate containing cobalt and calcium
EP1399387B1 (en) Process for removing sodium sulfate from nickel hydroxide effluent streams
EP0231944B1 (en) Method for stopping and starting a acrylamide reactor
EP0364188A1 (en) Waste treatment of metal containing solutions
EP0157561B1 (en) Metal stripping system and an operation process therefor
JPH0925522A (en) Production of high purity metallic material
US4024037A (en) Oxidation of cyanides
JP2556221B2 (en) Oxidation method of trivalent plutonium to tetravalent plutonium
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JPH06264156A (en) Method for separating and recovering nickel and/or cobalt
JP3755454B2 (en) Treatment method for nitrate-containing water
EP1939139A1 (en) Method for preparing hydroxylamine
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JPS6134125A (en) Method for recovering silver

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080723

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee